EP1145268B1 - Multiband travelling wave tube of reduced length capable of high power functioning - Google Patents

Multiband travelling wave tube of reduced length capable of high power functioning Download PDF

Info

Publication number
EP1145268B1
EP1145268B1 EP99959496A EP99959496A EP1145268B1 EP 1145268 B1 EP1145268 B1 EP 1145268B1 EP 99959496 A EP99959496 A EP 99959496A EP 99959496 A EP99959496 A EP 99959496A EP 1145268 B1 EP1145268 B1 EP 1145268B1
Authority
EP
European Patent Office
Prior art keywords
section
output
wave tube
travelling wave
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99959496A
Other languages
German (de)
French (fr)
Other versions
EP1145268A2 (en
Inventor
Jean-Claude Thomson-CSF Prop. Intel. KUNTZMANN
Dominique Thomson-CSF Prop. Intell. HENRY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thales Electron Devices SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Electron Devices SA filed Critical Thales Electron Devices SA
Publication of EP1145268A2 publication Critical patent/EP1145268A2/en
Application granted granted Critical
Publication of EP1145268B1 publication Critical patent/EP1145268B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps

Definitions

  • the present invention relates to a traveling wave tube multiband capable of operating at high power.
  • This tube intended particularly to be used in airborne or space applications, must be relatively short.
  • traveling wave tubes intended to operate in a very wide frequency band and which are relatively short. These tubes are known under the name of mini-TOP. These are traveling wave tubes monobloc helical line tight. From the frequency point of view, we got a report from minus three between the high frequency and the low frequency of the band.
  • these tubes do not exceed about thirty centimeters but from the point of view of power they do not reach little more than a few tens of watts.
  • the object of the present invention is a traveling wave tube multiband whose length is of the order of that of the mini-TOP but which is able to operate at higher powers while retaining a gain of the same order.
  • the multiband traveling wave tube according to the invention is defined by claim 1.
  • the multiband wave tube comprises a microwave line traversed by electrons and wherein a signal is amplified.
  • This microwave line comprises successively a section of microwave input line separated from a succession of disjoint output microwave line sections, each output section working in one of the operating bands of the tube.
  • the inlet section is connected at one end to means input signal to amplify and works in a frequency band encompassing the operating frequency bands of the tube. It is for preamplifying the signal to be amplified.
  • the succession of output sections receives the pre-amplified signal, each of its output sections being intended to amplify it, if it is at a frequency in his working frequency band and to leave it pass virtually without intervention, if it is at an external frequency to its working frequency band, each of the output sections being connected at one end to output means of the preamplified signal that it has amplified.
  • the center frequencies of the working bands exit sections decrease with their distance from the section input.
  • microwave line sections are in a helix, each propeller is held in a sheath by dielectric supports, the different sleeves being secured to each other.
  • the section input includes dispersion correction means such as valves
  • the propeller of the first output section will preferably be substantially the same length and / or the same inside diameter as the propeller of the entrance section.
  • the propeller wire of the first exit section will also have preferably the same section as that of the helix wire of the input section.
  • the pitch of the helix of the first stretch of output will preferably be smaller than that of the impeller of the inlet section.
  • the length and / or the pitch and / or the inside diameter propellers of the output sections will increase with their distance from the entrance section. It is the same for the section of the helix wire.
  • the inlet section has an attenuation zone at the opposite end to that connected to the input means of the signal to be amplified.
  • each exit section has a zone attenuation at the opposite end to that connected to the output means of the signal that he amplified.
  • Figure 1 shows a multi-band traveling wave tube according to the invention.
  • a conventional way it comprises successively in an envelope 5, a barrel 1 for producing a beam 2 of electrons, a body 3 in which an interaction occurs between the beam 2 of electrons and a signal to be amplified, a collector 4 for collecting the electrons of the beam 2 at their exit from the body 3.
  • the beam 2 of electrons crosses between the entrance 6 and the output 7 of the body 3, a microwave line 8 formed of several sections h, h1 ..., hi, ... hn of disjoint microwave lines arranged one after another.
  • the first section crossed by the beam 2 is a h entrance section, other h1, hi, hn form a succession of so-called output sections and their number n is equal to number of frequency bands B1, Bi, Bn in which the tube is intended to function, n being an integer greater than or equal to two.
  • Each output sections h1, ... hi, ... hn is intended to work in one of operating bands of the tube respectively B1 ..., Bi, ... Bn.
  • Each frequency band B1 ..., Bi, ... Bn is centered on a central frequency respectively F1, Fi, Fn.
  • Each frequency band is associated with a exit section.
  • the electron beam 2 enters each of the sections h, h1, ... hi, .... hn by an input end ee and leaves by an end of exit es.
  • the input section h is intended to function as a preamplifier in a very broadband B encompassing all the bands B1, Bi, Bn of tube operation.
  • the entrance end ee of section h input is connected to input means E of a signal to be amplified in the tube. Its exit end is near the entrance end ee of the first exit section h1.
  • Each output section h1, hi, hn of the succession is intended for amplify the preamplified signal in the input section h, if the signal preamplifier is at a frequency within its frequency band work B1, Bi, Bn.
  • the output sections h1, hi, hn are practically without action on the preamplified signal that runs through them and is not at a frequency in their working frequency band.
  • Each of the output ends are output sections h1, hi, hn is connected to output means S1, Si, Sn of the preamplified signal on browsing, if the latter has been amplified in the said output section h1, hi, hn.
  • the pre-amplified signal that runs through the first section of output h1 is amplified, if its frequency is included in the band B1, it is then extracted by the output means S1. If the signal frequency preamplifier is not in band B1, the pre-amplified signal travels first output section h1 practically, without coupling with the beam of electrons 2, and at the exit end es of the first section h1, it enters in the second h2 output section where it is amplified, if its frequency is in the B2 band, then it is extracted. If its frequency is not in the band B2 it gets into the third h3 exit section and so on section in section until amplified in the appropriate section, then extracted.
  • a signal of frequency F propagates in the output section hi (i integer between 1 and n - 2), if it is not amplified this means that the frequency F is not included in the band Bi.
  • the signal of frequency F is not extracted at the output end of the hi output section and it then enters the next output section hi + 1. If its frequency F is in the frequency band Bi + 1 associated with the output section hi + 1, it is amplified then extracted at the end es of said hi + section 1. If its frequency F is out of the band Bi + 1, it enters the next segment hi + 2 and and so on.
  • FIG. 2 shows such a tube seen from the outside but of which the envelope 5 is partially open so as to reveal the different sections of microwave line h, h1, h2 which are helical.
  • the other elements inside the envelope such as the barrel, the focuser, the collector are not represented for the sake of clarity.
  • the propellers 20, 21, 22 each inserted in a sleeve 11, 11.1, 11.2 conductor are held in the sleeve 11, 11.1, 11.2 to using supports 12, 12.1, 12.2 insulators.
  • supports 12, 12.1, 12.2 propeller insulators but only one is visible on the 2) and these are substantially the length of the helix 20, 21, 22 that they maintain.
  • the supports can be so conventional, boron nitride, alumina or beryllium oxide by example.
  • the propellers 20, 21, 22 are without contact with each other.
  • the different sleeves 11, 11.1, 11.2 are integral with each other. This fastening is waterproof.
  • the input end ee of the input section h is connected to input means E of a signal to be amplified represented in the form of a coaxial line.
  • the two output sections h1, h2 work respectively in the band B1, B2, of respective central frequency F1, F2.
  • the frequency F1 is greater than frequency F2.
  • the output end of the section h1 is connected to output means S1 of the preamplified signal if it has amplified by said section h1.
  • the output means S1 are represented by a waveguide which is conventional at high frequency.
  • the end of output of section h2 is connected to output means S2 of the signal which has has been amplified by section h2. In the example it is a coaxial line. he is of course that each of the means of entry and exit could be of different nature.
  • Section h is intended to work in a very wide band B encompassing the two bands B1 and B2.
  • the input section h comprises means for correcting dispersion 13 such as valves for example.
  • the valves 13 are distinct from the supports 12, they are conductors extending longitudinally along the helix 20 and projecting from the sheath 11 to the propeller 20. These valves 13 are separated from the propeller 20 by a space 14. They are placed between the supports 12.
  • valves can be used as illustrated in Figure 3b. These valves integrated in the dielectric supports are described in the European patent EP-B-0 401 065.
  • the propeller is maintained by the dielectric supports 120 which are in turn supported by elements conductors 130 projecting from the inner wall of the sheath 11 towards the propeller 20.
  • This configuration has the advantage of less obstructing the inside of the sheath, which reduces the time required for pumping and qualitatively improve the vacuum.
  • Figures 3a and 3b show cross sections of entrance section h.
  • the inside diameter d of the propeller 20 is relatively small so that section h can work in preamplifier in the band B encompassing all the operating bands of the tube. This diameter depends on the frequency band to be amplified.
  • Figure 3c is a diagram of the normalized phase velocity c / v ⁇ of the signal propagating in the input section h according to the frequency F. It is assumed in the example described that the tube is intended for operate in two bands B1, B2 centered respectively around the frequency F0 and frequency 3F0.
  • the standard c / v ⁇ phase velocity is the ratio of the phase velocity v ⁇ to the speed of light c.
  • the curve in solid line is obtained in the inlet section h with valves 13 different from the supports 12 and the dashed curve is the one that is would get in the absence of valves 13.
  • FIG. 3d is the gain G of the input section h as a function of the frequency F.
  • the maximum gain Gmax is obtained in the middle part of the curve, that is to say for a median frequency, the frequencies F0 and 3F0 are located on both sides of the median frequency.
  • the gain is about 4 to 5 dB lower compared to the maximum gain.
  • the first output section h1 is the one that works in amplification at the highest frequency, here 3F0. His band B1 operation is narrower than the B band and the h1 section does not require no means of dispersion correction.
  • FIG. 4a shows in cross section the first section h1 output with dielectric supports 12.1.
  • Its propeller 21 can be made to simplify with the same wire as the propeller 20 of the input section h if the desired output power of the first output section is not too high. It will have substantially the same internal diameter d1 as that d of the helix 20 of the input section h since this first section h1 of output is associated with the band B1 whose central frequency 3F0 is the most high.
  • its pitch p1 may be smaller than that p of the propeller 20 of the entrance section h to maintain the synchronism between the speed of the electron beam and the speed of the signal that runs through it, synchronism acquired in section h of entry.
  • the length I1 of the propeller 21 is related to the gain necessary for obtain the desired power at frequency 3F0. It is desirable that the gain of the first section h1 of exit is greater than that of section h input. However, the length I1 of the propeller of the first output section h1 can be of the same order as that of the propeller 20 of the input section h, because the gain per unit length of a helical line without means of dispersion correction is larger than that of a helical line with dispersion correction means.
  • Figure 4b shows the trend of the normalized phase velocity in function of the frequency for this first section h1 output while the Figure 4c shows the rate of gain as a function of frequency.
  • the gain is maximum for center frequency 3F0.
  • FIG. 5a shows a cross section of section h2 of FIG. next exit which here is the last. It is associated with the frequency band B2 F0 central lowest.
  • This second output section h2 does not require either means of dispersion correction since the band B2 is narrower than band B. It would be the same for all other sections of output.
  • the inner diameter d2 of its propeller 22 is larger than that of the propeller 21 of the output section h1 which precedes it.
  • the inside diameter of the helix varies in material substantially inversely proportional to the operating frequency so that the amplification parameter remains constant.
  • the ratio of the two diameters d1, d2 is about the same as that of the frequencies 3F0, F0 corresponding central. More generally the inner diameter of the propellers of the output sections h1, h2 increases with their distance from the entrance section h. With such a configuration, the electron beam diameter increases the closer we get to the manifold. The focus of the beam is therefore as a consequence of a classic way for a person skilled in the art.
  • the supports 12.2 which hold the propeller 22 are adapted to the diameter of the helix and that of section 11.2 of sheath.
  • the different sections 11, 11.1, 11.2 of sheath may not have the same diameter.
  • the pitch p2 of the propeller 22 of the second output section h2 is greater than that p1 of the output section h1 which precedes it, still in optics to keep the synchronism between the speed of the beam of electrons and the speed of the signal flowing through the propeller 22. More generally the pitch of the propellers of the output sections increases with their distance of the entrance section.
  • the signal produced by the output section h2 has a higher power than the signal produced by section h1 of exit which precedes it, which leads to giving the wire of the propeller 22 a section larger than that of the propeller wire 21.
  • the section of the wire propellers of the outlet sections will increase with their distance from the entrance section.
  • the length I2 of the propeller 22 is related to the gain necessary for obtain the desired power at the frequency F0.
  • section h2 a length 12 greater than that I1 of the output section h1 which precedes it because the frequency with which he works is lower. More generally in the succession, the length of the propellers of the output sections increases with their distance from the entrance section.
  • FIG. 5b shows the appearance of the normalized phase velocity in frequency function for this second output section h2 while the Figure 5c shows the pace of its gain as a function of frequency. The gain is maximum for the center frequency F0.
  • At the sections h, h1, h2 line microwave an attenuation zone 30, 31, 32. More specifically, these attenuation zones cover the supports 12, 12.1, 12.2 of the propellers 20, 21, 22. These attenuation zones can be realized by a deposit of carbon for example. These attenuation zones are located respectively the first 30 near the exit end es of the input section h and the others 31, 32 near the input end ee of the sections of respective outputs h1, h2.
  • the attenuation zone 31 of the first section h1 of output is approximately the same length as the input section h.
  • the attenuation zone 32 of another output section h2 is no longer longer than that 31 of the output section h1 which precedes it.
  • Figure 6 shows the pace of the power P (expressed in dBm) of an injected signal with an amplitude Pe in the tube of FIG. crosses the microwave line until its extraction, or at the level of output means S1, ie at the level of the output means S2.
  • the signal extracted at the output means S1 has a amplitude power P1 and is at frequency 3F0.
  • the signal extracted level of the output means S2 has a power P2 and is at a frequency F0.
  • the amplitude P2 is about three times larger than the amplitude P1.

Landscapes

  • Microwave Amplifiers (AREA)
  • Microwave Tubes (AREA)

Description

La présente invention est relative à un tube à ondes progressives multibande capable de fonctionner à puissance élevée. Ce tube destiné notamment à être utilisé dans des applications aéroportées ou spatiales, doit être relativement court.The present invention relates to a traveling wave tube multiband capable of operating at high power. This tube intended particularly to be used in airborne or space applications, must be relatively short.

Le développement des techniques et la maítrise croissante des matériaux ont permis de mettre au point des tubes à ondes progressives destinés à fonctionner dans une très large bande de fréquences et qui sont relativement courts. Ces tubes sont connus sous la dénomination de mini-TOP. Ce sont des tubes à ondes progressives à ligne monobloc en hélice serrée. Au point de vue fréquences, on est arrivé à obtenir un rapport d'au moins trois entre la fréquence haute et la fréquence basse de la bande.The development of techniques and the growing mastery of materials have made it possible to develop traveling wave tubes intended to operate in a very wide frequency band and which are relatively short. These tubes are known under the name of mini-TOP. These are traveling wave tubes monobloc helical line tight. From the frequency point of view, we got a report from minus three between the high frequency and the low frequency of the band.

Au point de vue dimensions, ces tubes ne dépassent pas la trentaine de centimètres mais au point de vue puissance ils n'atteignent guère plus que quelques dizaines de watts.In terms of dimensions, these tubes do not exceed about thirty centimeters but from the point of view of power they do not reach little more than a few tens of watts.

On aurait pu penser extrapoler ces tubes pour augmenter leur puissance. Mais, pour un gain donné, l'obtention d'une puissance plus élevée entraíne une augmentation de la tension d'hélice et une augmentation de sa longueur. Or, il n'est pas question de diminuer le gain, de manière à obtenir la puissance requise sans augmenter la longueur de l'hélice. Cette voie ne conduit pas un tube à ondes progressives multibande, de longueur réduite, capable de fonctionner à puissance élevée.We could have thought about extrapolating these tubes to increase their power. But for a given gain, getting more power high causes an increase in the propeller voltage and a increase in length. But there is no question of reducing the gain, in order to obtain the required power without increasing the length of the propeller. This path does not lead a multiband wave tube, of reduced length, able to operate at high power.

L'objet de la présente invention est un tube à ondes progressives multibande dont la longueur est de l'ordre de celle du mini-TOP mais qui est capable de fonctionner à des puissances plus élevées tout en conservant un gain du même ordre.The object of the present invention is a traveling wave tube multiband whose length is of the order of that of the mini-TOP but which is able to operate at higher powers while retaining a gain of the same order.

Le tube à ondes progressives multibande selon l'invention est défini par la revendication 1.The multiband traveling wave tube according to the invention is defined by claim 1.

A cet effet le tube à ondes progressives multibande selon l'invention comporte une ligne hyperfréquence parcourue par des électrons et dans laquelle est amplifié un signal. Cette ligne hyperfréquence comporte successivement un tronçon de ligne hyperfréquence d'entrée séparé d'une succession de tronçons de ligne hyperfréquence de sortie disjoints, chaque tronçon de sortie travaillant dans une des bandes de fonctionnement du tube. For this purpose the multiband wave tube according to the invention comprises a microwave line traversed by electrons and wherein a signal is amplified. This microwave line comprises successively a section of microwave input line separated from a succession of disjoint output microwave line sections, each output section working in one of the operating bands of the tube.

Le tronçon d'entrée est relié, à une extrémité, à des moyens d'entrée du signal à amplifier et travaille dans une bande de fréquences englobant les bandes de fréquences de fonctionnement du tube. Il est destiné à préamplifier le signal à amplifier.The inlet section is connected at one end to means input signal to amplify and works in a frequency band encompassing the operating frequency bands of the tube. It is for preamplifying the signal to be amplified.

La succession de tronçons de sortie reçoit le signal préamplifié, chacun de ses tronçons de sortie étant destiné à l'amplifier, s'il est à une fréquence comprise dans sa bande de fréquences de travail et à le laisser passer pratiquement sans intervention, s'il est à une fréquence extérieure à sa bande de fréquences de travail, chacun des tronçons de sortie étant relié à une extrémité à des moyens de sortie du signal préamplifié qu'il a amplifié.The succession of output sections receives the pre-amplified signal, each of its output sections being intended to amplify it, if it is at a frequency in his working frequency band and to leave it pass virtually without intervention, if it is at an external frequency to its working frequency band, each of the output sections being connected at one end to output means of the preamplified signal that it has amplified.

De préférence, les fréquences centrales des bandes de travail des tronçons de sortie décroissent avec leur éloignement du tronçon d'entrée.Preferably, the center frequencies of the working bands exit sections decrease with their distance from the section input.

En ce qui concerne la puissance du signal amplifié par un tronçon de sortie, elle augmente plus le tronçon de sortie est éloigné du tronçon d'entrée.Regarding the signal power amplified by a stretch of output, it increases the more the output section is far from the stretch input.

Les tronçons de ligne hyperfréquence sont en hélice, chaque hélice est maintenue dans un fourreau par des supports diélectriques, les différents fourreaux étant solidarisés les uns aux autres.The microwave line sections are in a helix, each propeller is held in a sheath by dielectric supports, the different sleeves being secured to each other.

Pour pouvoir travailler dans une très large bande, le tronçon d'entrée comporte des moyens de correction de dispersion tels que des vannesTo be able to work in a very broad band, the section input includes dispersion correction means such as valves

On donnera de préférence à l'hélice du premier tronçon de sortie sensiblement la même longueur et/ou le même diamètre intérieur qu'à l'hélice du tronçon d'entrée.The propeller of the first output section will preferably be substantially the same length and / or the same inside diameter as the propeller of the entrance section.

Le fil d'hélice du premier tronçon de sortie aura aussi de préférence la même section que celle du fil d'hélice du tronçon d'entrée.The propeller wire of the first exit section will also have preferably the same section as that of the helix wire of the input section.

Pour conserver dans le premier tronçon de sortie, le synchronisme acquis dans le tronçon d'entrée, entre la vitesse du faisceau d'électrons et la vitesse du signal, le pas de l'hélice du premier tronçon de sortie sera de préférence plus petit que celui de l'hélice du tronçon d'entrée.To keep in the first output section, the synchronism acquired in the input section, between the speed of the beam of electrons and the speed of the signal, the pitch of the helix of the first stretch of output will preferably be smaller than that of the impeller of the inlet section.

De préférence, la longueur et/ou le pas et/ou le diamètre intérieur des hélices des tronçons de sortie augmenteront avec leur éloignement du tronçon d'entrée. Il en est de même pour la section du fil d'hélice. Preferably, the length and / or the pitch and / or the inside diameter propellers of the output sections will increase with their distance from the entrance section. It is the same for the section of the helix wire.

Pour éviter l'apparition de phénomènes d'auto-oscillation, le tronçon d'entrée est doté d'une zone d'atténuation à l'extrémité opposée à celle reliée aux moyens d'entrée du signal à amplifier.To avoid the appearance of self-oscillation phenomena, the inlet section has an attenuation zone at the opposite end to that connected to the input means of the signal to be amplified.

Dans ce but, chaque tronçon de sortie est doté d'une zone d'atténuation à l'extrémité opposée à celle reliée aux moyens de sortie du signal qu'il a amplifié.For this purpose, each exit section has a zone attenuation at the opposite end to that connected to the output means of the signal that he amplified.

D'autres avantages et caractéristiques de l'invention apparaítront à la lecture de la description qui suit d'exemples de réalisation de tubes selon l'invention, description illustrée par les figures qui représentent :

  • la figure 1 une coupe longitudinale schématisée d'un tube à ondes progressives selon l'invention ;
  • la figure 2 une vue schématique éclatée d'un tube à ondes progressives à hélice serrée conforme à l'invention ;
  • les figures 3a, 3b des coupes transversales de deux variantes du tronçon d'entrée ;
  • les figures 3c, 3d respectivement la vitesse de phase normalisée et le gain en fonction de la fréquence du tronçon d'entrée de la figure 3a ;
  • la figure 4a une coupe transversale du premier tronçon de sortie;
  • les figures 4b, 4c respectivement la vitesse de phase normalisée et le gain en fonction de la fréquence du premier tronçon de sortie de la figure 4a ;
  • la figure 5a une coupe transversale du dernier tronçon de sortie;
  • les figures 5b, 5c respectivement la vitesse de phase normalisée et le gain en fonction de la fréquence du dernier tronçon de sortie de la figure 5a ;
  • la figure 6 l'allure de la puissance d'un signal injecté dans le tube de la figure 2 et parcourant la ligne hyperfréquence en fonction de sa fréquence.
Other advantages and characteristics of the invention will appear on reading the following description of embodiments of tubes according to the invention, a description illustrated by the figures which represent:
  • Figure 1 a schematic longitudinal section of a traveling wave tube according to the invention;
  • FIG. 2 is an exploded schematic view of a traveling propeller tube with a tight propeller according to the invention;
  • Figures 3a, 3b cross sections of two variants of the inlet section;
  • FIGS. 3c, 3d respectively the normalized phase velocity and the gain as a function of the frequency of the input section of FIG. 3a;
  • Figure 4a cross-section of the first output section;
  • FIGS. 4b, 4c respectively the normalized phase velocity and the gain as a function of the frequency of the first output section of FIG. 4a;
  • Figure 5a cross-section of the last output section;
  • FIGS. 5b and 5c respectively the normalized phase velocity and the gain as a function of the frequency of the last output section of FIG. 5a;
  • Figure 6 shows the power of a signal injected into the tube of Figure 2 and traversing the microwave line according to its frequency.

Sur ces figures, les échelles ne sont pas forcément respectées dans un souci de clarté.In these figures, the scales are not necessarily respected for the sake of clarity.

La figure 1 schématise un tube à ondes progressives multibande selon l'invention.Figure 1 shows a multi-band traveling wave tube according to the invention.

De manière conventionnelle, il comporte successivement dans une enveloppe 5, un canon 1 pour produire un faisceau 2 d'électrons, un corps 3 dans lequel se produit une interaction entre le faisceau 2 d'électrons et un signal à amplifier, un collecteur 4 pour recueillir les électrons du faisceau 2 à leur sortie du corps 3.In a conventional way, it comprises successively in an envelope 5, a barrel 1 for producing a beam 2 of electrons, a body 3 in which an interaction occurs between the beam 2 of electrons and a signal to be amplified, a collector 4 for collecting the electrons of the beam 2 at their exit from the body 3.

Selon l'invention, le faisceau 2 d'électrons traverse entre l'entrée 6 et la sortie 7 du corps 3, une ligne hyperfréquence 8 formée de plusieurs tronçons h, h1..., hi,...hn de lignes hyperfréquences disjoints, disposés les uns à la suite des autres. Parmi ces tronçons, le premier tronçon traversé par le faisceau 2 est un tronçon h dit d'entrée, d'autres h1, hi, hn forment une succession de tronçons dits de sortie et leur nombre n est égal au nombre de bandes de fréquences B1, Bi, Bn dans lesquelles le tube est destiné à fonctionner, n étant un entier supérieur ou égal à deux. Chacun des tronçons de sortie h1,...hi, ...hn est destiné à travailler dans une des bandes de fonctionnement du tube respectivement B1..., Bi, ... Bn. Chaque bande de fréquences B1..., Bi, ... Bn est centrée sur une fréquence centrale respectivement F1, Fi, Fn. Chaque bande de fréquences est associée à un tronçon de sortie.According to the invention, the beam 2 of electrons crosses between the entrance 6 and the output 7 of the body 3, a microwave line 8 formed of several sections h, h1 ..., hi, ... hn of disjoint microwave lines arranged one after another. Among these sections, the first section crossed by the beam 2 is a h entrance section, other h1, hi, hn form a succession of so-called output sections and their number n is equal to number of frequency bands B1, Bi, Bn in which the tube is intended to function, n being an integer greater than or equal to two. Each output sections h1, ... hi, ... hn is intended to work in one of operating bands of the tube respectively B1 ..., Bi, ... Bn. Each frequency band B1 ..., Bi, ... Bn is centered on a central frequency respectively F1, Fi, Fn. Each frequency band is associated with a exit section.

Le faisceau 2 d'électrons pénètre dans chacun des tronçons h, h1,...hi,....hn par une extrémité d'entrée ee et en sort par une extrémité de sortie es.The electron beam 2 enters each of the sections h, h1, ... hi, .... hn by an input end ee and leaves by an end of exit es.

Le tronçon d'entrée h est destiné à fonctionner en tant que préamplificateur dans une très large bande B englobant toutes les bandes B1, Bi, Bn de fonctionnement du tube. L'extrémité d'entrée ee du tronçon h d'entrée est reliée à des moyens d'entrée E d'un signal à amplifier dans le tube. Son extrémité de sortie es avoisine l'extrémité d'entrée ee du premier tronçon de sortie h1.The input section h is intended to function as a preamplifier in a very broadband B encompassing all the bands B1, Bi, Bn of tube operation. The entrance end ee of section h input is connected to input means E of a signal to be amplified in the tube. Its exit end is near the entrance end ee of the first exit section h1.

Les fréquences centrales F1, Fi, Fn des bandes B1, Bi, Bn de travail des tronçons de sortie h1, hi, hn décroissent avec leur éloignement du tronçon d'entrée h. On a alors F1 > Fi > Fn.The central frequencies F1, Fi, Fn of the bands B1, Bi, Bn of work output sections h1, hi, hn decrease with their distance of the entrance section h. We then have F1> Fi> Fn.

Chaque tronçon de sortie h1, hi, hn de la succession est destiné à amplifier le signal préamplifié dans le tronçon d'entrée h, si le signal préamplifié est à une fréquence comprise dans sa bande de fréquences de travail B1, Bi, Bn. Les tronçons de sortie h1, hi, hn sont pratiquement sans action sur le signal préamplifié qui les parcourt et qui n'est pas à une fréquence comprise dans leur bande de fréquence de travail. Each output section h1, hi, hn of the succession is intended for amplify the preamplified signal in the input section h, if the signal preamplifier is at a frequency within its frequency band work B1, Bi, Bn. The output sections h1, hi, hn are practically without action on the preamplified signal that runs through them and is not at a frequency in their working frequency band.

Chacune des extrémités de sortie es des tronçons de sortie h1, hi, hn est reliée à des moyens de sortie S1, Si, Sn du signal préamplifié le parcourant, si ce dernier a été amplifié dans le dit tronçon de sortie h1, hi, hn.Each of the output ends are output sections h1, hi, hn is connected to output means S1, Si, Sn of the preamplified signal on browsing, if the latter has been amplified in the said output section h1, hi, hn.

Le signal à amplifier, injecté à l'extrémité d'entrée ee du tronçon d'entrée h, le parcourt, y est préamplifié puis pénètre dans le premier tronçon h1 de sortie. Le signal préamplifié qui parcourt le premier tronçon de sortie h1 y est amplifié, si sa fréquence est comprise dans la bande B1, il est ensuite extrait par les moyens de sortie S1. Si la fréquence du signal préamplifié n'est pas dans la bande B1, le signal préamplifié parcourt le premier tronçon de sortie h1 pratiquement, sans couplage avec le faisceau d'électrons 2, et à l'extrémité de sortie es du premier tronçon h1, il pénètre dans le second tronçon h2 de sortie où il est amplifié, si sa fréquence est dans la bande B2, puis il est extrait. Si sa fréquence n'est pas dans la bande B2, il pénètre dans le troisième tronçon h3 de sortie et ainsi de suite de tronçon en tronçon jusqu'à ce qu'il soit amplifié dans le tronçon adéquat, puis extrait.The signal to be amplified, injected at the input end ee of the section input, goes through it, is preamplified and enters the first h1 section output. The pre-amplified signal that runs through the first section of output h1 is amplified, if its frequency is included in the band B1, it is then extracted by the output means S1. If the signal frequency preamplifier is not in band B1, the pre-amplified signal travels first output section h1 practically, without coupling with the beam of electrons 2, and at the exit end es of the first section h1, it enters in the second h2 output section where it is amplified, if its frequency is in the B2 band, then it is extracted. If its frequency is not in the band B2 it gets into the third h3 exit section and so on section in section until amplified in the appropriate section, then extracted.

On suppose qu'un signal de fréquence F se propage dans le tronçon de sortie hi (i entier compris entre 1 et n - 2), s'il n'y est pas amplifié cela signifie que la fréquence F n'est pas incluse dans la bande Bi. Le signal de fréquence F n'est pas extrait à l'extrémité de sortie du tronçon hi de sortie et il pénètre alors dans le tronçon de sortie suivant hi + 1. Si sa fréquence F est dans la bande de fréquences Bi+1 associée au tronçon de sortie hi + 1, il est amplifié puis extrait à l'extrémité es dudit tronçon hi + 1. Si sa fréquence F est hors de la bande Bi + 1, il pénètre dans le tronçon suivant hi + 2 et ainsi de suite.It is assumed that a signal of frequency F propagates in the output section hi (i integer between 1 and n - 2), if it is not amplified this means that the frequency F is not included in the band Bi. The signal of frequency F is not extracted at the output end of the hi output section and it then enters the next output section hi + 1. If its frequency F is in the frequency band Bi + 1 associated with the output section hi + 1, it is amplified then extracted at the end es of said hi + section 1. If its frequency F is out of the band Bi + 1, it enters the next segment hi + 2 and and so on.

On va voir maintenant plus en détail un exemple de mode de réalisation d'un tube selon l'invention. On suppose qu'il s'agit d'un tube à ondes progressives bi-bande.We will now see in more detail an example of a mode of realization of a tube according to the invention. It is assumed that this is a tube two-band progressive waves.

La figure 2 montre un tel tube vu de l'extérieur mais dont l'enveloppe 5 est partiellement ouverte de manière à laisser apparaítre les différents tronçons de ligne hyperfréquence h, h1, h2 qui sont en hélice. Les autres éléments intérieurs à l'enveloppe tels que le canon, le focalisateur, le collecteur ne sont pas représentés dans un souci de clarté. FIG. 2 shows such a tube seen from the outside but of which the envelope 5 is partially open so as to reveal the different sections of microwave line h, h1, h2 which are helical. The other elements inside the envelope such as the barrel, the focuser, the collector are not represented for the sake of clarity.

Les hélices 20, 21, 22 insérées chacune dans un fourreau 11, 11.1, 11.2 conducteur sont maintenues dans le fourreau 11, 11.1, 11.2 à l'aide de supports 12, 12.1, 12.2 isolants. On a prévu dans l'exemple trois supports 12, 12.1, 12.2 isolants par hélice (mais seul un est visible sur la figure 2) et ces derniers sont sensiblement de la longueur de l'hélice 20, 21, 22 qu'ils maintiennent. Les supports peuvent être de manière conventionnelle, en nitrure de bore, alumine ou oxyde de béryllium par exemple. Les hélices 20, 21, 22 sont sans contact les unes avec les autres. Les différents fourreaux 11, 11.1, 11.2 sont solidaires les uns des autres. Cette solidarisation est étanche.The propellers 20, 21, 22 each inserted in a sleeve 11, 11.1, 11.2 conductor are held in the sleeve 11, 11.1, 11.2 to using supports 12, 12.1, 12.2 insulators. In the example we have three supports 12, 12.1, 12.2 propeller insulators (but only one is visible on the 2) and these are substantially the length of the helix 20, 21, 22 that they maintain. The supports can be so conventional, boron nitride, alumina or beryllium oxide by example. The propellers 20, 21, 22 are without contact with each other. The different sleeves 11, 11.1, 11.2 are integral with each other. This fastening is waterproof.

L'extrémité d'entrée ee du tronçon h d'entrée est reliée à des moyens d'entrée E d'un signal à amplifier représentés sous la forme d'une ligne coaxiale.The input end ee of the input section h is connected to input means E of a signal to be amplified represented in the form of a coaxial line.

Les deux tronçons de sortie h1, h2 travaillent respectivement dans la bande B1, B2, de fréquence centrale respective F1, F2. La fréquence F1 est supérieure à la fréquence F2. L'extrémité de sortie es du tronçon h1 est reliée à des moyens de sortie S1 du signal préamplifié s'il a été amplifié par ledit tronçon h1. Les moyens de sortie S1 sont représentés par un guide d'onde ce qui est classique à haute fréquence. L'extrémité de sortie es du tronçon h2 est reliée à des moyens de sortie S2 du signal qui a été amplifié par le tronçon h2. Dans l'exemple il s'agit d'une ligne coaxiale. Il est bien entendu que chacun des moyens d'entrée et de sortie pourrait être de nature différente. Le tronçon h est destiné à travailler dans une très large bande B englobant les deux bandes B1 et B2.The two output sections h1, h2 work respectively in the band B1, B2, of respective central frequency F1, F2. The frequency F1 is greater than frequency F2. The output end of the section h1 is connected to output means S1 of the preamplified signal if it has amplified by said section h1. The output means S1 are represented by a waveguide which is conventional at high frequency. The end of output of section h2 is connected to output means S2 of the signal which has has been amplified by section h2. In the example it is a coaxial line. he is of course that each of the means of entry and exit could be of different nature. Section h is intended to work in a very wide band B encompassing the two bands B1 and B2.

On va voir de manière plus précise les caractéristiques de chacun des tronçons de ligne h, h1, h2.We will see more precisely the characteristics of each sections of line h, h1, h2.

Afin que le tronçon d'entrée h puisse travailler dans la très large bande B, tout en imposant que la vitesse de phase normalisée du signal devant être préamplifié reste sensiblement constante quelle que soit la fréquence, le tronçon d'entrée h comporte des moyens de correction de dispersion 13 tels que des vannes par exemple. Sur la figure 3a, les vannes 13 sont distinctes des supports 12, ce sont des conducteurs s'étendant longitudinalement le long de l'hélice 20 et qui se projettent depuis le fourreau 11 vers l'hélice 20. Ces vannes 13 sont séparées de l'hélice 20 par un espace 14. Elles sont placées entre les supports 12. So that the input section h can work in the very wide band B, while imposing only the normalized phase speed of the signal to be preamplified remains substantially constant regardless of the frequency, the input section h comprises means for correcting dispersion 13 such as valves for example. In Figure 3a, the valves 13 are distinct from the supports 12, they are conductors extending longitudinally along the helix 20 and projecting from the sheath 11 to the propeller 20. These valves 13 are separated from the propeller 20 by a space 14. They are placed between the supports 12.

Un autre type de vannes peut être employé comme l'illustre la figure 3b. Ces vannes intégrées aux supports diélectriques sont décrites dans le brevet européen EP-B- 0 401 065. L'hélice est maintenue par les supports diélectriques 120 qui sont à leur tour supportés par des éléments conducteurs 130 en saillie par rapport à la paroi intérieure du fourreau 11 vers l'hélice 20. Cette configuration a pour avantage de moins obstruer l'intérieur du fourreau ce qui permet de réduire le temps nécessaire au pompage et d'améliorer qualitativement le vide.Another type of valves can be used as illustrated in Figure 3b. These valves integrated in the dielectric supports are described in the European patent EP-B-0 401 065. The propeller is maintained by the dielectric supports 120 which are in turn supported by elements conductors 130 projecting from the inner wall of the sheath 11 towards the propeller 20. This configuration has the advantage of less obstructing the inside of the sheath, which reduces the time required for pumping and qualitatively improve the vacuum.

On peut espérer obtenir un rapport compris entre 2 et 4 entre la fréquence centrale F2 la plus basse et la fréquence centrale la plus haute F1.We can hope to obtain a ratio between 2 and 4 between the lowest center frequency F2 and highest center frequency F1.

Les figures 3a et 3b montrent des coupes transversales de tronçon d'entrée h. Le diamètre intérieur d de l'hélice 20 est relativement petit pour que le tronçon h puisse travailler en préamplificateur dans la bande B englobant toutes les bandes de fonctionnement du tube. Ce diamètre dépend de la bande des fréquences à amplifier.Figures 3a and 3b show cross sections of entrance section h. The inside diameter d of the propeller 20 is relatively small so that section h can work in preamplifier in the band B encompassing all the operating bands of the tube. This diameter depends on the frequency band to be amplified.

La figure 3c est un diagramme de la vitesse de phase normalisée c/vϕ du signal se propageant dans le tronçon d'entrée h en fonction de la fréquence F. On suppose dans l'exemple décrit que le tube est destiné à fonctionner dans deux bandes B1, B2 centrées respectivement autour de la fréquence F0 et de la fréquence 3F0. La vitesse de phase c/vϕ normalisée est le rapport de la vitesse de phase vϕ sur la vitesse de la lumière c. La courbe en trait plein est obtenue dans le tronçon d'entrée h avec vannes 13 distinctes des supports 12 et la courbe en pointillés est celle que l'on obtiendrait en l'absence des vannes 13.Figure 3c is a diagram of the normalized phase velocity c / vφ of the signal propagating in the input section h according to the frequency F. It is assumed in the example described that the tube is intended for operate in two bands B1, B2 centered respectively around the frequency F0 and frequency 3F0. The standard c / vφ phase velocity is the ratio of the phase velocity vφ to the speed of light c. The curve in solid line is obtained in the inlet section h with valves 13 different from the supports 12 and the dashed curve is the one that is would get in the absence of valves 13.

La figure 3d est le gain G du tronçon d'entrée h en fonction de la fréquence F. Le gain maximum Gmax est obtenu dans la partie médiane de la courbe, c'est-à-dire pour une fréquence médiane, les fréquences F0 et 3F0 sont situées de part et d'autre de la fréquence médiane. Dans les bandes B1, B2 de fonctionnement, le gain est inférieur d'environ 4 à 5 dB par rapport au gain maximum.FIG. 3d is the gain G of the input section h as a function of the frequency F. The maximum gain Gmax is obtained in the middle part of the curve, that is to say for a median frequency, the frequencies F0 and 3F0 are located on both sides of the median frequency. In the bands B1, B2 of operation, the gain is about 4 to 5 dB lower compared to the maximum gain.

Le premier tronçon de sortie h1 est celui qui travaille en amplification à la fréquence la plus élevée, ici 3F0. Sa bande B1 de fonctionnement est plus étroite que la bande B et le tronçon h1 ne nécessite pas de moyens de correction de dispersion. The first output section h1 is the one that works in amplification at the highest frequency, here 3F0. His band B1 operation is narrower than the B band and the h1 section does not require no means of dispersion correction.

La figure 4a montre en coupe transversale le premier tronçon h1 de sortie avec les supports diélectriques 12.1. Son hélice 21 peut être réalisée pour simplifier avec le même fil que l'hélice 20 du tronçon d'entrée h si la puissance désirée en sortie es du premier tronçon de sortie n'est pas trop élevée. Elle possédera sensiblement le même diamètre intérieur d1 que celui d de l'hélice 20 du tronçon d'entrée h puisque ce premier tronçon h1 de sortie est associé à la bande B1 dont la fréquence centrale 3F0 est la plus élevée.FIG. 4a shows in cross section the first section h1 output with dielectric supports 12.1. Its propeller 21 can be made to simplify with the same wire as the propeller 20 of the input section h if the desired output power of the first output section is not too high. It will have substantially the same internal diameter d1 as that d of the helix 20 of the input section h since this first section h1 of output is associated with the band B1 whose central frequency 3F0 is the most high.

Par contre son pas p1 pourra être plus petit que celui p de l'hélice 20 du tronçon h d'entrée pour conserver le synchronisme entre la vitesse du faisceau d'électrons et la vitesse du signal qui la parcourt, synchronisme acquis dans le tronçon h d'entrée.On the other hand its pitch p1 may be smaller than that p of the propeller 20 of the entrance section h to maintain the synchronism between the speed of the electron beam and the speed of the signal that runs through it, synchronism acquired in section h of entry.

La longueur I1 de l'hélice 21 est liée au gain nécessaire pour obtenir la puissance désirée à la fréquence 3F0. Il est souhaitable que le gain du premier tronçon h1 de sortie soit supérieur à celui du tronçon h d'entrée. Toutefois, la longueur I1 de l'hélice du premier tronçon de sortie h1 peut être du même ordre que celle de l'hélice 20 du tronçon d'entrée h, car le gain par unité de longueur d'une ligne en hélice sans moyens de correction de dispersion est plus grand que celui d'une ligne en hélice avec moyens de correction de dispersion.The length I1 of the propeller 21 is related to the gain necessary for obtain the desired power at frequency 3F0. It is desirable that the gain of the first section h1 of exit is greater than that of section h input. However, the length I1 of the propeller of the first output section h1 can be of the same order as that of the propeller 20 of the input section h, because the gain per unit length of a helical line without means of dispersion correction is larger than that of a helical line with dispersion correction means.

On peut espérer atteindre pour une fréquence de plusieurs dizaines de gigahertz une puissance de sortie de l'ordre de la centaine de watt.We can hope to reach for a frequency of several dozens of gigahertz an output power of the order of the hundred or so watt.

La figure 4b montre l'allure de la vitesse de phase normalisée en fonction de la fréquence pour ce premier tronçon h1 de sortie tandis que la figure 4c montre l'allure du gain en fonction de la fréquence. Le gain est maximum pour la fréquence centrale 3F0.Figure 4b shows the trend of the normalized phase velocity in function of the frequency for this first section h1 output while the Figure 4c shows the rate of gain as a function of frequency. The gain is maximum for center frequency 3F0.

La figure 5a montre une coupe transversale du tronçon h2 de sortie suivant qui ici est le dernier. Il est associé à la bande B2 de fréquence centrale F0 la plus basse.FIG. 5a shows a cross section of section h2 of FIG. next exit which here is the last. It is associated with the frequency band B2 F0 central lowest.

Ce second tronçon de sortie h2 ne nécessite pas non plus de moyens de correction de dispersion puisque la bande B2 est plus étroite que la bande B. Il en serait de même pour tous les autres tronçons de sortie.This second output section h2 does not require either means of dispersion correction since the band B2 is narrower than band B. It would be the same for all other sections of output.

Le diamètre intérieur d2 de son hélice 22 est plus grand que celui de l'hélice 21 du tronçon h1 de sortie qui le précède. Le diamètre intérieur de l'hélice varie de matière sensiblement inversement proportionnelle à la fréquence de fonctionnement pour que le paramètre d'amplification reste constant. Le rapport des deux diamètres d1, d2 est environ le même que celui des fréquences 3F0, F0 centrales correspondantes. Plus généralement le diamètre intérieur des hélices des tronçons de sortie h1, h2 augmente avec leur éloignement du tronçon d'entrée h. Avec une telle configuration, le diamètre du faisceau d'électrons augmente plus on se rapproche du collecteur. La focalisation du faisceau se fait donc en conséquence de manière classique pour un homme du métier.The inner diameter d2 of its propeller 22 is larger than that of the propeller 21 of the output section h1 which precedes it. The inside diameter of the helix varies in material substantially inversely proportional to the operating frequency so that the amplification parameter remains constant. The ratio of the two diameters d1, d2 is about the same as that of the frequencies 3F0, F0 corresponding central. More generally the inner diameter of the propellers of the output sections h1, h2 increases with their distance from the entrance section h. With such a configuration, the electron beam diameter increases the closer we get to the manifold. The focus of the beam is therefore as a consequence of a classic way for a person skilled in the art.

Les supports 12.2 qui maintiennent l'hélice 22 sont adaptés au diamètre de l'hélice et à celui du tronçon 11.2 de fourreau. Les différents tronçons 11, 11.1, 11.2 de fourreau peuvent ne pas avoir le même diamètre.The supports 12.2 which hold the propeller 22 are adapted to the diameter of the helix and that of section 11.2 of sheath. The different sections 11, 11.1, 11.2 of sheath may not have the same diameter.

Le pas p2 de l'hélice 22 du second tronçon h2 de sortie est supérieur à celui p1 du tronçon h1 de sortie qui le précède, toujours dans l'optique de conserver le synchronisme entre la vitesse du faisceau d'électrons et la vitesse du signal qui parcourt l'hélice 22. Plus généralement le pas des hélices des tronçons de sortie augmente avec leur éloignement du tronçon d'entrée.The pitch p2 of the propeller 22 of the second output section h2 is greater than that p1 of the output section h1 which precedes it, still in optics to keep the synchronism between the speed of the beam of electrons and the speed of the signal flowing through the propeller 22. More generally the pitch of the propellers of the output sections increases with their distance of the entrance section.

On suppose que le signal produit par le tronçon de sortie h2 a une puissance supérieure à celle du signal produit par le tronçon h1 de sortie qui le précède, ce qui conduit à donner au fil de l'hélice 22 une section plus grande que celle du fil de l'hélice 21. On peut atteindre en sortie du tronçon h2 de sortie des puissances trois à quatre fois supérieures à celles obtenues en sortie du tronçon h1 de sortie. En généralisant, la section du fil des hélices des tronçons de sortie augmentera avec leur éloignement du tronçon d'entrée.It is assumed that the signal produced by the output section h2 has a higher power than the signal produced by section h1 of exit which precedes it, which leads to giving the wire of the propeller 22 a section larger than that of the propeller wire 21. One can reach the output of h2 output section of the powers three to four times higher than those obtained at the output of the output section h1. By generalizing, the section of the wire propellers of the outlet sections will increase with their distance from the entrance section.

La longueur I2 de l'hélice 22 est liée au gain nécessaire pour obtenir la puissance désirée à la fréquence F0. On donnera au tronçon h2 une longueur 12 supérieure à celle I1 du tronçon h1 de sortie qui le précède car la fréquence à laquelle il travaille est plus basse. Plus généralement dans la succession, la longueur des l'hélices des tronçons de sortie augmente avec leur éloignement du tronçon d'entrée.The length I2 of the propeller 22 is related to the gain necessary for obtain the desired power at the frequency F0. We will give to section h2 a length 12 greater than that I1 of the output section h1 which precedes it because the frequency with which he works is lower. More generally in the succession, the length of the propellers of the output sections increases with their distance from the entrance section.

Avec une longueur I2 supérieure de quelques centimètres par rapport à la longueur I, on peut espérer atteindre, pour une fréquence de l'ordre de la dizaine de gigahertz, une puissance de sortie de plusieurs centaines de watts.With a length I2 greater than a few centimeters per compared to length I, we can hope to achieve, for a frequency of the order of ten gigahertz, an output power of several hundreds of watts.

La figure 5b montre d'allure de la vitesse de phase normalisée en fonction de la fréquence pour ce second tronçon de sortie h2 tandis que la figure 5c montre l'allure de son gain en fonction de la fréquence. Le gain est maximum pour la fréquence centrale F0.FIG. 5b shows the appearance of the normalized phase velocity in frequency function for this second output section h2 while the Figure 5c shows the pace of its gain as a function of frequency. The gain is maximum for the center frequency F0.

De manière conventionnelle, pour éviter des phénomènes d'auto-oscillation dans le tube, on prévoit au niveau des tronçons h, h1, h2 de ligne hyperfréquence une zone d'atténuation 30, 31, 32. Plus précisément, ces zones d'atténuation recouvrent les supports 12, 12.1, 12.2 des hélices 20, 21, 22. Ces zones d'atténuation peuvent être réalisées par un dépôt de carbone par exemple. Ces zones d'atténuation sont situées respectivement la première 30 à proximité de l'extrémité de sortie es du tronçon d'entrée h et les autres 31, 32 à proximité de l'extrémité d'entrée ee des tronçons de sortie respectifs h1, h2. La zone d'atténuation 31 du premier tronçon h1 de sortie a environ la même longueur que celle du tronçon d'entrée h. En revanche la zone d'atténuation 32 d'un autre tronçon de sortie h2 est plus longue que celle 31 du tronçon de sortie h1 qui le précède.Conventionally, to avoid self-oscillation phenomena in the tube, it is expected at the sections h, h1, h2 line microwave an attenuation zone 30, 31, 32. More specifically, these attenuation zones cover the supports 12, 12.1, 12.2 of the propellers 20, 21, 22. These attenuation zones can be realized by a deposit of carbon for example. These attenuation zones are located respectively the first 30 near the exit end es of the input section h and the others 31, 32 near the input end ee of the sections of respective outputs h1, h2. The attenuation zone 31 of the first section h1 of output is approximately the same length as the input section h. In contrast the attenuation zone 32 of another output section h2 is no longer longer than that 31 of the output section h1 which precedes it.

La figure 6 montre l'allure de la puissance P (exprimée en dBm) d'un signal injecté avec une amplitude Pe dans le tube de la figure 2 et qui parcourt la ligne hyperfréquence jusqu'à son extraction, soit au niveau des moyens de sortie S1, soit au niveau des moyens de sortie S2.Figure 6 shows the pace of the power P (expressed in dBm) of an injected signal with an amplitude Pe in the tube of FIG. crosses the microwave line until its extraction, or at the level of output means S1, ie at the level of the output means S2.

Le signal extrait au niveau des moyens de sortie S1 a une puissance d'amplitude P1 et est à la fréquence 3F0. Le signal extrait au niveau des moyens de sortie S2 a une puissance P2 et est à une fréquence F0. L'amplitude P2 est environ trois fois plus grande que l'amplitude P1.The signal extracted at the output means S1 has a amplitude power P1 and is at frequency 3F0. The signal extracted level of the output means S2 has a power P2 and is at a frequency F0. The amplitude P2 is about three times larger than the amplitude P1.

On remarque que les puissances chutent fortement au niveau des zones d'atténuation 30, 31, 32 qui sont symbolisées par des triangles. Dans chaque tronçon de sortie, le signal qui y est amplifié a son amplitude qui croit fortement dès qu'il se propage au delà de la zone d'atténuation 31, 32 correspondante.We note that the powers are falling sharply at the level of attenuation zones 30, 31, 32 which are symbolized by triangles. In each output section, the signal amplified therein has its amplitude which strongly believes as soon as it spreads beyond the attenuation zone 31, 32 corresponding.

Claims (14)

  1. Travelling wave tube capable of operating as an amplifier in several frequency bands (B1...Bi...Bn), comprising a microwave line (8) along which electrons travel and in which a signal is amplified, characterized in that microwave line (8) comprises, in succession, a microwave line input section (h) separated from a succession of gapped microwave line output sections (h1...hi...hn), each output section (h1...hi...hn) having a respective working band (B1...Bi...Bn) corresponding to one of the operating bands of the tube, in which band it behaves as an amplifier,
    the input section (h) being connected at one end (ein) to input means (I) for injecting the signal to be amplified and having a working frequency band (B) encompassing the operating frequency bands (B1...Bi...Bn) of the tube, in order to preamplify the signal to be amplified,
    the succession of output sections (h1...hi...hn) receiving the preamplified signal and being capable of letting the frequencies lying outside its respective working band pass, virtually without any action, to a following section, each of the output sections (h1...hi...hn) being connected by an output end (eout) to output means (O1...Oi...On) for extracting the amplified signal.
  2. Travelling wave tube according to Claim 1, characterized in that the output sections are placed in the order corresponding to the working frequency bands, the sections furthest from the input section having a central frequency of their operating band which is lower than the closest sections.
  3. Travelling wave tube according to either of Claims 1 and 2, characterized in that the output sections are placed in the order corresponding to their power gain, the sections having the highest gain being the furthest from the input section.
  4. Travelling wave tube according to one of Claims 1 to 3, characterized in that the input section (h) and output sections (h1...h2) are in the form of helices, each helix (20, 21, 22) being held in place in a conducting sheath (11, 11.1, 11.2) by dielectric supports (12, 12.1, 12.2), the sections (11, 11.1, 11.2) being joined together.
  5. Travelling wave tube according to Claim 4, characterized in that the input section (h) includes dispersion-correcting means (13).
  6. Travelling wave tube according to Claim 5, characterized in that the dispersion-correcting means (13) are gates.
  7. Travelling wave tube according to either of Claims 4 and 5, characterized in that the length (l1) and/or the internal diameter (d1) of the helix (21) of the first output section (h1) are substantially the same as those of the helix (20) of the input section.
  8. Travelling wave tube according to one of Claims 4 to 7, characterized in that the pitch (p1) of the helix of the first output section (h1) is smaller than the pitch (p) of the helix of the input section (h).
  9. Travelling wave tube according to one of Claims 4 to 8, characterized in that the cross section of the helical wire of the first output section (h1) is substantially the same as that of the helical wire of the input section (h).
  10. Travelling wave tube according to one of Claims 4 to 9, characterized in that the length and/or the pitch of the helices (22) of the output sections (h1, h2) increase with their distance from the input section (h).
  11. Travelling wave tube according to one of Claims 4 to 10, characterized in that the internal diameter of the helices of the output sections (h1, h2) increases with their distance from the input section (h).
  12. Travelling wave tube according to one of Claims 4 to 11, characterized in that the cross section of the helical wire of the output sections (h1, h2) increases with their distance from the input section (h).
  13. Travelling wave tube according to one of Claims 1 to 12, characterized in that the input section (h) is provided with an attenuation region (30) at the opposite end to that connected to the input means (I) for injecting the signal to be amplified.
  14. Travelling wave tube according to one of Claims 1 to 13, characterized in that each output section (h1, h2) is provided with an attenuation region (31, 32) at the opposite end to that connected to the output means (O1, O2) for extracting the signal that it has amplified.
EP99959496A 1998-12-23 1999-12-17 Multiband travelling wave tube of reduced length capable of high power functioning Expired - Lifetime EP1145268B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9816358 1998-12-23
FR9816358A FR2787918B1 (en) 1998-12-23 1998-12-23 MULTIBAND PROGRESSIVE WAVE TUBE OF REDUCED LENGTH CAPABLE OF OPERATING AT HIGH POWER
PCT/FR1999/003190 WO2000039832A2 (en) 1998-12-23 1999-12-17 Multiband travelling wave tube of reduced length capable of high power functioning

Publications (2)

Publication Number Publication Date
EP1145268A2 EP1145268A2 (en) 2001-10-17
EP1145268B1 true EP1145268B1 (en) 2005-05-11

Family

ID=9534427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99959496A Expired - Lifetime EP1145268B1 (en) 1998-12-23 1999-12-17 Multiband travelling wave tube of reduced length capable of high power functioning

Country Status (6)

Country Link
US (1) US6483243B1 (en)
EP (1) EP1145268B1 (en)
JP (1) JP2002533901A (en)
DE (1) DE69925310D1 (en)
FR (1) FR2787918B1 (en)
WO (1) WO2000039832A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134751A (en) * 2004-11-08 2006-05-25 Nec Microwave Inc Electron tube
JP2013030377A (en) * 2011-07-29 2013-02-07 Mitsubishi Electric Corp Helix type traveling-wave tube and helix type traveling-wave tube manufacturing method
CN103247503B (en) * 2013-04-17 2016-03-09 中国电子科技集团公司第十二研究所 A kind of Terahertz cascade traveling-wave tube frequency multiplier structure and manufacture method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2038785A5 (en) 1969-03-28 1971-01-08 Thomson Csf
FR2040193A1 (en) 1969-04-18 1971-01-22 Thomson Csf
US3938056A (en) * 1971-01-18 1976-02-10 Teledyne, Inc. Method and apparatus for enhancing the output from a traveling wave tube
US3753030A (en) * 1972-06-01 1973-08-14 Sperry Rand Corp Gain compensated traveling wave tube
FR2420842A1 (en) 1978-03-24 1979-10-19 Thomson Csf DELAY LINE, FOR HYPERFREQUENCY TUBE, COOLED BY FLUID CIRCULATION AND HYPERFREQUENCY TUBE CONTAINING SUCH A LINE
FR2454694A1 (en) 1979-04-20 1980-11-14 Thomson Csf PROGRESSIVE WAVE TUBE HAVING VARIABLE GEOMETRY DELAY LINE SUPPORTS
FR2532109A1 (en) 1982-08-20 1984-02-24 Thomson Csf PROGRESSIVE WAVE TUBE HAVING MEANS FOR SUPPRESSING PARASITE OSCILLATIONS
US4475242A (en) * 1982-11-10 1984-10-02 Marc Rafal Microwave communications system
FR2543734B1 (en) 1983-03-31 1985-12-06 Thomson Csf PROGRESSIVE WAVE TUBE HAVING A HOLLOW GROOVE SLEEVE AND MANUFACTURING METHOD
FR2629634B1 (en) 1984-12-18 1990-10-12 Thomson Csf PROGRESSIVE WAVE TUBE HAVING A PROPELLER-TYPE DELAY LINE FIXED TO A SLEEVE THROUGH BORON NITRIDE DIELECTRIC SUPPORT
FR2608835B1 (en) 1986-12-19 1994-05-13 Thomson Csf BROADBAND COUPLING DEVICE BETWEEN THE DELAY LINE OF A PROGRESSIVE WAVE TUBE AND THE EXTERNAL CIRCUIT FOR TRANSMITTING ENERGY OF THE TUBE, AND PROGRESSIVE WAVE TUBE COMPRISING SUCH A DEVICE
FR2630257A1 (en) 1988-04-19 1989-10-20 Thomson Csf PROGRESSIVE WAVE TUBE HAVING A COUPLING DEVICE BETWEEN ITS DELAY LINE AND EXTERNAL HYPERFREQUENCY CIRCUITS
FR2646285A1 (en) 1989-04-21 1990-10-26 Thomson Tubes Electroniques PROGRESSIVE WAVE TUBE HAVING A BRASEE PROPELLER DELAY LINE
FR2647953B1 (en) * 1989-05-30 1991-08-16 Thomson Tubes Electroniques MODEL OF CONSTRUCTION OF A PROPELLER DELAY LINE AND PROGRESSIVE WAVE TUBES USING THIS MODEL
US5162747A (en) * 1991-02-19 1992-11-10 Hughes Aircraft Company Velocity modulation microwave amplifier with multiple band interaction structures
US5521360A (en) * 1994-09-14 1996-05-28 Martin Marietta Energy Systems, Inc. Apparatus and method for microwave processing of materials

Also Published As

Publication number Publication date
WO2000039832A2 (en) 2000-07-06
DE69925310D1 (en) 2005-06-16
FR2787918B1 (en) 2001-03-16
US6483243B1 (en) 2002-11-19
EP1145268A2 (en) 2001-10-17
FR2787918A1 (en) 2000-06-30
WO2000039832A3 (en) 2000-10-26
JP2002533901A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
CH623182A5 (en)
FR2499312A1 (en) MODEL MITIGATION DEVICE FOR GYROTRON CAVITIES
FR2471041A1 (en) PROGRESSIVE WAVE TUBE WITH ATTENUATORS OF VARIABLE LENGTH
FR2605146A1 (en) ADJUSTABLE BAND FILTER
EP1145268B1 (en) Multiband travelling wave tube of reduced length capable of high power functioning
EP0467818B1 (en) Transition element between electromagnetic waveguides, especially between a circular waveguide and a coaxial waveguide
FR2482789A1 (en) IMPROVEMENTS TO ANTENNAS CONSISTING OF COAXIAL ELEMENTS
FR2612997A1 (en) VENTILATION UNIT AND METHOD FOR MANUFACTURING ITS GUIDE FINS
EP3154128A1 (en) Compact multi-frequency feed horn, radiating source and antenna comprising such a feed horn
EP1607761A1 (en) Multi-frequency power supply and probe and NMR spectrometer including such a power supply
EP0153541B1 (en) Circular window for a microwave waveguide
EP0401065B1 (en) Method of construction of a helical delay line
FR2509536A1 (en) HYPERFREQUENCY FILTER COMPRISING COUPLINGS BETWEEN LINE TRUNCTIONS AND MEANS FOR ADJUSTING
FR2708293A1 (en) Device for manufacturing a fiber mat.
FR2601520A1 (en) LASER FOLDED MULTIPLES
FR2610765A1 (en) TUNABLE HYPERFREQUENCY FILTER
FR2471042A1 (en) PROGRESSIVE PROGRESSIVE WAVE TUBE OF PROPELLER TYPE AND LARGE BANDWIDTH
EP0041877B1 (en) Microwave waveguide-coupler
EP0124396B1 (en) Electron beam injection device for a microwave generator
EP0274950B1 (en) Broad-band coupling device between the delay line of a travelling-wave tube and the external energy-transmitting circuit, and travelling-wave tube comprising such a device
EP0164050B1 (en) Filter with a main waveguide loaded with lateral waveguides
FR2969829A1 (en) HIGH POWER BROADBAND ANTENNA
FR2658000A1 (en) MULTIFACEAMENT HYPERFREQUENCY TUBE WITH ADJACENT CAVITY GROUPS.
FR2691287A1 (en) New extended interaction output circuit for a broadband relativistic klystron.
WO1989006869A1 (en) Mode transformer for hyper-frequency power transmission circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010716

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050511

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 69925310

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050812

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831