EP1143405B1 - Procédé et dispositif de commande d'un affichage multiplexé avec mode de fonctionnement normal et mode de veille - Google Patents

Procédé et dispositif de commande d'un affichage multiplexé avec mode de fonctionnement normal et mode de veille Download PDF

Info

Publication number
EP1143405B1
EP1143405B1 EP00201217.7A EP00201217A EP1143405B1 EP 1143405 B1 EP1143405 B1 EP 1143405B1 EP 00201217 A EP00201217 A EP 00201217A EP 1143405 B1 EP1143405 B1 EP 1143405B1
Authority
EP
European Patent Office
Prior art keywords
activation
display
line
cycle
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00201217.7A
Other languages
German (de)
English (en)
Other versions
EP1143405A1 (fr
Inventor
Antonio Martino Ponzetta
Francisco Ramos
Sylvain Grosjean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EM Microelectronic Marin SA
Original Assignee
EM Microelectronic Marin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EM Microelectronic Marin SA filed Critical EM Microelectronic Marin SA
Priority to EP00201217.7A priority Critical patent/EP1143405B1/fr
Priority to US10/239,413 priority patent/US7180494B2/en
Priority to JP2001573451A priority patent/JP2003533711A/ja
Priority to CNB018102042A priority patent/CN1244086C/zh
Priority to KR1020027013168A priority patent/KR100773215B1/ko
Priority to PCT/CH2001/000159 priority patent/WO2001075854A1/fr
Publication of EP1143405A1 publication Critical patent/EP1143405A1/fr
Application granted granted Critical
Publication of EP1143405B1 publication Critical patent/EP1143405B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention generally relates to a method and a device for controlling a multiplexed display device.
  • multiplexed display device or more simply “multiplexed display” will be understood within the context of the present description, a multi-line display device, that is to say a display device having a number of display lines greater than unity, controlled by multiplexing.
  • multiplexing it will be understood here that the control signals of the display are multiplexed in time. We will also talk about “dynamic" display.
  • the present invention applies to any type of multiplexed display, regardless of its size.
  • the present invention is advantageously applied to multiplexed liquid crystal displays (LCDs).
  • LCDs liquid crystal displays
  • the illustrated display typically includes a first display section 10A and a second display section 10B.
  • This display 10 is of a conventional type found for example in a cell phone.
  • the first display section 10A is thus a display section comprising predefined symbols, for example symbols intended to indicate the reception level of the cellular telephone, the battery life, the arrival of a call, the time, or other information that is typically permanently displayed on the display when the device is turned on.
  • the second display section 10B is typically a matrix type display section for displaying alpha-numeric and / or graphical data such as a caller's number, a short message, etc.
  • the first and second display sections are typically physically interconnected to form a single composite display having a symbol section and a matrix section for displaying alpha-numeric messages.
  • the display shown at figure 1 thus typically presents a set of segments or pixels arranged in rows and columns.
  • a plurality of row and column electrodes (not shown) are respectively coupled to the rows and columns of the display.
  • these line and column electrodes are for example arranged on opposite plates between which is arranged the liquid crystal layer. Voltages applied to the row and column electrodes combine to generate an electric field in an area between the electrodes. This area between electrodes is referred to as "pixel" or “segment” depending on the geometry of the area.
  • the voltages applied to the row and column electrodes combine to selectively enable or disable pixels or segments of the display.
  • the term "pixel” will be used in the rest of this description to indicate indifferently a pixel or a segment of the display.
  • the terms “line” and “column” are used to indicate that the pixels are arranged in a matrix form and are controlled by pairs of electrodes, each pixel being located at an intersection of a pair of line electrodes and column. In some displays, these pairs of electrodes may, however, be denominated differently, for example by the terms “anterior electrode” and “posterior electrode”, or “frontplane electrode” and “backplane electrode” in English terminology.
  • the terms “line electrode” and “column electrode” refer to any type of electrode arrangement, including arrangements where the electrodes are not arranged in a linear fashion. It will also be understood that the terms “line” and “column” do not necessarily imply that a line extends horizontally and that a column extends vertically. The terms “line” and “column” can therefore perfectly be interchanged.
  • a significant advantage of such display devices is their relative low power allowing the products incorporating them to operate sustainably using their battery or operate with smaller batteries.
  • Control signals conventionally applied to the row and column electrodes are in the form of a succession of alternating frames so that the resulting average voltage on a pixel taken over a period encompassing two successive frames is zero. More specifically, from one frame to another, the signal is reversed or inverted with respect to the signal generated during the previous frame. In the remainder of the description, a series of two successive frames will be defined as a cycle, this cycle being thus divided into a first half-cycle corresponding to a first frame and a second half-cycle corresponding to a reverse frame with respect to the first one.
  • the non-active pixels are typically kept in the "off” state by the application of voltages such that the resulting voltage on the non-active pixel has an amplitude too small to put it in the "state”. we”.
  • Each pixel of the display, whether in the "on” or “off” state, thus typically sees abrupt and frequent switching of voltage levels at its terminals, each of these switching consuming energy.
  • a general object of the present invention is therefore to propose a method of control of a multiplexed display which overcomes the disadvantages of control techniques of the prior art and which responds, in particular, both to a desire to reduce consumption and to a desire to optimize the control of a such multiplexed display.
  • Another object of the present invention is to provide a control device for a multiplexed display for implementing the aforementioned method.
  • An advantage of the technique proposed by the invention lies in the fact that the control of the display not only ensures a significant reduction in consumption but also an optimal control of the display. These two effects are ensured by an adequate control of the multiplexing rate of the display as will be seen in more detail later in this description.
  • the figure 2 shows for explanatory purposes a nonlimiting example of a multiplexed display, designated generally by the reference numeral 10, comprising a plurality of pixels arranged in twenty-four lines, designated 101 to 124 and in five columns, designated 201 to 205.
  • a multiplexed display designated generally by the reference numeral 10
  • some pixels, shown in black in the figure, are in the state "ON", that is to say in a state said active.
  • Other pixels, shown in white in the figure are in the "OFF" state, that is to say in an inactive state.
  • the pixels designated by the references 11, 12 and 13 selected from the set of pixels of the display to illustrate the control method according to the present invention.
  • the pixel 11 is thus at the intersection of the line 101 and the column 204, the pixel 12 at the intersection of the line 108 and the column 202 and the pixel 13 at the intersection of the line 124 and column 204. It will be noted that the pixel 12 is active while the pixels 11 and 13 are inactive.
  • the first line 101 of the display may for example correspond to a line of symbols according to the illustration of FIG. figure 1 for example.
  • the term "pixel" encompasses both a pixel of a matrix type display and a segment of a display consisting of specific symbols.
  • the pixels are coupled to line electrodes and to column electrodes (not shown), each of which is provided with a line signal, respectively a column signal, the combination of which defines the activation state of the pixel at the center of the column. intersection of the corresponding line and column.
  • the lines 101 to 124 of the display are sequentially activated by means of line signals applied to the corresponding line electrodes (not shown) of the display 10 of the display. figure 2 .
  • These line signals will be designated in the rest of the description by the references BP1 to BP24, the signal BP1 corresponding to the line signal applied to the electrode of line 101, the signal BP2 to the line signal applied to the electrode of line 102 and so on until the signal BP24 applied to the electrode of line 124.
  • the figure 3A illustrates, in a first mode of operation of the so-called normal display, the appearance of the line signals applied to the row electrodes of the display.
  • the line signals BP1, BP2, BP8 to BP10 and BP24 respectively applied to the electrodes of lines 101, 102, 108 to 110 and 124 have been shown.
  • Those skilled in the art will be perfectly able to deduce the looks for the remaining line signals from the information given here.
  • Each of the line signals BP1 to BP24 can take up to four distinct voltage levels VLCD, V1, V4 and VSS.
  • the VLCD and VSS voltages constitute activation levels and the voltages V1 and V4 of the non-activation levels. It will be understood that a pixel can be activated by an appropriate column signal only if the corresponding line signal is simultaneously brought to the activation voltage level VLCD, respectively VSS.
  • the non-activation voltages V1 and V4 are respectively defined at 83% and 17% of the activation voltage VLCD, VSS being chosen as a reference at 0 Volt.
  • the line signals BP1 to BP24 thus vary between the activation voltage VSS and the non-activation voltage V1.
  • the line signals BP1 to BP24 vary between the activation voltage VLCD and the non-activation voltage V4.
  • the line signal BP1 is briefly brought to the activation voltage VSS for a determined duration T at the beginning of the first half-cycle A in order to activate the line 101 of the display, then remains constant at the voltage of no activation V1 during the remainder of the half-cycle A.
  • the line signal BP1 is reversed relative to the preceding half-cycle, that is to say that the signal BP1 briefly passes to the voltage d VLCD activation for a determined duration T at the beginning of the next half-cycle B, then remains constant at the non-activation voltage V4 during the remainder of the half-cycle B.
  • the line signal BP2 is briefly brought to the activation voltage VSS, respectively to the activation voltage VLCD, during the first half-cycle A, respectively during the second half-cycle B, just after the passage of the BP1 line signal to these same activation levels.
  • the remaining line signals BP3 to BP24 are arranged in an analogous manner, the line signal BP24 thus being brought to the activation levels VSS, VLCD at the end of each half-cycle A, B.
  • each line signal BP1 to BP24 is sequentially fed once during half a cycle A, B, for a determined duration T, to the activation voltage VSS, VLCD, so that the lines of the display are sequentially activated once during a half-cycle period.
  • the duration T during which the line signal is brought to the activation voltage is determined by the duration of each half-cycle, that is to say by the frame frequency of the display, as well as by the number of lines of the display, here at the number of twenty-four.
  • each line signal is brought to the activation voltage VSS, VLCD during 1 / 24th of the half-cycle period.
  • the lines are sequentially activated during each half-cycle, the activation and non-activation levels being alternated from one half cycle to another. At a given moment, only one line of the display is thus activated, the other lines being all controlled by the non-activation voltage V1, V4.
  • Appropriate column signals are applied to the electrodes (not shown) of columns 201 to 205 of the display 10 to selectively enable or disable the pixels of the display.
  • These line signals will be designated in the rest of the description by the references FP1 to FP5, the signal FP1 corresponding to the column signal applied to the electrode of the column 201, the signal FP2 to the column signal applied to the electrode of the column. the column 202 and so on up to the FP5 signal applied to the electrode of the column 205.
  • the figure 3B illustrates, also in the first mode of operation of the display, the shape of the column signals FP1 to FP5 applied to the electrodes of FIG. column (not shown) of the display 10 of the figure 2 .
  • the column signals FP2 and FP4 respectively applied to the electrodes of the columns 202 and 204 that is to say the electrodes comprising in particular the pixels 11, 12 and 13 taken by way of example, have been represented.
  • the skilled person will be perfectly able to deduce the pace of the remaining column signals from the figure 2 and some figure 3B .
  • the FP1 to FP5 column signals can also take up to four distinct voltage levels VLCD, V2, V3 and VSS.
  • the voltages V2 and V3 also constitute non-activation levels. It will be understood that a pixel can be activated by an appropriate line signal only if the corresponding column signal is simultaneously brought to the activation voltage level VLCD or VSS, according to the half cycle considered.
  • the non-activation voltages V2 and V3 are respectively defined at 66% and 34% of the activation voltage VLCD.
  • the column signals FP1 to FP5 thus vary between the activation voltage VLCD and the non-activation voltage V2.
  • the column signals FP1 to FP5 vary between the activation voltage VSS and the non-activation voltage V3.
  • the activation voltage VLCD is activated in order to activate the corresponding pixels in the display column 202, namely the pixels of the lines 102 and 106 to 108.
  • the column signal is brought to the non-activation level V2.
  • the column signal FP2 is reversed with respect to the preceding half cycle, that is to say that the signal FP2 is brought to the activation voltage VSS at the determined time intervals corresponding to the activation of the pixels of the lines 102 and 106 to 108, this signal FP2 being brought the rest of the time to the non-activation level V3.
  • the FP4 column signal shown in FIG. figure 3B at the time intervals determined during the first half-cycle A the activation voltage VLCD is turned on in order to activate the corresponding pixels in the column 204 of the display, namely the pixels of the lines 102 and 104, this FP4 signal remaining at the level of non-activation V2 the rest of the time.
  • the signal FP4 is reversed and is thus brought to the activation level VSS at the time intervals corresponding to the activation of the pixels of the lines 102 and 104, this signal FP4 being brought the rest of the time to level of non-activation V3.
  • each column signal FP1 to FP5 is brought selectively, during a half-cycle A, B, at the activation voltage VLCD, VSS, in order to activate the corresponding pixels in each of the columns 201 to 205 of the display. It will thus be understood that the signals enabling the activation and deactivation of the pixels in a column are multiplexed in time on each column signal FP1 to FP5.
  • the elementary duration during which the column signal is brought to the activation voltage VLCD, resp. VSS, to enable the activation of a determined pixel in the column corresponds to the duration T previously defined in relation to the line signals BP1 to BP24, that is to say 1 / 24th of the period of a half -cycle in this example.
  • each half-cycle A, B is decomposed in this operating mode into twenty-four sub-periods corresponding to the twenty-four pixels that can be activated in each column of the display.
  • multiplexing rate will be understood to mean a parameter determined by the number of so-called active lines of the display and defining, strictly speaking, the number of active lines multiplexed on the column signals FP1 to FP5.
  • the twenty-four lines 101 to 124 of the display are active.
  • a multiplexing rate of 1:24.
  • the duration T previously defined with respect to the line signals BP1 to BP24 is also the elementary duration during which the column signals are brought to the activation voltage to enable the activation of a determined pixel in the column. , is directly related to this parameter.
  • the multiplexing rate thus determines the appearance of the line signals BP1 to BP24 as well as the intervals during which the column signals FP1 to FP5 must be brought to the activation level VLCD, resp. VSS, to selectively enable pixels.
  • the multiplexing rate is reduced by proportion of the number of inactive lines.
  • the multiplexing rate will therefore be reduced to 1: 8, meaning that each half-cycle A, B is then decomposed into eight sub-periods.
  • the Figures 4A to 4C will subsequently highlight this point.
  • the figure 3C illustrates the signals at the terminals of the pixels 11, 12, 13 resulting from the combination of the corresponding line and column signals.
  • the three signals represented thus correspond respectively to the signal present at the terminals of the pixel 11 resulting from the difference FP4-BP1 of the column signal FP4 and the line signal BP1, to the signal present at the terminals of the pixel 12 resulting from the difference FP2-BP8 of FIG. column signal FP2 and the line signal BP8 and the signal present at the terminals of the pixel 13 resulting from the difference FP4-BP24 of the column signal FP4 and the line signal BP24.
  • the levels of the VSS, VLCD and non-activation voltages V1 to V4 are chosen so that the resulting signals at the terminals of the pixels have, over a period of two successive half-cycles. , that is to say over a period including the half-cycles A and B of the figure 3C , a mean value substantially zero.
  • the levels of non-activation V1 to V4 are chosen, in the example illustrated in FIGS. FIGS. 3A to 3C as fractions of the activation voltage VLCD (VSS being set as 0 Volt reference) and so that the resulting signal across each pixel is +/- V4 during twenty-three of the twenty-four sub-periods of each half-cycle, and +/- VLCD or +/- V2 during one of the twenty-four sub-periods depending on whether the pixel is respectively active or inactive.
  • the non-activation voltages V1, V2 and V3 are respectively VLCD-V4, VLCD-2V4 and 2V4.
  • this signal is at + V2, respectively -V2, during the last sub-period of the first half-cycle A, respectively of the half next cycle B, this signal being at +/- V4 the rest of the time.
  • this signal is at + VLCD, respectively -VLCD, during the eighth sub-period of the half -cycle, and varies between +/- V4 during the other twenty-three sub-periods.
  • a set of lines, said non-active, among the lines 101 to 124 of the display is deactivated.
  • the signals applied to the columns 201 to 205 of the display as well as the signals applied to the active lines 101 to 108 of the display are similar to the signals applied during the first operating mode or normal mode. However, unlike the first mode of operation, the rate of multiplexing is reduced in proportion to the number of deactivated lines. In this embodiment of the present invention, the multiplexing rate is thus reduced as an example of 1:24, in normal operating mode, to 1: 8 in standby mode of operation. As a result, the appearance of the line signals BP1 to BP8 and the column signals FP1 to FP5 is modified as illustrated in FIGS. Figures 4A and 4B . Each half-cycle A, B of the line signals BP1 to BP8, respectively column signals FP1 to FP5, is thus decomposed, in this second mode of operation, into eight sub-periods.
  • the Figure 4A illustrates, in the second mode of operation of the display, the appearance of the line signals BP1 to BP24 applied to the row electrodes of the display.
  • the line signals BP1, BP2, BP8 to BP10 and BP24 respectively applied to the electrodes of the lines 101, 102, 108 to 110 and 124 respectively have been shown.
  • Those skilled in the art will be perfectly able to deduce the looks for the remaining line signals from the information given here.
  • the appearance of the line signals BP1 to BP8 applied in the second mode of operation to the active lines 101 to 108 of the display is similar to the appearance of the line signals BP1 to BP24 applied on the lines 101 to 124. in the first mode of operation.
  • the multiplexing rate is reduced to 1: 8 in this second mode of operation, it can be seen that the duration T during which each of the line signals BP1 to BP8 is brought to the activation level VSS, resp. VLCD is greater, in this second mode of operation, with respect to this same duration T, in the first mode of operation.
  • the line signals BP1 to BP8 vary between the activation voltage VSS and the non-activation voltage V1.
  • the line signals BP1 to BP8 vary between the activation voltage VLCD and the non-activation voltage V4.
  • the line signal BP1 is briefly brought, at the beginning from each half-cycle A, B, to the activation voltage VSS, resp. VLCD, during 1 / 8th of the period of the half cycle to activate the line 101 of the display, then remains constant at the voltage of no activation V1, resp. V4 during the rest of the half cycle.
  • the line signal BP2 is briefly brought to the activation voltage VSS, resp. VLCD, during each half cycle A, B, just after the passage of the BP1 line signal to these same activation levels.
  • the line signals BP3 to BP8 are arranged analogously, the line signal BP8 thus being brought to the activation levels VSS, resp. VLCD, at the end of each half cycle A, B, as illustrated in the Figure 4A .
  • each line signal BP1 to BP8 is sequentially fed once during half a cycle A, B, during 1 / 8th of the period of half a cycle, to the activation voltage VSS, VLCD, of such that the active lines 101 to 108 of the display are sequentially activated once during a half-cycle period.
  • the signals of non-line activation are applied to the electrodes of the corresponding lines 109 to 124. These signals are chosen so that, when combined with the column signals FP1 to FP5, each pixel in these idle lines 109 to 124 receives at its terminals a signal whose amplitude is too small to activate it.
  • non-line activation signals are applied which, during the entire duration of the first half-cycle A, to the non-activation level V1, then, throughout the duration of the next half-cycle B, to the level of non-activation V1. de-activation V4.
  • the Figure 4B illustrates, also in the second mode of operation of the display, the appearance of the column signals FP1 to FP5 applied to the column electrodes (not shown) of the display 10 of the figure 2 .
  • the column signals FP2 and FP4 respectively applied to the electrodes of the columns 202 and 204 that is to say the electrodes comprising in particular the pixels 11, 12 and 13 taken by way of example, have been represented.
  • the skilled person will be perfectly able to deduce the pace of the remaining column signals from the figure 2 and some Figure 4B .
  • the appearance of the column signals FP1 to FP5 applied in the second mode of operation to the columns 201 to 205 of the display is similar to the pace of the applied signals. on these same columns in the first mode of operation.
  • the rate of multiplexing is reduced to 1: 8 in this second mode of in operation, it can be seen that the time intervals during which the column signals FP1 to FP5 are brought to the activation levels VLCD, VSS in order to activate the desired pixels are greater, in this second mode of operation, with respect to these same intervals, in the first mode of operation.
  • the line signals BP1 to BP8 as well as the column signals FP1 to FP5, in the second mode of operation, are obtained by spreading the first eight half-cycles of the first eight cycles. sub-periods of these same signals, in the first mode of operation.
  • this signal is at + VLCD, respectively -VLCD, during the eighth and last sub-period of the first half-cycle A, respectively of the next half-cycle B, this signal being at +/- V4 the rest of the time.
  • the signal present at the terminals of the pixel 13 varies only between +/- V4 and shows more peak at +/- V2 at the end of each half-cycle.
  • This peak being due, in the first mode of operation, to the activation pulse of the line signal BP24 of the line 124 of the display, it obviously does not appear anymore since a signal of no line activation is applied on the same line during the second mode of operation.
  • the specialist will generally seek to optimize, in this case, maximizing the contrast of the display, that is to say, maximize the ratio between the intensity of a pixel in the active state and the intensity of a pixel in the non-active state.
  • the values of the non-activation voltages V1 to V4 are used, or more exactly the distribution of these non-activation voltages. The description which follows will make it possible to demonstrate the existence of an optimum, in terms of contrast, for determined values of the non-activation voltages.
  • V ON , rms and V OFF , rms mentioned above are directly dependent on the number of active lines of the display, ie the multiplexing rate. It will be further noted that these values V ON, rms and V OFF, rms increase during a reduction of the multiplexing rate.
  • the optimum is different for each multiplexing rate.
  • this parameter ⁇ is about 17%.
  • this parameter ⁇ is about 25%.
  • FIGS. 5A to 5C illustrate, in the second mode of operation where the multiplexing ratio is 1: 8, other examples of the line signals BP1 to BP24, column signals FP1 to FP5 and the resulting signals present at the terminals of the pixels 11, 12, 13 in the case where the parameter ⁇ is chosen at 25% in order to optimize the contrast of the display for this multiplexing rate, only three levels of non-activation being thus required in this case.
  • a first variant it is thus possible to choose to optimize the contrast of the display for each mode of operation and to choose accordingly the distribution (parameter ⁇ mentioned above) of the non-activation voltages.
  • the contrast V ON ratio , rms / V OFF, rms
  • This increase in contrast may be deemed unpleasant for the user.
  • the distribution of the non-activation voltages from one operating mode to the other is adjusted so as to maintain the substantially constant contrast.
  • the distribution of the levels of no activation V1 to V4 in the standby operating mode where the multiplexing rate is 1: 8 must be such that the distribution parameter ⁇ is substantially equal to 10%.
  • the non-activation voltages V1 to V4 are thus respectively defined at 90%, 80%, 20% and 10% of the VLCD activation voltage according to the illustration of FIGS. Figures 4A to 4C .
  • the user may also decide not to adjust the contrast and tolerate a slight variation of the latter.
  • the reduction of the multiplexing rate when switching from the normal operating mode to the standby operating mode is also accompanied by a reduction of the activation voltage VLCD (the activation voltage VSS is chosen as a reference to 0 volts in both modes).
  • the rms or rms values V ON, rms and V OFF, rms increase during a reduction of the multiplexing rate. It will thus be necessary to adjust the activation voltage VLCD in order, for example, that the effective value V OFF , rms of the signal present at the terminals of a pixel in the non-active state, is substantially constant from an operating mode to the other.
  • the advantages of the present invention are multiple.
  • the reduction of the multiplexing rate and therefore of the signal multiplexing frequency makes it possible to reduce the number of switches on the row and column electrodes of the display.
  • the multiplexing frequency is reduced by three.
  • the reduction of the multiplexing rate allows to reduce the activation voltage VLCD pixels as already mentioned above.
  • the reduction of the multiplexing rate generates an increase in the contrast of the display which may or may not be adjusted by the user.
  • the Applicant has found that for a multiplexed display device having twenty-four lines active in normal operating mode and eight lines active in standby mode of operation, a reduction in energy consumption of the order of two-thirds, as a minimum, was reached (the VLCD activation voltage being reduced when switching to the standby mode of operation).
  • the control method which has just been described can thus be applied so as to switch a multiplexed display between a first so-called normal operating mode (all the active lines) and at least one second so-called standby operating mode (one or more inactive lines).
  • This switching between the modes can be carried out in a software way by means of a suitable programming of the control device or in a material way by the use of dedicated circuits. This switching can be automatic if desired.
  • the figure 6 thus schematically shows a device or control circuit of a multiplexed display, generally designated by the reference numeral 30.
  • This device 30 comprises a mode switch 31, a programmable sequencer 32, a line signal generator 33, a means 34, a column signal generator 35, an activation and non-activation voltage generator 36 and a frequency generator 37.
  • the mode switch 31 provides, as its name implies, a switching, automatic or manual, between the normal operating mode and the standby operating mode. It controls the operation of the programmable sequencer 32, the activation and non-activation voltage generator 36 as well as the frequency generator 37.
  • the activation and non-activation voltage generator 36 is arranged to produce at its output the activation and non-activation voltages to be applied to the rows and columns of the display.
  • this generator 36 produces at its output VON, BP activation and VOFF, BP activation voltages for the lines of the display. These voltages VON, BP and VOFF, BP are applied to the line signal generator 33.
  • the generator also produces at its output VON activation voltages, FP and non-activation VOFF, FP for the columns of the display. These voltages VON, FP and VOFF, FP are applied to the column signal generator 35.
  • the voltages produced at the output of the activation and non-activation voltage generator 36 are alternated from one half-cycle to the other as seen above.
  • the generator 36 is, as such, controlled by the programmable sequencer 32 so as to ensure this alternation of the activation and non-activation voltages.
  • the generator 36 is controlled by the mode switch 31 so that the levels of the activation and non-activation voltages are changed when switching from the normal operating mode to the standby operating mode.
  • this generator 36 is arranged, on the one hand, to reduce the value of the activation voltage VLCD (VSS being chosen as a reference to 0 Volts) in response to the transition from the normal operating mode to the standby operating mode , and to modify, on the other hand, the distribution of the non-activation voltages V1 to V4 according to what has been described above.
  • the activation and non-activation voltage generator 36 it is possible to decompose the activation and non-activation voltage generator 36 into a first block 361 controlled by the mode switch and making it possible to generate the VSS, VLCD and non-activation voltages V1 to V4, and a second block 362 controlled by the programmable sequencer 32 so as to alternate the activation and non-activation voltages from one half cycle to another.
  • the frequency generator 37 comprises an oscillator 371, a frequency divider circuit 372 and a frequency switch 373.
  • the oscillator 371 and the frequency divider circuit 372 are arranged to produce a signal whose frequency determines the appearance of the row and column.
  • the oscillator 371 and the frequency divider circuit 372 are arranged to deliver a first signal at a frequency f, referred to as multiplexing, intended for the first mode of operation and a second signal at a frequency f / 3 intended for the second mode of operation.
  • the frequency switch 373 controlled by the mode switch 31, outputs at its output a frequency multiplexing signal f during the first mode and a frequency division multiplex signal f / 3 during the second mode. This multiplexing signal is applied to the mode sequencer 32 and the formatting means 34.
  • the programmable sequencer 32 provides the appropriate sequence for generating the signals intended to be applied to the row electrodes of the display, such as the signals BP1 to BP24 presented previously.
  • This programmable sequencer 32 is thus connected to the line signal generator 33.
  • the programmable sequencer 32 comprises twenty-four outputs, connected to the line signal generator 33, each of these outputs controlling the switching, in the line signal generator 33, between the activation voltages VON, BP and no activation VOFF, BP according to the sequence described above.
  • the line signal generator 33 comprises twenty-four outputs, in this example, on which the line signals BP1 to BP24 are respectively produced.
  • the sequencer 32 In the normal operating mode, the sequencer 32 generates the appropriate sequence for sequentially activating all lines of the display, i.e. the twenty-four lines of the display in this example.
  • the generator 33 produces in response twenty-four line signals BP1 to BP24 such as the signals illustrated in FIG. figure 3A .
  • the state of the outputs of the sequencer 32 in the normal operating mode has been schematized over a period of half a cycle.
  • the state of the outputs of the sequencer 32 during a half cycle can for example be schematized, in the normal operating mode by a diagonal matrix, here a 24x24 matrix in which "1" and "0" correspond to the switching of the signal of line corresponding respectively to the activation voltage and the non-activation voltage.
  • the sequencer 32 produces the appropriate sequence for activating the first eight lines of the display in this example.
  • the last sixteen lines of the display are all held in an inactive state.
  • the first eight outputs of the sequencer (from the left in the figure 6 ) sequentially controls the switching of the first eight corresponding outputs of the generator 33 between the activation and non-activation voltages in order to produce the appropriate signals BP1 to BP8 as illustrated in FIGS. Figures 4A or 5A .
  • the last sixteen outputs of the sequencer 32 maintain the sixteen corresponding outputs of the generator 33 at the non-energizing voltage.
  • the line signals BP9 to BP24 thus produced are in accordance with the illustrations of the Figures 4A or 5A .
  • the formatting means 34 ensures, according to the data to be displayed, the formatting of the column signals, in the example illustrated, the column signals FP1 to FP5.
  • This shaping means 34 adequately controls the column signal generator 35.
  • the column signal generator 35 ensures the appropriate switching, for each column of the display of the column signals, here FP1 to FP5, between the activation voltages. VON, FP and no VOFF activation, FP produced by the voltage generator 36.
  • the multiplexing rate in normal operating mode is essentially fixed by the number of lines of the display.
  • the rate of multiplexing in standby mode of operation can be perfectly programmable so as to be modified according to the wishes of the user or the designer of the display.
  • the present invention can be adapted so that the display can occupy more than one standby mode of operation, for example a first standby mode of operation in which the multiplexing rate is reduced by two, a second standby mode of operation in which the multiplexing rate is reduced by three, etc. Everything can be programmed perfectly.
  • the present invention is therefore in no way limited to a display that can occupy only a normal operating mode and a single standby operating mode, but applies analogously if it is desired to provide more than one operating mode. Eve.
  • the method and the control device are not limited to the particular modes of implementation described in the present description.
  • the method or the device obviously applies in a manner similar to a display comprising a number of active lines different from twenty-four in normal operating mode and a number of active lines different from eight in standby operation mode.
  • the figures illustrate only some particular and non-limiting embodiments of the present invention.

Description

  • La présente invention se rapporte généralement à un procédé et un dispositif de commande d'un dispositif d'affichage multiplexé. Par "dispositif d'affichage multiplexé" ou plus simplement "affichage multiplexé", on entendra, dans le cadre de la présente description, un dispositif d'affichage à lignes multiples, c'est-à-dire un dispositif d'affichage présentant un nombre de lignes d'affichage supérieur à l'unité, et dont la commande est opérée par multiplexage. Par "multiplexage", on comprendra ici que les signaux de commande de l'affichage sont multiplexés dans le temps. On parlera également d'affichage "dynamique".
  • La présente invention s'applique à tout type d'affichage multiplexé, quelle que soit sa taille. En particulier, la présente invention s'applique avantageusement à des affichages à cristaux liquides (LCD) multiplexés.
  • En se référant à la figure 1, il est illustré un dispositif d'affichage dynamique conventionnel 10. L'affichage illustré comporte typiquement une première section d'affichage 10A et une deuxième section d'affichage 10B. Cet affichage 10 est d'un type conventionnel que l'on trouve par exemple dans un téléphone cellulaire. La première section d'affichage 10A est ainsi une section d'affichage comportant des symboles prédéfinis, par exemple des symboles destinés à indiquer le niveau de réception du téléphone cellulaire, l'autonomie de la batterie, l'arrivée d'un appel, l'heure, ou tout autre information qui est typiquement affichée en permanence sur l'affichage lorsque l'appareil est activé. La deuxième section d'affichage 10B est typiquement une section d'affichage de type matriciel permettant l'affichage de données alpha-numériques et/ou graphiques tels le numéro d'un appelant, un message court, etc. Les première et seconde sections d'affichage sont typiquement physiquement interconnectées de manière à ne former qu'un seul affichage composite comportant une section de symboles et une section matricielle destinée à l'affichage de messages alpha-numériques.
  • L'affichage illustré à la figure 1 présente ainsi typiquement un ensemble de segments ou de pixels agencés en lignes et colonnes. Afin d'activer ces segments et pixels, une pluralité d'électrodes de ligne et de colonne (non représentées), sont respectivement couplées aux lignes et colonnes de l'affichage. Dans le cas d'un affichage LCD, ces électrodes de ligne et de colonne sont par exemple disposées sur des plaques opposées entre lesquelles est agencé la couche de cristaux liquides. Des tensions appliquées sur les électrodes de lignes et de colonnes se combinent pour générer un champ électrique dans une zone entre les électrodes. Cette zone entre les électrodes est dénommées "pixel" ou "segment" selon la géométrie de la zone. Ainsi, dans le cas de la première section d'affichage 10A comprenant les symboles, on parlera préférablement de "segments" alors que dans le cas de la seconde section d'affichage 10B, on parlera préférablement de "pixels". Néanmoins, dans les deux cas, les tensions appliquées sur les électrodes de lignes et de colonnes se combinent pour sélectivement activer ou désactiver des pixels ou segments de l'affichage. Au titre de simplification, on utilisera le terme "pixel" dans la suite de la présente description pour indiquer indifféremment un pixel ou un segment de l'affichage.
  • On comprendra que les termes "ligne" et "colonne" sont utilisés pour indiquer que les pixels sont agencés sous forme matricielle et sont commandés par des paires d'électrodes, chaque pixel étant situé à une intersection d'une paire d'électrodes de ligne et de colonne. Dans certains affichages, ces paires d'électrodes peuvent toutefois être dénommées différemment, par exemple par les termes "électrode antérieure" et "électrode postérieure", ou "frontplane electrode" et "backplane electrode" en terminologie anglo-saxonne. Dans le cadre de la présente description, les termes "électrode de ligne" et "électrode de colonne" désignent tout type d'agencement d'électrodes, y compris des agencements où les électrodes ne sont pas arrangées de manière linéaire. On comprendra également que les termes "ligne" et "colonne" n'implique pas nécessairement qu'une ligne s'étend horizontalement et qu'une colonne s'étend verticalement. Les termes "ligne" et "colonne" peuvent donc parfaitement être interchangés.
  • Les affichages dynamiques qui viennent d'être brièvement présentés, tels les affichages LCD, sont fréquemment utilisés dans de nombreux produits alimentés par batterie, tels que des calculatrices, des agendas de poches électronique, des téléphones portables, des pièces d'horlogeries électroniques, etc. Un avantage significatif de tels dispositifs d'affichage est leur relative faible consommation permettant aux produits les incorporant de fonctionner durablement au moyen de leur batterie ou de fonctionner avec des batteries de plus faibles dimensions.
  • La tendance actuelle est à la production de dispositifs performants, de faible dimensions et dont la puissance consommée est aussi réduite que possible. Une manière d'économiser de l'énergie dans un dispositif incorporant un affichage dynamique tel un affichage LCD consisterait à couper entièrement l'alimentation des pixels de l'affichage qui sont en mode de veille ou qui ne sont autrement pas utilisés. On réalise toutefois en pratique qu'il n'est pas possible de couper entièrement l'alimentation des pixels. En pratique, en effet, les pixels, en particulier les pixels d'un affichage LCD, doivent typiquement être commandés par un signal de commande alternatif de composante continue nulle, même lorsque ceux-ci sont à l'état "off". Si le signal de commande comportait une composante continue non nulle, il pourrait notamment en résulter une polarisation résiduelle de l'affichage qui rendrait ce dernier non opérationnel.
  • Les signaux de commande conventionnellement appliqués sur les électrodes de ligne et de colonne se présentent sous la forme d'une succession de trames alternées de telle sorte que la tension moyenne résultante sur un pixel, prise sur une période englobant deux trames successives est nulle. Plus spécifiquement, d'une trame à l'autre, le signal est renversé ou inversé par rapport au signal généré lors de la trame précédente. Dans la suite de la description, on définira une série de deux trames successives en tant que cycle, ce cycle étant ainsi divisé en un premier demi-cycle correspondant à une première trame et un second demi-cycle correspondant à une trame renversée par rapport à la première.
  • Selon cette technique de commande conventionnelle, les pixels non actifs sont typiquement maintenu à l'état "off" par l'application de tensions telles que la tension résultante sur le pixel non actif possède une amplitude trop faible pour le mettre à l'état "on". Chaque pixel de l'affichage, qu'il soit à l'état "on" ou "off" voit ainsi typiquement des commutations abruptes et fréquentes de niveaux de tension à ses bornes, chacune de ces commutations consommant de l'énergie.
  • Le document US-A-5,805,121 suggère ainsi une méthode pour commander un affichage dynamique susmentionné par laquelle le nombre de commutations sur les pixels, en particulier sur les pixels mis à l'état "off", est sensiblement réduit. Bien qu'une réduction sensible de la consommation sont atteinte grâce à l'enseignement de ce document, il existe toujours une nécessité de trouver des solutions plus optimales et permettant de réduire de manière encore plus sensible la consommation de tels affichages multiplexés.
  • On peut noter en particulier qu'un inconvénient de la technique de commande proposée dans le document US-A-5,805,121 , en considérant l'exemple présenté à la figure 5 de ce document, réside dans le fait que durant les trois-quarts d'un cycle de commande, les signaux de commande appliqués sur les électrodes de lignes sont tous maintenus à des niveaux de tension de non activation. Cette fraction du cycle durant laquelle les signaux sont maintenus à ces niveaux de non activation est d'autant plus importante que le nombre de lignes d'affichages mises à l'état non actif est important (dans l'exemple de la figure 5, ce nombre est de trois lignes d'affichage non actives sur quatre). On peut ainsi constater que le temps consacré à la commande des lignes d'affichage encore actives n'est pas optimisé par rapport à la durée totale d'un cycle de commande.
  • Un but général de la présente invention est donc de proposer une méthode de commande d'un affichage multiplexé qui pallie aux inconvénients des techniques de commande de l'art antérieur et qui répond, en particulier, à la fois à un souci de réduction de la consommation et à un souci d'optimisation de la commande d'un tel affichage multiplexé.
  • Ce but est atteint, selon la présente invention, grâce au procédé de commande dont les caractéristiques sont énoncées à la revendication 1.
  • Un autre but de la présente invention est de proposer un dispositif de commande d'un affichage multiplexé permettant de mettre en oeuvre le procédé susmentionné.
  • Ce but est atteint, selon la présente invention, grâce au dispositif de commande dont les caractéristiques sont énoncées à la revendication x.
  • Des variantes avantageuses du procédé et du dispositif de commande selon la présente invention font l'objet des revendications dépendantes.
  • Un avantage de la technique proposée par l'invention réside dans le fait que la commande de l'affichage assure non seulement une sensible réduction de la consommation mais également une commande optimale de l'affichage. Ces deux effets sont assurés par une commande adéquate du taux de multiplexage de l'affichage comme on le verra amplement en détail dans la suite de la présente description.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description détaillée qui suit, faite en référence aux dessins annexés donnés à titre d'exemples non limitatifs et dans lesquels :
    • la figure 1, déjà présentée, montre un exemple conventionnel d'un dispositif d'affichage multiplexé;
    • la figure 2 montre un exemple d'un dispositif d'affichage multiplexé comportant vingt-quatre lignes et cinq colonnes, utilisé dans le cadre d'un mode de mise en oeuvre particulier pour illustrer le principe de fonctionnement de la présente invention;
    • les figures 3A et 3B illustrent, dans un premier mode de fonctionnement dit normal où les vingt-quatre lignes de l'affichage sont actives, des exemples de signaux pouvant être appliqués respectivement sur les lignes et sur les colonnes de l'affichage de la figure 2 pour sélectivement activer ou désactiver des pixels de cet affichage;
    • la figure 3C illustre, dans le premier mode de fonctionnement, les signaux présents aux bornes de trois pixels de l'affichage de la figure 2, ces signaux résultant de la combinaison des signaux, illustrés aux figures 3A et 3B, appliqués sur les lignes et colonnes correspondantes de l'affichage;
    • les figures 4A et 4B illustrent, dans un deuxième mode de fonctionnement dit de veille où seules les huit premières lignes de l'affichage sont actives, des exemples de signaux pouvant être appliqués respectivement sur les lignes et sur les colonnes de l'affichage de la figure 2 pour sélectivement activer ou désactiver des pixels de cet affichage;
    • la figure 4C illustre, dans le deuxième mode de fonctionnement, les signaux présents aux bornes de trois pixels de l'affichage de la figure 2, ces signaux résultant de la combinaison des signaux, illustrés aux figures 4A et 4B, appliqués sur les lignes et colonnes correspondantes de l'affichage;
    • les figures 5A et 5B illustrent, dans le deuxième mode de fonctionnement dit de veille où seules les huit premières lignes de l'affichage sont actives, d'autres exemples de signaux pouvant être appliqués respectivement sur les lignes et sur les colonnes de l'affichage de la figure 2 pour sélectivement activer ou désactiver des pixels de cet affichage;
    • la figure 5C illustre, dans le deuxième mode de fonctionnement, les signaux présents aux bornes de trois pixels de l'affichage de la figure 2, ces signaux résultant de la combinaison des signaux, illustrés aux figures 5A et 5B, appliqués sur les lignes et colonnes correspondantes de l'affichage;
    • la figure 6 montre schématiquement un exemple de réalisation d'un dispositif de commande d'un affichage multiplexé permettant de mettre en oeuvre le procédé de commande selon la présente invention.
  • On décrira tout d'abord au moyen de la figure 2 et des figures 3A à 3C et 4A à 4C, le procédé de commande selon la présente invention. La figure 2 montre à titre explicatif un exemple non limitatif d'un affichage multiplexé, désigné globalement par la référence numérique 10, comportant une pluralité de pixels agencés en vingt-quatre lignes, désignées 101 à 124 et en cinq colonnes, désignées 201 à 205. Comme cela est schématisé sur la figure 2, certains pixels, représentés en noir dans la figure, sont à l'état "ON", c'est-à-dire à un état dit actif. D'autres pixels, représentés en blanc dans la figure, sont à l'état "OFF", c'est-à-dire à un état non actif. Dans la suite de la présente description, on s'intéressera particulièrement aux pixels désignés par les références 11, 12 et 13 choisis parmi l'ensemble des pixels de l'affichage pour illustrer le procédé de commande selon la présente invention. Le pixel 11 se trouve ainsi à l'intersection de la ligne 101 et de la colonne 204, le pixel 12 à l'intersection de la ligne 108 et de la colonne 202 et le pixel 13 à l'intersection de la ligne 124 et de la colonne 204. On constatera que le pixel 12 est actif alors que les pixels 11 et 13 sont inactifs.
  • On n'a pas représenté dans l'affichage 10 de la figure 2 de lignes de symboles. On comprendra néanmoins que la première ligne 101 de l'affichage peut par exemple correspondre à une ligne de symboles conforme à l'illustration de la figure 1 par exemple. On rappellera à nouveau ici que le terme "pixel" englobe aussi bien un pixel d'un affichage de type matriciel qu'un segment d'un affichage constitué de symboles déterminés.
  • Les pixels sont couplés à des électrodes de ligne et à des électrodes de colonne (non représentées) sur chacune desquelles est appliqué un signal de ligne, respectivement un signal de colonne dont la combinaison définit l'état d'activation du pixel se trouvant à l'intersection de la ligne et de la colonne correspondantes.
  • Les lignes 101 à 124 de l'affichage sont séquentiellement activées au moyen de signaux de ligne appliqués sur les électrodes de ligne correspondantes (non représentées) de l'affichage 10 de la figure 2. Ces signaux de ligne seront désignés dans la suite de la description par les références BP1 à BP24, le signal BP1 correspondant au signal de ligne appliqué à l'électrode de la ligne 101, le signal BP2 au signal de ligne appliqué à l'électrode de la ligne 102 et ainsi de suite jusqu'au signal BP24 appliqué à l'électrode de la ligne 124.
  • La figure 3A illustre, dans un premier mode de fonctionnement de l'affichage dit normal, l'allure des signaux de ligne appliqués sur les électrodes de ligne de l'affichage. Par soucis de simplification, dans la figure 3A, on n'a représenté que les signaux de ligne BP1, BP2, BP8 à BP10 et BP24 appliqués respectivement sur les électrodes des lignes 101, 102, 108 à 110 et 124. L'homme du métier sera parfaitement à même de déduire l'allure des signaux de ligne restants à partir des informations qui sont données ici.
  • Chacun des signaux de ligne BP1 à BP24 peut prendre jusqu'à quatre niveaux de tension distincts VLCD, V1, V4 et VSS. Les tensions VLCD et VSS constituent des niveaux d'activation et les tensions V1 et V4 des niveaux de non activation. On comprendra qu'un pixel n'est susceptible d'être activé par un signal de colonne approprié que si le signal de ligne correspondant est simultanément amené au niveau de tension d'activation VLCD, respectivement VSS. Dans l'exemple illustré aux figures 3A à 3C, les tensions de non activation V1 et V4 sont respectivement définies à 83% et 17% de la tension d'activation VLCD, VSS étant choisi comme référence à 0 Volt.
  • Durant un premier demi-cycle, désigné A dans la figure 3A, les signaux de lignes BP1 à BP24 varient ainsi entre la tension d'activation VSS et la tension de non activation V1. Durant le demi-cycle suivant, désigné B dans la figure 3A, les signaux de ligne BP1 à BP24 varient entre la tension d'activation VLCD et la tension de non activation V4.
  • Plus spécifiquement, le signal de ligne BP1 est brièvement amené à la tension d'activation VSS pour une durée déterminée T au début du premier demi-cycle A afin d'activer la ligne 101 de l'affichage, puis reste constant à la tension de non activation V1 durant le reste du demi-cycle A. Durant le demi-cycle suivant B, le signal de ligne BP1 est renversé par rapport au demi-cycle précédent, c'est-à-dire que le signal BP1 passe brièvement à la tension d'activation VLCD pour une durée déterminée T au début du demi-cycle suivant B, puis reste constant à la tension de non activation V4 durant le reste du demi-cycle B.
  • Afin d'activer la ligne 102 de l'affichage, le signal de ligne BP2 est brièvement amené à la tension d'activation VSS, respectivement à la tension d'activation VLCD, au cours du premier demi-cycle A, respectivement au cours du deuxième demi-cycle B, juste après le passage du signal de ligne BP1 à ces mêmes niveaux d'activation. Les signaux de ligne restants BP3 à BP24 sont agencés de manière analogue, le signal de ligne BP24 étant ainsi amené aux niveaux d'activation VSS, VLCD au terme de chaque demi-cycle A, B.
  • On comprendra donc que chaque signal de ligne BP1 à BP24 est amené séquentiellement un fois durant un demi-cycle A, B, pour une durée déterminée T, à la tension d'activation VSS, VLCD, de telle sorte que les lignes de l'affichage sont séquentiellement activées une fois au cours d'une période de un demi-cycle.
  • La durée T durant laquelle le signal de ligne est amené à la tension d'activation est déterminée par la durée de chaque demi-cycle, c'est-à-dire par la fréquence de trames de l'affichage, ainsi que par le nombre de lignes de l'affichage, ici au nombre de vingt-quatre. Dans l'exemple illustré, on comprendra donc que chaque signal de ligne est amené à la tension d'activation VSS, VLCD durant 1/24ème de la période d'un demi-cycle. Le reste du temps le signal de ligne est à amené à la tension de non activation V1, resp. V4.
  • En résumé, on comprendra donc que les lignes sont séquentiellement activées durant chaque demi-cycle, les niveaux d'activation et de non activation étant alternés d'un demi-cycle à l'autre. A un instant donné, seule une ligne de l'affichage n'est ainsi activée, les autres lignes étant toutes commandées par la tension de non activation V1, V4.
  • Des signaux de colonne adéquats sont appliqués aux électrodes (non représentées) des colonnes 201 à 205 de l'affichage 10 afin de sélectivement activer ou désactiver les pixels de l'affichage. Ces signaux de ligne seront désignés dans la suite de la description par les références FP1 à FP5, le signal FP1 correspondant au signal de colonne appliqué à l'électrode de la colonne 201, le signal FP2 au signal de colonne appliqué à l'électrode de la colonne 202 et ainsi de suite jusqu'au signal FP5 appliqué à l'électrode de la colonne 205.
  • La figure 3B illustre, également dans le premier mode de fonctionnement de l'affichage, l'allure des signaux de colonne FP1 à FP5 appliqués sur les électrodes de colonne (non représentées) de l'affichage 10 de la figure 2. Egalement par soucis de simplification, dans la figure 3B, on n'a représenté que les signaux de colonne FP2 et FP4 appliqués respectivement sur les électrodes des colonnes 202 et 204, c'est-à-dire les électrodes comprenant notamment les pixels 11, 12 et 13 pris à titre d'exemple. L'homme du métier sera parfaitement à même de déduire l'allure des signaux de colonne restants à partir de la figure 2 et de la figure 3B.
  • On constatera également, de la figure 3B, que les signaux de colonne FP1 à FP5 peuvent également prendre jusqu'à quatre niveaux de tension distincts VLCD, V2, V3 et VSS. Les tensions V2 et V3 constituent également des niveaux de non activation. On comprendra qu'un pixel n'est susceptible d'être activé par un signal de ligne approprié que si le signal de colonne correspondant est simultanément amené au niveau de tension d'activation VLCD ou VSS, selon le demi-cycle considéré. Dans l'exemple illustré aux figures 3A à 3C, les tensions de non activation V2 et V3 sont respectivement définies à 66% et 34% de la tension d'activation VLCD.
  • Durant le premier demi-cycle A, les signaux de colonne FP1 à FP5 varient ainsi entre la tension d'activation VLCD et la tension de non activation V2. Durant le demi-cycle suivant B, les signaux de colonne FP1 à FP5 varient entre la tension d'activation VSS et la tension de non activation V3.
  • Plus spécifiquement, le signal de ligne FP2 illustré à la figure 3B est amené, à des intervalles de temps déterminés durant le premier demi-cycle A, à la tension d'activation VLCD afin d'activer les pixels correspondants dans la colonne 202 de l'affichage, à savoir les pixels des lignes 102 et 106 à 108. Le reste du temps, durant ce premier demi-cycle A, le signal de colonne est amené au niveau de non activation V2. Durant le demi-cycle suivant B, le signal de colonne FP2 est renversé par rapport au demi-cycle précédent, c'est-à-dire que le signal FP2 est amené à la tension d'activation VSS aux intervalles de temps déterminés correspondant à l'activation des pixels des lignes 102 et 106 à 108, ce signal FP2 étant amené le reste du temps au niveau de non activation V3.
  • De manière analogue, le signal de colonne FP4 illustré à la figure 3B est amené, à des intervalles de temps déterminés durant le premier demi-cycle A, à la tension d'activation VLCD afin d'activer les pixels correspondants dans la colonne 204 de l'affichage, à savoir les pixels des lignes 102 et 104, ce signal FP4 restant au niveau de non activation V2 le reste du temps. Durant le demi-cycle suivant B, le signal FP4 est renversé et est ainsi amené au niveau d'activation VSS aux intervalles de temps correspondant à l'activation des pixels des lignes 102 et 104, ce signal FP4 étant amené le reste du temps au niveau de non activation V3.
  • On comprendra donc que chaque signal de colonne FP1 à FP5 est amené sélectivement, durant un demi-cycle A, B, à la tension d'activation VLCD, VSS, afin d'activer les pixels correspondants dans chacune des colonnes 201 à 205 de l'affichage. On comprendra donc que les signaux permettant d'activer et de désactiver les pixels dans une colonne sont multiplexés dans le temps sur chaque signal de colonne FP1 à FP5.
  • La durée élémentaire durant laquelle le signal de colonne est amené à la tension d'activation VLCD, resp. VSS, pour permettre l'activation d'un pixel déterminé dans la colonne, correspond à la durée T précédemment définie en rapport aux signaux de lignes BP1 à BP24, c'est-à-dire 1/24sème de la période d'un demi-cycle dans cet exemple. En d'autres termes, chaque demi-cycle A, B est décomposé dans ce mode de fonctionnement en vingt-quatre sous-périodes correspondant aux vingt-quatre pixels susceptibles d'être activés dans chaque colonne de l'affichage.
  • On aura de même compris que l'intervalle durant lequel chacun des signaux de ligne BP1 à BP24 est amené au niveau d'activation VSS, resp. VLCD, apparaît séquentiellement, dans les signaux de ligne BP1 à BP24, à chacune de ces vingt-quatre sous-périodes.
  • Dans la suite de la description, on entendra par "taux de multiplexage", un paramètre déterminé par le nombre de lignes dites actives de l'affichage et définissant à proprement parler le nombre de lignes actives multiplexées sur les signaux de colonne FP1 à FP5. Ainsi, dans le mode de fonctionnement dit normal, illustré par les figures 3A à 3C, les vingt-quatre lignes 101 à 124 de l'affichage sont actives. On parlera dans un tel cas d'un taux de multiplexage de 1:24. On notera que la durée T précédemment définie en rapport aux signaux de lignes BP1 à BP24, soit également la durée élémentaire durant laquelle les signaux de colonne sont amené à la tension d'activation pour permettre l'activation d'un pixel déterminé dans la colonne, est directement liée à ce paramètre. On déduira ainsi directement d'un taux de multiplexage de 1:24 que vingt-quatre lignes d'affichage actives sont commandées et qu'en conséquence chaque demi-cycle des signaux de ligne BP1 à BP24 et de colonne FP1 et FP5 est décomposé en vingt-quatre sous-périodes.
  • Le taux de multiplexage détermine ainsi l'allure des signaux de ligne BP1 à BP24 ainsi que les intervalles durant lesquels les signaux de colonne FP1 à FP5 doivent être amenés au niveau d'activation VLCD, resp. VSS, pour sélectivement activer des pixels.
  • Dans la suite de la description, on verra que, selon la présente invention, dans au moins un deuxième mode de fonctionnement dit de veille dans lequel un ensemble de lignes parmi les lignes de l'affichage est désactivé, le taux de multiplexage est réduit en proportion du nombre de lignes inactives. Selon le mode de mise en oeuvre particulier de l'invention utilisé et décrit ultérieurement à titre d'exemple uniquement, seules huit lignes de l'affichage resteront actives dans ce mode de fonctionnement de veille. Selon ce mode de mise en oeuvre illustratif de la présente invention, le taux de multiplexage sera donc réduit à 1:8 signifiant que chaque demi-cycle A, B est alors décomposé en huit sous-périodes. Les figures 4A à 4C permettront ultérieurement de mettre en évidence ce point.
  • On comprendra bien évidemment que l'invention ne se limite pas aux seuls modes de mise en oeuvres décrits dans la suite de la présente description, à savoir des modes de mise en oeuvres où seules huit lignes sont actives en mode de fonctionnement de veille. L'homme du métier sera parfaitement à même d'adapter le procédé ainsi que le dispositif selon la présente invention pour qu'un nombre différent de lignes soient actives en mode de fonctionnement de veille.
  • La figure 3C illustre les signaux aux bornes des pixels 11, 12, 13 résultant de la combinaison des signaux de ligne et de colonne correspondants. Les trois signaux représentés correspondent ainsi respectivement au signal présent aux bornes du pixel 11 résultant de la différence FP4-BP1 du signal de colonne FP4 et du signal de ligne BP1, au signal présent aux bornes du pixel 12 résultant de la différence FP2-BP8 du signal de colonne FP2 et du signal de ligne BP8 et au signal présent aux bornes du pixel 13 résultant de la différence FP4-BP24 du signal de colonne FP4 et du signal de ligne BP24.
  • De l'examen de la figure 3C, on pourra formuler les constatations suivantes. Comme cela a déjà été mentionné en préambule, les niveaux des tensions d'activation VSS, VLCD et de non activation V1 à V4 sont choisis de telle sorte que les signaux résultants aux bornes des pixels présentent, sur une période de deux demi-cycles successifs, c'est-à-dire sur une période englobant les demi-cycles A et B de la figure 3C, une valeur moyenne sensiblement nulle.
  • Plus spécifiquement, les niveaux de non activation V1 à V4 sont choisis, dans l'exemple illustré dans les figures 3A à 3C, comme des fractions de la tension d'activation VLCD (VSS étant fixé comme référence à 0 Volt) et de telle sorte que le signal résultant aux bornes de chaque pixel vaut +/-V4 durant vingt-trois des vingt-quatre sous-périodes de chaque demi-cycle, et +/-VLCD ou +/-V2 durant une des vingt-quatre sous-périodes selon que le pixel est respectivement actif ou inactif. Pour satisfaire cette condition, on constatera que les tensions de non activation V1, V2 et V3 valent respectivement VLCD-V4, VLCD-2V4 et 2V4.
  • Il résulte de ce choix que le signal présent aux bornes de chaque pixel durant le demi-cycle B est inversé par rapport au demi-cycle précédent A. La valeur moyenne du signal sur une période englobant les demi-cycles A, B est donc effectivement nulle.
  • En se référant au premier signal de la figure 3C, illustrant le signal FP4-BP1 présent aux bornes du pixel à l'état non actif 11, on constate que durant le premier demi-cycle A, ce signal est à +V2 durant la première sous-période du demi-cycle, puis varie entre +/-V4 durant les vingt-trois sous-périodes restantes. Durant le demi-cycle suivant B, le signal est inversé par rapport au demi-cycle précédent A.
  • De même, en se référant au troisième signal de la figure 3C, illustrant le signal FP4-BP24 présent aux bornes du pixel à l'état non actif 13, on constate que ce signal est à +V2, respectivement -V2, durant la dernière sous-période du premier demi-cycle A, respectivement du demi-cycle suivant B, ce signal étant à +/-V4 le reste du temps.
  • En se référant au second signal de la figure 3C, illustrant le signal FP2-BP8 présent aux bornes du pixel à l'état actif 12, on constate que durant les demi-cycles A, B, ce signal est à +VLCD, respectivement -VLCD, durant la huitième sous-période du demi-cycle, et varie entre +/-V4 durant les vingt-trois autres sous-périodes.
  • Selon la présente invention, dans au moins un deuxième mode de fonctionnement dit de veille, un ensemble de lignes, dites non actives, parmi les lignes 101 à 124 de l'affichage est désactivé. Dans l'exemple illustré à la figure 2, on a par exemple choisi de désactiver les lignes 109 à 124 de l'affichage 10 et de ne maintenir actives que les huit premières lignes de l'affichage, à savoir les lignes 101 à 108.
  • On comprendra bien évidemment que l'homme du métier est libre de choisir le nombre de lignes devant être désactivées et quelles seront effectivement les lignes de l'affichage qui seront désactivées. Les figures 4A à 4C n'illustrent qu'un choix parmi d'autres. On pourra par exemple choisir de maintenir actives la première ligne 101 (telle une ligne de symboles) ainsi que les sept dernières lignes 118 à 124 de l'affichage.
  • Dans les figures 4A à 4C, par soucis de simplification, on a choisi de représenter les signaux avec un nombre identique de niveaux d'activation et de non activation. Ces niveaux d'activation et de non activant sont également désignés VSS, VLCD et V1, V2, V3, V4 respectivement. On notera toutefois que la répartition des niveaux de non activation V1 à V4 est différente, dans ce deuxième mode de fonctionnement. Dans l'exemple illustré aux figures 4A à 4C, les tensions de non activation V1 à V4 sont respectivement définies à 90%, 80%, 20% et 10% de la tension d'activation VLCD. Les raisons de ce choix, qui n'est nullement limitatif, seront présentées ultérieurement. Il suffira pour l'instant de comprendre que cette répartition des tension de non activation V1 à V4 est choisie de la sorte afin de compenser l'augmentation du contraste de l'affichage lors du passage du mode de fonctionnement normal au mode de fonctionnement de veille.
  • On verra ultérieurement que la réduction du taux de multiplexage conduit par ailleurs à réduire la tension d'activation VLCD, ceci constituant un avantage supplémentaire par rapport à l'état de la technique en vue de réduire la consommation de l'affichage.
  • Les signaux appliqués sur les colonnes 201 à 205 de l'affichage ainsi que les signaux appliqués sur les lignes actives 101 à 108 de l'affichage sont analogues aux signaux appliqués durant le premier mode de fonctionnement ou mode normal. Cependant, à la différence du premier mode de fonctionnement, le taux de multiplexage est réduit en proportion du nombre de ligne désactivées. Dans ce mode de mise en oeuvre de la présente invention, le taux de multiplexage est ainsi réduit à titre d'exemple de 1:24, en mode de fonctionnement normal, à 1:8 en mode de fonctionnement de veille. En conséquence, l'allure des signaux de lignes BP1 à BP8 et des signaux de colonnes FP1 à FP5 est modifiée comme illustré aux figures 4A et 4B. Chaque demi-cycle A, B des signaux de ligne BP1 à BP8, respectivement des signaux de colonne FP1 à FP5 est ainsi décomposé, dans ce deuxième mode de fonctionnement, en huit sous-périodes
  • La figure 4A illustre, dans le deuxième mode de fonctionnement de l'affichage, l'allure des signaux de lignes BP1 à BP24 appliqués sur les électrodes de ligne de l'affichage. Par soucis de simplification, dans la figure 4A, on n'a également représenté que les signaux de ligne BP1, BP2, BP8 à BP10 et BP24 appliqués respectivement sur les électrodes des lignes 101, 102, 108 à 110 et 124. L'homme du métier sera parfaitement à même de déduire l'allure des signaux de ligne restants à partir des informations qui sont données ici.
  • L'allure des signaux de ligne BP1 à BP8 appliqués, dans le deuxième mode de fonctionnement, sur les lignes actives 101 à 108 de l'affichage est analogue à l'allure des signaux de ligne BP1 à BP24 appliqués sur les lignes 101 à 124 dans le premier mode de fonctionnement. Cependant, selon le mode de mise en oeuvre de l'invention utilisé ici à titre d'exemple, étant donné que le taux de multiplexage est réduit à 1:8 dans ce deuxième mode de fonctionnement, on pourra constater que la durée T durant laquelle chacun des signaux de ligne BP1 à BP8 est amené au niveau d'activation VSS, resp. VLCD est supérieure, dans ce deuxième mode de fonctionnement, par rapport à cette même durée T, dans le premier mode de fonctionnement.
  • Durant le premier demi-cycle A, les signaux de lignes BP1 à BP8 varient entre la tension d'activation VSS et la tension de non activation V1. Durant le demi-cycle suivant B, les signaux de ligne BP1 à BP8 varient entre la tension d'activation VLCD et la tension de non activation V4.
  • Plus spécifiquement, le signal de ligne BP1 est brièvement amené, au début de chaque demi-cycle A, B, à la tension d'activation VSS, resp. VLCD, durant 1/8ème de la période du demi-cycle afin d'activer la ligne 101 de l'affichage, puis reste constant à la tension de non activation V1, resp. V4 durant le reste du demi-cycle.
  • Afin d'activer la ligne 102 de l'affichage, le signal de ligne BP2 est brièvement amené à la tension d'activation VSS, resp. VLCD, au cours de chaque demi-cycle A, B, juste après le passage du signal de ligne BP1 à ces mêmes niveaux d'activation. Les signaux de ligne BP3 à BP8 sont agencés de manière analogue, le signal de ligne BP8 étant ainsi amené aux niveaux d'activation VSS, resp. VLCD, au terme de chaque demi-cycle A, B, comme cela est illustré dans la figure 4A.
  • On comprendra donc que chaque signal de ligne BP1 à BP8 est amené séquentiellement un fois durant un demi-cycle A, B, durant 1/8ème de la période d'un demi-cycle, à la tension d'activation VSS, VLCD, de telle sorte que les lignes actives 101 à 108 de l'affichage sont séquentiellement activées une fois au cours d'une période de un demi-cycle.
  • Afin de maintenir inactives les lignes 109 à 124 de l'affichage, dans ce deuxième mode de fonctionnement, on applique, sur les électrodes des lignes correspondantes 109 à 124, des signaux dit de non activation de ligne. Ces signaux sont choisis de telle sorte que, lorsqu'ils sont combinés avec les signaux de colonne FP1 à FP5, chaque pixel dans ces lignes inactives 109 à 124 reçoit à ses bornes un signal dont l'amplitude est trop faible pour l'activer. A cet effet, on applique des signaux de non activation de ligne qui sont amenés, durant toute la durée du premier demi-cycle A, au niveau de non activation V1, puis, durant toute la durée du demi-cycle suivant B, au niveau dé non activation V4.
  • La figure 4B illustre, également dans le deuxième mode de fonctionnement de l'affichage, l'allure des signaux de colonne FP1 à FP5 appliqués sur les électrodes de colonne (non représentées) de l'affichage 10 de la figure 2. Egalement par soucis de simplification, dans la figure 4B, on n'a représenté que les signaux de colonne FP2 et FP4 appliqués respectivement sur les électrodes des colonnes 202 et 204, c'est-à-dire les électrodes comprenant notamment les pixels 11, 12 et 13 pris à titre d'exemple. L'homme du métier sera parfaitement à même de déduire l'allure des signaux de colonne restants à partir de la figure 2 et de la figure 4B.
  • Abstraction faite des niveaux d'activation et de non activation, l'allure des signaux de colonne FP1 à FP5 appliqués, dans le deuxième mode de fonctionnement, sur les colonnes 201 à 205 de l'affichage est analogue à l'allure des signaux appliqués sur ces même colonnes dans le premier mode de fonctionnement. Cependant, selon le mode de mise en oeuvre de l'invention utilisé ici à titre d'exemple, étant donné que le taux de multiplexage est réduit à 1:8 dans ce deuxième mode de fonctionnement, on pourra constater que les intervalles de temps durant lesquels les signaux de colonne FP1 à FP5 sont amenés aux niveaux d'activation VLCD, VSS afin d'activer les pixels désirés sont supérieurs, dans ce deuxième mode de fonctionnement, par rapport à ces mêmes intervalles, dans le premier mode de fonctionnement.
  • On pourra en quelque sorte considérer que les signaux de ligne BP1 à BP8 ainsi que les signaux de colonne FP1 à FP5, dans le deuxième mode de fonctionnement, sont obtenus par étalement, sur toute la durée d'un demi-cycle, des huit premières sous-périodes de ces mêmes signaux, dans le premier mode de fonctionnement.
  • En se référant maintenant à la figure 4C, on examinera l'allure des signaux aux bornes des pixels 11, 12,13 résultant de la combinaison des signaux de ligne et de colonne correspondants.
  • On constatera tout d'abord que tous les signaux présents aux bornes des pixels ont, sur une période de deux demi-cycles successifs, une valeur moyenne sensiblement nulle. On constatera, d'autre part, que les signaux de la figure 4C présentent une allure analogue aux signaux de la figure 3C, si l'on ne considère que les huit premières sous-périodes de ces signaux.
  • En se référant au premier signal de la figure 4C, illustrant le signal FP4-BP1 présent aux bornes du pixel à l'état non actif 11, on constate que durant le premier demi-cycle A, ce signal est à +V2 durant la première sous-période du demi-cycle, puis varie entre +/-V4 durant les sept sous-périodes restantes. Durant le demi-cycle suivant B, le signal est inversé par rapport au demi-cycle précédent A.
  • De même, en se référant au deuxième signal de la figure 4C, illustrant le signal FP2-BP8 présent aux bornes du pixel à l'état actif 12, on constate que ce signal est à +VLCD, respectivement -VLCD, durant la huitième et dernière sous-période du premier demi-cycle A, respectivement du demi-cycle suivant B, ce signal étant à +/-V4 le reste du temps.
  • En se référant au troisième signal de la figure 4C, illustrant le signal FP4-BP24 présent aux bornes du pixel à l'état non actif 13, on constatera que, suite à la réduction du taux de multiplexage, le signal présent aux bornes du pixel 13 varie uniquement entre +/-V4 et ne présente plus de pic à +/-V2 au terme de chaque demi-cycle. Ce pic étant dû, dans le premier mode de fonctionnement, à l'impulsion d'activation du signal de ligne BP24 de la ligne 124 de l'affichage, celui-ci n'apparaît bien évidemment plus puisque un signal de non activation de ligne est appliqué sur cette même ligne durant le deuxième mode de fonctionnement.
  • Il convient maintenant d'examiner l'influence de la réduction du taux de multiplexage lors du passage du mode de fonctionnement normal au mode de fonctionnement de veille. Le spécialiste cherchera généralement à optimiser, en l'occurrence, à maximiser le contraste de l'affichage, c'est-à-dire maximiser le rapport entre l'intensité d'un pixel à l'état actif et l'intensité d'un pixel à l'état non actif. Afin de maximiser ce contraste, on joue sur les valeurs des tensions de non activation V1 à V4, ou plus exactement sur la répartition de ces tensions de non activation. La description qui suit permettra de mettre en évidence l'existence d'un optimum, en terme de contraste, pour des valeurs déterminées des tensions de non activation.
  • Pour les besoins de l'explication, il sera utile de définir les tensions de non activation V1 à V4 de la manière suivante. En définissant V4 comme étant égal à une fraction de la tension d'activation VLCD, soit V4 = α VLCD, où α est un paramètre de répartition, on peut définir, conformément à ce qui a déjà été mentionné plus haut, que V1 = (1 - α) VLCD, V2 = (1 - 2α) VLCD, et V3 = 2α VLCD. On notera que le paramètre de répartition α est compris entre 0 et 50%.
  • On définira de plus les valeurs efficaces ou valeur rms du signal présent aux bornes de chaque pixel à l'état actif et à l'état actif, à savoir respectivement les valeurs VON,rms et VOFF,rms suivantes : V ON , rms = n 1 α 2 + 1 n V LCD
    Figure imgb0001
    V OFF , rms = n 1 α 2 + 1 2 α 2 n V LCD
    Figure imgb0002
    où n est défini comme le nombre de lignes actives de l'affichage, 1:n étant dans ce cas le taux de multiplexage.
  • On comprendra donc que les valeurs VON,rms et VOFF,rms susmentionnées sont directement dépendantes du nombre de lignes actives de l'affichage, soit du taux de multiplexage. On constatera de plus que ces valeurs VON,rms et VOFF,rms augmentent lors d'une réduction du taux de multiplexage.
  • Dans le but de maximiser le contraste, les tensions de non activation V1 à V4, ou, en d'autres termes, le paramètre de répartition α sera préférablement choisi de telle sorte que le rapport VON,rms/VOFF,rms est maximum. Cet optimum est obtenu, après développement mathématique, pour une valeur du paramètre α tel que α = n 1 n 1
    Figure imgb0003
  • On constate ainsi que l'optimum est différent pour chaque taux de multiplexage. Avec un taux de multiplexage de 1:24 par exemple, c'est-à-dire vingt-quatre lignes actives, ce paramètre α vaut environ 17%. Dans un tel cas, les niveaux de non activation sont ainsi préférablement choisis tels que V1 = 83% VLCD, V2 = 66% VLCD, V3 = 34% VLCD et V4 = 17% VLCD comme cela est par exemple illustré dans les figures 3A à 3C.
  • De même avec un taux de multiplexage de 1:8, c'est-à-dire huit lignes actives, ce paramètre α vaut environ 25%. Dans un tel cas, les niveaux de non activation sont préférablement choisis tels que V1 = 75 % VLCD, V2 = V3 = 50% VLCD et V4 = 25% VLCD, de sorte que seuls trois niveaux de non activation sont alors nécessaires.
  • Les figures 5A à 5C illustrent, dans le deuxième mode de fonctionnement où le taux de multiplexage vaut 1:8, d'autres exemples des signaux de ligne BP1 à BP24, des signaux de colonne FP1 à FP5 et des signaux résultants présents aux bornes des pixels 11, 12, 13 dans le cas où le paramètre α est choisi à 25% afin d'optimiser le contraste de l'affichage pour ce taux de multiplexage, seuls trois niveaux de non activation étant ainsi requis dans ce cas. Dans les figures 5A à 5C, ces niveaux de non activation sont désignés VA, VB et VC pour éviter toute confusion, où VA = 75% VLCD, VB = 50% VLCD et VC = 25% VLCD. On ne décrira pas à nouveau ces signaux car ils sont analogues, mis à part la répartition des niveaux de non activation, aux signaux illustrés aux figures 4A à 4C. On notera simplement que les signaux de colonnes, tels les signaux FP2 et FP4 illustrés à la figure 4B, ne présentent qu'un seul niveau de non activation VB dans ce cas.
  • Selon une première variante, on peut ainsi choisir d'optimiser le contraste de l'affichage pour chaque mode de fonctionnement et de choisir en conséquence la répartition (paramètre α susmentionné) des tensions de non activation. Selon cette première variante, on notera cependant que le contraste (rapport VON,rms/VOFF,rms) augmente lors du passage du mode de fonctionnement normal au mode de fonctionnement de veille. Cette augmentation du contraste peut être jugée désagréable pour l'utilisateur.
  • Selon une variante préférée de l'invention, on ajuste la répartition des tensions de non activation d'un mode de fonctionnement à l'autre de manière à maintenir le contraste sensiblement constant. A titre d'exemple, en adoptant une répartition des niveaux de non activation V1 à V4 conforme à l'illustration des figures 3A à 3C telle que le paramètre de répartition α = 17% afin d'optimiser le contraste dans le mode de fonctionnement normal, on peut déterminer que la répartition des niveaux de non activation V1 à V4, dans le mode de fonctionnement de veille où le taux de multiplexage vaut 1:8, selon le mode de mise en oeuvre de l'invention utilisé ici à titre d'exemple, doit être telle que le paramètre de répartition α est sensiblement égal à 10%. Dans un tel cas, les tensions de non activation V1 à V4 sont ainsi respectivement définies à 90%, 80%, 20% et 10% de la tension d'activation VLCD conformément à l'illustration des figures 4A à 4C.
  • On comprendra bien évidemment que d'autres répartitions des tensions de non activation peuvent être envisagées pour permettre de maintenir le contraste de l'affichage constant d'un mode de fonctionnement à l'autre.
  • L'utilisateur pourra également décider de ne pas ajuster le contraste et tolérer une légère variation de ce dernier.
  • En tout état de cause, la réduction du taux de multiplexage lors du passage du mode de fonctionnement normal au mode de fonctionnement de veille s'accompagne également d'une réduction de la tension d'activation VLCD (la tension d'activation VSS est choisie comme référence à 0 Volt dans les deux modes). En effet, comme cela a déjà été mentionné plus haut, les valeurs efficaces ou valeurs rms VON,rms et VOFF,rms augmentent lors d'une réduction du taux de multiplexage. Il conviendra ainsi d'ajuster la tension d'activation VLCD afin, par exemple, que la valeur efficace VOFF,rms du signal présent aux bornes d'un pixel à l'état non actif soit sensiblement constante d'un mode de fonctionnement à l'autre.
  • En prenant à titre d'exemple, la variante illustrée aux figures 3A à 3C et 4A à 4C, c'est-à-dire la variante où la répartition des tensions de non activation V1 à V4 est telle que α = 17% dans le mode de fonctionnement normal et α = 10 % dans le mode de fonctionnement de veille afin de maintenir le contraste de l'affichage constant, on obtient VOFF,rms = 21.4% VLCD dans le mode de fonctionnement normal et VOFF,rms = 29.8% VLCD dans le mode de fonctionnement de veille. On peut donc réduire la tension d'activation VLCD, dans le mode de fonctionnement de veille, à 21.4/29.8 = 71.8% de la tension VLCD utilisée dans le mode de fonctionnement normal. Ce réduction de la tension d'activation VLCD assure une réduction additionnelle de la consommation de l'affichage.
  • D'une manière générale, on pourra constater que les avantages de la présente invention sont multiples. En premier lieu, la réduction du taux de multiplexage et donc de la fréquence de multiplexage des signaux permet de réduire le nombre de commutations sur les électrodes de ligne et de colonne de l'affichage. Par exemple, selon le mode de mise en oeuvre de l'invention utilisé ici à titre d'exemple, lors du passage du taux de multiplexage 1:24 au taux de multiplexage 1:8, on réduit par trois la fréquence de multiplexage. D'autre part, la réduction du taux de multiplexage permet de réduire la tension d'activation VLCD des pixels comme déjà mentionné plus haut. Enfin, la réduction du taux de multiplexage engendre une augmentation du contraste de l'affichage qui peut ou non être ajustée par l'utilisateur.
  • La Demanderesse a pu constater que pour un dispositif d'affichage multiplexé comportant vingt-quatre lignes active en mode de fonctionnement normal et huit lignes actives en mode de fonctionnement de veille, une réduction de consommation d'énergie de l'ordre de deux tiers, au minimum, était atteinte (la tension d'activation VLCD étant réduite lors du passage au mode de fonctionnement de veille).
  • Le procédé de commande qui vient d'être décrit peut ainsi être appliqué de manière à commuter un affichage multiplexé entre un premier mode de fonctionnement dit normal (toutes les lignes actives) et au moins un deuxième mode de fonctionnement dit de veille (une ou plusieurs lignes inactives). Cette commutation entre les modes peut être effectuée de manière logicielle par le biais d'une programmation adéquate du dispositif de commande ou de manière matérielle par l'utilisation de circuits dédiés. Cette commutation peut être automatique si désiré.
  • On décrira maintenant au moyen de la figure 6, selon un autre aspect de l'invention, un mode de réalisation d'un dispositif de commande d'un affichage multiplexé permettant de mettre en oeuvre le procédé décrit précédemment.
  • La figure 6 montre ainsi de manière schématique un dispositif ou circuit de commande d'un affichage multiplexé, désigné globalement par la référence numérique 30. Ce dispositif 30 comprend un commutateur de mode 31, un séquenceur programmable 32, un générateur de signaux de ligne 33, un moyen de mise en forme 34, un générateur de signaux de colonne 35, un générateur de tension d'activation et de non activation 36 et un générateur de fréquence 37.
  • Le commutateur de mode 31 assure, comme son nom l'indique, une commutation, automatique ou manuelle, entre le mode de fonctionnement normal et le mode de fonctionnement de veille. Il commande le fonctionnement du séquenceur programmable 32, du générateur de tension d'activation et de non activation 36 ainsi que du générateur de fréquence 37.
  • Le générateur de tensions d'activation et de non activation 36 est agencé pour produire à sa sortie les tensions d'activation et de non activation devant être appliquées sur les lignes et colonnes de l'affichage. En particulier, ce générateur 36 produit à sa sortie des tensions d'activation VON,BP et de non activation VOFF,BP destinées aux lignes de l'affichage. Ces tensions VON,BP et VOFF,BP sont appliquées au générateur de signaux de ligne 33. Le générateur produit également à sa sortie des tensions d'activation VON,FP et de non activation VOFF,FP destinées aux colonnes de l'affichage. Ces tensions VON,FP et VOFF,FP sont appliquées au générateur de signaux de colonne 35.
  • Les tensions produites à la sortie du générateur de tension d'activation et de non activation 36 sont alternées d'un demi-cycle à l'autre comme on l'a vu plus haut. Le générateur 36 est à ce titre commandé par le séquenceur programmable 32 de manière à assurer cette alternance des tensions d'activation et de non activation.
  • Le générateur 36 est commandé par le commutateur de mode 31 de telle sorte que les niveaux des tensions d'activation et de non activation sont modifiés lors du passage du mode de fonctionnement normal au mode de fonctionnement de veille. En particulier, ce générateur 36 est agencé, d'une part, pour diminuer la valeur de la tension d'activation VLCD (VSS étant choisi comme référence à 0 Volt) en réponse au passage du mode de fonctionnement normal au mode de fonctionnement de veille, et pour modifier, d'autre part, la répartition des tensions de non activation V1 à V4 conformément à ce qui à été décrit plus haut.
  • Plus spécifiquement, on peut décomposer le générateur de tension d'activation et de non activation 36 en un premier bloc 361 commandé par le commutateur de mode et permettant de générer les tensions d'activation VSS, VLCD et de non activation V1 à V4, et un deuxième bloc 362 commandé par le séquenceur programmable 32 de manière à alterner les tensions d'activation et de non activation d'un demi-cycle à l'autre.
  • Le générateur de fréquence 37 comporte un oscillateur 371, un circuit diviseur de fréquence 372 et un commutateur de fréquence 373. L'oscillateur 371 et le circuit diviseur de fréquence 372 sont agencés pour produire un signal dont la fréquence détermine l'allure des signaux de ligne et de colonne. Dans le cas particulier, l'oscillateur 371 et le circuit diviseur de fréquence 372 sont agencé pour délivrer un premier signal à une fréquence f, dite de multiplexage, destiné au premier mode de fonctionnement et un deuxième signal à une fréquence f/3 destiné au deuxième mode de fonctionnement. Le commutateur de fréquence 373, commandé par le commutateur de mode 31, délivre à sa sortie un signal de multiplexage de fréquence f durant le premier mode et un signal de multiplexage de fréquence f/3 durant le deuxième mode. Ce signal de multiplexage est appliqué au séquenceur de mode 32 et au moyen de mise en forme 34.
  • Le séquenceur programmable 32 assure la séquence adéquate permettant de générer les signaux destinés à être appliqués sur les électrodes de ligne de l'affichage, tels les signaux BP1 à BP24 présentés précédemment. Ce séquenceur programmable 32 est ainsi connecté au générateur de signaux de ligne 33. Dans l'exemple illustré, le séquenceur programmable 32 comprend vingt-quatre sorties, connectées au générateur de signaux de ligne 33, chacune de ces sorties commandant la commutation, dans le générateur de signaux de ligne 33, entre les tensions d'activation VON,BP et de non activation VOFF,BP selon la séquence décrite plus haut. Le générateur de signaux de ligne 33 comprend vingt-quatre sorties, dans cet exemple, sur lesquelles sont respectivement produits les signaux de lignes BP1 à BP24.
  • Dans le mode de fonctionnement normal, le séquenceur 32 génère la séquence adéquate permettant d'activer séquentiellement toutes les lignes de l'affichage, c'est-à-dire les vingt-quatre lignes de l'affichage dans cet exemple. Le générateur 33 produit en réponse vingt-quatre signaux de ligne BP1 à BP24 tels les signaux illustrés à la figure 3A.
  • Dans la figure 6, on a schématisé l'état des sorties du séquenceur 32 dans le mode de fonctionnement normal sur une durée d'un demi-cycle. L'état des sorties du séquenceur 32 durant un demi-cycle peut par exemple être schématisé, dans le mode de fonctionnement normal par une matrice diagonale, ici une matrice 24x24 dans laquelle "1" et "0" correspondent à la commutation du signal de ligne correspondant respectivement à la tension d'activation et à la tension de non activation.
  • Dans le mode de fonctionnement de veille, le séquenceur 32 produit la séquence adéquate permettant d'activer les huit premières lignes de l'affichage dans cet exemple. Les seize dernières lignes de l'affichage sont toutes maintenues à un état non actif. Pour ce faire, les huit premières sorties du séquenceur (depuis la gauche dans la figure 6) commande séquentiellement la commutation des huit premières sorties correspondantes du générateur 33 entre les tensions d'activation et de non activation afin de produire les signaux adéquats BP1 à BP8 comme illustré aux figures 4A ou 5A. Les seize dernières sorties du séquenceur 32 maintiennent les seize sorties correspondantes du générateur 33 à la tension de non activation. Les signaux de lignes BP9 à BP24 ainsi produits sont conforme aux illustration des figures 4A ou 5A.
  • Dans le mode de fonctionnement de veille, on peut ainsi schématiser l'état des huit premières sorties (depuis la gauche) du séquenceur 32 par une matrice diagonale 8x8, dans cet exemple, les seize autres sorties étant toujours maintenues à "0".
  • Le moyen de mise en forme 34 assure, en fonction des données à afficher, la mise en forme des signaux de colonne, dans l'exemple illustré, les signaux de colonne FP1 à FP5. Ce moyen de mise en forme 34 commande de manière adéquate le générateur de signaux de colonne 35.
  • De manière analogue au générateur de signaux de ligne 33, le générateur de signaux de colonne 35 assure la commutation adéquate, pour chaque colonne de l'affichage des signaux de colonne, ici FP1 à FP5, entre les tensions d'activation VON,FP et de non activation VOFF,FP produite par le générateur de tensions 36.
  • On comprendra que diverses modifications peuvent être apportés au dispositif de commande illustré à la figure 6 sans sortir du cadre de l'invention. En particulier, on comprendra qu'il est parfaitement envisageable de programmer le séquenceur 32 de telle sorte que huit autres lignes de l'affichage sont maintenues actives dans le deuxième mode de fonctionnement, telles par exemples la première et les sept dernières lignes de l'affichage. D'autre part, tant le nombre total de lignes de l'affichage ainsi que le nombre de lignes restant actives durant le deuxième mode de fonctionnement peuvent être changés. On rappellera néanmoins que ces changements influencent notamment la fréquence de multiplexage du dispositif ainsi que les tensions d'activation et de non activation requises.
  • On comprendra d'autre part que le taux de multiplexage en mode de fonctionnement normal est essentiellement fixé par le nombre de lignes de l'affichage. Le taux de multiplexage en mode de fonctionnement de veille peut parfaitement être programmable de sorte à être modifié selon les désirs de l'utilisateur ou du concepteur de l'affichage.
  • Au titre de variante, on comprendra que la présente invention peut être adaptée de sorte que l'affichage peut occuper plus d'un mode de fonctionnement de veille, par exemple un premier mode de fonctionnement de veille dans lequel le taux de multiplexage est réduit par deux, un deuxième mode de fonctionnement de veille dans lequel le taux de multiplexage est réduit par trois, etc. Le tout peut parfaitement être programmé. La présente invention n'est donc nullement limitée un affichage ne pouvant occuper qu'un mode de fonctionnement normal et un unique mode de fonctionnement de veille, mais s'applique de manière analogue si l'on désire prévoir plus d'un mode de fonctionnement de veille.
  • On comprendra également que le procédé et le dispositif de commande ne sont pas limités aux seuls modes de mise en oeuvre particuliers décrits dans la présente description. En particulier, le procédé ou le dispositif s'appliquent bien évidemment de manière similaire à un affichage comportant un nombre de lignes actives différent de vingt-quatre en mode de fonctionnement normal et un nombre de lignes actives différent de huit en mode de fonctionnement de veille. On rappellera à nouveau que les figures n'illustrent que quelques modes de mise en oeuvres particuliers et non limitatifs de la présente invention.

Claims (10)

  1. Procédé de commande d'un affichage multiplexé (10) comportant une pluralité de pixels (11, 12, 13) agencés en lignes (101 à 124) et en colonnes (201 à 205) et couplés à des électrodes de ligne et à des électrodes de colonne, chacun desdits pixels (11, 12, 13) étant sélectivement activé ou désactivé par une combinaison déterminée d'un signal de ligne (BP1 à BP24) et d'un signal de colonne (FP1 à FP5) appliqués respectivement sur les électrodes de ligne et de colonne correspondantes, des lignes dites actives de l'affichage étant séquentiellement activées une fois au cours d'une période de un demi-cycle (A, B), un cycle étant formé par un premier demi-cycle correspondant à une première trame appliquée sur une électrode de ligne ou sur une électrode de colonne, et par un second demi-cycle correspondant à une trame renversée par rapport à la première, la première trame et la trame renversée se succédant de manière alternée de façon que la tension moyenne résultante sur un pixel soit nulle, procédé de commande d'affichage selon lequel ledit affichage est opéré dans un premier mode de fonctionnement dit normal dans lequel toutes les lignes de l'affichage sont activées, lesdits signaux de ligne et de colonne présentant un premier taux de multiplexage dit normal dans ledit premier mode de fonctionnement, et ledit affichage est commuté dans au moins un deuxième mode de fonctionnement dit de veille, dans lequel des lignes dites non actives de l'affichage sont désactivées par l'application, sur les électrodes de lignes correspondantes, de signaux dits de non activation ledit affichage est tel que l'on agit, dans ledit au moins deuxième mode de fonctionnement, sur les signaux de ligne (BP1 à BP8) appliqués sur les lignes actives et sur lesdits signaux de colonne (FP1 à FP5) de manière à ce qu'ils présentent un second taux de multiplexage dont la valeur est réduite, par rapport audit premier taux de multiplexage, en proportion du nombre de lignes non actives, caractérisé en ce que :
    - on détermine une durée élémentaire (T) durant laquelle le signal de ligne (BP1 à BP24 ; BP1 à BP8) est amené à la tension d'activation, cette durée étant déterminée par la durée de chaque demi-cycle (A, B), et étant divisée par le nombre de lignes de l'affichage ;
    - le signal de colonne (FP1 à FP5) est amené à la tension d'activation durant la même dite durée élémentaire (T) définie par rapport aux signaux de ligne (BP1 à BP24 ; BP1 à BP8),
    - dans ledit au moins deuxième mode de fonctionnement dit de veille, chaque signal de non activation de ligne est déterminé de telle sorte que lorsque ledit signal de ligne approprié est combiné avec le signal de colonne correspondant (FP1 à FP5), chaque pixel desdites lignes non actives reçoit à ses bornes un signal dont l'amplitude est trop faible pour l'activer.
  2. Procédé selon la revendication 1, caractérisé en ce que :
    - lesdits signaux de ligne (BP1 à BP24; BP1 à BP8) varient, durant un premier demi-cycle (A), entre une tension de masse (VSS) et une première tension de non activation (V1; VA), et, durant un demi-cycle suivant (B), entre une tension d'activation (VLCD) et une deuxième tension de non activation (V4, VC),
    - lesdits signaux de colonne (FP1 à FP5) varient, durant le premier demi-cycle (A), entre ladite tension d'activation (VLCD) et une troisième tension de non activation (V2; VB), et, durant le demi-cycle suivant (B), entre ladite tension de masse (VSS) et une quatrième tension de non activation (V3, VB),
    - lesdits signaux de non activation de ligne sont amenés, durant toute la durée dudit premier demi-cycle (A), à ladite première tension de non-activation (V1; VA), et, durant toute la durée dudit demi-cycle suivant (B), à ladite deuxième tension de non activation (V4, VC), lesdites tensions d'activation (VLCD) et de non activation (V1 à V4; VA à VC) étant choisies de telle sorte que, sur une période de deux demi-cycles successifs, la valeur moyenne du signal présent aux bornes de chaque pixel est sensiblement nulle.
  3. Procédé selon la revendication 2, caractérisé en ce que l'on diminue, lors du passage du premier au dit au moins deuxième mode de fonctionnement, la valeur de ladite tension d'activation (VLCD) de manière à compenser l'augmentation de la valeur efficace (VOFF,rms) du signal présent aux bornes d'un pixel non actif.
  4. Procédé selon la revendication 2 ou 3, caractérisé en ce que lesdites tensions de non activation (V1 à V4) sont définies telles que V4=αVLCD, V1=(1-α)VLCD, V2=(1-2α)VLCD, et V3=2α VLCD, où α est un paramètre de répartition compris entre 0 à 50%.
  5. Procédé selon la revendication 4, caractérisé en ce que le paramètre de répartition α est donné par la formule : α = n 1 n 1
    Figure imgb0004
    où n est défini comme le nombre de lignes actives de l'affichage.
  6. Dispositif de commande d'un affichage multiplexé (10) comportant une pluralité de pixels (11, 12, 13) agencés en lignes (101 à 124) et en colonnes (201 à 205) et couplés à des électrodes de ligne et à des électrodes de colonne, chacun desdits pixels (11, 12, 13) étant sélectivement activé ou désactivé par une combinaison déterminée d'un signal de ligne (BP1 à BP24) et d'un signal de colonne (FP1 à FP5) appliqués respectivement sur les électrodes de ligne et de colonne correspondantes, des lignes dites actives de l'affichage étant séquentiellement activées une fois au cours d'une période de un demi-cycle (A, B), ce dispositif étant susceptible de fonctionner dans un premier mode de fonctionnement dit normal dans lequel toutes les lignes de l'affichage sont activées, lesdits signaux de ligne et de colonne présentant un premier taux de multiplexage dit normal dans ledit premier mode de fonctionnement, ce dispositif de commande comprenant :
    - des moyens de production (32, 33) desdits signaux de ligne (BP1 à BP24) commandés par ledit signal de multiplexage; et
    - des moyens générateurs de tensions (36) pour produire des tensions d'activation (VON,BP, VON,FP) et de non activation (VOFF,BP, VOFF,FP) destinées auxdits moyens de production (32, 33, 34, 35) des signaux de ligne et de colonne;
    - des moyens générateurs de fréquence (37) pour produire un signal de multiplexage ayant une fréquence f, dans ledit premier mode de fonctionnement, déterminant ledit premier taux de multiplexage, lesdits moyens générateurs de fréquence (37) sont agencés pour réduire la fréquence dudit signal de multiplexage en proportion du nombre de lignes non actives, en réponse au passage dans ledit au moins deuxième mode de fonctionnement, de telle sorte que les signaux de lignes (BP1 à BP8) appliqués sur les électrodes des lignes actives et lesdits signaux de colonne (FP1 à FP5) présentent un deuxième taux de multiplexage dont la valeur est réduite, par rapport audit premier taux de multiplexage, en proportion du nombre de lignes inactives,
    - des moyens commutateurs de mode (31) agencés pour commuter le dispositif entre ledit premier mode de fonctionnement et au moins un deuxième mode de fonctionnement dit de veille, dans lequel les lignes dites non actives de l'affichage sont désactivées,
    caractérisé en ce que :
    - les moyens commutateurs de mode (31) sont susceptibles de commander lesdits moyens (32, 33) de production des signaux de ligne ainsi que les moyens générateurs de fréquence (37),
    - lesdits moyens générateurs de fréquence (37) sont agencés pour produire une durée élémentaire (T) durant laquelle le signal de ligne et le signal de colonne sont amenés à la tension d'activation, cette durée élémentaire (T) étant déterminée par la durée de chaque demi-cycle (A, B) et étant fonction du nombre de lignes de l'affichage ;
    - lesdits moyens de production (32, 34) des signaux de ligne sont agencés pour produire, dans ledit au moins deuxième mode de fonctionnement, des signaux dits de non activation de ligne sur les électrodes des lignes non actives, ces signaux de non activation de ligne étant déterminés de telle sorte que, lorsque les signaux de lignes appropriés sont combinés avec les signaux de colonne (FP1 à FP5), chaque pixel desdites lignes non actives reçoit à ses bornes un signal dont l'amplitude est trop faible pour l'activer.
  7. Dispositif selon la revendication 6, caractérisé en ce que lesdits moyens générateur de tensions (36) sont agencés pour produire une tension de masse (VSS), une tension d'activation (VLCD) et des première, deuxième, troisième et quatrième tensions de non activation (V1 à V4, VA à VC),
    - lesdits signaux de ligne (BP1 à BP24; BP1 à BP8) sont susceptibles de varier, durant un premier demi-cycle (A), entre ladite tension de masse (VSS) et ladite première tension de non activation (V1; VA), et, durant un demi-cycle suivant (B), entre ladite tension d'activation (VLCD) et ladite deuxième tension de non activation (V4, VC),
    - lesdits signaux de colonne (FP1 à FP5) sont susceptibles de varier, durant le premier demi-cycle (A), entre ladite tension d'activation (VLCD) et ladite troisième tension de non activation (V2; VB), et, durant le demi-cycle suivant (B), entre ladite tension de masse (VSS) et ladite quatrième tension de non activation (V3, VB),
    - lesdits signaux de non activation de ligne sont amenés, durant toute la durée dudit premier demi-cycle (A), à ladite première tension de non-activation (V1; VA), et, durant toute la durée dudit demi-cycle suivant (B), à ladite deuxième tension de non activation (V4, VC),
    lesdites tensions d'activation (VLCD) et de non activation (V1 à V4; VA à VC) étant choisies de telle sorte que, sur une période de deux demi-cycles successifs, la valeur moyenne du signal présent aux bornes de chaque pixel est sensiblement nulle.
  8. Dispositif selon la revendication 7, caractérisé en ce que lesdits moyens commutateur de mode (31) sont susceptibles de commander, en outre, lesdits moyens générateur de fréquence de sorte que la valeur de ladite tension d'activation (VLCD) est réduite, lors du passage du premier audit au moins deuxième mode de fonctionnement, pour compenser l'augmentation de la valeur efficace (VOFF,rms) du signal présent aux bornes d'un pixel non actif.
  9. Dispositif selon la revendication 7 ou 8, caractérisé en ce que les dites tensions de non activation (V1 à V4; VA à VC) sont définies telles que V4= αVLCD, V1=(1- α) VLCD, V2=(1-2 α)VLCD, et V3=2 α VLCD, où α est un paramètre de répartition compris entre 0 et 50%.
  10. Dispositif selon la revendication 9, caractérisé en ce que le paramètre de répartition α est fonction du nombre de lignes actives de l'affichage.
EP00201217.7A 2000-04-04 2000-04-04 Procédé et dispositif de commande d'un affichage multiplexé avec mode de fonctionnement normal et mode de veille Expired - Lifetime EP1143405B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP00201217.7A EP1143405B1 (fr) 2000-04-04 2000-04-04 Procédé et dispositif de commande d'un affichage multiplexé avec mode de fonctionnement normal et mode de veille
US10/239,413 US7180494B2 (en) 2000-04-04 2001-03-15 Method and device for controlling a multiplexed display screen operating in reduced consumption mode
JP2001573451A JP2003533711A (ja) 2000-04-04 2001-03-15 多重化ディスプレイ用の制御方法およびデバイス
CNB018102042A CN1244086C (zh) 2000-04-04 2001-03-15 具有减低耗电工作模式的多路复用显示的控制方法和器件
KR1020027013168A KR100773215B1 (ko) 2000-04-04 2001-03-15 전력 소모 감소 모드에서 동작하는 멀티플렉싱된디스플레이 스크린의 제어 방법 및 장치
PCT/CH2001/000159 WO2001075854A1 (fr) 2000-04-04 2001-03-15 Procede et dispositif de commande d'un affichage multiplexe avec mode de fonctionnement a consommation reduite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00201217.7A EP1143405B1 (fr) 2000-04-04 2000-04-04 Procédé et dispositif de commande d'un affichage multiplexé avec mode de fonctionnement normal et mode de veille

Publications (2)

Publication Number Publication Date
EP1143405A1 EP1143405A1 (fr) 2001-10-10
EP1143405B1 true EP1143405B1 (fr) 2016-06-01

Family

ID=8171305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00201217.7A Expired - Lifetime EP1143405B1 (fr) 2000-04-04 2000-04-04 Procédé et dispositif de commande d'un affichage multiplexé avec mode de fonctionnement normal et mode de veille

Country Status (6)

Country Link
US (1) US7180494B2 (fr)
EP (1) EP1143405B1 (fr)
JP (1) JP2003533711A (fr)
KR (1) KR100773215B1 (fr)
CN (1) CN1244086C (fr)
WO (1) WO2001075854A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396697A (en) * 2002-12-27 2004-06-30 Schlumberger Holdings Depth correction of drillstring measurements
US7128167B2 (en) 2002-12-27 2006-10-31 Schlumberger Technology Corporation System and method for rig state detection
KR100496304B1 (ko) * 2003-05-01 2005-06-17 삼성에스디아이 주식회사 효율적인 발진기들을 가진 디스플레이 패널의 구동 장치
JP4151688B2 (ja) * 2005-06-30 2008-09-17 セイコーエプソン株式会社 集積回路装置及び電子機器
KR100745982B1 (ko) * 2006-06-19 2007-08-06 삼성전자주식회사 자발광형 디스플레이의 전력 저감을 위한 영상 처리 장치및 방법
JPWO2009013824A1 (ja) * 2007-07-25 2010-09-30 東芝ストレージデバイス株式会社 磁気ヘッドスライダ及び磁気ディスク装置
US8121788B2 (en) * 2007-12-21 2012-02-21 Schlumberger Technology Corporation Method and system to automatically correct LWD depth measurements
CN103137084B (zh) * 2011-12-01 2015-02-25 微创高科有限公司 一种液晶显示器的驱动装置及驱动方法
KR102071939B1 (ko) 2013-05-23 2020-02-03 삼성디스플레이 주식회사 표시 장치
KR102431311B1 (ko) * 2015-01-15 2022-08-12 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 표시 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859632A (en) * 1994-07-14 1999-01-12 Seiko Epson Corporation Power circuit, liquid crystal display device and electronic equipment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757718B2 (fr) * 1973-10-19 1982-12-06 Hitachi Ltd
JPS56116089A (en) * 1980-02-19 1981-09-11 Suwa Seikosha Kk Liquid crystal display
US4910496A (en) * 1987-01-08 1990-03-20 Honda Giken Kogyo Kabushiki Kaisha Direction indicating flasher device for vehicles with filament failure indication
JPH02131786U (fr) * 1989-03-31 1990-11-01
JP2805895B2 (ja) * 1989-10-02 1998-09-30 松下電器産業株式会社 液晶表示回路
JPH07281632A (ja) * 1994-04-04 1995-10-27 Casio Comput Co Ltd 液晶表示装置
EP0811866A4 (fr) * 1995-12-14 1998-12-02 Seiko Epson Corp Procede de pilotage d'afficheur, afficheur et appareil electronique
US5805121A (en) * 1996-07-01 1998-09-08 Motorola, Inc. Liquid crystal display and turn-off method therefor
JPH10207438A (ja) * 1996-11-21 1998-08-07 Seiko Instr Inc 液晶装置
US5859625A (en) * 1997-01-13 1999-01-12 Motorola, Inc. Display driver having a low power mode
JP3572473B2 (ja) * 1997-01-30 2004-10-06 株式会社ルネサステクノロジ 液晶表示制御装置
US6137466A (en) * 1997-11-03 2000-10-24 Motorola, Inc. LCD driver module and method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859632A (en) * 1994-07-14 1999-01-12 Seiko Epson Corporation Power circuit, liquid crystal display device and electronic equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALT P M ET AL: "SCANNING LIMITATIONS OF LIQUID-CRYSTAL DISPLAYS", IEEE TRANSACTIONS ON ELECTRON DEVICES, IEEE SERVICE CENTER, PISACATAWAY, NJ, US, vol. 21, no. 2, 1 February 1974 (1974-02-01), pages 146 - 155, XP009031553, ISSN: 0018-9383 *

Also Published As

Publication number Publication date
US7180494B2 (en) 2007-02-20
CN1436344A (zh) 2003-08-13
US20040090433A1 (en) 2004-05-13
WO2001075854A1 (fr) 2001-10-11
EP1143405A1 (fr) 2001-10-10
JP2003533711A (ja) 2003-11-11
KR20030024660A (ko) 2003-03-26
CN1244086C (zh) 2006-03-01
KR100773215B1 (ko) 2007-11-02

Similar Documents

Publication Publication Date Title
EP1143405B1 (fr) Procédé et dispositif de commande d'un affichage multiplexé avec mode de fonctionnement normal et mode de veille
CH690941A5 (fr) Dispositif électronique pourvu d'un affichage pour présenter des données.
EP0655666A1 (fr) Pièce d'horlogerie à affichage dynamique
FR2530852A1 (fr) Dispositif d'affichage d'images a cristal liquide
FR2882881A1 (fr) Procede et dispositifs de transmission d'informations tactiles
TW200403617A (en) Display device
FR2635902A1 (fr) Procede de commande tres rapide par adressage semi-selectif et adressage selectif d'un panneau a plasma alternatif a entretien coplanaire
EP1490859A1 (fr) Procede d'entrainement d'un dispositif d'affichage a cristaux liquides en mode normal et en mode d'attente
FR2966276A1 (fr) Ecran d'affichage a diodes electroluminescentes a matrice active pourvu de moyens d'attenuation
WO2005059883A2 (fr) Cellule de commande electronique pour diode electroluminescente organique d'afficheur a matrice active, procedes de fonctionnement et afficheur
JPH09311311A (ja) 液晶表示装置
FR2772501A1 (fr) Dispositif de commande matriciel
FR2648260A1 (fr) Dispositif d'affichage a cristaux liquides
EP1819454B1 (fr) Procede de generation d'un son polyphonique
JP2000258750A (ja) 液晶表示装置
KR960038727A (ko) 액정 디스플레이 장치 및 이의 구동 방법
CH690404A5 (fr) Récepteur de communication de données d'image
TW424231B (en) Drive method and drive circuit of liquid display apparatus
EP0774746A1 (fr) Procédé de commande d'un écran de visualisation et dispositif de visualisation mettant en oeuvre ce procédé
FR2459505A1 (fr) Montre electronique a sonneries multiples
FR2708371A1 (fr) Circuit d'affichage à forte persistance et procédé associé.
FR2492126A1 (fr) Dispositif d'horlogerie analogique a affichage par cristaux liquides en multiplexage
EP2104092B1 (fr) Dispositif d'affichage pouvant fonctionner en mode partiel d'affichage basse consommation
FR2666908A2 (fr) Perfectionnements aux dispositifs optiques bistables a cristaux liquides et commande electrochirale.
EP0623912B1 (fr) Procédé et dispositif pour engendrer des niveaux de gris dans un écran à cristaux liquides à matrice passive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020410

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20071109

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 804297

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60049343

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 804297

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160902

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161003

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60049343

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60049343

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170404

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170404

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170404

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601