EP1141551B1 - Pump assembly comprising two hydraulic pumps - Google Patents

Pump assembly comprising two hydraulic pumps Download PDF

Info

Publication number
EP1141551B1
EP1141551B1 EP99964582A EP99964582A EP1141551B1 EP 1141551 B1 EP1141551 B1 EP 1141551B1 EP 99964582 A EP99964582 A EP 99964582A EP 99964582 A EP99964582 A EP 99964582A EP 1141551 B1 EP1141551 B1 EP 1141551B1
Authority
EP
European Patent Office
Prior art keywords
pressure
pump
vane pump
groove
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99964582A
Other languages
German (de)
French (fr)
Other versions
EP1141551A1 (en
Inventor
Egon Birkenmaier
Günter Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Rexroth AG
Original Assignee
Mannesmann Rexroth AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19952167A external-priority patent/DE19952167A1/en
Application filed by Mannesmann Rexroth AG filed Critical Mannesmann Rexroth AG
Publication of EP1141551A1 publication Critical patent/EP1141551A1/en
Application granted granted Critical
Publication of EP1141551B1 publication Critical patent/EP1141551B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/701Cold start

Definitions

  • the invention is based on a pump arrangement according to the preamble of claim 1, a vane pump, particularly for the supply of actuating cylinders of a hydromechanical transmission of a motor vehicle to serve with a pressure fluid under high pressure, and a second hydraulic pump includes, the displacement elements are positively guided and the supply a circuit with a low system pressure, especially one Lubricating oil circuit of the motor vehicle with which pressure fluid is used.
  • the two hydraulic pumps therefore work with the same operating medium.
  • a pump assembly, a vane pump and a second hydraulic pump comprises, the displacement elements are positively guided, is already from DE-A-19 634 822 known from EP 0 128 969 A1.
  • the oil flow of the vane pump is used Pressure medium supply for a power steering.
  • the second hydraulic pump is a radial piston pump, whose oil flow for a device for level control of the Vehicle.
  • the two hydraulic pumps of the known pump arrangement are located are in two pressurized fluid circuits that only the oil reservoir has in common to have.
  • a vane pump generally has a suction area in which first pressure spaces between the wings and second, rear pressure spaces enlarge behind the wings and absorb pressure fluid. In a print area the pressure spaces shrink, causing pressurized fluid to a pressure outlet is ousted.
  • a vane pump to function properly it is necessary that the vanes guided in radial slots of a rotor outside rest on a cam ring. Centrifugal forces are used for such a system, that attack the wings and for the effect of a far-reaching Pressure equalization between the front and the back of the cam ring the wing in the slots is a requirement. Through the connection too the rear pressure chambers in the pressure area with the pressure outlet of the pump this requirement is met.
  • In the suction area are usually both first pressure rooms as well as the second pressure rooms with the suction inlet of the Vane pump connected so that the same pressures prevail in them.
  • the invention has for its object a pump assembly according to the Develop the preamble of claim 1 so that even at low Ambient temperatures and thus high viscosity of the pressure fluid a perfect Operation is possible.
  • This task is performed in a pump arrangement with the features from Preamble of claim 1 according to the invention solved in that the rear pressure chambers of the flight egg pump in the suction area with the pressure outlet the second hydraulic pump are connected. Because the displacement elements of the second hydraulic pump, the second hydraulic pump begins promote regardless of the viscosity of the pressurized fluid when driven becomes. The pressure building up at its pressure outlet is then also in the rear pressure chambers of the vane pump and generated on the wings a force which, in addition to the centrifugal force, exerts radial force on the wing Hubring presses.
  • the system pressure in the circuit from the second hydraulic pump is relatively low, e.g. are in the range of (0.5 MPa) (5 bar). The Frictional force between the wings and the cam ring therefore increases in the suction area the vane pump only a little, so that the wear on these parts remains low.
  • the vane pump is preferably one with a variable displacement, because this compares the consumption of unusable energy reduced to a vane pump with a constant displacement can be. Because it is particularly useful when used in motor vehicles the economical use of primary energy is also very important that the individual components are inexpensive is the vane pump according to claim 3 advantageously directly controlled and goes when reached a set maximum pressure with its displacement volume so far back that at the maximum pressure only the slight, due to internal leakage lost quantity is replaced. The power loss, which is then caused by the Product of the maximum pressure and the amount of leakage is low, because the amount of leakage is small.
  • the second hydraulic pump is advantageously a gear pump, in particular a filler-less internal gear pump that works quietly, cheap to manufacture is and can also be designed from its structure so that it without great effort combined with the vane pump into a single unit can be as specified in claim 6.
  • a vane pump 10 is sucking via a suction inlet 11 and a second hydraulic pump 12, e.g. is designed as a radial piston pump, whose radial pistons rest under spring pressure on an eccentric via a Suction inlet 13 pressurized fluid from a tank 14 through the housing of the Gearbox of a motor vehicle, e.g. an agricultural tractor. Because the Radial piston of the radial piston pump 12 pressed against the eccentric by springs the radial pistons can be used as positively driven displacement elements describe.
  • the radial piston pump outputs 15 via a pressure outlet Pressure fluid in a lubricating oil circuit 16 of the motor vehicle transmission, wherein the pressure in the pressure outlet 15 is 0.4 MPa (4 bar) to 0.5 MPa (5 bar) when the pressurized fluid is at operating temperature has reached.
  • the gear oil flows from the lubricating oil circuit 16 back into the tank 14.
  • a pressure relief valve 19 secures the pressure outlet 15 of the hydraulic pump 12.
  • the vane pump 10 and the second hydraulic pump 12 are one of them common drive shaft 20 driven, which has an axis 21 and on the a rotor 22 is secured against rotation. Are even over the circumference of the rotor radial slots 23 distributed in which vanes 24 are guided. These protrude radially beyond the circumference of the rotor 22 and lie on a cam ring 25 circular cylindrical stroke curve whose axis has a value between zero and a maximum variable distance E to the axis 21 of the drive shaft 20.
  • the Vane pump 10 is therefore a flight egg pump with a variable Displacement.
  • the vanes 24 form first pressure spaces 27 between them and on its rear side facing the bottom of the slots 23 there are second rear ones Pressure spaces 28 in the slots 23.
  • a control disk 32 On the side of the cam ring 25 and the rotor 22 there is a control disk 32 which has a total of four control grooves open to the rotor 22.
  • a radially outside Suction groove 33 is fluidly connected to the suction inlet 11 and thus in the control disc 32 attached that the first pressure spaces 27 with it in overlap are as they enlarge.
  • the rotor is driven counterclockwise.
  • Another suction groove 34 is located radially further inward than the suction groove 33 which the second pressure spaces 28 overlap as they enlarge. It is now essential that the suction groove 34 is not connected to the suction inlet 11 Vane pump 10, but with the pressure outlet 15 of the radial piston pump 12 is connected.
  • a vane pump 10 and a second hydraulic pump designed as a filler-less internal gear pump 40 a unit that is combined in a multi-part common Housing 41 are located and driven by a single drive shaft 42.
  • the housing consists of a cup-shaped housing part 43 and a cover-shaped one Housing part 44 together.
  • the gear 47 is in a circular cylindrical Pump chamber, which is between one on the bottom of the housing part 43 overlying side window 48 and one like the side window 48 firmly in the housing arranged control part 49, which essentially the space between the rotor 22 and gear 47 takes and with an annular cylindrical collar to Side window 48 is sufficient, is formed.
  • the rotor 22 of the wing cell pump 10 is located in another circular cylindrical pump chamber, which is between the cover 44 and the control part 49 is formed with a circular cylindrical
  • the extension extends to the cover 44 and overlaps a centering collar on it.
  • the Hubring 25 which is in normal operation by a compression spring 50, which extends over a first spring plate 51 on the cam ring 25 and via a second spring plate 52 on one Adjusting screw 53 for the maximum operating pressure supports against one of the Compression spring 50 diametrically opposite adjusting screw 54 for the maximum Stroke volume is pressed.
  • the rotor turns in the direction of Arrow A from Figure 3 counterclockwise, the pressure range, in Direction of rotation viewed continuously, between the adjusting screw 54 and the Compression spring 50 is.
  • the Recess 60 does not extend radially to the suction groove 34.
  • the externally toothed gear 47 of the internal gear pump 40 is outside of one internally toothed ring gear 64 surrounded on its outer peripheral surface is rotatably mounted eccentrically to the gear 47 in the control part 49. It owns one tooth 65 more than the gear 47. Its teeth 66 and the teeth 65 of the Gear 64 slide along each other and form as the positively driven Displacement elements of the gear pump 40 pressure spaces between themselves, which are increase in operation in the suction area and decrease in pressure area. In the suction area the pressure chambers are open to a suction groove 67, which is between the pump chamber of the internal gear pump 40 and the recess 60 located wall of the control part 49 breaks through.
  • the suction groove 67 approximately opposite is in the control part radially outside of the pressure grooves 35 and 36 Vane pump 10 introduced a pressure groove 68 of the internal gear pump 40.
  • the pressure groove 68 extends beyond the radial plane in which the radial bore 62 and the recess 60 of the control part 49 lie in this.
  • the inside for Pressure groove 68 is open, and a radial bore in the housing part 43, which is connected to the radial bore 69 aligned, form the pressure output of the internal gear pump 40.
  • the pressure groove 68 ends in peripheral direction at a distance from the radial bore 62 of the control part 49, thus no fluidic connection between the pressure outlets of the two Pumping exists.
  • a bore 71 extends from the latter from, which is introduced tangentially from the outside into the control part 49, to the Pressure grooves 35 and 36 of the vane pump passes and the tangential in the one end of the suction groove 34 of the vane pump 10 opens. Because of this, this is Suction groove 34 of the vane pump 10 fluidly with the pressure groove 68 of the internal gear pump 40 connected.
  • the rear pressure chambers 28 of the vane pump 10 are in the suction area from the pressure output of the internal gear pump 40 forth filled with fluid so that at least approximately the same in them Pressure as in the pressure outlet of the internal gear pump 40 prevails.
  • the kind of The opening of the bore 71 in the suction groove 34 contributes to the fact that a possible Pressure loss between the pressure groove 68 and the suction groove 34 is only slight.
  • the Bore 71 lies in a radial plane which is centered through the recess 60 and the holes 62 and 69 of the control part 49 goes. It hits the suction groove 34, because this extends axially into the control part 49 beyond this radial plane.
  • suction groove 34 less deep and the bore 71 in a radial plane closer to the pump chamber of the vane pump to arrange or also run obliquely with respect to a radial plane to let their starting point at the pressure groove 68 a greater distance from the pump chamber of the vane pump 10 has its mouth in the suction groove 34.
  • suction and pressure areas of the vane pump 10 compared to the suction and pressure range of the internal gear pump 40 slightly twisted. On the one hand, this makes the suction groove 34 a little cheaper Able to connect the communication channel between it and the pressure groove 68 create.
  • the pressure grooves 35 and 36 of the vane pump 10 migrated somewhat from one end of the pressure groove 68 so that between them and the recess 60 has sufficient material on the control part 49, around the connecting channel 71 in the material between the suction groove 34 and the pressure groove 68 to put in.
  • An adjustable vane pump is also used in the embodiment according to FIGS. 6 to 10 10 and a trained as a filler-less internal gear pump 40 second hydraulic pump combined into one unit. Both pumps will driven by a single drive shaft 42. A little different than the second
  • the housing 41 is executed by the central control part 49, which in one Front side of the pump chamber for the rotor 22 with those located in slots 23 Wings 24 and for the lifting ring 25 of the vane pump 10 and in the opposite The pump chamber for the externally toothed gear 47 and the internally toothed gear 64 of the internal gear pump 40, and the cover 44, with which the pump chamber of the vane pump is closed and a further cover 74 with which the pump chamber of the internal gear pump is closed.
  • the further cover 74 fulfills the two Functions that in the second embodiment, the side window 48 and have the bottom of the housing pot 43.
  • a ball bearing 45 is accordingly in it used in which the drive shaft 42 is mounted. Except in the ball bearing 45 As in the second exemplary embodiment, the drive shaft 42 is still in one Slide bearing 75, which is inserted into a central bore 76 of the control part 49 and a certain distance from the bore cell 76 end of the bore cell pump Stretched into the control section.
  • the two covers 44 and 74 and that Control part 49 are in a manner not shown by long machine screws held together.
  • the adjustment mechanism of the vane cell pump 10 of the third exemplary embodiment is the same as in the second embodiment, so that no further details must be received.
  • the gear set 47, 64 in the third embodiment used for the internal gear pump 40 is smaller in diameter than the gear set of the second embodiment.
  • the drive shaft 42 rotates clockwise and, viewed in Figure 9, counterclockwise.
  • the third embodiment differs from the second Embodiment in the design of the cavities in the control section essential from the second embodiment.
  • the suction inlet for the two pumps 10 and 40 is again, as in the second embodiment, a radial open large recess 60 formed in the control part 49.
  • the outer suction groove 33 of the vane pump 10 looks and looks essentially the same as in the second embodiment, again located approximately on the outer circumference of the rotor 22. Further inside, namely in the area of the bottom of the slots 23 opens into the pump chamber of the vane pump 10 the inner suction groove 34.
  • the recess 60 does not go radially up to to the suction groove 34. There is no fluidic connection between the suction groove 34 and the recess 60, i.e. the suction inlet of the two pumps.
  • the inner suction groove in the third embodiment is not sufficient their entire length in the axial direction to over the center of the recess 60 in the control part 49 into it. Rather, the inner suction groove 34 has an area 78 shallow depth and a rear area when viewed in the direction of rotation of the rotor 79 greater depth. Only this area of greater depth extends in the axial direction up to over the middle of the recess 60 into the control part 49 and is in the section visible according to Figure 7. Compared to training with great depth of the inner Suction groove over its entire length is the control part 49 of the third exemplary embodiment stable.
  • the inner pressure groove 36 is approximately opposite the suction grooves 33 and 34 the vane pump 10, over which the rear pressure chambers 28 pass, and the outer pressure groove 35, towards which the pressure spaces 27 open, into the Control part 49 introduced.
  • the two pressure grooves each have an area 82 or 83 shallow depth and one, viewed in the direction of rotation of the rotor, rear area 84 or 85 of greater depth, in which they are deep to over one in the Radial plane running in the middle of the suction inlet, with the cutting plane 7 is identical, protrude into the control part 49.
  • Figure 10 is the inner one Pressure groove 36 with the shallower area 83 and the deeper area 85 shown.
  • control part 49 there is a tangential in said radial plane stepped connection bore 62 running to the axis of the drive shaft 42, the function of the bore with the same reference number corresponds to the second exemplary embodiment and the two pressure grooves 35 inside and 36 in their area 84, 85 of greater depth.
  • the teeth of the third embodiment also slide Gears 47 and 64 of the internal gear pump 40 along each other and form as positively driven displacement elements between themselves pressure spaces, which are in the Increase operation in the suction area and reduce it in the pressure area.
  • the pressure chambers are open to a suction groove 67, which is between the pump chamber of the internal gear pump 40 and the recess 60 Wall of the control part 49 breaks through.
  • the suction groove 67 approximately opposite is approximately in the same angular range in which the pressure grooves 35 and 36 of the vane pump 10, in the control part a pressure groove 68 of the internal gear pump 40 introduced.
  • This pressure groove 68 is now not radial outside the pressure groove 35, but lies at least partially on the same Diameter as the pressure grooves 35 and 36.
  • How the pressure grooves 35 and 36 has the pressure groove 68 also has an area 86 of shallow depth which corresponds to the deeper areas the pressure grooves 35 and 36 are axially opposite, and an area 87 larger Depth that extends axially beyond the radial plane mentioned above and that axially opposite the flatter areas of the pressure grooves 35 and 36.
  • One in said radial plane and parallel to the connection bore 62 of the Vane pump 10 extending connection bore 69 in the control part 49, which in their function of the bore of the second bearing the same reference number Corresponds to the exemplary embodiment, is inside the lower region 87 of the pressure groove 68 open.
  • the pressure groove 68 is located radially outside the pressure groove 35, so should an arrangement of the connection holes 62 and 69, as in the third exemplary embodiment, only the pressure groove 68 areas of different depths.
  • the pressure grooves 35 and 36 could be on their the entire length beyond the radial plane under consideration. Appear however, regions of the pressure grooves 35 and 36 have different depths advantageous since an improved stability of the control part 49 is then expected can.
  • the third embodiment is also possible from the pressure groove 68, a bore 71 through the connection bore 69 through and parallel to this and in the radial plane mentioned is inserted lying in the control part 49, which thus on the flat areas 82nd and 83 of the pressure grooves 35 and 36 of the joint cell pump and the in the lower region 79 at one end of the suction groove 34 of the vane pump 10 empties.
  • this suction groove 34 of the vane pump 10 is fluid with the Pressure groove 68 of the internal gear pump 40 connected.
  • the rear pressure rooms 28 of the vane pump 10 are thus in the suction area from the pressure outlet the internal gear pump 40 ago filled with fluid so that at least approximately in them the same pressure as in the pressure outlet of the internal gear pump 40 prevails.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

A pump assembly which comprises a vane pump and a second hydraulic pump driven together with this vane pump. The vane pump has a suction region in which first pressure spaces between the vanes and second, rear pressure spaces behind the vanes become larger and a pressure region in which the pressure spaces become smaller and in which the pressure spaces are fluidically connected to a pressure outlet. This vane pump is intended particularly for supplying operating cylinders of a hydromechanical transmission of a motor vehicle with pressure fluid under relatively high pressure. The second hydraulic pump has positively driven displacement elements and is intended for supplying a circuit having a relatively low system pressure, in particular a lubricating-oil circuit of the motor vehicle, with pressure fluid. So that the vane pump also begins to deliver at low outside temperatures and with highly viscous pressure fluid even at low rotational drive speeds, the rear pressure spaces of the vane pump are connected in the suction region to the pressure outlet of the second hydraulic pump.

Description

Die Erfindung geht aus von einer Pumpenanordnung, die gemäß dem Oberbegriff des Patentanspruchs 1 eine Flügelzellenpumpe, die insbesondere für die Versorgung von Stellzylindern eines hydromechanischen Getriebes eines Kraftfahrzeugs mit einer Druckfluid unter hohem Druck dienen soll, und eine zweite Hydropumpe umfaßt, deren Verdrängerelemente zwangsgeführt sind und die zur Versorgung eines Kreislaufes mit einem niedrigen Systemdruck, insbesondere eines Schmierölkreislaufs des Kraftfahrzeugs, mit dem Druckfluid dient. Die beiden Hydropumpen arbeiten also mit demselben Betriebsmedium.The invention is based on a pump arrangement according to the preamble of claim 1, a vane pump, particularly for the supply of actuating cylinders of a hydromechanical transmission of a motor vehicle to serve with a pressure fluid under high pressure, and a second hydraulic pump includes, the displacement elements are positively guided and the supply a circuit with a low system pressure, especially one Lubricating oil circuit of the motor vehicle with which pressure fluid is used. The two hydraulic pumps therefore work with the same operating medium.

Eine Pumpenanordnung, die eine Flügelzellenpumpe und eine zweite Hydropumpe umfaßt, deren Verdrängerelemente zwangsgeführt sind, ist schon aus der DE-A-19 634 822 der EP 0 128 969 A1 bekannt. Dort dient der Ölstrom der Flügelzellenpumpe zur Druckmittelversorgung einer Servolenkung. Die zweite Hydropumpe ist eine Radialkolbenpumpe, deren Ölstrom für eine Einrichtung zur Niveauregulierung des Fahrzeugs dient. Die beiden Hydropumpen der bekannten Pumpenanordnung befinden sich in zwei Druckfluidkreisläufen, die nur den Ölvorratsbehälter gemeinsam haben.A pump assembly, a vane pump and a second hydraulic pump comprises, the displacement elements are positively guided, is already from DE-A-19 634 822 known from EP 0 128 969 A1. There the oil flow of the vane pump is used Pressure medium supply for a power steering. The second hydraulic pump is a radial piston pump, whose oil flow for a device for level control of the Vehicle. The two hydraulic pumps of the known pump arrangement are located are in two pressurized fluid circuits that only the oil reservoir has in common to have.

Eine Flügelzellenpumpe besitzt ganz allgemein einen Saugbereich, in dem sich erste Druckräume zwischen den Flügeln und zweite, rückwärtige Druckräume hinter den Flügeln vergrößern und dabei Druckfluid aufnehmen. In einem Druckbereich verkleinern sich die Druckräume, wodurch Druckfluid zu einem Druckausgang verdrängt wird. Für eine einwandfreie Funktion einer Flügelzellenpumpe ist es notwendig, daß die in radialen Schlitzen eines Rotors geführten Flügel außen an einem Hubring anliegen. Für eine solche Anlage werden Fliehkräfte ausgenutzt, die an den Flügeln angreifen und für deren Wirkung ein weitgehender Druckausgleich zwischen der am Hubring anliegenden Vorderseite und der Rückseite der Flügel in den Schlitzen Voraussetzung ist. Durch die Verbindung auch der rückwärtigen Druckräume im Druckbereich mit dem Druckausgang der Pumpe ist diese Voraussetzung gegeben. Im Saugbereich sind üblicherweise sowohl die ersten Druckräume als auch die zweiten Druckräume mit dem Saugeingang der Flügelzellenpumpe verbunden, so daß in ihnen wiederum gleiche Drücke herrschen.A vane pump generally has a suction area in which first pressure spaces between the wings and second, rear pressure spaces enlarge behind the wings and absorb pressure fluid. In a print area the pressure spaces shrink, causing pressurized fluid to a pressure outlet is ousted. For a vane pump to function properly it is necessary that the vanes guided in radial slots of a rotor outside rest on a cam ring. Centrifugal forces are used for such a system, that attack the wings and for the effect of a far-reaching Pressure equalization between the front and the back of the cam ring the wing in the slots is a requirement. Through the connection too the rear pressure chambers in the pressure area with the pressure outlet of the pump this requirement is met. In the suction area are usually both first pressure rooms as well as the second pressure rooms with the suction inlet of the Vane pump connected so that the same pressures prevail in them.

Die für das Anlegen der Flügel an den Hubring notwendigen Fliehkräfte sind um so größer, je höher die mit sinkender Temperatur zunehmende Viskosität des Druckfluids ist. Dies bedeutet, daß eine Flügelzellenpumpe üblicher Bauart erst bei einer um so höheren Drehzahl zu fördern beginnt, je tiefer die Temperatur des Druckfluids ist. Insbesondere kann das Motoren- und Getriebeöl eines Kraftfahrzeugs, insbesondere eines Ackerschleppers, bei tiefen Umgebungstemperaturen so zähflüssig werden, daß die Flügelzellenpumpe erst bei nicht akzeptablen hohen Drehzahlen zu arbeiten beginnt.The centrifugal forces required to attach the wings to the cam ring are over the greater the higher the viscosity of the Pressure fluid is. This means that a vane pump of a conventional design is the first at a higher speed, the lower the temperature of the Pressure fluid is. In particular, the engine and transmission oil of a motor vehicle, especially an agricultural tractor, at low ambient temperatures become so viscous that the vane pump only at unacceptably high Speeds begins to work.

Der Erfindung liegt die Aufgabe zugrunde, eine Pumpenanordnung gemäß dem Oberbegriff des Patentanspruchs 1 so weiterzuentwickeln, daß auch bei niedrigen Umgebungstemperaturen und damit hoher Viskosität des Druckfluids ein einwandfreier Betrieb möglich ist.The invention has for its object a pump assembly according to the Develop the preamble of claim 1 so that even at low Ambient temperatures and thus high viscosity of the pressure fluid a perfect Operation is possible.

Diese Aufgabe wird bei einer Pumpenanordnung mit den Merkmalen aus dem Oberbegriff des Patentanspruchs 1 erfindungsgemäß dadurch gelöst, daß die rückwärtigen Druckräume der Flügeizellenpumpe im Saugbereich mit dem Druckausgang der zweiten Hydropumpe verbunden sind. Da die Verdrängerelemente der zweiten Hydropumpe zwangsgeführt sind, beginnt die zweite Hydropumpe unabhängig von der Viskosität des Druckfluids zu fördern, wenn sie angetrieben wird. Der sich an ihrem Druckausgang aufbauende Druck steht dann auch in den rückwärtigen Druckräumen der Flügelzellenpumpe an und erzeugt an den Flügeln eine Kraft, die die Flügel zusätzlich zur Fliehkraft radial nach außen an den Hubring drückt. Der Systemdruck in dem Kreislauf, der von der zweiten Hydropumpe versorgt wird, ist relativ niedrig, kann z.B. im Bereich von (0.5 MPa) (5 bar) liegen. Die Reibkraft zwischen den Flügeln und dem Hubring erhöht sich deshalb im Saugbereich der Flügelzellenpumpe nur wenig, so daß der Verschleiß an diesen Teilen weiterhin gering bleibt.This task is performed in a pump arrangement with the features from Preamble of claim 1 according to the invention solved in that the rear pressure chambers of the flight egg pump in the suction area with the pressure outlet the second hydraulic pump are connected. Because the displacement elements of the second hydraulic pump, the second hydraulic pump begins promote regardless of the viscosity of the pressurized fluid when driven becomes. The pressure building up at its pressure outlet is then also in the rear pressure chambers of the vane pump and generated on the wings a force which, in addition to the centrifugal force, exerts radial force on the wing Hubring presses. The system pressure in the circuit from the second hydraulic pump is relatively low, e.g. are in the range of (0.5 MPa) (5 bar). The Frictional force between the wings and the cam ring therefore increases in the suction area the vane pump only a little, so that the wear on these parts remains low.

Aus der DE-AS 17 28 276 ist zwar schon eine zwei Hydropumpen umfassende Pumpenanordnung bekannt, bei der die rückwärtigen Druckräume an den Flügeln einer ersten, als Fiügelzellenpumpe ausgebildeten Hydropumpe in deren Saugbereich mit dem Druckausgang der zweiten Hydropumpe verbunden sind. Allerdings ist hier auch die zweite Hydropumpe eine Flügelzellenpumpe, die bei hochviskosem Druckfluid versagt, so daß bei der aus der DE-AS 17 28 276 bekannten Pumpenanordnung das der Erfindung zugrunde liegende Problem nicht beseitigt ist.From DE-AS 17 28 276 is already a two hydraulic pumps comprehensive Pump arrangement known in which the rear pressure chambers on the wings a first hydraulic pump designed as a vane cell pump in its suction area are connected to the pressure output of the second hydraulic pump. Indeed here is also the second hydraulic pump, a vane pump, which is highly viscous Pressure fluid fails, so that in the known from DE-AS 17 28 276 Pump arrangement does not eliminate the problem underlying the invention is.

Vorteilhafte Ausgestaltungen einer erfindungsgemäßen Pumpenanordnung kann man den Unteransprüchen entnehmen.Advantageous configurations of a pump arrangement according to the invention can one can see from the subclaims.

So ist die Flügelzellenpumpe bevorzugt eine solche mit einem variablen Verdrängungsvolumen, da dadurch der Verbrauch an nicht nutzbarer Energie im Vergleich zu einer Flügelzellenpumpe mit einem konstanten Verdrängungsvolumen reduziert werden kann. Da es insbesondere beim Einsatz in Kraftfahrzeugen neben dem sparsamen Umgang mit der Primärenergie in hohem Maße auch darauf ankommt, daß die Einzelkomponenten preisgünstig sind, ist die Flügelzellenpumpe gemäß Patentanspruch 3 vorteilhafterweise direktgesteuert und geht bei Erreichen eines eingestellten Maximaldrucks mit ihrem Verdrängungsvolumen so weit zurück, daß bei dem Maximaldruck nur noch die geringe, durch interne Leckage verlorengehende Menge ersetzt wird. Die Verlustleistung, die dann durch das Produkt aus dem Maximaldruck und der Leckagemenge gegeben ist, ist gering, weil die Leckagemenge gering ist.The vane pump is preferably one with a variable displacement, because this compares the consumption of unusable energy reduced to a vane pump with a constant displacement can be. Because it is particularly useful when used in motor vehicles the economical use of primary energy is also very important that the individual components are inexpensive is the vane pump according to claim 3 advantageously directly controlled and goes when reached a set maximum pressure with its displacement volume so far back that at the maximum pressure only the slight, due to internal leakage lost quantity is replaced. The power loss, which is then caused by the Product of the maximum pressure and the amount of leakage is low, because the amount of leakage is small.

Die zweite Hydropumpe ist vorteilhafterweise eine Zahnradpumpe, insbesondere eine füllstücklose Innenzahnradpumpe, die leise arbeitet, in der Herstellung günstig ist und die sich auch von ihrem Aufbau her so gestalten läßt, daß sie ohne großen Aufwand mit der Flügelzellenpumpe zu einer Baueinheit zusammengefaßt werden kann, wie dies im Patentanspruch 6 angegeben ist.The second hydraulic pump is advantageously a gear pump, in particular a filler-less internal gear pump that works quietly, cheap to manufacture is and can also be designed from its structure so that it without great effort combined with the vane pump into a single unit can be as specified in claim 6.

Vorteilhafte Ausgestaltungen einer solchen Baueinheit finden sich in den weiteren untergeordneten Patentansprüchen.Advantageous configurations of such a structural unit can be found in the others subordinate claims.

Drei Ausführungsbeispiele einer erfindungsgemäßen Pumpenanordnung sind in den Zeichnungen dargestellt. Anhand der Figuren dieser Zeichnungen wird die Erfindung nun näher erläutert.Three exemplary embodiments of a pump arrangement according to the invention are shown in shown the drawings. Using the figures in these drawings, the Invention now explained in more detail.

Es zeigen

Figur 1
das erste Ausführungsbeispiel in mehr schaltplanmäßiger Form,
Figur 2
einen die Achse der Antriebswelle einschließenden Längsschnitt durch das zweite Ausführungsbeispiel, bei dem die Flügelzellenpumpe und die zweite als Innenzahnradpumpe ausgebildete Hydropumpe zu einer Baueinheit mit einem gemeinsamen gehäusefesten Steuerteil zusammengefaßt sind,
Figur 3
einen Schnitt entlang der Linie III-III aus Figur 2,
Figur 4
einen Schnitt entlang der Linie IV-IV aus Figur 2,
Figur 5
einen Schnitt entlang der Linie V-V aus Figur 2,
Figur 6
einen die Achse der Antriebswelle einschließenden Längsschnitt durch das dritte Ausführungsbeispiel, das sich vom zweiten Ausführungsbeispiel im wesentlichen in der Ausbildung der Steuernuten und in der Anordnung der Druckanschlüsse im Steuerteil unterscheidet,
Figur 7
einen Schnitt entlang der Linie VII-VII aus Figur 6,
Figur 8
einen Längschnitt durch das dritte Ausführungsbeispiel entlang der Linie VIII-VIII der Figur 7,
Figur 9
eine Ansicht auf die flügelzellenpumpenseitige Stirnseite des Steuerteils und
Figur 10
eine Ansicht des Steuerteils in Richtung der beiden parallelen Druckanschlüsse.
Show it
Figure 1
the first embodiment in a more schematic form,
Figure 2
FIG. 2 shows a longitudinal section through the second exemplary embodiment, which includes the axis of the drive shaft, in which the vane pump and the second hydraulic pump designed as an internal gear pump are combined to form a structural unit with a common control part fixed to the housing,
Figure 3
3 shows a section along the line III-III from FIG. 2,
Figure 4
3 shows a section along the line IV-IV from FIG. 2,
Figure 5
3 shows a section along the line VV from FIG. 2,
Figure 6
2 shows a longitudinal section through the third exemplary embodiment, which includes the axis of the drive shaft, which differs from the second exemplary embodiment essentially in the design of the control grooves and in the arrangement of the pressure connections in the control part,
Figure 7
6 shows a section along the line VII-VII from FIG. 6,
Figure 8
2 shows a longitudinal section through the third exemplary embodiment along the line VIII-VIII in FIG. 7,
Figure 9
a view of the vane pump end face of the control part and
Figure 10
a view of the control part in the direction of the two parallel pressure connections.

Gemäß Figur 1 saugen eine Flügelzellenpumpe 10 über einen Saugeingang 11 und eine zweite Hydropumpe 12, die z.B. als Radialkolbenpumpe ausgebildet ist, deren Radialkolben unter Federdruck an einem Exzenter anliegen, über einen Saugeingang 13 Druckfluid aus einem Tank 14 an, der durch das Gehäuse des Getriebes eines Kraftfahrzeugs, z.B. eines Ackerschleppers, gebildet ist. Weil die Radialkolben der Radialkolbenpumpe 12 durch Federn an den Exzenter angedrückt werden, kann man die Radialkolben als zwangsgeführte Verdrängerelemente bezeichnen. Die Radialkolbenpumpe gibt über einen Druckausgang 15 Druckfluid in einen Schmierölkreislauf 16 des Kraftfahrzeuggetriebes ab, wobei der Druck im Druckausgang 15 0.4 MPa (4 bar) bis 0.5 MPa (5 bar) beträgt, wenn das Druckfluid Betriebstemperatur erreicht hat. Aus dem Schmierölkreislauf 16 fließt das Getriebeöl zurück in den Tank 14. Ein Druckbegrenzungsventil 19 sichert den Druckausgang 15 der Hydropumpe 12 ab.According to FIG. 1, a vane pump 10 is sucking via a suction inlet 11 and a second hydraulic pump 12, e.g. is designed as a radial piston pump, whose radial pistons rest under spring pressure on an eccentric via a Suction inlet 13 pressurized fluid from a tank 14 through the housing of the Gearbox of a motor vehicle, e.g. an agricultural tractor. Because the Radial piston of the radial piston pump 12 pressed against the eccentric by springs the radial pistons can be used as positively driven displacement elements describe. The radial piston pump outputs 15 via a pressure outlet Pressure fluid in a lubricating oil circuit 16 of the motor vehicle transmission, wherein the pressure in the pressure outlet 15 is 0.4 MPa (4 bar) to 0.5 MPa (5 bar) when the pressurized fluid is at operating temperature has reached. The gear oil flows from the lubricating oil circuit 16 back into the tank 14. A pressure relief valve 19 secures the pressure outlet 15 of the hydraulic pump 12.

Von der Flügelzellenpumpe 10 werden über einen Druckausgang 17 verschiedene hydraulische Verbraucher 18 mit Druckfluid versorgt, wobei es sich bei diesen z.B. um Stellzylinder eines zum Getriebe des Kraftfahrzeugs gehörenden Hydrostaten und um hydraulische Betätiger von Kupplungen handelt. From the vane pump 10 are different via a pressure outlet 17 hydraulic consumers 18 supplied with pressurized fluid, these being e.g. around the actuating cylinder of a hydrostatic device belonging to the transmission of the motor vehicle and hydraulic actuators of clutches.

Die Flügelzellenpumpe 10 und die zweite Hydropumpe 12 werden über eine ihnen gemeinsame Antriebswelle 20 angetrieben, die eine Achse 21 hat und auf der drehsicher ein Rotor 22 befestigt ist. Über den Umfang des Rotors sind gleichmäßig radiale Schlitze 23 verteilt, in denen Flügel 24 geführt sind. Diese ragen radial über den Umfang des Rotors 22 hinaus und liegen an einem Hubring 25 mit kreiszylindrischer Hubkurve an, deren Achse einen zwischen null und einem Maximalwert veränderbaren Abstand E zur Achse 21 der Antriebswelle 20 hat. Die Flügelzellenpumpe 10 ist also eine Flügeizellenpumpe mit einem veränderlichen Verdrängungsvolumen. Die Flügel 24 bilden zwischen sich erste Druckräume 27 und an ihrer dem Boden der Schlitze 23 zugewandten Rückseite zweite, rückwärtige Druckräume 28 in den Schlitzen 23.The vane pump 10 and the second hydraulic pump 12 are one of them common drive shaft 20 driven, which has an axis 21 and on the a rotor 22 is secured against rotation. Are even over the circumference of the rotor radial slots 23 distributed in which vanes 24 are guided. These protrude radially beyond the circumference of the rotor 22 and lie on a cam ring 25 circular cylindrical stroke curve whose axis has a value between zero and a maximum variable distance E to the axis 21 of the drive shaft 20. The Vane pump 10 is therefore a flight egg pump with a variable Displacement. The vanes 24 form first pressure spaces 27 between them and on its rear side facing the bottom of the slots 23 there are second rear ones Pressure spaces 28 in the slots 23.

Seitlich liegt an dem Hubring 25 und am Rotor 22 eine Steuerscheibe 32 an, die insgesamt vier zum Rotor 22 hin offene Steuernuten aufweist. Eine radial außenliegende Saugnut 33 ist mit dem Saugeingang 11 fluidisch verbunden und so in der Steuerscheibe 32 angebracht, daß die ersten Druckräume 27 mit ihr in Überdeckung sind, während sie sich vergrößern. Dabei ist zu beachten, daß in der Ansicht nach Figur 1 der Rotor entgegen dem Uhrzeigersinn angetrieben wird. Radial weiter innen als die Saugnut 33 befindet sich eine weitere Saugnut 34, mit der die zweiten Druckräume 28 in Überdeckung sind, während sie sich vergrößern. Wesentlich ist nun, daß die Saugnut 34 nicht mit dem Saugeingang 11 der Flügelzellenpumpe 10, sondern mit dem Druckausgang 15 der Radialkolbenpumpe 12 verbunden ist. Somit werden die Druckräume 28 im Saugbereich der Flügelzellenpumpe 10, in dem sich ihr Volumen vergrößert, von dem am Druckausgang 15 der Radialkolbenpumpe 12 herrschenden Druck beaufschlagt und nach außen an den Hubring 25 gedrückt. im Druckbereich der Flügelzellenpumpe 10, in dem sich die Druckräume 27 und 28 verkleinern, liegen diese in Überdeckung mit einer radial außenliegenden Drucknut 35 und mit einer radial innenliegenden Drucknut 36. Diese beiden Drucknuten sind miteinander und mit dem Druckausgang 17 fluidisch verbunden, so daß die Flügel 24 im Druckbereich an ihrer Vorderseite und an ihrer Rückseite mit dem gleichen Druck beaufschlagt sind.On the side of the cam ring 25 and the rotor 22 there is a control disk 32 which has a total of four control grooves open to the rotor 22. A radially outside Suction groove 33 is fluidly connected to the suction inlet 11 and thus in the control disc 32 attached that the first pressure spaces 27 with it in overlap are as they enlarge. It should be noted that in the View according to Figure 1, the rotor is driven counterclockwise. Another suction groove 34 is located radially further inward than the suction groove 33 which the second pressure spaces 28 overlap as they enlarge. It is now essential that the suction groove 34 is not connected to the suction inlet 11 Vane pump 10, but with the pressure outlet 15 of the radial piston pump 12 is connected. Thus, the pressure spaces 28 in the suction area of the vane pump 10, in which their volume increases, from that at the pressure outlet 15 of the radial piston pump 12 prevailing pressure and after pressed on the outside of the cam ring 25. in the pressure range of the vane pump 10, in which the pressure spaces 27 and 28 decrease in size, they overlap with a radially outer pressure groove 35 and a radially inner one Pressure groove 36. These two pressure grooves are with each other and with the pressure outlet 17 fluidly connected so that the wings 24 in the pressure area on their front and have the same pressure applied to the back.

Bei längerem Stillstand des Fahrzeugs, in dem sich die Hydropumpen 10 und 12 sowie die hydraulischen Verbraucher 16 und 18 befinden, und bei niedrigen Umgebungstemperaturen ist das Druckfluid, mit dem gearbeitet wird, hochviskos. Weil die Verdrängerelemente der Hydropumpe 12 zwangsgeführt sind, fängt diese Pumpe sofort an, das hochviskose Druckfluid zu fördern, wenn sich die Antriebswelle 20 zu drehen beginnt. Im Druckausgang 15 baut sich Druck auf, durch den die Flügel 24 der Flügelzellenpumpe 10 im Saugbereich radial nach außen gedrückt werden, so daß die Flügelzellenpumpe auch schon bei niedrigen Drehzahlen der Antriebswelle 20 ebenfalls das Druckfluid fördert. Dabei sei noch darauf verwiesen, daß der Druck am Druckausgang 15 der Hydropumpe 12 um so höher ist, je höher die Viskosität des Druckfluids ist. Denn die hydraulischen Widerstände des Schmierölkreislaufs verursachen einen um so höheren Lastdruck, je höher die Viskosität des Druckfluids ist. Andererseits ist auch die neben der Fliehkraft notwendige Zusatzkraft, die ein sicheres Anliegen der Flügel 24 der Flügelzellenpumpe 10 am Hubring 25 gewährleistet, um so größer, je größer die Viskosität des Druckfluids ist. Somit erhält man ohne weitere Maßnahmen eine im richtigen Sinne von der Viskosität des Druckfluids abhängige Zusatzkraft auf die Flügel 24 der Flügelzellenpumpe 10.When the vehicle is stationary for a longer period in which the hydraulic pumps 10 and 12 as well as the hydraulic consumers 16 and 18, and at low ambient temperatures is the pressure fluid that is used with high viscosity. Because the displacement elements of the hydraulic pump 12 are positively guided, it catches Pump immediately to deliver the highly viscous pressurized fluid when the drive shaft 20 begins to spin. Pressure builds up in the pressure outlet 15, through which the vanes 24 of the vane pump 10 are pressed radially outward in the suction area be, so that the vane pump even at low speeds the drive shaft 20 also promotes the pressure fluid. It was still on it referenced that the pressure at the pressure outlet 15 of the hydraulic pump 12 is all the higher is, the higher the viscosity of the pressure fluid. Because the hydraulic resistors of the lubricating oil circuit cause a higher load pressure, the higher is the viscosity of the pressurized fluid. On the other hand there is also the centrifugal force necessary additional force, the secure contact of the wing 24 of the vane pump 10 guaranteed on the cam ring 25, the greater the greater the viscosity of the pressure fluid. So you get one in the right one without any further measures In terms of the viscosity of the pressure fluid dependent additional force on the wing 24th the vane pump 10.

Bei der Ausführung nach den Figuren 2 bis 5 sind eine Flügelzellenpumpe 10 und eine als füllstücklose Innenzahnradpumpe 40 ausgebildete zweite Hydropumpe zu einer Baueinheit zusammengefaßt, die sich in einem mehrteiligen gemeinsamen Gehäuse 41 befinden und über eine einzige Antriebswelle 42 angetrieben werden. Das Gehäuse setzt sich aus einem topfförmigen Gehäuseteil 43 und einem dekkelförmigen Gehäuseteil 44 zusammen. Im Boden des Gehäuseteils 43 befindet sich ein Kugellager 45, in dem die Antriebswelle 42 gelagert ist. Diese ragt mit einem Ende über den Boden des Gehäuseteils 43 hinaus und ist an diesem Ende mit einer Kerbverzahnung versehen. Auf dieses Ende kann ein nicht näher dargestelltes Zahnrad für den Antrieb der Doppelpumpe aufgeschoben werden. Auf der Antriebswelle 42 sind in einem axialen Abstand voneinander verdrehsicher der Rotor 22 der Flügelzellenpumpe 10 und ein außenverzahntes Zahnrad 47 der Innenzahnradpumpe 40 befestigt. Das Zahnrad 47 befindet sich in einem kreiszylindrischen Pumpenraum, der zwischen einer auf den Boden des Gehäuseteils 43 aufliegenden Seitenscheibe 48 und einem wie die Seitenscheibe 48 fest im Gehäuse angeordneten Steuerteil 49, das im wesentlichen den Raum zwischen Rotor 22 und Zahnrad 47 einnimmt und das mit einem ringzylindrischen Bund bis zur Seitenscheibe 48 reicht, ausgebildet ist. Der Rotor 22 der Flugelzellenpumpe 10 befindet sich in einem weiteren kreiszylindrischen Pumpenraum, der zwischen dem Deckel 44 und dem Steuerteil 49 ausgebildet ist, das mit einem kreiszylindrischen Fortsatz bis zum Deckel 44 reicht und einen Zentrierbund an diesem übergreift. In dem Pumpenraum der Flügelzellenpumpe 10 befindet sich auch der Hubring 25, der im normalen Betrieb von einer Druckfeder 50, die sich über einen ersten Federteller 51 am Hubring 25 und über einen zweiten Federteller 52 an einer Einstellschraube 53 für den maximalen Betriebsdruck abstützt, gegen eine der Druckfeder 50 diametral gegenüberliegende Verstellschraube 54 für das maximale Hubvolumen gedrückt wird. Im Betrieb dreht sich der Rotor in Richtung des Pfeiles A aus Figur 3 entgegen dem Uhrzeigersinn, wobei der Druckbereich, in Drehrichtung fortlaufend betrachtet, zwischen der Verstellschraube 54 und der Druckfeder 50 liegt. Die durch den Druck erzeugte und senkrecht zu der Verbindungslinie zwischen der Verstellschraube 54 und der Druckfeder 50 wirkende Kraftkomponente wird von der Höhenverstellschraube 55 aufgenommen, die die Lage des Hubrings senkrecht zu der Verbindungslinie zwischen der Verstellschraube 54 und der Druckfeder 50 bestimmt. Innen liegen am Hubring die in den Schlitzen 23 des Rotors 22 radial geführten Flügel 24 an. In Figur 3 erkennt man zwischen den Flügeln die Druckräume 27 und auf der Rückseite der Flügel die Druckräume 28.In the embodiment according to Figures 2 to 5 are a vane pump 10 and a second hydraulic pump designed as a filler-less internal gear pump 40 a unit that is combined in a multi-part common Housing 41 are located and driven by a single drive shaft 42. The housing consists of a cup-shaped housing part 43 and a cover-shaped one Housing part 44 together. Located in the bottom of the housing part 43 there is a ball bearing 45 in which the drive shaft 42 is mounted. This protrudes with one End beyond the bottom of the housing part 43 and is at this end with serration. At this end, a not shown Gear for driving the double pump can be pushed on. On the drive shaft 42 are at an axial distance from each other against rotation Rotor 22 of the vane pump 10 and an externally toothed gear 47 of the internal gear pump 40 attached. The gear 47 is in a circular cylindrical Pump chamber, which is between one on the bottom of the housing part 43 overlying side window 48 and one like the side window 48 firmly in the housing arranged control part 49, which essentially the space between the rotor 22 and gear 47 takes and with an annular cylindrical collar to Side window 48 is sufficient, is formed. The rotor 22 of the wing cell pump 10 is located in another circular cylindrical pump chamber, which is between the cover 44 and the control part 49 is formed with a circular cylindrical The extension extends to the cover 44 and overlaps a centering collar on it. In the pump chamber of the vane pump 10 there is also the Hubring 25, which is in normal operation by a compression spring 50, which extends over a first spring plate 51 on the cam ring 25 and via a second spring plate 52 on one Adjusting screw 53 for the maximum operating pressure supports against one of the Compression spring 50 diametrically opposite adjusting screw 54 for the maximum Stroke volume is pressed. In operation, the rotor turns in the direction of Arrow A from Figure 3 counterclockwise, the pressure range, in Direction of rotation viewed continuously, between the adjusting screw 54 and the Compression spring 50 is. The one created by the pressure and perpendicular to the connecting line acting between the adjusting screw 54 and the compression spring 50 Force component is absorbed by the height adjustment screw 55, which the Position of the cam ring perpendicular to the connecting line between the adjusting screw 54 and the compression spring 50 determined. The inside of the cam ring are in the Slots 23 of the rotor 22 radially guided vanes 24. In Figure 3 you can see between the wings the pressure chambers 27 and on the back of the wings Print rooms 28.

Eine radial offene großräumige Aussparung 60 im Steuerteil 49, über der auch das Gehäuseteil 43 eine Öffnung 61 besitzt, bildet den Saugeingang sowohl für die Flügelzellenpumpe 10 als auch die Innenzahnradpumpe 40. Axial zwischen der Aussparung 60 und der dem Rotor 22 zugewandten Stirnseite des Steuerteils 49 erstreckt sich die äußere Saugnut 33 der Flügelzellenpumpe 10. Und zwar befindet sich die Saugnut 33 etwa am Außenumfang des Rotors 22. Weiter innen, nämlich im Bereich des Bodens der Schlitze 23 öffnet sich in den Pumpenraum der Flügelzellenpumpe 10 die innere Saugnut 34, die, in axialer Richtung gesehen, bis über die Mitte der Aussparung 60 in das Steuerteil 49 hineinreicht. Die Aussparung 60 geht radial nicht bis zur Saugnut 34. Es besteht als keine fluidische Verbindung zwischen der Saugnut 34 und der Aussparung 60, also dem Saugeingang der beiden Pumpen. In etwa den Saugnuten 33 und 34 gegenüberliegend sind die innere Drucknut 36, über die die rückwärtigen Druckräume 28 hinwegfahren, und die äußere Drucknut 35, zu der hin sich die Druckräume 27 öffnen, in das Steuerteil 49 eingebracht. Auch die beiden Drucknuten reichen tief in das Steuerteil 49 hinein. Im Steuerteil 49 befindet sich in derselben Radialebene, in der auch die Aussparung 60 liegt, eine Radialbohrung 62, die nach außen durch eine entsprechende Bohrung 63 im Gehäuseteil 43 fortgesetzt ist und innen nahe an deren einem Ende die beiden Drucknuten 35 und 36 anschneidet. Die Bohrungen 62 und 63 bilden den Druckausgang der Flügelzellenpumpe 10, mit dem somit beide Drucknuten 35 und 36 fluidisch verbunden sind.A radially open large recess 60 in the control part 49, over which the housing part 43 has an opening 61, forms the suction inlet for both the vane pump 10 and the internal gear pump 40. Axially between the recess 60 and the end face of the control part facing the rotor 22 49 extends the outer suction groove 33 of the vane pump 10 the suction groove 33 is approximately on the outer circumference of the rotor 22. namely in the area of the bottom of the slots 23 opens into the pump chamber the vane pump 10, the inner suction groove 34, which, viewed in the axial direction, extends into the control part 49 beyond the middle of the recess 60. The Recess 60 does not extend radially to the suction groove 34. It is not a fluid one Connection between the suction groove 34 and the recess 60, that is Suction inlet of the two pumps. Approximately opposite the suction grooves 33 and 34 are the inner pressure groove 36 through which the rear pressure spaces 28 drive away, and the outer pressure groove 35, towards which the pressure spaces 27th open, introduced into the control part 49. The two pressure grooves also go deep into the control part 49. The control part 49 is in the same radial plane, in which the recess 60 also lies, a radial bore 62 which faces outwards is continued through a corresponding bore 63 in the housing part 43 and inside close to one end of the two pressure grooves 35 and 36 cuts. The Bores 62 and 63 form the pressure output of the vane pump 10, with which thus both pressure grooves 35 and 36 are fluidly connected.

Das außenverzahnte Zahnrad 47 der Innenzahnradpumpe 40 ist außen von einem innenverzahnten Hohlrad 64 umgeben, das an seiner äußeren Umfangsfläche exzentrisch zum Zahnrad 47 drehbar im Steuerteil 49 gelagert ist. Es besitzt einen Zahn 65 mehr als das Zahnrad 47. Dessen Zähne 66 und die Zähne 65 des Zahnrades 64 gleiten aneinander entlang und bilden als die zwangsgeführten Verdrängerelemente der Zahnradpumpe 40 zwischen sich Druckräume, die sich im Betrieb im Saugbereich vergrößern und im Druckbereich verkleinern. Im Saugbereich sind die Druckräume zu einer Saugnut 67 hin offen, die eine sich zwischen der Pumpenkammer der Innenzahnradpumpe 40 und der Aussparung 60 befindliche Wand des Steuerteils 49 durchbricht. Der Saugnut 67 in etwa gegenüberliegend ist in das Steuerteil radial außerhalb der Drucknuten 35 und 36 der Flügelzellenpumpe 10 eine Drucknut 68 der Innenzahnradpumpe 40 eingebracht. Axial reicht die Drucknut 68 bis über die Radialebene, in der die Radialbohrung 62 und die Aussparung 60 des Steuerteils 49 liegen, in dieses hinein. Eine in der genannten Radialebene liegende Radialbohrung 69 im Steuerteil 49, die innen zur Drucknut 68 offen ist, und eine Radialbohrung im Gehäuseteil 43, die mit der Radiaibohrung 69 fluchtet, bilden den Druckausgang der Innenzahnradpumpe 40. Wie insbesondere aus den Figuren 4 und 5 hervorgeht, endet die Drucknut 68 in peripheraler Richtung im Abstand zu der Radialbohrung 62 des Steuerteils 49, damit keine fluidische Verbindung zwischen den Druckausgängen der beiden Pumpen besteht.The externally toothed gear 47 of the internal gear pump 40 is outside of one internally toothed ring gear 64 surrounded on its outer peripheral surface is rotatably mounted eccentrically to the gear 47 in the control part 49. It owns one tooth 65 more than the gear 47. Its teeth 66 and the teeth 65 of the Gear 64 slide along each other and form as the positively driven Displacement elements of the gear pump 40 pressure spaces between themselves, which are increase in operation in the suction area and decrease in pressure area. In the suction area the pressure chambers are open to a suction groove 67, which is between the pump chamber of the internal gear pump 40 and the recess 60 located wall of the control part 49 breaks through. The suction groove 67 approximately opposite is in the control part radially outside of the pressure grooves 35 and 36 Vane pump 10 introduced a pressure groove 68 of the internal gear pump 40. Axially, the pressure groove 68 extends beyond the radial plane in which the radial bore 62 and the recess 60 of the control part 49 lie in this. One in the above Radial plane lying radial bore 69 in the control part 49, the inside for Pressure groove 68 is open, and a radial bore in the housing part 43, which is connected to the radial bore 69 aligned, form the pressure output of the internal gear pump 40. As can be seen in particular from FIGS. 4 and 5, the pressure groove 68 ends in peripheral direction at a distance from the radial bore 62 of the control part 49, thus no fluidic connection between the pressure outlets of the two Pumping exists.

In der Nähe des anderen Endes der Drucknut 68 geht von dieser eine Bohrung 71 aus, die von außen tangential in das Steuerteil 49 eingebracht ist, die an den Drucknuten 35 und 36 der Flügelzellenpumpe vorbeiführt und die tangential in das eine Ende der Saugnut 34 der Flügelzellenpumpe 10 mündet. Dadurch ist diese Saugnut 34 der Flügelzellenpumpe 10 fluidisch mit der Drucknut 68 der Innenzahnradpumpe 40 verbunden. Die rückwärtigen Druckräume 28 der Flügelzellenpumpe 10 werden also im Saugbereich vom Druckausgang der Innenzahnradpumpe 40 her mit Fluid gefüllt, so daß in ihnen wenigstens annähernd derselbe Druck wie im Druckausgang der Innenzahnradpumpe 40 herrscht. Die Art der Einmündung der Bohrung 71 in die Saugnut 34 trägt dazu bei, daß ein eventueller Druckverlust zwischen der Drucknut 68 und der Saugnut 34 nur gering ist. Die Bohrung 71 liegt in einer Radialebene, die mittig durch die Aussparung 60 sowie die Bohrungen 62 und 69 des Steuerteils 49 geht. Sie trifft auf die Saugnut 34, weil diese axial bis über diese Radialebene in das Steuerteil 49 hineinreicht. Es ist jedoch auch denkbar, die Saugnut 34 weniger tief zu machen und die Bohrung 71 in einer näher an der Pumpenkammer der Flügelzellenpumpe liegenden Radialebene anzuordnen oder auch derart schräg bezüglich einer Radialebene verlaufen zu lassen, daß ihr Ausgangspunkt an der Drucknut 68 einen größeren Abstand von der Pumpenkammer der Flügelzellenpumpe 10 hat als ihre Mündungsstelle in die Saugnut 34. Wie aus den Figuren 4 und 5 anhand der Lage der verschiedenen Saug- und Drucknuten erkennbar, sind Saug- und Druckbereich der Flügelzellenpumpe 10 gegenüber dem Saug- und Druckbereich der Innenzahnradpumpe 40 etwas verdreht. Dadurch ist einerseits die Saugnut 34 in eine etwas günstigere Lage gekommen, um den Verbindungskanal zwischen ihr und der Drucknut 68 zu schaffen. Andererseits sind die Drucknuten 35 und 36 der Flügelzellenpumpe 10 etwas von dem einen Ende der Drucknut 68 weggewandert, so daß zwischen ihnen und der Aussparung 60 genügend Material am Steuerteil 49 vorhanden ist, um in dem Material den Verbindungskanal 71 zwischen Saugnut 34 und Drucknut 68 hineinzulegen.In the vicinity of the other end of the pressure groove 68, a bore 71 extends from the latter from, which is introduced tangentially from the outside into the control part 49, to the Pressure grooves 35 and 36 of the vane pump passes and the tangential in the one end of the suction groove 34 of the vane pump 10 opens. Because of this, this is Suction groove 34 of the vane pump 10 fluidly with the pressure groove 68 of the internal gear pump 40 connected. The rear pressure chambers 28 of the vane pump 10 are in the suction area from the pressure output of the internal gear pump 40 forth filled with fluid so that at least approximately the same in them Pressure as in the pressure outlet of the internal gear pump 40 prevails. The kind of The opening of the bore 71 in the suction groove 34 contributes to the fact that a possible Pressure loss between the pressure groove 68 and the suction groove 34 is only slight. The Bore 71 lies in a radial plane which is centered through the recess 60 and the holes 62 and 69 of the control part 49 goes. It hits the suction groove 34, because this extends axially into the control part 49 beyond this radial plane. It is however, it is also conceivable to make the suction groove 34 less deep and the bore 71 in a radial plane closer to the pump chamber of the vane pump to arrange or also run obliquely with respect to a radial plane to let their starting point at the pressure groove 68 a greater distance from the pump chamber of the vane pump 10 has its mouth in the suction groove 34. As from Figures 4 and 5 based on the location of the various Suction and pressure grooves are recognizable, suction and pressure areas of the vane pump 10 compared to the suction and pressure range of the internal gear pump 40 slightly twisted. On the one hand, this makes the suction groove 34 a little cheaper Able to connect the communication channel between it and the pressure groove 68 create. On the other hand, the pressure grooves 35 and 36 of the vane pump 10 migrated somewhat from one end of the pressure groove 68 so that between them and the recess 60 has sufficient material on the control part 49, around the connecting channel 71 in the material between the suction groove 34 and the pressure groove 68 to put in.

Auch bei der Ausführung nach den Figuren 6 bis 10 sind eine verstellbare Flügelzellenpumpe 10 und eine als füllstücklose Innenzahnradpumpe 40 ausgebildete zweite Hydropumpe zu einer Baueinheit zusammengefaßt. Beide Pumpen werden über eine einzige Antriebswelle 42 angetrieben. Etwas anders als bei der zweiten Ausführung wird das Gehäuse 41 durch das mittlere Steuerteil 49, das in der einen Stirnseite den Pumpenraum für den Rotor 22 mit den in Schlitzen 23 befindlichen Flügeln 24 und für den Hubring 25 der Flügelzellenpumpe 10 und in der gegenüberliegenden Stirnseite den Pumpenraum für das außenverzahnte Zahnrad 47 und das innenverzahnte Zahnrad 64 der Innenzahnradpumpe 40 aufweist, sowie dem Deckel 44, mit dem der Pumpenraum der Flügelzellenpumpe verschlossen ist, und einem weiteren Deckel 74, mit dem der Pumpenraum der Innenzahnradpumpe verschlossen ist. Der weitere Deckel 74 erfüllt die beiden Funktionen, die bei beim zweiten Ausführungsbeispiel die Seitenscheibe 48 und der Boden des Gehäusetopfes 43 haben. In ihn ist demgemäß ein Kugellager 45 eingesetzt, in dem die Antriebswelle 42 gelagert ist. Außer in dem Kugellager 45 ist die Antriebswelle 42 wie auch beim zweiten Ausführungsbeispiel noch in einem Gleitlager 75, das in eine zentrale Bohrung 76 des Steuerteils 49 eingesetzt ist und sich vom flügeizellenpumpenseitigen Ende der Bohrung 76 eine gewisse Strecke in das Steuerteil hineinerstreckt. Die beiden Deckel 44 und 74 und das Steuerteil 49 sind in nicht näher dargestellter Weise durch lange Maschinenschrauben zusammengehalten.An adjustable vane pump is also used in the embodiment according to FIGS. 6 to 10 10 and a trained as a filler-less internal gear pump 40 second hydraulic pump combined into one unit. Both pumps will driven by a single drive shaft 42. A little different than the second The housing 41 is executed by the central control part 49, which in one Front side of the pump chamber for the rotor 22 with those located in slots 23 Wings 24 and for the lifting ring 25 of the vane pump 10 and in the opposite The pump chamber for the externally toothed gear 47 and the internally toothed gear 64 of the internal gear pump 40, and the cover 44, with which the pump chamber of the vane pump is closed and a further cover 74 with which the pump chamber of the internal gear pump is closed. The further cover 74 fulfills the two Functions that in the second embodiment, the side window 48 and have the bottom of the housing pot 43. A ball bearing 45 is accordingly in it used in which the drive shaft 42 is mounted. Except in the ball bearing 45 As in the second exemplary embodiment, the drive shaft 42 is still in one Slide bearing 75, which is inserted into a central bore 76 of the control part 49 and a certain distance from the bore cell 76 end of the bore cell pump Stretched into the control section. The two covers 44 and 74 and that Control part 49 are in a manner not shown by long machine screws held together.

Der Verstellmechanismus der Ftügelzellenpumpe 10 des dritten Ausführungsbeispiels ist derselbe wie im zweiten Ausführungsbeispiel, so daß darauf nicht näher eingegangen werden muß. Der Zahnradsatz 47, 64, der im dritten Ausführungsbeispiel für die Innenzahnradpumpe 40 verwendet wird, ist im Durchmesser kleiner als der Zahnradsatz des zweiten Ausführungsbeipiels.The adjustment mechanism of the vane cell pump 10 of the third exemplary embodiment is the same as in the second embodiment, so that no further details must be received. The gear set 47, 64 in the third embodiment used for the internal gear pump 40 is smaller in diameter than the gear set of the second embodiment.

Im Betrieb dreht sich die Antriebswelle 42, nach Figur 7 betrachtet, im Uhrzeigersinn und, nach Figur 9 betrachtet, entgegen dem Uhrzeigersinn.In operation, the drive shaft 42, viewed in FIG. 7, rotates clockwise and, viewed in Figure 9, counterclockwise.

Außer in der Ausbildung des Deckels 74 vor dem Pumpenraum der Innenzahnradpumpe 40 unterscheidet sich das dritte Ausführungsbeispiel vom zweiten Ausführungsbeispiel in der Gestaltung der Hohlräume im Steuerteil wesentlich vom zweiten Ausführungsbeispiel. Der Saugeingang für die beiden Pumpen 10 und 40 wird zwar wie beim zweiten Ausführungsbeispiel wiederum durch eine radial offene großräumige Aussparung 60 im Steuerteil 49 gebildet. Diese hat nun jedoch in dem Schnitt nach Figur 7 eine starke Asymmetrie, so daß in einem Bereich, in dem eine von drei Maschinenschrauben durch das Steuerteil hindurchgehen soll, Material für eine Bohrung 77 ohne Unterbrechung vorhanden ist. Axial zwischen der Aussparung 60 und der dem Rotor 22 zugewandten Stirnseite des Steuerteils 49 erstreckt sich die äußere Saugnut 33 der Flügelzellenpumpe 10, die im wesentlichen gleich wie im zweiten Ausführungsbeispiel aussieht und sich, wiederum etwa am Außenumfang des Rotors 22 befindet. Weiter innen, nämlich im Bereich des Bodens der Schlitze 23 öffnet sich in den Pumpenraum der Flügelzellenpumpe 10 die innere Saugnut 34. Die Aussparung 60 geht radial nicht bis zur Saugnut 34. Es besteht als keine fluidische Verbindung zwischen der Saugnut 34 und der Aussparung 60, also dem Saugeingang der beiden Pumpen. Wie insbesondere aus Figur 8 hervorgeht, in der die innere Saugnut 34 gestrichelt eingezeichnet ist, reicht die innere Saugnut beim dritten Ausführungsbeispiel nicht über ihre gesamte Länge in axialer Richtung bis über die Mitte der Aussparung 60 in das Steuerteil 49 hinein. Vielmehr besitzt die innere Saugnut 34 einen Bereich 78 geringere Tiefe und einen , in Drehrichtung des Rotors gesehen, hinteren Bereich 79 größerer Tiefe. Nur dieser Bereich größerer Tiefe reicht in axialer Richtung bis über die Mitte der Aussparung 60 in das Steuerteil 49 hinein und ist in dem Schnitt nach Figur 7 sichtbar. Im Vergleich zu einer Ausbildung mit großer Tiefe der inneren Saugnut über ihre gesamte Länge ist das Steuerteil 49 des dritten Ausführungsbeispiels stabiler.Except in the formation of the cover 74 in front of the pump chamber of the internal gear pump 40, the third embodiment differs from the second Embodiment in the design of the cavities in the control section essential from the second embodiment. The suction inlet for the two pumps 10 and 40 is again, as in the second embodiment, a radial open large recess 60 formed in the control part 49. This has now however, in the section according to FIG. 7 there is a strong asymmetry, so that in an area in which one of three machine screws go through the control section should, material for a bore 77 is available without interruption. axial between the recess 60 and the face of the rotor 22 facing the Control part 49 extends the outer suction groove 33 of the vane pump 10, the looks and looks essentially the same as in the second embodiment, again located approximately on the outer circumference of the rotor 22. Further inside, namely in the area of the bottom of the slots 23 opens into the pump chamber of the vane pump 10 the inner suction groove 34. The recess 60 does not go radially up to to the suction groove 34. There is no fluidic connection between the suction groove 34 and the recess 60, i.e. the suction inlet of the two pumps. How in particular is apparent from Figure 8, in which the inner suction groove 34 is shown in dashed lines is, the inner suction groove in the third embodiment is not sufficient their entire length in the axial direction to over the center of the recess 60 in the control part 49 into it. Rather, the inner suction groove 34 has an area 78 shallow depth and a rear area when viewed in the direction of rotation of the rotor 79 greater depth. Only this area of greater depth extends in the axial direction up to over the middle of the recess 60 into the control part 49 and is in the section visible according to Figure 7. Compared to training with great depth of the inner Suction groove over its entire length is the control part 49 of the third exemplary embodiment stable.

In etwa den Saugnuten 33 und 34 gegenüberliegend sind die innere Drucknut 36 der Flügelzellenpumpe 10, über die die rückwärtigen Druckräume 28 hinwegfahren, und die äußere Drucknut 35, zu der hin sich die Druckräume 27 öffnen, in das Steuerteil 49 eingebracht. Auch die beiden Drucknuten haben jeweils einen Bereich 82 bzw. 83 geringer Tiefe und einen, in Drehrichtung des Rotors gesehen, hinteren Bereich 84 bzw. 85 größerer Tiefe, in dem sie tief bis über eine in der Mitte des Saugeingangs verlaufenden Radialebene, die mit der Schnittebene nach Figur 7 identisch ist, in das Steuerteil 49 hineinragen. In Figur 10 ist die innere Drucknut 36 mit dem flacheren Bereich 83 und dem tieferen Bereich 85 eingezeichnet. Im Steuerteil 49 befindet sich in der genannten Radialebene eine tangential zur Achse der Antriebswelle 42 verlaufende gestufte Anschlußbohrung 62, die in ihrer Funktion der mit derselben Bezugszahl versehenen Bohrung des zweiten Ausführungsbeispiels entspricht und die innen die beiden Drucknuten 35 und 36 in deren Bereich 84, 85 größerer Tiefe anschneidet.The inner pressure groove 36 is approximately opposite the suction grooves 33 and 34 the vane pump 10, over which the rear pressure chambers 28 pass, and the outer pressure groove 35, towards which the pressure spaces 27 open, into the Control part 49 introduced. The two pressure grooves each have an area 82 or 83 shallow depth and one, viewed in the direction of rotation of the rotor, rear area 84 or 85 of greater depth, in which they are deep to over one in the Radial plane running in the middle of the suction inlet, with the cutting plane 7 is identical, protrude into the control part 49. In Figure 10 is the inner one Pressure groove 36 with the shallower area 83 and the deeper area 85 shown. In control part 49 there is a tangential in said radial plane stepped connection bore 62 running to the axis of the drive shaft 42, the function of the bore with the same reference number corresponds to the second exemplary embodiment and the two pressure grooves 35 inside and 36 in their area 84, 85 of greater depth.

Wie beim zweiten so gleiten auch beim dritten Ausführungsbeispiel die Zähne der Zahnräder 47 und 64 der Innenzahnradpumpe 40 aneinander entlang und bilden als zwangsgeführte Verdrängerelemente zwischen sich Druckräume, die sich im Betrieb im Saugbereich vergrößern und im Druckbereich verkleinern. Im Saugbereich sind die Druckräume zu einer Saugnut 67 hin offen, die eine sich zwischen der Pumpenkammer der Innenzahnradpumpe 40 und der Aussparung 60 befindliche Wand des Steuerteils 49 durchbricht. Der Saugnut 67 in etwa gegenüberliegend ist etwa in demselben Winkelbereich, in dem auch die Drucknuten 35 und 36 der Flügelzellenpumpe 10 liegen, in das Steuerteil eine Drucknut 68 der Innenzahnradpumpe 40 eingebracht. Diese Drucknut 68 befindet sich nun nicht radial außerhalb der Drucknut 35, sondern liegt zumindest teilweise auf demselben Durchmesser wie die Drucknuten 35 und 36. Wie die Drucknuten 35 und 36 besitzt auch die Drucknut 68 einen Bereich 86 geringer Tiefe, der den tieferen Bereichen der Drucknuten 35 und 36 axial gegenüberliegt, und einen Bereich 87 großer Tiefe, der axial bis über die oben erwähnte Radialebene hinausgeht und der den flacheren Bereichen der Drucknuten 35 und 36 axial gegenüberliegt. Eine in der genannten Radialebene liegende und parallel zur Anschlußbohrung 62 der Flügelzellenpumpe 10 verlaufende Anschlußbohrung 69 im Steuerteil 49, die in ihrer Funktion der mit der derselben Bezugszahl versehenen Bohrung des zweiten Ausführungsbeispiels entspricht, ist innen zum tieferen Bereich 87 der Drucknut 68 offen. Im den tieferen Bereichen der Drucknuten 35 und 36 axial gegenüberliegenden flacheren Bereich 86 der Drucknut 68 besteht natürlich keine fluidische Verbindung zur Anschlußbohrung 62 oder zu einer der Drucknuten 35, 36. Somit wird, wenn die beiden Anschlußbohrungen 62 und 69 in derselben Radialebene nahe beieinander angeordnet sind, durch das Vorhandensein eines flachen und eines tiefen Bereichs in den Drucknuten 35, 36 und 68 erreicht, daß einerseits die richtigen fluidischen Verbindungen zwischen den Drucknuten 35, 36 und 68 einerseits und den Anschlußbohrungen 62 und 69 andererseits hergestellt sind und daß andererseits die Drucknut 68 auf dem Durchmesser der Drucknut 35 und 36 liegen kann, so daß in radialer Richtung wenig Bauraum beansprucht wird.As in the second, the teeth of the third embodiment also slide Gears 47 and 64 of the internal gear pump 40 along each other and form as positively driven displacement elements between themselves pressure spaces, which are in the Increase operation in the suction area and reduce it in the pressure area. In the suction area the pressure chambers are open to a suction groove 67, which is between the pump chamber of the internal gear pump 40 and the recess 60 Wall of the control part 49 breaks through. The suction groove 67 approximately opposite is approximately in the same angular range in which the pressure grooves 35 and 36 of the vane pump 10, in the control part a pressure groove 68 of the internal gear pump 40 introduced. This pressure groove 68 is now not radial outside the pressure groove 35, but lies at least partially on the same Diameter as the pressure grooves 35 and 36. How the pressure grooves 35 and 36 has the pressure groove 68 also has an area 86 of shallow depth which corresponds to the deeper areas the pressure grooves 35 and 36 are axially opposite, and an area 87 larger Depth that extends axially beyond the radial plane mentioned above and that axially opposite the flatter areas of the pressure grooves 35 and 36. One in said radial plane and parallel to the connection bore 62 of the Vane pump 10 extending connection bore 69 in the control part 49, which in their function of the bore of the second bearing the same reference number Corresponds to the exemplary embodiment, is inside the lower region 87 of the pressure groove 68 open. In the lower areas of the pressure grooves 35 and 36 axially opposite there is of course no fluidic area 86 of the pressure groove 68 Connection to the connection bore 62 or to one of the pressure grooves 35, 36. Thus becomes when the two connection bores 62 and 69 in the same radial plane are arranged close to each other by the presence of a flat and a deep area in the pressure grooves 35, 36 and 68 achieved that the one hand correct fluidic connections between the pressure grooves 35, 36 and 68 on the one hand and the connection bores 62 and 69 on the other hand are made and that on the other hand the pressure groove 68 on the diameter of the pressure groove 35 and 36th can lie so that little space is required in the radial direction.

Befindet sich, wie beim zweiten Ausführungsbeispiel die Drucknut 68 radial außerhalb der Drucknut 35, so müßte bei einer Anordnung der Anschlußbohrungen 62 und 69 wie beim dritten Ausführungsbeispiel an sich nur die Drucknut 68 Bereiche unterschiedlicher Tiefe haben. Die Drucknuten 35 und 36 könnten auf ihrer gesamten Länge bis über die betrachtete Radialebene hinausgehen. Es erscheinen jedoch auch dann unterschiedlich tiefe Bereiche der Drucknuten 35 und 36 vorteilhaft, da dann eine verbesserte Stabilität des Steuerteils 49 erwartet werden kann.As in the second exemplary embodiment, the pressure groove 68 is located radially outside the pressure groove 35, so should an arrangement of the connection holes 62 and 69, as in the third exemplary embodiment, only the pressure groove 68 areas of different depths. The pressure grooves 35 and 36 could be on their the entire length beyond the radial plane under consideration. Appear however, regions of the pressure grooves 35 and 36 have different depths advantageous since an improved stability of the control part 49 is then expected can.

Wie beim zweiten Ausführungsbeispiel geht auch beim dritten Ausführungsbeispiel von der Drucknut 68 eine Bohrung 71 aus, die durch die Anschlußbohrung 69 hindurch und parallel zu dieser verlaufend und in der erwähnten Radialebene liegend in das Steuerteil 49 eingebracht ist, die somit an den flachen Bereichen 82 und 83 der Drucknuten 35 und 36 der Fiügeizellenpumpe vorbeiführt und die in den tieferen Bereich 79 am einen Ende der Saugnut 34 der Flügelzellenpumpe 10 mündet. Dadurch ist diese Saugnut 34 der Flügelzellenpumpe 10 fluidisch mit der Drucknut 68 der Innenzahnradpumpe 40 verbunden. Die rückwärtigen Druckräume 28 der Flügelzellenpumpe 10 werden also im Saugbereich vom Druckausgang der Innenzahnradpumpe 40 her mit Fluid gefüllt, so daß in ihnen wenigstens annähernd derselbe Druck wie im Druckausgang der Innenzahnradpumpe 40 herrscht. Dadurch daß die Verbindungsbohrung 71 durch die Anschlußbohrung 69 hindurch hergestellt wird, ist die Bearbeitungslänge kürzer. Es erübrigt sich, die Bohrung nachträglich zu verschließen und ein für das Einschrauben eines Stopfens notwendiges Gewinde zu schneiden.As with the second embodiment, the third embodiment is also possible from the pressure groove 68, a bore 71 through the connection bore 69 through and parallel to this and in the radial plane mentioned is inserted lying in the control part 49, which thus on the flat areas 82nd and 83 of the pressure grooves 35 and 36 of the joint cell pump and the in the lower region 79 at one end of the suction groove 34 of the vane pump 10 empties. As a result, this suction groove 34 of the vane pump 10 is fluid with the Pressure groove 68 of the internal gear pump 40 connected. The rear pressure rooms 28 of the vane pump 10 are thus in the suction area from the pressure outlet the internal gear pump 40 ago filled with fluid so that at least approximately in them the same pressure as in the pressure outlet of the internal gear pump 40 prevails. Characterized in that the connecting bore 71 through the connecting bore 69th is processed, the machining length is shorter. There is no need for that Seal the hole later and one for screwing in a plug to cut necessary thread.

Claims (20)

  1. A pump assembly comprising a vane pump (10), which is intended for supplying one or more hydraulic consumers (18), in particular operating cylinders of a hydromechanical transmission of a motor vehicle, with a pressure fluid under high pressure, having a suction region in which first pressure spaces (27) between the vanes (24) and second, rear pressure spaces (28) behind the vanes (24) become larger and a pressure region in which the pressure spaces (27, 28) become smaller and in which the pressure spaces (27, 28) are fluidically connected to a pressure outlet (62, 63),
       and a second hydraulic pump (40) which is driven together with the vane pump (10) and the displacement elements (65, 66) of which are positively driven and which serves to supply a circuit having a low system pressure, in particular a lubricating-oil circuit of the motor vehicle, with the pressure fluid via a second pressure outlet (69, 70), characterized in that the rear pressure spaces (28) of the vane pump (10) are connected in the suction region to the pressure outlet (69, 70) of the second hydraulic pump (40).
  2. A pump assembly according to claim 1, characterized in that the vane pump (10) is one with a variable displacement volume.
  3. A pump assembly according to claim 2, characterized in that the vane pump (10) is directly controlled with zero stroke function upon reaching a set maximum pressure.
  4. A pump assembly according to any of the preceding claims, characterized in that the second hydraulic pump (40) is a pump with two gears (47, 64).
  5. A pump assembly according to claim 4, characterized in that the second hydraulic pump (40) is an internal gear pump without a filling piece.
  6. A pump assembly according to any of the preceding claims, characterized in that the vane pump (10) and the second hydraulic pump (40) are combined to form a construction unit and are arranged axially one behind the other.
  7. A pump assembly according to claim 6, characterized in that a control part (49) fixed to the housing is arranged between the rotor (22) of the vane pump (10) and the displacement elements (65, 66) of the second hydraulic pump (40), this control part (49) having a suction inlet (60) common to both hydraulic pumps (10, 40), a first pressure outlet (62) assigned to the vane pump (10) and a second pressure outlet (69) assigned to the second hydraulic pump (40), a radially outer suction groove (33), which opens towards the rotor (22) of the vane pump (10) and is fluidically connected to the suction inlet (60) and with which the first pressure spaces (27) of the vane pump (10) become congruent, and a radially inner suction groove (34), which is open towards the rotor (22) of the vane pump (10) and with which the second pressure spaces (28) of the vane pump (10) become congruent, and also a connecting passage (71) via which the radially inner suction groove (34) is connected to the pressure outlet (69) of the second hydraulic pump (40).
  8. A pump assembly according to claim 7, characterized in that the control part (49) has a pressure groove (68) open towards the gears (47, 64) of the second hydraulic pump (40), and in that a straight bore extends as connecting passage (71) between this pressure groove (68) and the inner suction groove (34).
  9. A pump assembly according to claim 7 or 8, characterized in that the connecting passage (71) is arranged in such a way that it is directly accessible through the pressure outlet (69) of the second hydraulic pump (40).
  10. A pump assembly according to claim 7, 8 or 9, characterized in that the inner suction groove (34) is formed in the shape of an arc of a circle, and the connecting passage (71) opens essentially tangentially into the suction groove (34) at one end of the latter.
  11. A pump assembly according to any of claims 7 to 10, characterized in that the radially inner suction groove (34) of the vane pump (10) has a region (79) of greater axial depth and a region (78) of smaller axial depth, and in that the connecting passage (71) opens into the radially inner suction groove (34) in the region (79) of greater axial depth.
  12. A pump assembly according to claim 11,
    characterized in that the connecting passage (71) runs essentially in a radial plane disposed perpendicularly to the axes of the two pumps (10, 40).
  13. A pump assembly according to any of claims 7 to 12, characterized in that the control part (49) has a pressure groove (68) which opens towards the gears (47, 64) of the second hydraulic pump (40), is located radially outside two pressure grooves (35, 36) of the vane pump (10) and mostly extends over an angular region in which the pressure grooves (35, 36) of the vane pump (10) are also present, and in that the connecting passage (71) to the radially inner suction groove (34) of the vane pump (10) starts in the vicinity of one end of the pressure groove (68) of the second hydraulic pump (40) and extends past one end of the pressure grooves (35, 36) of the vane pump (10) to the suction groove (34).
  14. A pump assembly according to claim 13, characterized in that the pressure grooves (35, 36) of the vane pump (10) are open at their other ends towards a pressure passage (62) which leads past the pressure passage (68) of the second hydraulic pump (40) to a pressure outlet of the vane pump (10) at the radial outer surface of the control part (49).
  15. A pump assembly according to claim 12, 13 or 14, characterized in that the pressure grooves (35, 36) of the vane pump (10) and the pressure groove (68) of the second hydraulic pump (40), as viewed radially, overlap axially.
  16. A pump assembly according to any of claims 7 to 9, characterized in that the control part (49) has a pressure groove (68) which is open towards the gears (47, 64) of the second hydraulic pump (40) and mostly extends over an angular region in which the pressure grooves (35, 36) of the vane pump (10) are also present, in that the pressure grooves (35, 36) of the vane pump (10) have a region (84, 85) of greater axial depth and a region (82, 83) of smaller axial depth, and in that the pressure grooves (35, 36) and the pressure outlet (62) of the vane pump (10) intersect in that region (84, 85) of the pressure grooves (35, 36) which has a greater axial depth.
  17. A pump assembly according to any of claims 7 to 9, 16, characterized in that the control part (49) has a pressure groove (68) which is open towards the gears (47, 64) of the second hydraulic pump (40) and mostly extends over an angular region in which the pressure grooves (35, 36) of the vane pump (10) are also present, in that the pressure groove (68) of the second hydraulic pump (40) has a region (87) of greater axial depth and a region (86) of smaller axial depth, and in that the pressure groove (68) and the pressure outlet (69) of the second hydraulic pump (40) intersect in that region (87) of the pressure groove (68) which has a greater axial depth.
  18. A pump assembly according to claims 16 and 17, characterized in that the deeper region (87) of the pressure groove (68) of the second hydraulic pump (40) is axially opposite the shallower region (82) of at least the radially outer pressure groove (35) of the vane pump (10).
  19. A pump assembly according to claim 16, 17 or 18, characterized in that the deeper region (84) of at least the radially outer pressure groove (35) of the vane pump (10) is axially opposite the shallower region (86) of the pressure groove (68) of the second hydraulic pump (40).
  20. A pump assembly according to any of claims 16 to 19, characterized in that the connecting passage (71) runs from the deeper region (87) of the pressure groove (68) of the second hydraulic pump (40) over the shallower regions (82, 83) of the pressure grooves (35, 36) of the vane pump (10) to the radially inner suction groove (34) of the vane pump (10).
EP99964582A 1998-12-24 1999-12-16 Pump assembly comprising two hydraulic pumps Expired - Lifetime EP1141551B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19860155 1998-12-24
DE19860155 1998-12-24
DE19952167A DE19952167A1 (en) 1998-12-24 1999-10-29 Pump arrangement with two hydraulic pumps
DE19952167 1999-10-29
PCT/EP1999/009995 WO2000039465A1 (en) 1998-12-24 1999-12-16 Pump assembly comprising two hydraulic pumps

Publications (2)

Publication Number Publication Date
EP1141551A1 EP1141551A1 (en) 2001-10-10
EP1141551B1 true EP1141551B1 (en) 2002-10-16

Family

ID=26051047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99964582A Expired - Lifetime EP1141551B1 (en) 1998-12-24 1999-12-16 Pump assembly comprising two hydraulic pumps

Country Status (4)

Country Link
US (1) US6579070B1 (en)
EP (1) EP1141551B1 (en)
AT (1) ATE226283T1 (en)
WO (1) WO2000039465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015212557A1 (en) 2015-07-06 2017-01-12 Robert Bosch Gmbh Vane machine with elastic and hydraulically pressed wings

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861721B2 (en) 2001-09-27 2006-12-20 ユニシア ジェーケーシー ステアリングシステム株式会社 Oil pump
GB2383611B (en) * 2001-10-15 2005-04-06 Luk Automobiltech Gmbh & Co Kg Rotary vane-type machine
DE502004005825D1 (en) * 2003-02-14 2008-02-14 Ixetic Hueckeswagen Gmbh PUMP COMBINATION
US7322800B2 (en) * 2004-04-16 2008-01-29 Borgwarner Inc. System and method of providing hydraulic pressure for mechanical work from an engine lubricating system
US8123492B2 (en) * 2004-09-20 2012-02-28 Magna Powertrain Inc. Speed-related control mechanism for a pump and control method
DE102005022161A1 (en) * 2005-05-13 2006-11-30 Daimlerchrysler Ag Device for lubricating components of a motor vehicle
US20070071628A1 (en) * 2005-09-29 2007-03-29 Tecumseh Products Company Compressor
US8128377B2 (en) * 2007-04-03 2012-03-06 GM Global Technology Operations LLC Split-pressure dual pump hydraulic fluid supply system for a multi-speed transmission and method
JP2008286108A (en) * 2007-05-17 2008-11-27 Jtekt Corp Vehicular oil pump system
US9593681B2 (en) * 2011-11-04 2017-03-14 CONTINTENTAL AUTOMOTIVE GmbH Pump device for delivering a medium
DE102012112720B4 (en) * 2012-12-20 2017-01-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft pump
DE102012112722A1 (en) * 2012-12-20 2014-06-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft pump
US9546728B2 (en) * 2014-04-08 2017-01-17 GM Global Technology Operations LLC Balanced binary pump for CVT transmission
US9599108B2 (en) * 2015-06-26 2017-03-21 GM Global Technology Operations LLC Two rotor vane pump
US10119540B2 (en) 2015-12-08 2018-11-06 Ford Global Technologies, Llc Variable displacement vane pump
CN109890675B (en) 2016-09-02 2022-07-12 斯泰克波尔国际工程产品有限公司 Dual input pump and system
DE102018105142A1 (en) * 2018-03-06 2019-09-12 Schwäbische Hüttenwerke Automotive GmbH Sealing element vacuum pump
DE102019201864B4 (en) 2019-02-13 2021-07-22 Hanon Systems Efp Deutschland Gmbh Cooling and lubrication system with dry sump
DE102019201863B3 (en) 2019-02-13 2020-06-18 Hanon Systems Efp Deutschland Gmbh Cooling lubrication system with dry sump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1728276B2 (en) 1968-09-20 1975-11-13 Alfred Teves Gmbh, 6000 Frankfurt Rotary vane pump
US3639089A (en) 1970-03-26 1972-02-01 Borg Warner Pump
JPS49146395U (en) * 1973-04-16 1974-12-17
DE2951012A1 (en) * 1979-12-19 1981-07-23 Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen PUMP ARRANGEMENT
GB2093916B (en) 1981-03-02 1984-10-03 Atsugi Motor Parts Co Ltd Rotary pumps
US4415319A (en) * 1981-08-11 1983-11-15 Jidosha Kiki Co., Ltd. Pump unit
DE3132285A1 (en) 1981-08-14 1983-03-03 Jidosha Kiki Co., Ltd., Tokyo Pump unit
DE3366576D1 (en) * 1983-06-18 1986-11-06 Vickers Systems Gmbh Double pump
US4586468A (en) * 1984-10-05 1986-05-06 General Motors Corporation Tandem pump assembly
JPS6380085A (en) * 1985-08-20 1988-04-11 Yoshio Ono Delivery flow reaction absorbing pump
DE8802023U1 (en) 1988-02-17 1988-03-31 Vickers Systems GmbH, 6380 Bad Homburg Tandem pump
JP2638987B2 (en) 1988-08-30 1997-08-06 アイシン精機株式会社 Hydraulic pump for hydraulic drive fan system
JP2929734B2 (en) 1991-02-19 1999-08-03 豊田工機株式会社 Tandem pump
DE19513822C2 (en) * 1995-04-12 1999-10-28 Volkswagen Ag Device for delivering fuel from a storage tank to an internal combustion engine of a motor vehicle
JPH09126157A (en) 1995-08-29 1997-05-13 Aisin Seiki Co Ltd Tandem pump device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015212557A1 (en) 2015-07-06 2017-01-12 Robert Bosch Gmbh Vane machine with elastic and hydraulically pressed wings

Also Published As

Publication number Publication date
EP1141551A1 (en) 2001-10-10
US6579070B1 (en) 2003-06-17
ATE226283T1 (en) 2002-11-15
WO2000039465A1 (en) 2000-07-06

Similar Documents

Publication Publication Date Title
EP1141551B1 (en) Pump assembly comprising two hydraulic pumps
DE102005051098B4 (en) Gerotor pump with variable capacity
DE102004035743B4 (en) Variable displacement pump
EP0712997B1 (en) Suction regulated internal gear pump
EP3236074B1 (en) Rotary pump having lubricating groove in sealing bar
DE10039347C2 (en) Hydraulic pump with variable delivery rate
DE19952167A1 (en) Pump arrangement with two hydraulic pumps
DE1528949A1 (en) Pump with adjustable throttle built into the suction line
EP2235374B1 (en) Variable-volume internal gear pump
DE4237249A1 (en)
EP2743506B1 (en) Gas pump with a sealing oil groove
EP2111498A1 (en) Adjustable coolant pump
EP0422617A1 (en) Suction regulated annular gear pump
EP1495227B1 (en) Hydraulic pump unit
DE4209143C1 (en)
DE10337847A1 (en) Pump arrangement with a high-pressure pump and a low-pressure pump upstream of this for a fuel injection device of an internal combustion engine
EP0509077B1 (en) Piston pump, especially a radial piston pump
DE102015115841A1 (en) Pump-motor unit with cooling of a pump driving electric motor by means of leakage fluid
DE3943299A1 (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE10040711C2 (en) Vane pump
DE102009037260B4 (en) Device for changing the relative angular position of a camshaft relative to a crankshaft of an internal combustion engine
EP1922487B1 (en) Expeller pump with variable delivery volume
DE102011079311A1 (en) Coolant pump for coolant circulation circuit of internal combustion engine of motor car, has control pump integrated into pump and providing fluid for displacement of locking element, where control pump is designed as rotary pump
EP0315878B1 (en) Internal gear pump
DE3737961A1 (en) Internal-gear pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020430

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANNESMANN REXROTH AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 226283

Country of ref document: AT

Date of ref document: 20021115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59903124

Country of ref document: DE

Date of ref document: 20021121

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BOSCH REXROTH AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131217

Year of fee payment: 15

Ref country code: AT

Payment date: 20131216

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131218

Year of fee payment: 15

Ref country code: FR

Payment date: 20131213

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150224

Year of fee payment: 16

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 226283

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141216

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59903124

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701