EP1140598A1 - Verfahren zum betrieb einer elektromechanischen radbremsvorrichtung - Google Patents

Verfahren zum betrieb einer elektromechanischen radbremsvorrichtung

Info

Publication number
EP1140598A1
EP1140598A1 EP99947200A EP99947200A EP1140598A1 EP 1140598 A1 EP1140598 A1 EP 1140598A1 EP 99947200 A EP99947200 A EP 99947200A EP 99947200 A EP99947200 A EP 99947200A EP 1140598 A1 EP1140598 A1 EP 1140598A1
Authority
EP
European Patent Office
Prior art keywords
brake
spindle
electric motor
braking force
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99947200A
Other languages
English (en)
French (fr)
Inventor
Frank Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1140598A1 publication Critical patent/EP1140598A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/58Mechanical mechanisms transmitting linear movement
    • F16D2125/587Articulation, e.g. ball-socket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/02Release mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/02Release mechanisms
    • F16D2127/04Release mechanisms for manual operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/06Locking mechanisms, e.g. acting on actuators, on release mechanisms or on force transmission mechanisms

Definitions

  • the invention relates to a method for operating an electromechanical wheel brake device with the features of the preamble of claim 1.
  • An electromechanical wheel brake device is known from WO96 / 03301.
  • the known wheel brake device has an electric motor with which a spindle drive can be driven in rotation.
  • the spindle drive converts the rotary movement of the electric motor into a translatory movement which serves to press and release a friction brake lining against a brake body connected in a rotationally fixed manner to a vehicle wheel.
  • the known wheel brake device is designed as a disc brake, so the brake body is a brake disc.
  • the wheel brake device can also be designed as a drum brake, in which the brake body is a brake drum, or in another brake design.
  • the electric motor of the wheel brake device is energized in a forward direction of rotation, so that the Friction brake lining is pressed onto the brake body and exerts a braking force (braking torque) on the brake body.
  • a desired braking force is reached, the setpoint of which is determined, for example, by a sensor on a foot brake pedal depending on the force with which the foot brake pedal is depressed and / or depending on the distance by which the foot brake pedal is depressed, the energization of the electric motor is ended.
  • the braking force exerted on the brake body (actual value) is determined with a braking force sensor and compared with the soli value.
  • the known wheel brake device has the disadvantage that, due to the kinetic energy of the rotating electric motor and the spindle drive, the electric motor and the spindle drive continue to run a short distance after the current supply has ended. This has the consequence that the wheel brake device comes to a standstill with a time delay and the braking force rises above the desired value.
  • the increase in braking force after the energization of the electric motor has ended depends, inter alia, on the motor speed and thus on whether the wheel brake device is actuated from the released position or whether the braking force has been increased during braking.
  • the increase in braking force after the end of the current supply depends on the pressing force of the friction brake lining against the brake body and thus on the level of the braking force of the wheel brake device.
  • the increase in braking force after the end of the current supply to the electric motor is greater than with a high braking force.
  • the increase in braking force beyond the desired braking force cannot therefore be countered simply by stopping the energization of the electric motor shortly before the desired braking force is reached.
  • Another disadvantage of the known wheel brake device is that in order to reduce the braking force and to completely release the wheel brake device, its electric motor is supplied with current in a reverse rotation direction and must be accelerated together with the spindle drive.
  • the wheel brake device is used dynamically, that is to say a change between increasing the braking force, keeping the braking force constant and reducing the braking force in rapid succession, as occurs in the case of anti-lock control, this becomes cumbersome Wheel brake device noticeably noticeable, the known wheel brake device can at most be used to a limited extent for anti-lock braking.
  • the electromechanical wheel brake device for performing the method according to the invention with the features of claim 1 has a releasable anti-rotation device, such as a magnetic brake, with which a part of the spindle drive pressing the friction brake lining against the brake body, i.e. the spindle or the nut, rotates and is axially displaceable, for example a polygonal or serrated profile.
  • a releasable anti-rotation device such as a magnetic brake, with which a part of the spindle drive pressing the friction brake lining against the brake body, i.e. the spindle or the nut, rotates and is axially displaceable, for example a polygonal or serrated profile.
  • the anti-rotation device is briefly released, as a result of which the translational movement of the friction brake lining and the part of the self-locking spindle drive that presses against the brake body come to an abrupt stop, even if a rotating part of the spindle drive and the electric motor are removed of their kinetic energy continue to rotate without current.
  • the braking force is not increased above the desired value by briefly releasing the anti-rotation device of the part of the spindle drive pressing the friction brake lining against the brake body.
  • Self-locking means that the nut of the spindle drive is rotated and the spindle is axially displaced by an axial force, for example on the spindle of the spindle drive.
  • the axial force exerted on the spindle is a reaction force to the pressing force with which the friction brake lining is pressed against the brake body.
  • the anti-rotation device is also released to reduce the braking force, as a result of which the braking force of the wheel brake device is reduced independently of a rotation of the electric motor.
  • the method according to the invention has the advantage of highly dynamic operation of the electromechanical wheel brake device. A quick change between increasing, keeping constant and reducing the braking force is possible.
  • the electromechanical wheel brake device can thus also be used for anti-lock control.
  • Another advantage of the invention is the possibility of releasing the wheel brake device in the event of a fault in the case of a non-rotating electric motor by releasing the anti-rotation device.
  • the released anti-rotation device of the wheel brake device can be engaged during the run, it acts in particular frictionally and can be engaged at any time while the braking force of the wheel brake device is being reduced.
  • the wheel brake device 10 according to the invention shown in FIG. 1 is designed as a disc brake device. It has a brake caliper 12, in which two friction brake linings 14 are attached in a manner known per se, between which a rotatable brake disk 16, which is fixedly connected to a vehicle wheel (not shown), is arranged as a brake body. On the side of one of the two friction brake linings 14, the brake caliper 12 has an approximately cylindrical cavity 18 which is aligned perpendicular to the brake disc 16 and the friction brake linings 14. A spindle drive 20 and an electric motor 22 are accommodated in the cavity 18, the brake caliper 12 forms a housing for the spindle drive 20 and the electric motor 22.
  • the spindle drive 20 is designed as a roller screw drive. It has a nut 24 which is rotatably mounted in the brake caliper 12 with an inclined roller bearing 26.
  • the inclined roller bearing 26 supports the nut 24 in particular in the direction axially towards the brake disk 16.
  • a spindle 28 of the spindle drive 20 is located coaxially within the nut 24.
  • the spindle 28 is not directly in engagement with the nut 24, between the spindle 28 and the nut 24 there is an annular space in cross section in which a number is distributed over the circumference of thread rolls 30 are arranged.
  • the thread rolls 30 engage both with a thread of the nut 24 and with a thread of the spindle 28. By rotating the nut 24, the thread rolls 30 are driven to rotate around the spindle 28.
  • the thread rolls 30 roll on the spindle 28, they rotate about their own axes.
  • the movement of the thread rolls 30 is comparable to the movement of planet wheels of a planetary gear. Due to the thread pitches of the nut 24, the thread rolls 30 and the spindle 28, the rotating movement of the nut 24 is converted into a translatory movement of the spindle 28, the spindle 28 is displaced in the axial direction.
  • the thread rolls 30 can have a pitch of zero, that is to say they are provided with circumferential grooves with a thread profile instead of with a thread, in this case, strictly speaking, they are not thread foils. Nevertheless, it results from the thread pitches of the nut 24 and the spindle 28 translate the spindle 28 when the nut 24 is driven in rotation.
  • the electric motor 22 is provided for rotating the nut 24 of the spindle drive 20.
  • the nut 24 also forms a rotor 24 of the electric motor 22.
  • permanent magnets 32 are attached to the circumference of the nut 24.
  • Stator windings 34 and stator laminations 36 of the electric motor 22 surround the nut 24 forming the rotor 24 in a fixed manner in the brake caliper 12 forming the housing of the electric motor 22 and the spindle drive 20.
  • the roller screw 20 is designed to be self-locking, i. H. by axial pressure against the spindle 28, the nut 24 can be rotated and the spindle moved.
  • An end of the spindle 28 of the roller screw drive 22 facing the friction brake linings 14 and the brake disk 16 is designed as a spherical cap 38.
  • a sealing collar 40 holds the friction brake lining 14 facing the spindle 28 in contact with the calotte 38.
  • the sealing collar 40 is designed as a bellows which surrounds the spindle 28 at its end.
  • the sealing sleeve 40 is inserted into the brake caliper 12 forming the housing for the spindle drive 20 and the electric motor 22 and is attached with its other end to the friction brake lining 14 facing the spindle 28. Since the spindle 28 with its spherical cap 38 only abuts the friction brake lining 14, the spindle 28 can be rotated with respect to the friction brake lining 14.
  • the wheel brake device 10 has a releasable anti-rotation device 42, which is inserted into a housing cover 44, which accommodates the cavity 18 of the brake caliper 12, in which the spindle drive 20 and the electric motor 22 are accommodated, on one of the brake discs 16 opposite side closes.
  • the detachable anti-rotation device 42 can be designed, for example, as a switchable freewheel, as is known to the person skilled in the art different embodiments are known per se.
  • a frictional electromagnetic brake 42 has been selected as a releasable anti-rotation device 42.
  • the electromagnetic brake 42 has a yoke-shaped armature plate 46 which is pressed by a set of helical compression springs 48 against a brake disc 50 which is arranged between the armature plate 46 and the housing cover 44 and which is exerted against the housing cover by the pressure springs 48 which are exerted on the armature plate 46 44 is pressed.
  • the brake disc 50 is thus clamped in a rotationally fixed manner by the force of the helical compression springs 48 by frictional engagement between the anchor plate 46 and the housing cover 44.
  • the brake disc 50 is connected in a rotationally fixed and axially displaceable manner to the spindle 28 of the spindle drive 20 via a multi-groove profile 52, i. H. the spindle 28 can be moved in the brake caliper 12 in the axial direction and is secured against rotation when the electromagnetic brake 42 is closed.
  • the multi-groove profile 52 is mounted in a hub 54 of the brake disc 50 and on a sleeve 56, the sleeve 56 being firmly pressed onto an axial spindle pin 58 which is integral with the spindle 28.
  • To release the electromagnetic brake 42 has a coil 60 which is mounted in a recess in an annular poi 62.
  • the pole piece 62 is arranged on a side of the armature plate 46 facing away from the brake disk 50.
  • blind holes 64 are made, into which the helical compression springs 48 are inserted, which press the anchor plate 46 against the brake disc 50.
  • a reduced or clocked energization of the coil 60 allows a brake slip of the electromagnetic brake 42 to be set, ie a braking torque exerted by the armature plate 46 on the brake disc 50 can be limited so that the spindle 28 can be rotated by overcoming the braking torque of the electromagnetic brake 42.
  • the function of the wheel brake device 10 is as follows: To actuate the wheel brake device 10, the electric motor 22 is energized in a forward direction of rotation, as a result of which the nut 24 of the spindle drive 20 is rotated and the spindle 28 is displaced in the direction of the brake disk 16.
  • the spindle 28 presses the friction brake lining 14 arranged on its side of the brake disc 16 against the brake disc 16 and, via a reaction force, the other friction brake component 14 is pressed against the other side of the brake disc 16 in a manner known per se via the brake caliper 12 designed as a floating caliper.
  • the energization of the electric motor 22 is stopped or the current is reduced to a value that maintains the desired braking force.
  • the electric motor 22 is energized with reverse polarity, that is to say in a reverse rotation direction.
  • the electromagnetic brake 42 is closed, i. H. its coil 60 is de-energized, the electromagnetic brake 42 holds the spindle 28 in a rotationally fixed manner in the brake caliper 12.
  • the electromagnetic brake 42 is briefly released by energizing its coil 60 when the desired braking force is reached.
  • the spindle 28 of the spindle drive 20 is freely rotatable and it no longer moves axially in the direction of the brake disc 16, even if the nut 24 continues to rotate due to the kinetic energy.
  • the application of the wheel brake device 10 comes to an abrupt stop due to the brief release of the electromagnetic brake 42.
  • a further possibility of limiting the braking force of the wheel brake device 10 when the brake is applied to a predetermined value is, according to the invention, to energize the electromagnetic brake 42 with a reduced or clocked current which is selected to be large enough that it flows from the helical compression springs 64 onto the anchor plate 46 force exerted partially compensated.
  • the brake disc 50 of the electromagnetic brake 42 is thereby clamped with reduced force between the armature plate 46 and the housing cover 44, as a result of which the spindle 28 can be rotated by overcoming the braking torque set by energizing the electromagnetic clutch 42.
  • Reduced energization means an energization that does not lift the armature plate 46 off the brake disk 50, but rather partially compensates for the pressing force of the helical compression springs 64 and thus reduces it.
  • the torque exerted by the nut 24 via the thread rollers 30 on the spindle 28 when tightening is dependent on the pressing force with which the spindle 28 presses the friction brake linings 14 against the brake disk 16.
  • This means that the pressure force of the friction brake linings 14 on the brake disc 16 and thus the braking force exerted on the brake disc 16 is dependent on the braking torque set on the electromagnet brake 42 by energizing its coil 60. It can also be avoided by controlling the braking torque of the electromagnetic brake 42 that the braking force of the wheel brake device 10 infoige the kinetic energy of the spindle drive 20 and the electric motor 22 increases to a higher value than desired.
  • the electromagnetic brake 42 can also be released to reduce the braking force of the wheel brake device 10, as a result of which the spindle 28 can be rotated.
  • the friction brake lining 14 pressed against the brake disc 16 by the spindle 28 presses the spindle 28 away from the brake disc 16 and sets the spindle 28 of the self-locking spindle drive 20 in rotation, as a result of which the braking force of the wheel brake device 10 is reduced. In this way, the braking force of the wheel brake device 10 can be reduced without the electric motor 22 having to be energized in the reverse direction.
  • one embodiment of the method according to the invention provides for briefly energizing the electric motor 22 to a standstill with reverse polarity, that is to say in the reverse direction.
  • the invention provides for the electric motor 22 to be energized in the forward direction of rotation and the electromagnet brake 42 to increase the braking force of the wheel brake device 10, to keep the braking force of the wheel brake device 10 constant, to adjust the braking torque of the electromagnet brake 42 by reduced or clocked energization to a desired value which corresponds to the desired braking force of the wheel brake device 10 and to reduce the braking force of the wheel brake device 10 To release the electromagnetic brake 42 completely.
  • the electric motor 22 can continue to maintain and decrease the braking force of the wheel brake device 10 be energized, its energization can be reduced or interrupted. In particular, if the electric motor 22 is continuously energized and thereby continues to rotate in the forward direction of rotation even while keeping constant and reducing the braking force of the wheel brake device 10, there is a considerable gain in dynamics of the wheel brake device 10, which enables a slip control.
  • a dynamic gain can also be achieved for an emergency braking situation.
  • the electromagnetic brake 42 is released, as a result of which the spindle 28 can be rotated, and the electric motor 22 is energized in the forward direction of rotation.
  • the electric motor 22 thereby accelerates to approximately its idling speed, the friction brake pads 14 apply to the brake disc 16 with a low pressure force, which causes the spindle 28 to rotate with the rotatingly driven nut 24 of the spindle drive 20, and the displacement of the spindle 28 in the direction of the Brake disc 16 ended.
  • a braking force is now to be built up, only the electromagnetic brake 42 is closed and the already rotating electric motor 22 very quickly increases the pressing force of the friction brake linings 14 on the brake disk 16 via the spindle drive 20.
  • the braking and starting of the electric motor 22 at the start of the emergency braking accelerates and accelerates not applicable.
  • An emergency braking situation can be ascertained, for example, when a driver leaves an accelerator pedal with high gradients, which can be ascertained without problems by means of a corresponding sensor.
  • the electromagnetic brake 42 of the wheel brake device 10 is released and the electric motor 22 is energized. If the driver moves his foot from the accelerator pedal to the brake pedal and depresses it, the braking force of the wheel brake device 10 can be increased very quickly to the desired value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

Die Erfindung geht aus von einer elektromechanischen Radbremsvorrichtung (10) mit einem Elektromotor (22), mit dem über einen Spindeltrieb (20) ein Reibbremsbelag (14) an einen Bremskörper (16) andrückbar ist, wobei eine Spindel (28) des Spindeltriebs (20) mit einer lösbaren Bremse (42) drehfest gehalten ist. Um zu vermeiden, dass sich eine Bremskraft der Radbremsvorrichtung (10) durch den infolge seiner kinetischen Energie nach Beendigung seiner Bestromung weiter drehenden Elektromotor (22) über einen vorgegebenen Wert erhöht, schlägt die Erfindung vor, die lösbare Bremse (42) kurzzeitig zu lösen. Auch zur Verringerung der Bremskraft der Radbremsvorrichtung (10) kann die lösbare Bremse (42) gelöst werden. Insbesondere für einen schnellen Wechsel zwischen Vergrössern, Konstanthalten und Verringern der Bremskraft lässt sich ein Dynamikgewinn erzielen, wenn die Bremskraft der Radbremsvorrichtung (10) durch Schliessen, teilweises Lösen und vollständiges Lösen der Bremse (42) im gewünschten Sinn geändert wird.

Description

Beschreibung
Verfahren zum Betrieb einer eiektromechanischen Radbremsvorrichtung
Stand der Technik
Die Erfindung betrifft ein Verfahren zum Betrieb einer eiektromechanischen Radbremsvorrichtung mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Eine elektromechanische Radbremsvorrichtung ist bekannt aus der WO96/03301. Die bekannte Radbremsvorrichtung weist einen Elektromotor auf, mit dem ein Spindeltrieb rotierend antreibbar ist. Der Spindeltrieb setzt die Rotationsbewegung des Elektromotors in eine translatorische Bewegung um, die dazu dient, einen Reibbremsbelag gegen einen mit einem Fahrzeugrad drehfest verbundenen Bremskörper zu drücken und wieder zu iösen. Die bekannte Radbremsvorrichtung ist als Scheibenbremse ausgebildet, der Bremskörper ist also eine Bremsscheibe. Die Radbremsvorrichtung läßt sich allerdings auch als Trommelbremse, bei der der Bremskörper eine Bremstrommei ist, oder in einer sonstige Bremsenbauform ausbilden.
Zum Bremsen wird der Elektromotor der Radbremsvorrichtung in einer Vorwärtsdrehrichtung bestromt, so daß über den Spindeltrieb der Reibbremsbelag an den Bremskörper angedrückt wird und eine Bremskraft (Bremsmoment) auf den Bremskörper ausübt. Bei Erreichen einer gewünschten Bremskraft, deren Sollwert beispielsweise durch einen Sensor an einem Fußbremspedal abhängig von der Kraft, mit der das Fußbremspedal niedergetreten und/oder abhängig vom Weg, um den das Fußbremspedal niedergetreten wird, ermittelt wird, wird die Bestromung des Elektromotors beendet. Die auf den Bremskörper ausgeübte Bremskraft (Istwert) wird mit einem Bremskraftsensor ermittelt und mit dem Soliwert verglichen. Die bekannte Radbremsvorrichtung hat den Nachteil, daß aufgrund der kinetischen Energie des rotierenden Elektromotors und des Spindeltriebs der Elektromotor und der Spindeltrieb nach Beendigung der Bestromung ein kurzes Stück weiterlaufen. Dies hat zur Folge, daß die Radbremsvorrichtung zeitverzögert zum Stillstand kommt und die Bremskraft über den gewünschten Wert ansteigt. Dabei ist der Bremskraftanstieg nach Beendigung der Bestromung des Elektromotors u.a. von der Motordrehzahl und damit davon abhängig, ob die Radbremsvorrichtung aus gelöster Stellung betätigt oder ob die Bremskraft während einer Bremsung erhöht worden ist. Auch hängt der Bremskraftanstieg nach Beendigung der Bestromung von der Andruckkraft des Reibbremsbelags an den Bremskörper und somit von der Höhe der Bremskraft der Radbremsvorrichtung ab. Bei geringer Bremskraft ist der Bremskraftanstieg nach Beendigung der Bestromung des Elektromotors größer als bei hoher Bremskraft. Dem Bremskraftanstieg über die gewünschte Bremskraft hinaus kann also nicht einfach dadurch begegnet werden, daß die Bestromung des Elektromotors kurz vor Erreichen der gewünschten Bremskraft beendet wird.
Weiterer Nachteil der bekannten Radbremsvorrichtung ist, daß zum Verringern der Bremskraft und zum vollständigen Lösen der Radbremsvorrichtung ihr Elektromotor in einer Rückdrehrichtung bestromt werden und zusammen mit dem Spindeltrieb beschleunigt werden muß. Bei einem dynamischen Einsatz der Radbremsvorrichtung, also einem Wechsel zwischen Bremskrafterhöhung, Konstanthalten der Bremskraft und Bremskraftverringerung in rascher Folge, wie er bei einer Blockierschutzregelung auftritt, macht sich eine Schwerfälligkeit der Radbremsvorrichtung nachteilig bemerkbar, für eine blockierschutzgeregelte Bremsung ist die bekannte Radbremsvorrichtung allenfalls eingeschränkt verwendbar.
Vorteile der Erfindung
Die elektromechanische Radbremsvorrichtung zur Durchführung des erfindungsgemäßen Verfahrens mit den Merkmalen des Anspruchs 1 weist eine lösbare Drehsicherungseinrichtung wie beispielsweise eine Magnetbremse auf, mit der ein den Reibbremsbelag an den Bremskörper andrückendes Teil des Spindeltriebs, also die Spindel oder die Mutter, drehfest und axial verschiebiich beispielsweise über ein Polygon- oder ein Kerbzahnprofil, verbunden ist. Wird beim Zuspannen der Radbremsvorrichtung eine gewünschte Bremskraft erreicht, wird die Drehsicherungseinrichtung kurzzeitig gelöst, wodurch die Translationsbewegung des Reibbremsbelages und des diesen an den Bremskörper andrückenden Teils des selbsthemmungsfreien Spindeltriebs abrupt zum Stillstand kommen, auch wenn ein rotierendes Teil des Spindeltriebs und der Elektromotor bis zum Abbau ihrer kinetischen Energie stromlos weiter rotieren. Die Bremskraft wird durch das kurzzeitige Lösen der Drehsicherungseinrichtung des den Reibbremsbelag an den Bremskörper andrückenden Teils des Spindeltriebs nicht über den gewünschten Wert erhöht. Selbsthemmungsfrei bedeutet, daß durch eine Axialkraft beispielsweise auf die Spindel des Spindeltriebs die Mutter des Spindeltriebs in Rotation versetzt und die Spindel axial verschoben wird. Beim erfindungsgemäßen Verfahren ist die auf die Spindel ausgeübte Axialkraft eine Reaktionskraft zu der Andruckkraft, mit der der Reibbremsbelag an den Bremskörper angedrückt wird. Durch Lösen der Drehsicherungseinrichtung der Spindel wird allerdings nicht die Mutter, sondern die Spindel selbst durch die auf sie ausgeübte Axialkraft in Rotation versetzt, die Spindel schraubt sich sozusagen in die Mutter und bewegt sich dabei axial. Auch die Umkehrung ist möglich, d. h. die Spindel wird vom Elektromotor rotierend angetrieben und die Mutter des Spindeltriebs drückt den Reibbremsbelag an den Bremskörper an.
Auch zum Verringern der Bremskraft wird gemäß der Erfindung die Drehsicherungseinrichtung gelöst, wodurch sich die Bremskraft der Radbremsvorrichtung unabhängig von einer Rotation des Elektromotors verringert. Das erfindungsgemäße Verfahren hat den Vorteil eines hochdynamischen Betriebs der eiektromechanischen Radbremsvorrichtung. Es ist ein schneller Wechsel zwischen Erhöhen, Konstanthalten und Verringern der Bremskraft möglich. Die elektromechanische Radbremsvorrichtung läßt sich dadurch auch für eine Blockierschutzregelung verwenden. Weiterer Vorteil der Erfindung ist die Möglichkeit des Lösens der Radbremsvorrichtung im Fehlerfall bei nicht rotierendem Elektromotor durch Lösen der Drehsicherungseinrichtung. Die gelöste Drehsicherungseinrichtung der Radbremsvorrichtung ist im Lauf einrückbar, sie wirkt insbesondere reibschlüssig und kann jederzeit während der Verringerung der Bremskraft der Radbremsvorrichtung eingerückt werden.
Die Unteransprüche haben vorteilhafte Ausgestaltungen und Weiterbildungen des in den Ansprüchen 1 und 2 angegebenen Verfahrens zum Gegenstand.
Zeichnung
Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Die einzige Figur zeigt
einen Achsschnitt einer eiektromechanischen Radbremsvorrichtung zur Durchführung des erfindungsgemäßen Verfahrens.
Beschreibung des Ausführungsbeispiels Die in Figur 1 dargestellte, erfindungsgemäße Radbremsvorrichtung 10 ist als Scheibenbremsvorrichtung ausgebildet. Sie weist eine Bremszange 12, in der zwei Reibbremsbeläge 14 in an sich bekannter Weise angebracht sind, zwischen denen eine rotierbare, mit einem nicht dargestellten Fahrzeugrad fest verbundene Bremsscheibe 16 als Bremskörper angeordnet ist, auf. Seitlich eines der beiden Reibbremsbeläge 14 weist die Bremszange 12 einen näherungsweise zylindrischen Hohlraum 18 auf, der senkrecht zur Bremsscheibe 16 und den Reibbremsbelägen 14 ausgerichtet ist. In dem Hohlraum 18 ist ein Spindeltrieb 20 und ein Elektromotor 22 untergebracht, die Bremszange 12 bildet ein Gehäuse für den Spindeltrieb 20 und den Elektromotor 22.
Der Spindeltrieb 20 ist als Rollengewindetrieb ausgebildet. Er weist eine Mutter 24 auf, die mit einem Schrägrollenlager 26 drehbar in der Bremszange 12 gelagert ist. Das Schrägrollenlager 26 stützt die Mutter 24 insbesondere in Richtung axial zur Bremsscheibe 16 hin ab. Koaxial innerhalb der Mutter 24 befindet sich eine Spindel 28 des Spindeltriebs 20. Die Spindel 28 steht nicht unmittelbar mit der Mutter 24 in Eingriff, zwischen der Spindel 28 und der Mutter 24 besteht ein im Querschnitt kreisringförmiger Zwischenraum, in dem über den Umfang verteilt eine Anzahl von Gewinderollen 30 angeordnet sind. Die Gewinderollen 30 stehen sowohl mit einem Gewinde der Mutter 24 als auch mit einem Gewinde der Spindel 28 in Eingriff. Durch rotierenden Antrieb der Mutter 24 werden die Gewinderollen 30 zu einer umlaufenden Bewegung um die Spindel 28 herum angetrieben. Bei ihrer Umlaufbewegung wälzen die Gewinderollen 30 auf der Spindel 28 ab, sie drehen sich um ihre eigenen Achsen. Die Bewegung der Gewinderollen 30 ist der Bewegung von Planetenrädem eines Planetengetriebes vergleichbar. Aufgrund der Gewindesteigungen der Mutter 24, der Gewinderollen 30 und der Spindel 28 wird die rotierende Bewegung der Mutter 24 in eine translatorische Bewegung der Spindel 28 umgesetzt, die Spindel 28 wird in axialer Richtung verschoben. Die Gewinderollen 30 können eine Steigung von null aufweisen, d. h. sie sind mit umlaufenden Nuten mit Gewindeprofil anstatt mit einem Gewinde versehen, es handelt sich in diesem Fall streng genommen nicht um Gewinderolien. Trotzdem ergibt sich aufgrund der Gewindesteigungen der Mutter 24 und der Spindel 28 eine Translationsbewegung der Spindel 28 bei rotierendem Antrieb der Mutter 24.
Zum rotierenden Antrieb der Mutter 24 des Spindeltriebs 20 ist der Elektromotor 22 vorgesehen. Die Mutter 24 bildet zugleich einen Rotor 24 des Elektromotors 22. Zur Ausbildung der Mutter 24 als Rotor 24 sind Permanentmagnete 32 am Umfang der Mutter 24 angebracht. Statorwicklungen 34 und Statorblechpakete 36 des Elektromotors 22 sind die den Rotor 24 bildende Mutter 24 umschließend feststehend in der das Gehäuse des Elektromotors 22 und des Spindeltriebs 20 bildenden Bremszange 12 angebracht.
Der Rollengewindetrieb 20 ist selbsthemmungsfrei ausgeführt, d. h. durch axialen Druck gegen die Spindel 28 läßt sich die Mutter 24 in Rotation versetzen und die Spindel verschieben.
Ein den Reibbremsbelägen 14 und der Bremsscheibe 16 zugewandtes Ende der Spindel 28 des Rollengewindetriebs 22 ist als Kalotte 38 ausgebildet. Eine Dichtmanschette 40 hält den der Spindel 28 zugewandten Reibbremsbelag 14 in Anlage an der Kalotte 38. Die Dichtmanschette 40 ist als Faltenbalg ausgebildet, der die Spindel 28 an ihrem Ende umschließt. Die Dichtmanschette 40 ist in die das Gehäuse für den Spindeltrieb 20 und den Elektromotor 22 bildende Bremszange 12 eingesetzt und mit ihrem anderen Ende an dem der Spindel 28 zugewandten Reibbremsbelag 14 angebracht. Da die Spindel 28 mit ihrer Kalotte 38 am Reibbremsbelag 14 nur anliegt, ist die Spindel 28 gegenüber dem Reibbremsbelag 14 drehbar.
Um die Spindel 28 drehfest zu halten, weist die Radbremsvorrichtung 10 eine lösbare Drehsicherungseinrichtung 42 auf, die in einen Gehäusedeckel 44 eingesetzt ist, der den Hohlraum 18 der Bremszange 12, in dem der Spindeltrieb 20 und der Elektromotor 22 untergebracht sind, auf einer der Bremsscheibe 16 abgewandten Seite verschließt. Die lösbare Drehsicherungseinrichtung 42 kann beispielsweise als schaltbarer Freilauf ausgebildet sein, wie er dem Fachmann in unterschiedlichen Ausführungsformen an sich bekannt ist. Im dargestellten Ausführungsbeispiel ist eine reibschlüssige Elektromagnetbremse 42 als lösbare Drehsicherungseinrichtung 42 gewählt worden. Die Eiektromagnetbremse 42 weist eine iochscheibenförmige Ankerplatte 46 auf, die von einem Satz Schraubendruckfedern 48 gegen eine Bremsscheibe 50 gedrückt wird, die zwischen der Ankerplatte 46 und dem Gehäusedeckel 44 angeordnet ist und die durch den von den Schraubendruckfedern 48 auf die Ankerplatte 46 ausgeübten gegen den Gehäusedeckel 44 gedrückt wird. Die Bremsscheibe 50 wird also durch die Kraft der Schraubendruckfedern 48 durch Reibschluß zwischen der Ankerplatte 46 und dem Gehäusedeckel 44 drehfest festgeklemmt.
Über ein Vielnutprofil 52 steht die Bremsscheibe 50 drehfest und axial verschieblich mit der Spindel 28 des Spindeltriebs 20 in Verbindung, d. h. die Spindel 28 ist in der Bremszange 12 in axialer Richtung verschiebbar und bei geschlossener Elektromagnetbremse 42 gegen Verdrehen gesichert. Das Vielnutprofil 52 ist in einer Nabe 54 der Bremsscheibe 50 und an einer Hülse 56 angebracht, wobei die Hülse 56 fest auf einen mit der Spindel 28 einstückigen, axialen Spindeizapfen 58 aufgepreßt ist.
Zum Lösen weist die Elektromagnetbremse 42 eine Spule 60 auf, die in einer Ausnehmung in einem kreisringförmigen Poistück 62 angebracht ist. Das Polstück 62 ist auf einer der Bremsscheibe 50 abgewandten Seite der Ankerplatte 46 angeordnet. Im Polstück 62 sind Sackbohrungen 64 angebracht, in die die Schraubendruckfedern 48 eingelegt sind, welche die Ankerplatte 46 gegen die Bremsscheibe 50 drücken. Durch Bestromen der Spule 60 wird die Ankerplatte 46 an das Polstück 62 angezogen und damit von der Bremsscheibe 50 abgehoben, wodurch die Bremsscheibe 50 und zusammen mit ihr die Spindel 28 des Spindeltriebs 20 drehbar werden. Durch eine verringerte oder getaktete Bestromung der Spule 60 läßt sich ein Bremsschlupf der Elektromagnetbremse 42 einstellen, d. h. ein von der Ankerplatte 46 auf die Bremsscheibe 50 ausgeübtes Bremsmoment läßt sich begrenzen, so daß die Spindel 28 durch Überwindung des Bremsmoments der Elektromagnetbremse 42 drehbar ist. Beschreibung des erfindungsgemäßen Verfahrens
Die Funktion der Radbremsvorrichtung 10 ist folgende: Zum Betätigen der Radbremsvorrichtung 10 wird der Elektromotor 22 in einer Vorwärtsdrehrichtung bestromt, wodurch die Mutter 24 des Spindeltriebs 20 in Drehung versetzt und die Spindel 28 in Richtung der Bremsscheibe 16 verschoben wird. Die Spindel 28 drückt den auf ihrer Seite der Bremsscheibe 16 angeordneten Reibbremsbelag 14 gegen die Bremsscheibe 16 und über eine Reaktionskraft wird über die als Schwimmsattel ausgebildete Bremszange 12 in an sich bekannter Weise der andere Reibbremsbeiag 14 gegen die andere Seite der Bremsscheibe 16 gedrückt. Bei Erreichen einer gewünschten Bremskraft wird die Bestromung des Elektromotors 22 beendet oder der Strom auf einen Wert verringert, der die gewünschte Bremskraft aufrecht erhält. Zum Lösen der Radbremsvorrichtung 10 wird der Elektromotor 22 mit umgekehrter Polung, also in einer Rückdrehrichtung bestromt. Die Elektromagnetbremse 42 ist geschlossen, d. h. ihre Spule 60 ist unbestromt, die Elektromagnetbremse 42 hält die Spindel 28 drehfest in der Bremszange 12.
Nach Beendigung der Bestromung des Elektromotors 22 dreht dessen Rotor 24, der zugleich die Mutter 24 des Spindeltriebs 20 ist, infolge der kinetischen Energie weiter, wodurch sich eine von den Reibbremsbelägen 14 auf die Bremsscheibe 16 ausgeübte Bremskraft über den vorgegebenen Wert erhöhen würde. Um diese Erhöhung der Bremskraft über den vorgegebenen Wert zu vermeiden, wird beim erfindungsgemäßen Verfahren die Elektromagnetbremse 42 bei Erreichten der gewünschten Bremskraft durch Bestromen ihrer Spule 60 kurzzeitig gelöst. Durch das Lösen der Elektromagnetbremse 42 wird die Spindel 28 des Spindeltriebs 20 frei drehbar und sie bewegt sich axial nicht mehr weiter in Richtung der Bremsscheibe 16, auch wenn die Mutter 24 infolge der kinetischen Energie weiter rotiert. Die Zuspannung der Radbremsvorrichtung 10 kommt durch das kurzzeitige Lösen der Elektromagnetbremse 42 abrupt zum Stillstand.
Eine weitere Möglichkeit, die Bremskraft der Radbremsvorrichtung 10 beim Zuspannen auf einen vorgegebenen Wert zu begrenzen, besteht erfindungsgemäß darin, die Eiektromagnetbremse 42 mit einem verringerten oder getakteten Strom zu bestromen, der so groß gewählt ist, daß er die von den Schraubendruckfedern 64 auf die Ankerplatte 46 ausgeübte Kraft teilweise kompensiert. Die Bremsscheibe 50 der Elektromagnetbremse 42 ist dadurch mit verringerter Kraft zwischen der Ankerplatte 46 und dem Gehäusedeckel 44 festgeklemmt, wodurch die Spindel 28 durch Überwinden des durch die Bestromung der Elektromagnetkupplung 42 eingestellten Bremsmoments drehbar ist. Unter verringerter Bestromung wird eine Bestromung verstanden, die die Ankerplatte 46 nicht von der Bremsscheibe 50 abhebt, sondern die Andruckkraft der Schraubendruckfedern 64 teilweise kompensiert und damit verπngert. Durch diese Steuerung des Bremsmoments der Elektromagnetbremse 42 beginnt die Spindel 28 beim Zuspannen der Radbremsvorrichtung 10 mit der Mutter 24 mitzudrehen, sobald ein von der rotierend angetriebenen Mutter 24 über die Gewinderollen 30 auf die Spindel 28 beim Zuspannen ausgeübtes Drehmoment das eingestellte Bremsmoment der Elektromagnetkupplung 42 übersteigt, die Spindel 28 dreht sich nicht mehr weiter, auch wenn die Mutter 24 weiter in Vorwärtsdrehrichtung rotiert. Das von der Mutter 24 über die Gewinderollen 30 auf die Spindel 28 beim Zuspannen ausgeübte Drehmoment ist abhängig von der Andruckkraft, mit der die Spindel 28 die Reibbremsbeläge 14 gegen die Bremsscheibe 16 drückt. Dies bedeutet, daß die Andruckkraft der Reibbremsbeläge 14 an die Bremsscheibe 16 und damit die auf die Bremsscheibe 16 ausgeübte Bremskraft von dem an der Eiektromagnetbremse 42 durch Bestromung ihrer Spule 60 eingestellten Bremsmoment abhängig ist. Es läßt sich also auch durch Steuerung des Bremsmoments der Eiektromagnetbremse 42 vermeiden, daß die Bremskraft der Radbremsvorrichtung 10 infoige der kinetischen Energie des Spindeltriebs 20 und des Elektromotors 22 auf einen höheren Wert ansteigt als gewünscht. Auch zum Verringern der Bremskraft der Radbremsvorrichtung 10 läßt sich die Eiektromagnetbremse 42 lösen, wodurch die Spindel 28 drehbar wird. Der von der Spindel 28 an die Bremsscheibe 16 angedrückte Reibbremsbelag 14 drückt die Spindel 28 von der Bremsscheibe 16 weg und versetzt die Spindel 28 des selbsthemmungsfreien Spindeltriebs 20 in Drehung, wodurch sich die Bremskraft der Radbremsvorrichtung 10 verringert. Auf diese Weise läßt sich die Bremskraft der Radbremsvorrichtung 10 verringern, ohne daß der Elektromotor 22 in Rückdrehrichtung bestromt werden muß. Da sich die Spindel 28 auf diese Weise nicht vollständig rückstellen läßt, sondern die Reibbremsbeläge 14 mit einer Restandruckkraft an der Bremsscheibe 16 verbleiben, ist es erfindungsgemäß vorgesehen, nach Beendigung eines Bremsvorgangs einen Luftspalt (Lüftspiel) zwischen den Reibbremsbelägen 14 und der Bremsscheibe 16 durch Antrieb des Elektromotors 22 in Rückdrehrichtung einzustellen.
Um den Elektromotor 22 am Ende des Zuspannens der Radbremsvorrichtung 10 bei Erreichen einer gewünschten Bremskraft schnell stillzusetzen, ist bei einer Ausgestaltung des erfindungsgemäßen Verfahrens vorgesehen, den Elektromotor 22 kurzzeitig bis zum Stillstand mit umgekehrter Polung, also in Rückdrehrichtung zu Bestromen. Zu einem schnellen Wechsel zwischen einem Bremskraftaufbau/einer Erhöhung der Bremskraft, einem Konstanthalten der Bremskraft und einem Verringern der Bremskraft der Radbremsvorrichtung 10, wie er insbesondere für eine Schlupfregelung notwendig ist, ist es erfindungsgemäß vorgesehen, den Elektromotor 22 in Vorwärtsdrehrichtung zu bestromen und die Eiektromagnetbremse 42 zum Erhöhen der Bremskraft der Radbremsvorrichtung 10 zu schließen, zum Konstanthalten der Bremskraft der Radbremsvorrichtung 10 das Bremsmoment der Eiektromagnetbremse 42 durch verringerte oder getaktete Bestromung auf einen Sollwert einzustellen, der der gewünschten Bremskraft der Radbremsvorrichtung 10 entspricht und zum Verringern der Bremskraft der Radbremsvorrichtung 10 die Eiektromagnetbremse 42 vollständig zu lösen. Der Elektromotor 22 kann während des Konstanthaltens und des Verringerns der Bremskraft der Radbremsvorrichtung 10 weiterhin bestromt werden, seine Bestromung kann verringert oder unterbrochen werden. Insbesondere wenn der Elektromotor 22 kontinuierlich bestromt wird und dadurch auch während des Konstanthaltens und der Verringerung der Bremskraft der Radbremsvorrichtung 10 in Vorwärtsdrehrichtung weiter dreht, ergibt sich ein erheblicher Dynamikgewinn der Radbremsvorrichtung 10, der eine Schiupfregelung ermöglicht.
Auch für eine Notbremssituation läßt sich ein Dynamikgewinn erzielen. Dazu wird erfindungsgemäß die Eiektromagnetbremse 42 gelöst, wodurch die Spindel 28 drehbar wird, und der Elektromotor 22 wird in Vorwärtsdrehrichtung bestromt. Der Elektromotor 22 beschleunigt dadurch auf annähernd seine Leerlaufdrehzahl, die Reibbremsbeläge 14 legen sich an die Bremsscheibe 16 mit geringer Andruckkraft an, die ein Mitdrehen der Spindel 28 mit der rotierend angetriebenen Mutter 24 des Spindeltriebs 20 bewirkt, und die Verschiebung der Spindel 28 in Richtung der Bremsscheibe 16 beendet. Soll nun eine Bremskraft aufgebaut werden, wird lediglich die Eiektromagnetbremse 42 geschlossen und der bereits rotierende Elektromotor 22 erhöht über den Spindeltrieb 20 sehr schnell die Andruckkraft der Reibbremsbeläge 14 an die Bremsscheibe 16. Ein die Bremsung verzögerndes Anlaufen und Beschleunigen des Elektromotors 22 zu Beginn der Notbremsung entfällt. Eine Notbremssituation kann beispielsweise festgestellt werden, wenn ein Fahrer ein Gaspedal mit hohen Gradienten verläßt, was sich mittels eines entsprechenden Sensors problemlos feststellen läßt. In diesem Fall wird, wie beschrieben, die Eiektromagnetbremse 42 der Radbremsvorrichtung 10 gelöst und der Elektromotor 22 bestromt. Setzt der Fahrer seinen Fuß vom Gaspedal auf das Bremspedal um und tritt dieses nieder, läßt sich die Bremskraft der Radbremsvorrichtung 10 sehr schnell auf den gewünschten Wert erhöhen.

Claims

Patentansprüche
1. Verfahren zum Betrieb einer eiektromechanischen Radbremsvorrichtung für ein Kraftfahrzeug, weiche einen Elektromotor, einen selbsthemmungsfreien Spindeltrieb, dessen Mutter und dessen Spindel drehbar gelagert sind und der mit dem Elektromotor rotierend antreibbar ist, einen Reibbremsbelag, der mit dem Spindeltrieb an einen drehfest mit einem Fahrzeugrad verbundenen Bremskörper andrückbar ist und eine lösbare Drehsicherungseinrichtung, mit der ein den Reibbremsbelag an den Bremskörper andrückendes Teil des Spindeltriebs drehfest und axial verschieblich verbunden ist, aufweist, dadurch gekennzeichnet, daß am Ende eines Zuspannens der Radbremsvorrichtung (10) bei Erreichen einer gewünschten Bremskraft die Drehsicherungseinrichtung (42) kurzzeitig gelöst wird.
2. Verfahren zum Betπeb einer eiektromechanischen Radbremsvorrichtung für ein Kraftfahrzeug, welche einen Elektromotor, einen selbsthemmungsfreien Spindeltrieb, dessen Mutter und dessen Spindel drehbar gelagert sind und der mit dem Elektromotor rotierend antreibbar ist, einen Reibbremsbelag, der mit dem Spindeltrieb an einen drehfest mit einem Fahrzeugrad verbundenen Bremskörper andrückbar ist und eine lösbare Drehsicherungseinrichtung, mit der ein den Reibbremsbeiag an den Bremskörper andrückendes Teil des Spindeltriebs drehfest und axial verschieblich verbunden ist, aufweist, dadurch gekennzeichnet, daß zum Verringern einer Bremskraft die Drehsicherungseinrichtung (42) gelöst wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei gelöster Drehsicherungseinrichtung (42) der Elektromotor (22) weiterhin in einer Vorwärtsdrehrichtung bestromt wird.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei gelöster Drehsicherungseinrichtung (42) der Elektromotor (22) in einer Rückdrehrichtung bestromt wird.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Drehsicherungseinrichtung (42) das den Reibbremsbelag (14) an den Bremskörper (16) andrückende Teil (28) des Spindeltriebs (20) mit einem steuerbaren Bremsmoment drehfest hält, und daß das Bremsmoment der Drehsicherungseinrichtung (42) so gesteuert wird, daß die Bremskraft der Radbremsvorrichtung (10) auf einen vorgebbaren Wert begrenzt ist.
6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß nach Beendigung eines Bremsvorganges mit dem Elektromotor (22) ein Luftspalt zwischen dem Reibbremsbelag (14) und dem Bremskörper (16) eingestellt wird.
7. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei gelöster Radbremsvorrichtung (10) vor Beginn eines Bremsvorgangs die Drehsicherungseinrichtung (42) gelöst und der Elektromotor (22) in Vorwärtsdrehrichtung bestromt wird.
EP99947200A 1998-12-22 1999-07-13 Verfahren zum betrieb einer elektromechanischen radbremsvorrichtung Withdrawn EP1140598A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19859325A DE19859325A1 (de) 1998-12-22 1998-12-22 Verfahren zum Betrieb einer elektromechanischen Radbremsvorrichtung
DE19859325 1998-12-22
PCT/DE1999/002157 WO2000037296A1 (de) 1998-12-22 1999-07-13 Verfahren zum betrieb einer elektromechanischen radbremsvorrichtung

Publications (1)

Publication Number Publication Date
EP1140598A1 true EP1140598A1 (de) 2001-10-10

Family

ID=7892160

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99947200A Withdrawn EP1140598A1 (de) 1998-12-22 1999-07-13 Verfahren zum betrieb einer elektromechanischen radbremsvorrichtung

Country Status (5)

Country Link
EP (1) EP1140598A1 (de)
JP (1) JP2002532672A (de)
KR (1) KR20010093205A (de)
DE (1) DE19859325A1 (de)
WO (1) WO2000037296A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255192B4 (de) * 2002-11-27 2015-03-19 Robert Bosch Gmbh Elektromechanische Bremse
DE102004024403B4 (de) * 2004-05-17 2006-03-23 Lucas Automotive Gmbh Elektromechanischer Bremsdruckerzeuger für eine Kraftfahrzeugbremsanlage und Kraftfahrzeugbremsanlage
DE102005035607A1 (de) * 2005-07-29 2007-02-15 Robert Bosch Gmbh Elektromechanische Bremse
DE102005035608A1 (de) * 2005-07-29 2007-02-08 Robert Bosch Gmbh Selbstverstärkende elektromechanische Scheibenbremse
DE102005035597A1 (de) * 2005-07-29 2007-02-01 Robert Bosch Gmbh Faltenbalg für eine selbstverstärkende, elektromechanische Scheibenbremse und Scheibenbremse mit einem derartigen Faltenbalg
FR2934438B1 (fr) * 2008-07-22 2010-09-03 Artus Actionneur electrique integre
DE102010039441A1 (de) * 2010-08-18 2012-02-23 Robert Bosch Gmbh Verfahren zur Stellwegerkennung einer elektrisch betätigbaren Feststellbremse in einem Fahrzeug
DE102010048327A1 (de) * 2010-10-13 2012-04-19 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Selbstverstärkende Scheibenbremse
KR102481967B1 (ko) * 2015-09-22 2022-12-29 에이치엘만도 주식회사 전자식 캘리퍼 브레이크
DE102019103384A1 (de) * 2019-02-12 2020-08-13 Schaeffler Technologies AG & Co. KG Planetenwälzgewindetrieb
DE102019103385A1 (de) * 2019-02-12 2020-08-13 Schaeffler Technologies AG & Co. KG Planetenwälzgewindetrieb und Aktuator für eine Hinterachslenkung eines Kraftfahrzeuges mit einem derartigen Planetenwälzgewindetrieb
DE102019103383B4 (de) 2019-02-12 2023-08-10 Schaeffler Technologies AG & Co. KG Planetenwälzgewindetrieb und Aktuator für eine Hinterachslenkung eines Kraftfahrzeuges mit einem derartigen Planetenwälzgewindetrieb

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2158894A (en) * 1984-05-15 1985-11-20 Westinghouse Brake & Signal Actuator comprising electric motor and torque limiting device
DE19650405A1 (de) * 1996-12-05 1998-06-10 Bosch Gmbh Robert Elektromechanische Radbremsvorrichtung
DE19652229A1 (de) * 1996-12-16 1998-06-18 Bosch Gmbh Robert Elektromechanisch betätigbare Bremse
WO1999025987A1 (de) * 1997-11-13 1999-05-27 Robert Bosch Gmbh Elektromechanische radbremsvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0037296A1 *

Also Published As

Publication number Publication date
WO2000037296A1 (de) 2000-06-29
KR20010093205A (ko) 2001-10-27
DE19859325A1 (de) 2000-06-29
JP2002532672A (ja) 2002-10-02

Similar Documents

Publication Publication Date Title
EP0944781B1 (de) Elektromechanisch betätigbare bremse
EP1318057B1 (de) Verfahren zum Betreiben einer hydraulischen Fahrzeugbremse mit elektrisch betätigter Feststelleinrichtung
EP1929170B1 (de) Fahrzeugbremse, insbesondere sattelbremse
EP1032772B1 (de) Magnetbremse und elektromechanische bremsvorrichtung mit einer magnetbremse
EP0941421B1 (de) Elektromechanische radbremsvorrichtung
EP2598766B1 (de) Bremsvorrichtung mit einem die bremsscheibe einer reibungsscheibenbremse bildenden rotor einer wirbelstromscheibenbremse
DE102007029662B4 (de) Verfahren zum Betrieb eines motorbetriebenen Scheibenbremssystems
DE19628804B4 (de) Elektromechanisch betätigbare Scheibenbremse
EP0916037B1 (de) Elektromechanisch betätigbare bremse
EP1386092B1 (de) Scheibenbremse mit elektromotorisch angetriebenem verschleissnachstellsystem
WO1997036117A1 (de) Bremsvorrichtung
DE19621533A1 (de) Elektromotorische Bremsvorrichtung
WO2004022394A1 (de) Verfahren zur betätigung einer elektromechanischen feststellbremsvorrichtung
EP1140598A1 (de) Verfahren zum betrieb einer elektromechanischen radbremsvorrichtung
EP2991869A2 (de) Elektromagnetische aktivbremse
DE102020212666A1 (de) Elektromagnetische bremsvorrichtung
DE102011086152B4 (de) Bremseinrichtung
DE69102746T2 (de) Elektromechanische Steuerung mit Hilfe einer Zentrifuge.
DE19926432A1 (de) Elektromechanische Radbremsvorrichtung und Verfahren zum Betrieb derselben
DE19628771B4 (de) Elektromechanisch betätigbare Scheibenbremse
EP1458601A2 (de) Feststellbremsvorrichtung und steuerverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030624