EP1137899B1 - Verbrennungsvorrichtung und verfahren zur verbrennung eines brennstoffs - Google Patents

Verbrennungsvorrichtung und verfahren zur verbrennung eines brennstoffs Download PDF

Info

Publication number
EP1137899B1
EP1137899B1 EP99964516A EP99964516A EP1137899B1 EP 1137899 B1 EP1137899 B1 EP 1137899B1 EP 99964516 A EP99964516 A EP 99964516A EP 99964516 A EP99964516 A EP 99964516A EP 1137899 B1 EP1137899 B1 EP 1137899B1
Authority
EP
European Patent Office
Prior art keywords
combustion
fuel
flow
combustion device
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP99964516A
Other languages
English (en)
French (fr)
Other versions
EP1137899A1 (de
Inventor
Günther SCHULZE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8233108&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1137899(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP99964516A priority Critical patent/EP1137899B1/de
Publication of EP1137899A1 publication Critical patent/EP1137899A1/de
Application granted granted Critical
Publication of EP1137899B1 publication Critical patent/EP1137899B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/161Methods or devices for protecting against, or for damping, noise or other acoustic waves in general in systems with fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a combustion device for combustion a fuel, the fuel being a Fluid flow can be fed to the combustion via a feed channel is.
  • the invention also relates to a corresponding method.
  • outflow processes are described in chapter 5.6.
  • Outflow processes of a fluid from a container in which the fluid is stored at pressure p i and density ⁇ i are shown in more detail.
  • the fluid exits the container as a jet, the jet pressure p a prevailing in the jet.
  • the pressure ratio at which the given container state - i.e. given container pressure ⁇ i and given fluid density ⁇ i and given container opening from which the fluid exits - the mass flow of the fluid no longer changes as the critical pressure ratio (p a / p i ) (k) .
  • p a / p i Depending on the size of the pressure ratio p a / p i, a distinction is made between two types of outflow processes: 1. Subcritical outflow; 2. Supercritical outflow.
  • a Laval nozzle is described in section 5.6.2 of the same book.
  • the Laval nozzle serves the outflowing fluid to expand beyond the critical pressure ratio and thus the flow velocity over the speed of sound increase beyond.
  • the fluid is first of all compresses a narrowing channel, the Flow rate increased to the speed of sound.
  • An expanding channel section follows in which the fluid expands and the flow rate Supersonic range reached.
  • Such a Laval nozzle serves e.g. to achieve maximum outflow speeds for shear gases of rocket engines.
  • the Laval nozzle is behaving here like a venturi tube. For the definition of a Venturi tube follow further details below.
  • Section 5.7 of the same book contains compression flows described.
  • Section 5.7.1 explains how a Subsonic diffuser.
  • Subsonic diffusers are in the direction of flow extended channels, one in the subsonic area current is delayed. Through the Delay there is an increase in pressure.
  • Subsonic diffusers can be found, for example, in jet devices, venturi tubes and in the idlers and outlet housings of turbocompressors.
  • Section 5.7.2 describes a supersonic diffuser where the channel cross-section changes in the direction of flow narrows.
  • the European standard EN ESO 5167-1 concerns flow measurements of fluids with throttling devices.
  • part 1 are bezels, Nozzles and Venturi tubes in fully flowed lines with Circular cross section described.
  • Figure 10 shows a classic one Venturi tube.
  • the Venturi tube flows along a flow direction a fluid.
  • the venturi tube consists of one narrowing in the flow direction inlet cone and a adjoining the inlet cone in the direction of flow, widening outlet cone.
  • A is created in the inlet cone large pressure loss. This is through the outlet cone Pressure loss made up for the most part, so that the overall through the Venturi tube compared to a tube with unchangeable Cross section and the same length Pressure loss remains small.
  • EP-A-122 526 discloses a fuel lance that operates simultaneously both the decoupling of the fuel line to avoid of combustion vibrations as well as the possibility fuel regulation.
  • the fuel lance carries an adjustable, with fuel passage openings provided throttle body, the penetration depth compared to that solid body a measure of the amount of fuel flowing through is.
  • the object of the invention is to provide a combustion device, those in terms of control and influence the spread and formation of a burn induced sound waves has favorable properties.
  • Another object of the invention is to provide a corresponding Process.
  • this object is achieved by specifying a Combustion device for burning fuel with a supply channel for supplying the fuel to one Combustion zone, with the fuel as a fluid stream a flow direction and one in a nominal operating interval nominal speed through the feed channel is feasible and wherein the supply channel in a decoupling area is narrowed, the decoupling area as one continuous narrowing of the feed channel along the flow direction is designed so that from the combustion zone Sound waves running in the fluid flow against the direction of flow at least at the nominal speed in the decoupling area partially reflected.
  • combustion vibrations can result arise that with a fluctuation in a power release a pressure pulse occurs in the fluid flow during combustion.
  • a pressure pulse in the fluid stream in turn has one Non-uniformity in the mass flow into the combustion zone resulting fluid flow. This leads to again a fluctuating release of power during combustion.
  • the geometric designs of the feed channel it can help build positive feedback between pressure pulses in the fluid flow and the fluctuating Power release when combustion comes. It forms a combustion oscillation.
  • Such a combustion vibration can e.g. as a significant noise pollution disruptive.
  • the Invention is based on the knowledge that the spread of sound waves in the fuel via the feed channel into further, acoustically coupled areas the tendency to training such combustion vibrations favored.
  • a acoustic decoupling of the feed channel or several This mechanism prevents fuel supply channels.
  • Such an acoustic decoupling is by a Narrowing of the feed channel or feed channels reached.
  • narrowing in the direction of flow increases Flow velocity of the fluid.
  • the flow rate can be increased so far that contrary to the Direction of flow against the narrowing sound waves be reflected.
  • the constriction is designed so that at a nominal velocity of the fluid flow in the supply channel at the constriction such a high acceleration of the Fluids reveals that a high proportion of those against the narrowing current sound waves is reflected.
  • the nominal speed lies e.g. within a speed interval, such operating conditions of the combustion device corresponds to those with a high tendency to training of combustion vibrations.
  • the decoupling area is considered a continuous one Narrowing of the feed channel along the flow direction educated. Result from such a continuous narrowing less than a discontinuous narrowing Flow and pressure losses due to turbulence.
  • a such continuous narrowing could e.g. B. something like that be trained, such as that in the above-mentioned book by Willi Bohl described supersonic diffuser.
  • a pressure increase area the one Expansion of the feed channel corresponds.
  • the Passage from the decoupling area and pressure increase area corresponds to e.g. that in the European given above Standard Venturi tube or a Laval nozzle.
  • Such a configuration is particularly advantageous if when a high fluid mass flow has to be provided.
  • the fuel is preferably natural gas or oil.
  • the combustion zone is preferably located in a combustion chamber.
  • the combustion chamber can have any shape, special meaning but comes a tubular or an annular Combustion chamber too.
  • Combustion vibrations can occur in a combustion chamber through an interaction of a fluctuation in performance in the combustion and acoustic modes of the Form the combustion chamber.
  • Such combustion chamber vibrations can spread out in fluidically coupled rooms, e.g. into the supply lines of fuel or air and possibly up to a supply pump, which makes it mechanically strong can be loaded.
  • An acoustic decoupling by means of the tapering of the feed channel prevents such Propagation of combustion chamber vibrations.
  • the Tendency to develop combustion chamber vibrations at all reduced, because the available for the combustion chamber vibrations standing acoustic resonance space by decoupling the feed channel is reduced.
  • the combustion device is preferably a gas turbine, especially with an annular combustion chamber.
  • a gas turbine With a gas turbine there is a particularly high level of power release the combustion.
  • Combustion vibrations can be here to particularly large noise pollution and damaging vibrations to lead.
  • There are acoustic modes in an annular combustion chamber due to the complicated geometry practically unpredictable, so that the formation of combustion chamber vibrations is particularly difficult to prevent here.
  • the acoustic decoupling between the ring combustion chamber and the feed channels the combustion media is of particular importance here.
  • the object is also achieved according to the invention by giving a method of burning fuel, the Fuel as a fluid flow with a flow direction a flow direction and one in a nominal operating interval nominal speed fed to a combustion zone is and wherein the fluid flow in a decoupling area is tapered, the fluid flow in the flow direction is continuously narrowed so that from the combustion zone running in the fluid flow against the direction of flow Sound waves at the nominal speed in the decoupling area be at least partially reflected.
  • the fluid flow is preferably continuous in the flow direction narrows.
  • the pressure in the Fluid flow through one following the constriction Expansion of the fluid flow increases. It is further preferred as Natural gas or oil used as fuel.
  • FIG. 1 shows a combustion device 1.
  • a Cross-section circular air duct 3 is also in the Cross section of circular fuel channel 5, which is a supply channel 5, arranged concentrically.
  • air 6 in the form of an air stream 7 with a Flow direction 8 out.
  • fuel channel 5 is as Fluid flow 9 along a flow direction 10 fuel 14, e.g. Oil, led out of a fuel tank 12.
  • the Air 6 and the fuel 14 are in a combustion zone 11 burned in a flame 13.
  • a fluctuation in the power release during the combustion a sound wave calls 15 in the fluid flow 9 of the fuel 14. This sound wave 15 migrates against the direction of flow 10 in Fluid stream 9 upstream.
  • the sound wave 15 could enforce the entire feed channel 5 and approximately to one Fuel pump, not shown, and wander if necessary damage.
  • the combustion zone 11 by means of the feed channel 5 considerably extended rooms acoustically coupled, due to the combustion vibrations in the combustion device 1 could spread and also the resonance rooms represent the formation of combustion vibrations can favor.
  • the decoupling area 17 is due to a narrowing of the feed channel 5 is formed along the flow direction 10.
  • the flow velocity is thus in the decoupling area 17 of the fluid flow 9 increased.
  • the decoupling area 17 is designed so that at a nominal speed of Fluid flow 9 in the feed channel 5 this flow rate is greatly increased in the decoupling area 17, preferably to a value close to the speed of sound in the fluid flow.
  • the remaining one Part continues as the residual sound wave 21 the feed channel 5 upstream.
  • the nominal speed is in one Nominal operating interval, which is an interval of operating states close to a full load and a full load state.
  • the full load state of the combustion device 1 is the maximum value for a power release during combustion. In operating conditions of the combustion device 1, the less power release than a full load correspond, there is less reflection of the Sound wave 15. Combustion vibrations can be special be disturbing and harmful near full load, because there is a high level of power release here. With less Load conditions is therefore less reflection of the Sound wave 15 and thus a higher spread of the sound wave 15 acceptable.
  • Connects to the decoupling area 17 a pressure increase area 23.
  • the decoupling area 17 forms a reflection section together with the pressure increasing area 23 24 with a length 24 of the feed channel 5.
  • the pressure increase area 23 corresponds to an expansion of the Feed channel 5, in this case on the cross section of the feed channel 5, which is also in the flow direction 10 before the decoupling area 17 is present.
  • the reflection section 24 is a venturi tube.
  • the pressure increasing area 23 is preferred designed so that at the nominal speed maximum pressure increase in the fluid flow 9 results.
  • the decoupling area 17 has an entry area 25 and one End area 27 on. The end region 27 is on at the same time Entry area 29 of the pressure increase area 23.
  • the pressure increase area 23 ends at an exit area 31 schematic representation of the pressure curve in the decoupling area 17 and in the pressure increase area 23 is also in the figure 1 added.
  • FIG. 2 shows schematically a gas turbine Combustion device 1.
  • a Compressor 45 and a turbine 47 are arranged.
  • a combustion chamber 49 is connected, which is designed as an annular combustion chamber.
  • the burner 51 has an air duct 3, which is fluidically connected the compressor 45 is connected.
  • the burner 51 continues to point a supply channel 5 for supplying natural gas 14.
  • combustion media So here are air 6 from the compressor 45 and Natural gas 14. These burn in the combustion chamber 49.
  • Hot fuel gases 53 generated drive the turbine 47 on. Due to the great power release in such Gas turbine 1 can with special combustion vibrations large amplitudes arise.
  • Such combustion vibrations can occur as combustion chamber vibrations in the combustion chamber 49 form.
  • a decoupling area 17 is provided in the feed channel 5. On this a pressure increase area closes in the direction of flow 23 on.
  • the effects and advantages of the decoupling area 17 and the pressure increasing area 23 correspond to the to Figure 1 explained.
  • the natural gas supply system, not shown is therefore effective acoustically from the combustion chamber 49 decoupled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

Die Erfindung betrifft eine Verbrennungsvorrichtung (1) zur Verbrennung von Brennstoff (14) mit einem Zufuhrkanal (5) zur Zuführung eines Brennstoffs (14) zu einer Verbrennungszone (11), wobei der Brennstoff (14) in einem Fluidstrom (9) mit einer Strömungsrichtung (10) und einer in einem Nennbetriebsintervall liegenden Nenngeschwindigkeit durch den Zufuhrkanal (5) führbar ist, und wobei der Zufuhrkanal (5) in einem Entkopplungsbereich (17) so verengt ist, daß von der Verbrennungszone (11) im Fluidstrom (9) gegen die Strömungsrichtung (10) laufende Schallwellen (15) bei der Nenngeschwindigkeit im Entkopplungsbereich (17) zumindest teilweise reflektiert werden.

Description

Die Erfindung betrifft eine Verbrennungsvorrichtung zur Verbrennung eines Brennstoffs, wobei der Brennstoff als ein Fluidstrom über einen Zufuhrkanal der Verbrennung zuführbar ist. Die Erfindung betrifft auch ein entsprechendes Verfahren.
In dem Buch "Technische Strömungslehre" von Willi Bohl, 10. Aufl., Vogel-Verlag, Würzburg 1994, sind in Kapitel 5.6 Ausströmvorgänge beschrieben. Genauer dargestellt sind Ausströmvorgänge eines Fluides aus einem Behälter, in dem das Fluid beim Druck pi und der Dichte ρi gespeichert ist. Das Fluid tritt als ein Strahl aus dem Behälter aus, wobei im Strahl der Strahldruck pa herrscht. Man bezeichnet das Druckverhältnis, bei dem sich bei einem gegebenen Behälterzustand - also bei gegebenem Behälterdruck ρi und gegebener Fluiddichte ρi sowie bei gegebener Behälteröffnung, aus der das Fluid austritt - der Massenstrom des Fluides sich nicht mehr ändert, als kritisches Druckverhältnis (pa/pi)(k). Je nach Größe des Druckverhältnisses pa/pi unterscheidet man zwei Arten von Ausströmvorgängen: 1. Unterkritische Ausströmung; 2. Überkritische Ausströmung.
Im Abschnitt 5.6.2 desselben Buchs ist eine Lavaldüse beschrieben. Die Lavaldüse dient dazu, das ausströmende Fluid über das kritische Druckverhältnis hinaus zu expandieren und damit die Strömungsgeschwindigkeit über die Schallgeschwindigkeit hinaus zu erhöhen. Dazu wird das Fluid zunächst durch einen sich verengenden Kanal komprimiert, wobei sich die Strömungsgeschwindigkeit bis zur Schallgeschwindigkeit erhöht. Es folgt ein sich erweiternder Kanalabschnitt, in dem das Fluid expandiert und die Strömungsgeschwindigkeit den Überschallbereich erreicht. Eine solche Lavaldüse dient z.B. zum Erreichen maximaler Ausströmgeschwindigkeiten für Schubgase von Raketentriebwerken. In Bild 5.25 sind verschiedene Betriebszustände einer Lavaldüse dargestellt. In dem zuerst dargestellten Betriebszustand liegt der Austrittsdruck des Fluides über dem kritischen Druck. Die Lavaldüse verhält sich hier wie ein Venturirohr. Zur Definition eines Venturirohres folgen weiter unten nähere Angaben.
Im Abschnitt 5.7 desselben Buchs sind Verdichtungsströmungen beschrieben. Abschnitt 5.7.1 erläutert die Funktionsweise eines Unterschalldiffusors. Unterschalldiffusoren sind in Strömungsrichtung erweiterte Kanäle, in denen eine im Unterschallbereich verlaufende Strömung verzögert wird. Durch die Verzögerung entsteht ein Druckanstieg. Unterschalldiffusoren finden sich beispielsweise in Strahlapparaten, Venturirohren und in den Leiträdern und Austrittsgehäusen von Turboverdichtern. In Abschnitt 5.7.2 ist ein Überschalldiffusor beschrieben, bei dem sich der Kanalquerschnitt in Strömungsrichtung verengt.
Die Europäische Norm EN ESO 5167-1 betrifft Durchflußmessungen von Fluiden mit Drosselgeräten. In Teil 1 sind Blenden, Düsen und Venturirohre in volldurchströmten Leitungen mit Kreisquerschnitt beschrieben. Bild 10 zeigt ein klassisches Venturirohr. Durch das Venturirohr strömt entlang einer Strömungsrichtung ein Fluid. Das Venturirohr besteht aus einem sich in Strömungsrichtung verengenden Einlaufkonus und einem sich an den Einlaufkonus in Strömungsrichtung anschließenden, sich erweiternden Auslaufkonus. Im Einlaufkonus entsteht ein großer Druckverlust. Durch den Auslaufkonus wird dieser Druckverlust zum größten Teilwieder wettgemacht, so daß der insgesamt durch das Venturirohr gegenüber einem Rohr mit unveränderlichem Querschnitt und gleicher Länge entstehende Druckverlust klein bleibt.
In dem Buch "Berechnung der Schallausbreitung in durchströmten Kanälen von Turbomaschinen unter besonderer Berücksichtigung der Auslegung von Drehtonschalldämpfern" von Christian Faber, Verlag Shaker, Aachen 1993, ist im Abschnitt 3.4 dargestellt, wie Diskontinuitäten in Strömungskanälen die Ausbreitung von Schall in einem in diesen Strömungskanälen strömenden Fluid beeinflussen. Es werden Streu-, Reflexions- und Transmissionsfaktoren abgeleitet, mit denen berechnet werden kann, welcher Teil einer einfallenden Schallenergie die Diskontinuität passiert und welcher Teil reflektiert wird.
Die EP-A-122 526 offenbart eine Brennstofflanze, die gleichzeitig sowohl die Abkopplung der Brennstoffleitung zur Vermeidung von Verbrennungsschwingungen als auch die Möglichkeit der Brennstoffregulierung ermöglicht. Die Brennstofflanze trägt einen verstellbaren, mit Brennstoffdurchtrittsöffnungen versehenen Drosselkörper, dessen Eindringtiefe gegenüber dem festen Körper ein Maß für die durchströmende Brennstoffmenge ist.
Aufgabe der Erfindung ist die Angabe einer Verbrennungsvorrichtung, die hinsichtlich der Beherrschung und Beeinflussung der Ausbreitung und der Ausbildung von durch eine Verbrennung induzierten Schallwellen günstige Eigenschaften aufweist. Weitere Aufgabe der Erfindung ist die Angabe eines entsprechenden Verfahrens.
Erfindungsgemäß wird diese Aufgabe gelöst durch Angabe einer Verbrennungsvorrichtung zur Verbrennung von Brennstoff mit einem Zufuhrkanal zur Zuführung des Brennstoffs zu einer Verbrennungszone, wobei der Brennstoff als ein Fluidstrom mit einer Strömungsrichtung und einer in einem Nennbetriebsintervall liegenden Nenngeschwindigkeit durch den Zufuhrkanal führbar ist und wobei der Zufuhrkanal in einem Entkopplungsbereich verengt ist, wobei der Entkopplungsbereich als eine kontinuierliche Verengung des Zufuhrkanals entlang der Strömungsrichtung so ausgebildet ist, daß von der Verbrennungszone im Fluidstrom gegen die Strömungsrichtung laufende Schallwellen bei der Nenngeschwindigkeit im Entkopplungsbereich zumindest teilweise reflektiert werden.
Bei einer Verbrennung können Verbrennungsschwingungen dadurch entstehen, daß bei einer Schwankung einer Leistungsfreisetzung bei der Verbrennung ein Druckpuls im Fluidstrom entsteht. Ein solcher Druckpuls im Fluidstrom hat wiederum eine Verungleichmäßigung im Massenstrom des in die Verbrennungszone eintretenden Fluidstroms zur Folge. Dies führt wieder zu einer zeitlich schwankenden Leistungsfreisetzung bei der Verbrennung. Je nach z.B. den geometrischen Ausbildungen des Zufuhrkanales kann es zur Ausbildung einer positiven Rückkopplung zwischen Druckpulsen im Fluidstrom und der schwankenden Leistungsfreisetzung bei der Verbrennung kommen. Es bildet sich eine Verbrennungsschwingung aus. Eine solche Verbrennungsschwingung kann sich z.B. als erhebliche Lärmbelastung störend auswirken. Bei großen Leistungsfreisetzungen kann es aber auch zu Vibrationen in der Verbrennungsvorrichtung kommen, die letztlich Beschädigungen zur Folge haben können: Die Erfindung geht von der Erkenntnis aus, daß die Ausbreitung von Schallwellen im Brennstoff über den Zufuhrkanal in weitere, akustisch angekoppelte Bereiche die Neigung zur Ausbildung solcher Verbrennungsschwingungen begünstigt. Durch eine akustische Entkopplung des Zufuhrkanales oder auch mehrerer Zufuhrkanäle für den Brennstoff wird dieser Mechanismus unterbunden. Eine solche akustische Entkopplung wird durch eine Verengung des Zufuhrkanales oder der Zufuhrkanäle erreicht.
Durch eine solche, bisher lediglich bei Luftschalldämpfern bekannte, Verengung in Strömungsrichtung erhöht sich die Strömungsgeschwindigkeit des Fluids. Die Strömungsgeschwindigkeit kann dabei so weit erhöht werden, daß entgegen der Strömungsrichtung gegen die Verengung laufende Schallwellen reflektiert werden. Die Verengung wird so ausgelegt, daß sich bei einer Nenngeschwindigkeit des Fluidstroms im Zufuhrkanal an der Verengung eine so hohe Beschleunigung des Fluides ergibt, daß ein hoher Anteil der gegen die Verengung laufenden Schallwellen reflektiert wird. Die Nenngeschwindigkeit liegt z.B. innerhalb eines Geschwindigkeitsintervalls, das solchen Betriebszuständen der Verbrennungsvorrichtung entspricht, bei denen eine hohe Neigung zur Ausbildung von Verbrennungsschwingungen besteht.
Hierbei ist der Entkopplungsbereich als eine kontinuierliche Verengung des Zufuhrkanales entlang der Strömungsrichtung ausgebildet. An einer solchen kontinuierlichen Verengung ergeben sich gegenüber einer diskontinuierlichen Verengung geringere Strömungs- und Druckverluste durch Turbulenzen. Eine solche kontinuierliche Verengung könnte z. B. so ähnlich ausgebildet sein, wie der im obengenannten Buchs von Willi Bohl beschriebene Überschalldiffusor.
Bevorzugtermaßen schließt sich in Strömungsrichtung an den Entkopplungsbereich ein Druckerhöhungsbereich an, der einer Erweiterung des Zufuhrkanales entspricht. Durch einen solchen Druckerhöhungsbereich wird der Druck im Fluidstrom erhöht. Dies geschieht durch die Erweiterung des Zufuhrkanales. Die Passage aus Entkopplungsbereich und Druckerhöhungsbereich entspricht somit z.B. dem in der oben angegebenen Europäischen Norm dargestellten Venturirohr oder einer Lavaldüse. Eine solche Ausgestaltung ist insbesondere dann von Vorteil, wenn ein hoher Fluidmassenstrom bereitgestellt werden muß. Durch die Kombination von Entkopplungsbereich und Druckerhöhungsbereich wird somit erreicht, daß bei der Verbrennungsvorrichtung eine große Leistungsfreisetzung mit Hilfe eines großen Fluidmassenstroms erreichbar ist, wobei gleichzeitig mit eine wirksame akustische Entkopplung von Verbrennungszone und Zufuhrkanal bereitgestellt wird.
Bevorzugt ist der Brennstoff Erdgas oder Öl.
Vorzugsweise liegt die Verbrennungszone in einer Brennkammer. Die Brennkammer kann eine beliebige Form haben, besondere Bedeutung kommt aber einer rohrförmigen oder einer ringförmigen Brennkammer zu. In einer Brennkammer können sich Verbrennungsschwingungen durch eine Wechselwirkung einer Leistungsschwankung bei der Verbrennung und akustischen Eigenmoden der Brennkammer bilden. Solche Brennkammerschwingungen können sich in strömungstechnisch angekoppelten Räume ausbreiten, z.B. in die Zufuhrleitungen von Brennstoff oder Luft und u.U. bis zu einer Versorgungspumpe, die dadurch mechanisch stark belastet werden kann, vordringen. Eine akustische Entkopplung mittels der Verjüngung des Zufuhrkanals verhindert eine solche Ausbreitung der Brennkammerschwingungen. Zudem wird die Neigung, überhaupt Brennkammerschwingungen auszubilden, reduziert, da der für die Brennkammerschwingungen zur Verfügung stehende akustische Resonanzraum durch die Abkopplung des Zufuhrkanals verkleinert wird.
Bevorzugt ist die Verbrennungsvorrichtung eine Gasturbine, insbesondere mit einer Ringbrennkammer. Bei einer Gasturbine kommt es zu einer besonders hohen Leistungsfreisetzung bei der Verbrennung. Verbrennungsschwingungen können somit hier zu besonders großen Lärmbelastungen und schädigenden Vibrationen führen. In einer Ringbrennkammer sind akustische Eigenmoden durch die komplizierte Geometrie praktisch nicht vorhersagbar, so daß die Ausbildung von Brennkammerschwingungen hier besonders schwer zu verhindern ist. Die akustische Entkopplung zwischen der Ringbrennkammer und den Zufuhrkanälen der Verbrennungsmedien ist hier also von besonderer Bedeutung.
Die Aufgabe wird erfindungsgemäß ebenso gelöst durch Angabe eines Verfahrens zur Verbrennung von Brennstoff, wobei der Brennstoff als ein Fluidstrom mit einer Strömungsrichtung mit einer Strömungsrichtung und einer in einem Nennbetriebsintervall liegenden Nenngeschwindigkeit einer Verbrennungszone zugeführt wird und wobei der Fluidstrom in einem Entkopplungsbereich verjüngt wird, wobei der Fluidstrom in Strömungsrichtung kontinuierlich so verengt wird, daß von der Verbrennungszone im Fluidstrom gegen die Strömungsrichtung laufende Schallwellen bei der Nenngeschwindigkeit im Entkopplungsbereich zumindest teilweise reflektiert werden.
Die Vorteile eines solchen Verfahrens ergeben sich entsprechend den obigen Ausführungen zu den Vorteilen der Verbrennungsvorrichtung.
Bevorzugt wird der Fluidstrom in Strömungsrichtung kontinuierlich verengt. Bevorzugtermaßen wird der Druck im Fluidstrom durch eine im Anschluß an die Verengung folgende Aufweitung des Fluidstroms erhöht. Weiter bevorzugt wird als Brennstoff Erdgas oder Öl verwendet. Vorzugsweise wird der Brennstoff in einer Brennkammer einer Gasturbine, insbesondere einer Ringbrennkammer, verbrannt.
Ausführungsbeispiele der Erfindung werden anhand der Zeichnung näher erläutert. Es zeigen schematisch und nicht maßstäblich:
Figur 1
eine Verbrennungsvorrichtung und
Figur 2
eine Gasturbine.
Gleiche Bezugszeichen haben in den verschiedenen Figuren die gleiche Bedeutung.
Figur 1 zeigt eine Verbrennungsvorrichtung 1. In einem im Querschnitt kreisförmigen Luftkanal 3 ist ein ebenfalls im Querschnitt kreisförmiger Brennstoffkanal 5, der einen Zufuhrkanal 5 darstellt, konzentrisch angeordnet. In dem Luftkanal 3 wird Luft 6 in Form eines Luftstromes 7 mit einer Strömungsrichtung 8 geführt. Im Brennstoffkanal 5 wird als Fluidstrom 9 entlang einer Strömungsrichtung 10 Brennstoff 14, z.B. Öl, aus einem Brennstoffbehälter 12 geführt. Die Luft 6 und der Brennstoff 14 werden in einer Verbrennungszone 11 in einer Flamme 13 verbrannt. Eine Schwankung in der Leistungsfreisetzung bei der Verbrennung ruft eine Schallwelle 15 im Fluidstrom 9 des Brennstoffs 14 hervor. Diese Schallwelle 15 wandert entgegen der Strömungsrichtung 10 im Fluidstrom 9 stromaufwärts. Bei einem Zufuhrkanal 5 mit einem unveränderlichen Querschnitt könnte die Schallwelle 15 den gesamten Zufuhrkanal 5 durchsetzen und etwa bis hin zu einer nicht dargestellten Brennstoffpumpe wandern und diese eventuell schädigen. Bei solchen, bisher verwendeten Ausführungen wurden somit an die Verbrennungszone 11 mittels des Zufuhrkanales 5 erheblich ausgedehnte Räume akustisch angekoppelt, durch die Verbrennungsschwingungen sich in der Verbrennungsvorrichtung 1 ausbreiten konnten und die zudem Resonanzräume darstellen, die eine Ausbildung von Verbrennungsschwingungen begünstigen können.
Bei der hier gezeigten Verbrennungsvorrichtung 1 wird demgegenüber eine akustische Entkopplung des Zufuhrkanals 5 von der Verbrennungszone 11 durch einen Entkopplungsbereich 17 erreicht. Der Entkopplungsbereich 17 ist durch eine Verengung des Zufuhrkanals 5 entlang der Strömungsrichtung 10 gebildet. Im Entkopplungsbereich 17 wird damit die Strömungsgeschwindigkeit des Fluidstroms 9 erhöht. Der Entkopplungsbereich 17 ist so ausgelegt, daß bei einer Nenngeschwindigkeit des Fluidstroms 9 im Zufuhrkanal 5 diese Strömungsgeschwindigkeit im Entkopplungsbereich 17 stark erhöht wird, vorzugsweise auf einen Wert nahe der Schallgeschwindigkeit im Fluidstrom. Dadurch wird die Schallwelle 15 im Entkopplungsbereich 17 zum großen Teil als Reflexionswelle 19 reflektiert. Der verbleibende Teil läuft als Restschallwelle 21 weiter den Zufuhrkanal 5 stromaufwärts. Die Nenngeschwindigkeit liegt in einem Nennbetriebsintervall, welches einem Intervall von Betriebszuständen nahe einer Vollast und einem Vollastzustand entspricht. Der Vollastzustand der verbrennungsvorrichtung 1 ist der maximale Wert für eine Leistungsfreisetzung bei der Verbrennung. Bei Betriebszuständen der Verbrennungsvorrichtung 1, die einer geringeren Leistungsfreisetzung als einer Volllast entsprechen, erfolgt eine geringere Reflexion der Schallwelle 15. Verbrennungsschwingungen können besonders störend und schädlich in der Nähe des Vollastzustandes sein, da es hier zu einer hohen Leistungsfreisetzung kommt. Bei geringeren Lastzuständen ist somit eine geringere Reflexion der Schallwelle 15 und somit eine höhere Ausbreitung der Schallwelle 15 akzeptabel. An den Entkopplungsbereich 17 schließt sich ein Druckerhöhungsbereich 23 an. Der Entkopplungsbereich 17 bildet zusammen mit dem Druckerhöhungsbereich 23 einen Reflexionsabschnitt 24 mit einer Länge 24 des Zufuhrkanales 5. Der Druckerhöhungsbereich 23 entspricht einer Erweiterung des Zufuhrkanals 5, in diesem Fall auf den Querschnitt des Zufuhrkanals 5, der auch in Strömungsrichtung 10 vor dem Entkopplungsbereich 17 vorliegt. Der Reflexionsabschnitt 24 ist ein Venturirohr. Der Druckerhöhungsbereich 23 ist vorzugsweise so ausgelegt, daß sich bei der Nenngeschwindigkeit eine maximale Druckerhöhung im Fluidstrom 9 ergibt. Der Entkopplungsbereich 17 weist einen Eintrittsbereich 25 und einen Endbereich 27 auf. Der Endbereich 27 ist gleichzeitig ein Eintrittsbereich 29 des Druckerhöhungsbereichs 23. Der Druckerhöhungsbereich 23 endet an einem Austrittsbereich 31. Eine schematische Darstellung des Druckverlaufs im Entkopplungsbereich 17 und im Druckerhöhungsbereich 23 ist mit in die Figur 1 aufgenommen. Zwischen dem Eintrittsbereich 25 des Entkopplungsbereichs 17 und dem Endbereich 27 des Entkopplungsbereichs 17 ergibt sich ein deutlicher Druckverlust im Fluidstrom 9. Dieser Druckverlust wird im Druckerhöhungsbereich 23 zum größten Teil wieder ausgeglichen, so daß sich insgesamt ein nur geringer Druckverlust Δp gegenüber einem über diese Strecke des Zufuhrkanals 5 entstehenden Druckverlustes bei einem unveränderlichen Querschnitt des Zufuhrkanals 5 ergibt (strichliert dargestellt).
Die Figur 2 zeigt schematisch eine als Gasturbine ausgeführte Verbrennungsvorrichtung 1. Entlang einer Achse 43 sind ein Verdichter 45 und eine Turbine 47 angeordnet. Zwischen Verdichter 45 und Turbine 47 ist eine Brennkammer 49 geschaltet, die als Ringbrennkammer ausgeführt ist. In die Brennkammer 49 münden eine Mehrzahl von Brennern 51, hier ist der übersichtlichkeit halber nur ein Brenner 51 dargestellt. Der Brenner 51 weist einen Luftkanal 3 auf, der strömungstechnisch mit dem Verdichter 45 verbunden ist. Der Brenner 51 weist weiterhin einen Zufuhrkanal 5 zur Zuführung von Erdgas 14 auf. Verbrennungsmedien sind also hier Luft 6 vom Verdichter 45 und Erdgas 14. Diese verbrennen in der Brennkammer 49. Die dadurch entstehenden heißen Brenngase 53 treiben die Turbine 47 an. Durch die große Leistungsfreisetzung in einer solchen Gasturbine 1 können Verbrennungsschwingungen mit besonders großen Amplituden entstehen. Solche Verbrennungsschwingungen können sich als Brennkammerschwingungen in der Brennkammer 49 ausbilden. Um zu verhindern, daß sich solche Brennkammerschwingungen über den Zufuhrkanal 5 auf das gesamte, nicht näher dargestellte Erdgaszuleitungssystem ausbreiten, ist im Zufuhrkanal 5 ein Entkopplungsbereich 17 vorgesehen. An diesen schließt sich in Strömungsrichtung ein Druckerhöhungsbereich 23 an. Die Wirkungen und Vorteile des Entkopplungsbereichs 17 und des Druckerhöhungsbereichs 23 entsprechen den zu Figur 1 erläuterten. Das nicht näher dargestellte Erdgaszufuhrsystem ist somit wirksam von der Brennkammer 49 akustisch entkoppelt.

Claims (14)

  1. Verbrennungsvorrichtung (1) zur Verbrennung von Brennstoff (14) mit einem Zufuhrkanal (5) zur Zuführung von Brennstoff (14) zu einer Verbrennungszone (11), wobei der Brennstoff (14) in einem Fluidstrom (9) mit einer Strömungsrichtung (10) und einer in einem Nennbetriebsintervall liegenden Nenngeschwindigkeit durch den Zufuhrkanal (5) führbar ist, wobei der Zufuhrkanal (5) in einem Entkopplungsbereich (17) verengt ist, dadurch gekennzeichnet, daß der Entkopplungsbereich (17) als eine kontinuierliche Verengung des Zufuhrkanales (5) entlang der Strömungsrichtung (10) so ausgebildet ist, daß von der Verbrennungszone (11) im Fluidstrom (9) gegen die Strbmungsrichtung (10) laufende Schallwellen (15) bei der Nenngeschwindigkeit im Entkopplungsbereich (17) zumindest teilweise reflektiert werden.
  2. Verbrennungsvorrichtung (1) nach Anspruch 1,
    dadurch gekennzeichnet, daß der Zufuhrkanal (5) einen kreis- oder ringförmigen Querschnitt aufweist.
  3. Verbrennungsvorrichtung (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß sich in Strömungsrichtung (10) an den Entkopplungsbereich (17) ein Druckerhöhungsbereich (23) anschließt, in dem sich der Zufuhrkanal (5) erweitert.
  4. Verbrennungsvorrichtung (1) nach Anspruch 3,
    dadurch gekennzeichnet, daß der Entkopplungsbereich (17) zusammen mit dem Druckerhöhungsbereich (23)einen Reflexionsabschnitt (22) bilden, der in Form einer Lavaldüse ausgebildet ist.
  5. Verbrennungsvorrichtung (1) nach Anspruch 3,
    dadurch gekennzeichnet, daß der Entkopplungsbereich (17) zusammen mit dem Druckerhöhungsbereich (23) einen Reflexionsabschnitt (22) bilden, der in Form eines Venturirohres ausgebildet ist.
  6. Verbrennungsvorrichtung (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß der Brennstoff Erdgas oder Öl ist.
  7. Verbrennungsvorrichtung (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die Verbrennungszone (11) in einer Brennkammer (49) liegt.
  8. Verbrennungsvorrichtung (1) nach Anspruch 7,
    gekennzeichnet durch eine Ausführung als Gasturbine .
  9. Verbrennungsvorrichtung (1) nach Anspruch 7 oder 8,
    d a durch gekennzeichnet; daß die Brennkammer (49) als Ringbrennkammer ausgeführt ist.
  10. Verbrennungsvorrichtung (1) nach einem der vorhergehenden Ansprüche,
    bei der das Nennbetriebsintervall ein Vollastintervall ist, das die Betriebszustände umfaßt, bei denen eine bei der Verbrennung umsetzbare Energie zumindest nahezu maximal ist, dadurch gekennzeichnet, daß der Entkopplungsbereich (17) so verengt ist, daß im Vollastintervall ein gegenüber anderen Zuständen größerer Anteil an Schallwellen (15) reflektiert wird.
  11. Verfahren zur Verbrennung eines Brennstoffs (14) bei dem ein Fluidstrom (9) mit einer Strömungsrichtung (10) und einer in einem Nennbetriebsintervall liegenden Nenngeschwindigkeit einer Verbrennungszone (11) zugeführt wird, wobei der Fluidstrom (9) in einem Entkopplungsbereich (17) verengt wird, dadurch gekennzeichnet, daß der Fluidstrom (9) in Strömungsrichtung (8, 10) kontinuierlich so verengt wird, daß von der Verbrennungszone (11) im Fluidstrom (9) gegen die Strömungsrichtung (8, 10) laufende Schallwellen (15) bei der Nenngeschwindigkeit im Entkopplungsbereich (17) reflektiert werden.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet, daß der Fluidstrom (9) im Anschluß an die Verengung aufgeweitet und damit der Druck im Fluidstrom (9) erhöht wird.
  13. Verfahren nach einem der Ansprüche 11 oder 12,
    dadurch gekennzeichnet, daß als Brennstoff (14) Erdgas oder Öl verwendet wird.
  14. Verfahren nach Anspruche 11, 12 oder 13,
    dadurch gekennzeichnet, daß der Brennstoff (14) in einer Brennkammer (49), insbesondere einer Ringbrennkammer, einer Gasturbine (1) verbrannt wird.
EP99964516A 1998-12-08 1999-12-01 Verbrennungsvorrichtung und verfahren zur verbrennung eines brennstoffs Revoked EP1137899B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99964516A EP1137899B1 (de) 1998-12-08 1999-12-01 Verbrennungsvorrichtung und verfahren zur verbrennung eines brennstoffs

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP98123359 1998-12-08
EP98123359 1998-12-08
EP99964516A EP1137899B1 (de) 1998-12-08 1999-12-01 Verbrennungsvorrichtung und verfahren zur verbrennung eines brennstoffs
PCT/EP1999/009401 WO2000034714A1 (de) 1998-12-08 1999-12-01 Verbrennungsvorrichtung und verfahren zur verbrennung eines brennstoffs

Publications (2)

Publication Number Publication Date
EP1137899A1 EP1137899A1 (de) 2001-10-04
EP1137899B1 true EP1137899B1 (de) 2003-11-12

Family

ID=8233108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99964516A Revoked EP1137899B1 (de) 1998-12-08 1999-12-01 Verbrennungsvorrichtung und verfahren zur verbrennung eines brennstoffs

Country Status (5)

Country Link
US (1) US6615587B1 (de)
EP (1) EP1137899B1 (de)
JP (1) JP2002531805A (de)
DE (1) DE59907751D1 (de)
WO (1) WO2000034714A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096201A1 (de) * 1999-10-29 2001-05-02 Siemens Aktiengesellschaft Brenner
US6820431B2 (en) * 2002-10-31 2004-11-23 General Electric Company Acoustic impedance-matched fuel nozzle device and tunable fuel injection resonator assembly
EP2110602A1 (de) * 2008-04-16 2009-10-21 Siemens Aktiengesellschaft Akustiche Teilentkopplung zur Verringerung von selbstinduzierten Flammenschwingungen
US20100089065A1 (en) * 2008-10-15 2010-04-15 Tuthill Richard S Fuel delivery system for a turbine engine
JP5448762B2 (ja) * 2009-12-02 2014-03-19 三菱重工業株式会社 ガスタービン用燃焼バーナ
US8322140B2 (en) * 2010-01-04 2012-12-04 General Electric Company Fuel system acoustic feature to mitigate combustion dynamics for multi-nozzle dry low NOx combustion system and method
DE212013000118U1 (de) * 2012-05-15 2015-01-30 Andritz Technology And Asset Management Gmbh Zellstofftrockner mit Blaskästen zum Trocknen einer Zellstoffbahn
JP5762481B2 (ja) * 2013-07-16 2015-08-12 三菱日立パワーシステムズ株式会社 燃料ノズル、これを備えた燃焼器及びガスタービン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958413A (en) * 1974-09-03 1976-05-25 General Motors Corporation Combustion method and apparatus
EP0122526B1 (de) * 1983-04-13 1987-05-20 BBC Aktiengesellschaft Brown, Boveri & Cie. Brennstofflanze für die Brennkammer einer Gasturbine
US4835962A (en) * 1986-07-11 1989-06-06 Avco Corporation Fuel atomization apparatus for gas turbine engine
GB2224315B (en) 1988-08-10 1992-09-02 Fawcett Christie Hydraulics Li Hydraulic noise attenuators
CZ114994A3 (en) * 1991-11-15 1994-08-17 Siemens Ag Device for suppressing vibrations induced by combustion within a combustion chamber
US5211004A (en) * 1992-05-27 1993-05-18 General Electric Company Apparatus for reducing fuel/air concentration oscillations in gas turbine combustors
US5319931A (en) * 1992-12-30 1994-06-14 General Electric Company Fuel trim method for a multiple chamber gas turbine combustion system
DE4430697C1 (de) * 1994-08-30 1995-09-14 Freudenberg Carl Fa Zuluftschalldämpfer
NL1000492C1 (nl) 1995-06-02 1996-12-03 Q E International Bv Geluidsdemper, een hiermee uitgeruste cokesovengasinstallatie, en een schot voor de geluidsdemper.

Also Published As

Publication number Publication date
JP2002531805A (ja) 2002-09-24
US6615587B1 (en) 2003-09-09
EP1137899A1 (de) 2001-10-04
DE59907751D1 (de) 2003-12-18
WO2000034714A1 (de) 2000-06-15

Similar Documents

Publication Publication Date Title
EP1481195B1 (de) Brenner, verfahren zum betrieb eines brenners und gasturbine
DE19903770B4 (de) Vergasungsbrenner für einen Gasturbinenmotor
DE60105531T2 (de) Gasturbinenbrennkammer, Gasturbine und Düsentriebwerk
EP1224423B1 (de) Brenner
DE4418014A1 (de) Verfahren zum Fördern und Vermischen eines ersten Fluids mit einem zweiten, unter Druck stehenden Fluid
EP0985882B1 (de) Schwingungsdämpfung in Brennkammern
EP0576717A1 (de) Gasturbinen-Brennkammer
DE102009026056A1 (de) Brennkammerstruktur
CH697709B1 (de) Brennkammer mit gekühltem Venturirohr.
EP1342953A1 (de) Gasturbine
EP1137899B1 (de) Verbrennungsvorrichtung und verfahren zur verbrennung eines brennstoffs
DE102016106984A1 (de) Systeme und Verfahren zur Steuerung der Verbrennungsdynamik in einem Verbrennungssystem
EP2260238B1 (de) Verfahren zum Betrieb eines Vormischbrenners
DE3023900A1 (de) Diffusorvorrichtung und damit ausgeruestetes gasturbinentriebwerk
CH697802A2 (de) Leckagen reduzierendes Venturi-Rohr für trockene Stickoxid-(NOx)-Niedrigemissions-Brenner.
EP1892472B1 (de) Verbrennungssystem insbesondere für eine Gasturbine
EP2187125A1 (de) Vorrichtung und Verfahren zur Dämpfung von Verbrennungsschwingungen
DE102007025051A1 (de) Hüttengasbrenner
EP0845639B1 (de) Brennkammer und Verfahren zu deren Betrieb
EP1114967B1 (de) Verfahren und Vorrichtung zur Unterdrückung von Strömungswirbeln innerhalb einer Brennkammer einer Strömungskraftmaschine
DE10352252B4 (de) Kompressor für eine Turbogruppe
EP3473930A1 (de) Düse für eine brennkammer eines triebwerks
EP1240421B1 (de) Turbostrahltriebwerk
WO2009127507A1 (de) Akustische teilentkopplung zur verringerung von selbstinduzierten flammenschwingungen
DE102018211907A1 (de) Luftversorgungssystem für ein Luftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021213

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59907751

Country of ref document: DE

Date of ref document: 20031218

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040117

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALSTOM TECHNOLOGY LTD.

Effective date: 20040812

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071213

Year of fee payment: 9

Ref country code: FR

Payment date: 20071219

Year of fee payment: 9

Ref country code: CH

Payment date: 20080304

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080218

Year of fee payment: 9

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20080417

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20080417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL