EP1135606A1 - Fuel injection valve for internal combustion engines - Google Patents

Fuel injection valve for internal combustion engines

Info

Publication number
EP1135606A1
EP1135606A1 EP00967602A EP00967602A EP1135606A1 EP 1135606 A1 EP1135606 A1 EP 1135606A1 EP 00967602 A EP00967602 A EP 00967602A EP 00967602 A EP00967602 A EP 00967602A EP 1135606 A1 EP1135606 A1 EP 1135606A1
Authority
EP
European Patent Office
Prior art keywords
control
fuel injection
valve
valve member
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00967602A
Other languages
German (de)
French (fr)
Other versions
EP1135606B1 (en
Inventor
Jaroslaw Hlousek
Heinrich Werger
Otto Hagenauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1135606A1 publication Critical patent/EP1135606A1/en
Application granted granted Critical
Publication of EP1135606B1 publication Critical patent/EP1135606B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • F02M61/045The valves being provided with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • Such a fuel injection valve is known from published patent application DE 195 08 636 AI.
  • a piston-shaped valve member that is axially movable against the closing force of a spring is arranged in the bore of the valve body.
  • the valve member At its end on the combustion chamber side, the valve member has a valve sealing surface which interacts with a valve seat formed in the valve body, as a result of which at least one injection opening is controlled.
  • the inward or outward opening stroke movement of the valve member is limited by a stroke stop. When the valve member closes away from the stroke stop, the valve member is accelerated towards the valve seat by the force of the spring.
  • the fuel injection valve for internal combustion engines according to the invention with the characterizing features of claim 1 has the advantage that the placement of the valve member on the valve seat is additionally damped during the closing movement.
  • a control chamber which surrounds the valve member over its entire circumference, is arranged between the section of the valve member guided in the bore and the leak oil chamber.
  • a cylindrical part of the valve member dips into the control bore, as a result of which an annular throttle gap is formed between the control bore and the cylindrical part of the valve member, through which the fuel can only flow out of the control chamber in a throttled manner.
  • the noise caused by the closing of the valve member is thus reduced, which leads to a quieter running of the internal combustion engine.
  • the damping results in less wear on the valve sealing surface or the valve seat.
  • Another advantage of the invention is that it can be used both with fuel injectors opening inwards, away from the combustion chamber, and with fuel injection valves opening outwards.
  • Control room to be adjustable via adjustable throttle connections.
  • the spring loading the valve member is arranged in the leak oil chamber, which has an outflow channel through which the fuel is fed back into the fuel storage tank via an outflow line.
  • the outflow rate of the fuel from the control chamber depends not only on the flow resistance of the throttle connection to the leakage chamber, but also on the pressure difference between the leakage chamber and the control chamber. If the pressure of the fuel in the leakage chamber is relatively high, the fuel will run out of the control chamber more slowly than at low pressure. As a result, a higher pressure can build up in the control chamber, which more strongly dampens the contact movement of the valve member via the higher force on the pressure surface.
  • a pressure maintaining valve in the drain channel of the leak oil chamber or in the drain line, a predetermined pressure in the leak oil chamber can be maintained.
  • the flow rate from the control room and thus the damping effect of the control room can be influenced via the holding pressure. Is this
  • Pressure-maintaining valve designed to be adjustable, the damping effect can be adapted to the respective requirements depending on the operating state of the internal combustion engine.
  • FIG. 1 shows a longitudinal section through the first exemplary embodiment of an inward opening fuel injection valve
  • FIG. 2 shows an enlargement of FIG. 1 in the area of the control chamber
  • FIG. 3 shows a longitudinal section through the second exemplary embodiment of an outwardly opening fuel injection valve
  • FIGS. 4a and 4b two configurations of the fuel drain system with a pressure control valve.
  • a fuel injection valve for internal combustion engines according to the invention is shown in longitudinal section in FIG. The structure is first described with reference to FIG. 1 and then the mode of operation of the fuel injection valve is explained.
  • a valve body 1 which can be constructed in several parts, is arranged in a receiving bore of the housing of an internal combustion engine (not shown in the drawing), the upper end of the valve body 1 facing away from the combustion chamber being fixed in the receiving bore, while the lower end facing the combustion chamber is fixed in the Combustion chamber of the internal combustion engine protrudes.
  • a bore 5 is formed in the valve body 1 and is divided into an upper section 5a and a lower section 5b.
  • the bore 5 ends at its end on the combustion chamber side within the valve body 1, the part of the valve body 1 which closes the bore 5 towards the combustion chamber being designed as an essentially conical valve seat 7.
  • a blind hole 19 adjoins the valve seat 7 toward the combustion chamber, in which at least one injection opening 8 is arranged, which connects the blind hole 19 with the combustion chamber.
  • a piston-shaped, axially movable valve member 4 is arranged, which its combustion chamber end has an essentially conical valve sealing surface 6 which interacts with the valve seat 7 formed in the valve body.
  • the valve member 4 is stepped in diameter, being divided into an upper section 4a and a lower section 4b. The valve member 4 is guided with its upper portion 4a in the bore 5.
  • the lower section 4b of the valve member 4 is made smaller in diameter than the upper section 4a, so that a pressure shoulder 9 is formed at the transition between the two sections 4a, 4b.
  • annular channel 18 is formed, which forms a pressure chamber 3 in the area of the pressure shoulder 9 through a radial cross-sectional expansion.
  • An inlet channel 2, which runs in the valve body 1, opens into the pressure chamber 3 and can be connected at its other end to a high-pressure fuel pump or another high-pressure source via a high-pressure inlet line (not shown in the drawing).
  • the inlet channel 2 is connected to the valve seat 7 via the pressure chamber 3 and the ring channel 18.
  • the valve sealing surface 6 releases the connection from the ring channel 18 to the blind hole 19, as a result of which the inlet channel 2 is connected to the injection opening 8.
  • the upper section 4a of the valve member 4 is followed by an essentially cylindrical control piston 11 with a larger diameter, as a result of which a pressure surface 12 is arranged at the transition from the valve member 4 to the control piston 11.
  • a control chamber 10 is formed in the area of the upper section 4a of the valve member 4 by a radial cross-sectional expansion of the bore 5.
  • the lateral surface of the control piston 11 has a damping edge 13 which interacts with a control edge which is formed by a section of the bore 5 designed as a control bore 40.
  • an intermediate pin 17 arranged coaxially to the valve member 4 in an intermediate bore 26, which in turn is connected to a spring plate 22 which projects into a leak oil space 20 formed at the end of the valve body 1 facing away from the combustion chamber.
  • the upper section 5a of the bore 5 is connected to the leak oil chamber 20, which in turn is connected to an outlet system 35 via an outlet channel 30 formed in the valve body 1.
  • a spring 21 is arranged under prestress, which presses the valve member 4 against the valve seat 7 via the spring plate 22, the intermediate pin 17 and the control piston 11 with the valve sealing surface 6.
  • the diameter of the intermediate pin 17 is smaller than that of the control piston 11, as a result of which a stop shoulder 24 is formed at the transition from the control piston 11 to the intermediate pin 17.
  • a stop ring 23 is arranged coaxially to the axis of the valve member 4.
  • the stop ring 23 is fixed in the intermediate bore 26 and the side of the stop ring 23 facing the combustion chamber is designed as a stroke stop 25, the axial distance of the stroke stop 25 from the stop shoulder 24 in the closed state of the fuel injection valve determining the opening stroke h of the valve member 4 ,
  • the overlap s of the damping edge 13 and the control edge 14 in the closed position of the valve member 4 is always such that it is smaller than the opening stroke h of the valve member 4.
  • the overlap s is preferably 10 to 50% of the opening stroke h.
  • FIG. 2 shows the area of the control chamber 11 of the fuel injection valve enlarged again.
  • the damping edge 13 and the control edge 14 overlap, so that the control chamber 10 is connected to the leak oil chamber 20 only via a throttle gap 15.
  • the second opening of the Control chamber 10 is provided via the throttling annular gap 16 formed between the upper section of the valve member 4a and the bore 5, the flow resistance of the fuel through the throttle duct 15 being smaller than that of the annular gap 16.
  • the control chamber 10 is formed in Figure 2 as a radial extension of the upper portion of the bore 5, so that the volume of the control chamber 10 decreases when the control piston 11 is immersed in the closing movement of the valve member 4.
  • a high-pressure fuel pump introduces fuel under high pressure into the inlet channel 2 via a fuel feed line. This also increases the fuel pressure in the pressure chamber 3 and in the annular space 18.
  • the pressure shoulder 9 arranged in the region of the pressure chamber 13 results in a force acting on the valve member 4 and directed in the axial direction away from the combustion chamber, which counteracts the closing force of the spring 21 , If this resulting force exceeds the closing force of the spring 21, the valve member 4 moves in the axial direction away from the combustion chamber and the valve sealing surface 6 lifts off the valve seat 7.
  • the injection opening 8 is connected to the pressure chamber 3 via the blind hole 19 and the annular channel 18 and fuel is injected into the combustion chamber.
  • the control edge 14 covers the damping edge 13 and the control chamber 10 is connected to the leakage chamber 20 via the throttle gap 15.
  • the throttle edge 13 exceeds the control edge 14 and moves beyond it until the valve member 4 abuts the stroke stop 25 with its stop shoulder 24.
  • Due to the high fuel pressure in the pressure chamber 3 part of the fuel is pressed through the annular gap 16 into the control chamber 10.
  • the closing movement of the valve member 4 is initiated in that the fuel pressure in the inlet channel 2 and thus also in the pressure chamber 3 drops.
  • the valve member 4 is accelerated in the direction of the valve seat 7.
  • FIG. 3 shows the longitudinal section of an outwardly opening fuel injection valve as a second exemplary embodiment.
  • the valve member 4 is also divided into an upper section 4a, which is guided in the bore 5, and a lower section 4b, which projects freely into the bore 5.
  • the lower section 4b of the valve member 4 is smaller in diameter than the upper section 4a, so that an upper pressure shoulder 50 is formed at the transition between the two sections 4a, 4b.
  • a closing head 53 is arranged, in which at least one injection channel 52 with an injection opening 108 is formed.
  • the diameter of the closing head 53 is larger than that of the upper section 4a, so that a lower pressure shoulder 51 is formed on the side of the closing head 53 facing away from the combustion chamber.
  • the closing head 53 has a closing plate 54, the ring end face of which faces the valve body 1 is designed as a valve sealing surface 106.
  • the end face of the valve body 1 facing the combustion chamber is designed as a valve seat 107 and interacts with the valve sealing surface 106.
  • a control bore 40 connects to the bore 5 at the end of the valve member 4 facing away from the combustion chamber, and a leakage space 20 adjoins this.
  • the valve member 4 merges at the end of the combustion chamber into a control piston 111, which is smaller in diameter than the guided section 4a of the valve member 4 At the transition from the valve member 4 to the control piston 111, a pressure surface 112 is thereby formed and, through the tapered design of the control piston 111, a control chamber 10 between the latter and the bore 5.
  • a spring tappet 44 connects to the control piston 111 and extends into the leakage chamber 20 protrudes, and a valve ler 122. The spring plunger 44 is smaller in diameter than the control piston 111.
  • a spring 21 is arranged, which is preferably designed as a helical compression spring. It braces the spring plate 122 away from the combustion chamber, so that the valve member 4 with its valve sealing surface 106 is pressed against the valve seat 107 via the spring tappet 44 and the control piston 111.
  • a damping edge 113 is formed which interacts with a control edge 114, which is formed by the transition of the control bore 40 into the bore 5.
  • the control piston 111 dips into the control bore 40 with the overlap s. Since the control piston 111 has a diameter that is only slightly smaller than that of the control bore 40, a throttle gap 115 is formed between the control piston 111 and the control bore 40, via which the control chamber 10 is connected to the leak oil chamber 20.
  • the overlap s of the edges 113 and 114 is smaller than the opening stroke h of the valve member 4, so that the control piston 111 emerges from the control bore 40 when the fuel injection valve is fully open.
  • the fuel injection valve shown in FIG. 3 and opening to the outside has the following mode of operation:
  • the fuel introduced through the inlet channel 2 into the ring channel 18 acts on both the upper 50 and the lower pressure shoulder 51. Since the lower pressure shoulder 51 has a larger one in the axial direction Has direction effective surface, the force on the valve member 4 outweighs the combustion chamber. Is the If the fuel pressure is equal to an opening pressure, the resulting force exceeds the closing force of the spring 21.
  • the valve sealing surface 106 moves away from the valve seat 107 and the injection opening 108 emerges from the bore 5 until the stop ring 123 bears against the stroke stop 125.
  • the control piston 111 is in the open position of the valve member 4 outside the control bore 40.
  • the valve member 4 Due to a pressure drop in the annular channel 18 below the opening pressure, the valve member 4 is accelerated in the closing direction by the spring 21. As a result, the pressure surface 112 moves into the control chamber 10, as a result of which fuel is pressed into the leakage chamber 20 via the control bore 40. This happens initially with a low flow resistance; Only when the damping edge 113 reaches the control edge 114 does the passage into the control bore 40 narrow down to the throttle gap 115. The pressure in the control chamber 10 increases and, as a result of the force resulting from this on the pressure surface 112, causes the valve member 4 to slow down and thus to move a dampened placement of the valve sealing surface 106 on the valve seat 107.
  • FIG. 4a schematically shows an embodiment of the drain system 35 of the fuel from the leak oil space 20.
  • a pressure-maintaining valve 32 is arranged in the course of the drain line 31, and only in the case of a certain one
  • FIG. 4b shows an alternative arrangement of the pressure holding valve 32, which is arranged here in the outlet channel 30 of the valve body 1. With this arrangement, it is not necessary for the assembly to adapt the other drain system 35 to the modified fuel injection valve.
  • the holding pressure of the fuel injector is approximately 0.15 in both embodiments up to 1.0 MPa.
  • the outflow of the fuel from the control chamber 10 into the leak oil chamber 20 is influenced during the closing movement of the valve member 4, since the outflow rate depends not only on the cross section of the throttle gap 15, but also on the pressure difference between the leak oil chamber 20 and the control chamber 10 , It can also be provided that the holding pressure at the pressure holding valve 32 can be regulated. This makes it possible to control the holding pressure as a function of the operating state of the internal combustion engine and thus to adapt it in a targeted manner to the respective requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A fuel injection valve for internal combustion engines comprises a piston-shaped valve member (4), axially displaceable against the closing force of a spring (21) in the bore (5) of a valve body (1) which controls at least one injection opening. A control chamber (10) surrounding the valve body (4) is arranged between a guided section (4a) of the valve body (4) and the overflow oil chamber (20) containing the spring (21). Said chamber is connected to the overflow oil chamber (20) via a throttling annular gap (16) with an inlet channel (2) and a control bore (40). With the closing movement of said valve body (4) away from the valve seat (7, 107), fuel from the control volume (10) is forced into the overflow oil chamber (20) by a pressurising surface (12, 112). During part of the valve body stroke to the throttling gap (15, 115) formed between a cylindrical section (11, 111) and the control bore (40), the control chamber (10) is closed off from the overflow oil chamber (20) and the fuel pressure in the control chamber (10) rises, as the outflow can only now occur through the throttling gap (15, 115). The mating of the valve sealing surface (6, 106) with the valve seat (7, 107) is thus damped, permitting a reduced operating noise output of the internal combustion engine and a reduced wear in the valve sealing area (6, 106)..

Description

Kraftstoffeinspritzventil für BrennkraftmaschinenFuel injection valve for internal combustion engines
Stand der TechnikState of the art
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Ein derartiges Kraftstoffeinspritzventil ist aus der Offenlegungsschrift DE 195 08 636 AI bekannt. Bei einem solchen Kraftstoffeinspritzventil ist in der Bohrung des Ventilkörpers ein entgegen der Schließkraft einer Feder axial bewegliches, kolbenförmiges Ventilglied angeordnet. Das Ventilglied weist an seinem brennraumseitigen Ende eine Ventil- dichtfläche auf, die mit einem im Ventilkörper ausgebildeten Ventilsitz zusammenwirkt, wodurch wenigstens eine Einspritzöffnung gesteuert wird. Die nach innen oder außen gerichtete Öffnungshubbewegung des Ventilgliedes wird von einem Hubanschlag begrenzt. Bei der Schließbewegung des Ven- tilgliedes vom Hubanschlag weg wird das Ventilglied durch die Kraft der Feder in Richtung auf den Ventilsitz beschleunigt. Dabei muß der Kraftstoff, der sich zwischen der Ventildichtflache und dem Ventilsitz befindet, herausgepreßt werden. Dadurch ist zwar eine gewisse Dämpfung des Auf- schlags des Ventilgliedes am Ventilsitz gegeben, jedoch ist die Kraft auf das Ventilglied beim Aufschlag auf den Ventilsitz immer noch so groß, daß es zu einem relativ lauten Motorgeräusch kommt. Darüber hinaus kann es im Dauerbetrieb zu Verschleißerscheinungen im Bereich des Ventilsitzes kommen und zu einer nicht vollständigen Abdichtung der Einspritzöffnungen gegen den Brennraum. Vorteile der ErfindungThe invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1. Such a fuel injection valve is known from published patent application DE 195 08 636 AI. In such a fuel injection valve, a piston-shaped valve member that is axially movable against the closing force of a spring is arranged in the bore of the valve body. At its end on the combustion chamber side, the valve member has a valve sealing surface which interacts with a valve seat formed in the valve body, as a result of which at least one injection opening is controlled. The inward or outward opening stroke movement of the valve member is limited by a stroke stop. When the valve member closes away from the stroke stop, the valve member is accelerated towards the valve seat by the force of the spring. The fuel that is located between the valve sealing surface and the valve seat must be pressed out. Although this results in a certain damping of the impact of the valve member on the valve seat, the force on the valve member on impact on the valve seat is still so great that there is a relatively loud engine noise. In addition, signs of wear can occur in the area of the valve seat during continuous operation and the injection openings cannot be completely sealed off from the combustion chamber. Advantages of the invention
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß das Aufsetzen des Ventilgliedes am Ventilsitz bei der Schließbewegung zusätzlich gedämpft ist. Zwischen dem in der Bohrung geführten Abschnitt des Ventilgliedes und dem Leckolraum ist ein Steuerraum angeordnet, der das Ventilglied auf seinem gesamten Umfang umgibt. Durch eine am Ventilglied ausgebildete Druckfläche wird bei der Schließbewegung des Ventilgliedes Kraftstoff aus dem Steuerraum durch die Steuerbohrung in den Leckolraum gepreßt, was bei Beginn der Schließbewegung unge- drosselt geschieht. Bei einem Teilhub des Ventilgliedes taucht ein zylindrischer Teil des Ventilgliedes in die Steuerbohrung ein, wodurch sich zwischen der Steuerbohrung und dem zylindrischen Teil des Ventilgliedes ein ringförmiger Drosselspalt bildet, durch den der Kraftstoff aus dem Steuerraum nur noch gedrosselt abfließen kann. Dadurch wird das Aufsetzen des Ventilgliedes auf dem Ventilsitz gedämpft und die maximalen Kräfte reduziert. Das durch das Schließen des Ventilgliedes verursachte Geräusch wird somit reduziert, was zu einem leiseren Lauf der Brennkraftmaschine führt. Darüber hinaus kommt es durch die Dämpfung zu einem geringeren Verschleiß der Ventildichtflache beziehungsweise des Ventilsitzes . Ein weiterer Vorteil der Erfindung ist, daß sie sowohl bei nach innen, vom Brennraum weg öffnenden Kraftstoffeinspritz- ventilen als auch bei nach außen öffnenden Kraftstoffein- spritzventilen angewandt werden kann. Dazu muß lediglich die Anordnung von Steuerkolben und Steuerbohrung vertauscht werden. Der Abfluß des Kraftstoffs aus dem Steuerraum muß dabei nicht ausschließlich über den ringförmigen Drosselspalt er- folgen. In einer weiteren Ausführung gemäß den Ansprüchen 16 bis 18 kann es auch vorgesehen sein, daß zusätzliche Drosselkanäle im Ventilkörper oder im Ventilglied ausgebildet sind, die den Steuerraum mit dem Leckolraum verbinden. Damit ist auch die Möglichkeit gegeben, die Drosselwirkung desThe fuel injection valve for internal combustion engines according to the invention with the characterizing features of claim 1 has the advantage that the placement of the valve member on the valve seat is additionally damped during the closing movement. A control chamber, which surrounds the valve member over its entire circumference, is arranged between the section of the valve member guided in the bore and the leak oil chamber. By means of a pressure surface formed on the valve member, fuel is pressed out of the control chamber through the control bore into the leak oil chamber during the closing movement of the valve member, which occurs unthrottled at the beginning of the closing movement. During a partial stroke of the valve member, a cylindrical part of the valve member dips into the control bore, as a result of which an annular throttle gap is formed between the control bore and the cylindrical part of the valve member, through which the fuel can only flow out of the control chamber in a throttled manner. This dampens the placement of the valve member on the valve seat and reduces the maximum forces. The noise caused by the closing of the valve member is thus reduced, which leads to a quieter running of the internal combustion engine. In addition, the damping results in less wear on the valve sealing surface or the valve seat. Another advantage of the invention is that it can be used both with fuel injectors opening inwards, away from the combustion chamber, and with fuel injection valves opening outwards. All that is required is to interchange the arrangement of the control piston and control bore. The outflow of fuel from the control chamber does not have to take place exclusively via the annular throttle gap. consequences. In a further embodiment according to claims 16 to 18, it can also be provided that additional throttle channels are formed in the valve body or in the valve member, which connect the control chamber with the leakage oil chamber. This also gives the possibility of reducing the throttling effect
Steuerraums über einstellbare Drosselverbindungen regelbar zu gestalten.Control room to be adjustable via adjustable throttle connections.
Bei beiden Ausführungen ist die das Ventilglied belastende Feder im Leckolraum angeordnet, welcher einen Abflußkanal aufweist, durch den der Kraftstoff über eine Abflußleitung zurück in den Kraftstoffvorratstank geführt wird. Die Abflußrate des Kraftstoffs aus dem Steuerraum hängt nicht nur vom Durchflußwiderstand der Drosselverbindung zum Leckolraum ab, sondern auch von der Druckdifferenz zwischen Leckolraum und Steuerraum. Ist der Druck des Kraftstoffs im Leckolraum relativ hoch, so wird der Ablauf des Kraftstoffs aus dem Steuerraum langsamer erfolgen als bei niedrigem Druck. Dadurch kann sich im Steuerraum ein höherer Druck aufbauen, der über die höhere Kraft auf die Druckfläche die Aufsetzbe- wegung des Ventilgliedes stärker dämpft. Durch die Anordnung eines Druckhalteventils im Ablaufkanal des Leckölraums oder in der Ablaufleitung kann ein vorher bestimmter Druck im Leckolraum aufrecht erhalten werden. Die Ablaufrate aus dem Steuerraum und damit die Dämpfungswirkung des Steuerraums kann so über den Haltedruck beeinflußt werden. Ist dasIn both versions, the spring loading the valve member is arranged in the leak oil chamber, which has an outflow channel through which the fuel is fed back into the fuel storage tank via an outflow line. The outflow rate of the fuel from the control chamber depends not only on the flow resistance of the throttle connection to the leakage chamber, but also on the pressure difference between the leakage chamber and the control chamber. If the pressure of the fuel in the leakage chamber is relatively high, the fuel will run out of the control chamber more slowly than at low pressure. As a result, a higher pressure can build up in the control chamber, which more strongly dampens the contact movement of the valve member via the higher force on the pressure surface. By arranging a pressure maintaining valve in the drain channel of the leak oil chamber or in the drain line, a predetermined pressure in the leak oil chamber can be maintained. The flow rate from the control room and thus the damping effect of the control room can be influenced via the holding pressure. Is this
Druckhalteventil regelbar ausgestaltet, so kann die Dämpfungswirkung abhängig vom Betriebszustand der Brennkraftmaschine den jeweiligen Erfordernissen angepaßt werden.Pressure-maintaining valve designed to be adjustable, the damping effect can be adapted to the respective requirements depending on the operating state of the internal combustion engine.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.Further advantages and advantageous configurations of the subject matter of the invention can be gathered from the description, the drawing and the patent claims.
Zeichnung In der Zeichnung sind zwei Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen dargestellt. Es zeigt die Figur 1 einen Längsschnitt durch das erste Ausführungsbeispiel eines nach innen öffnen- den Kraftstoffeinspritzventils, die Figur 2 eine Vergrößerung der Figur 1 im Bereich des Steuerraumes, Figur 3 einen Längsschnitt durch das zweite Ausführungsbeispiel eines nach außen öffnenden Kraftstoffeinspritzventils und die Figuren 4a und 4b zwei Ausgestaltungen des KraftstoffablaufSystems mit Druckhalteventil .drawing The drawing shows two exemplary embodiments of the fuel injection valve according to the invention for internal combustion engines. 1 shows a longitudinal section through the first exemplary embodiment of an inward opening fuel injection valve, FIG. 2 shows an enlargement of FIG. 1 in the area of the control chamber, FIG. 3 shows a longitudinal section through the second exemplary embodiment of an outwardly opening fuel injection valve and FIGS. 4a and 4b two configurations of the fuel drain system with a pressure control valve.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In der Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil für Brennkraftmaschinen im Längsschnitt dargestellt. Es wird anhand der Figur 1 erst der Aufbau beschrieben und anschließend die Funktionsweise des Kraftstoffeinspritzventils erläutert. Ein Ventilkörper 1, der mehrteilig aufgebaut sein kann, ist in einer Aufnahmebohrung des Gehäuses einer in der Zeichnung nicht dargestellten Brennkraftmaschine angeordnet, wobei das obere, brennraumabgewandte Ende des Ventilkörpers 1 in der Aufnahmebohrung fixiert ist, während das untere, brennraum- zugewandte Ende in den Brennraum der Brennkraftmaschine ragt. Im Ventilkörper 1 ist eine Bohrung 5 ausgebildet, die sich in einen oberen Abschnitt 5a und einen unteren Abschnitt 5b unterteilt. Die Bohrung 5 endet an ihrem brenn- raumseitigen Ende innerhalb des Ventilkörpers 1, wobei der Teil des Ventilkörpers 1, der die Bohrung 5 zum Brennraum hin verschließt, als im wesentlichen konischer Ventilsitz 7 ausgebildet ist. An den Ventilsitz 7 schließt sich zum Brennraum hin ein Sackloch 19 an, in dem wenigstens eine Einspritzöffnung 8 angeordnet ist, die das Sackloch 19 mit dem Brennraum verbindet. In der Bohrung 5 ist ein kolbenförmiges, axial bewegliches Ventilglied 4 angeordnet, das an seinem brennraumseitigen Ende eine im wesentlichen kegelförmige Ventildichtflache 6 aufweist, die mit dem im Ventilkörper ausgebildeten Ventilsitz 7 zusammenwirkt. Das Ventilglied 4 ist im Durchmesser gestuft ausgebildet, wobei es sich in einen oberen Abschnitt 4a und einen unteren Abschnitt 4b unterteilt. Das Ventilglied 4 wird mit seinem oberen Abschnitt 4a in der Bohrung 5 geführt. Der untere Abschnitt 4b des Ventilgliedes 4 ist im Durchmesser kleiner ausgebildet als der obere Abschnitt 4a, so daß am Übergang der beiden Abschnitte 4a, 4b eine Druckschulter 9 ausgebildet ist. Zwischen der Wand der Bohrung 5 und dem unteren Abschnitt 4b des Ventilgliedes 4 ist ein Ringkanal 18 ausgebildet, der im Bereich der Druckschulter 9 durch eine radiale Querschnittserweiterung einen Druckraum 3 bildet. In den Druckraum 3 mündet ein im Ventilkörper 1 verlaufender Zulaufkanal 2, der an seinem anderen Ende über eine in der Zeichnung nicht dargestellte Hochdruckzulaufleitung mit einer Kraftstoffhochdruckpumpe oder einer anderen Hochdruckquelle verbindbar ist. Über den Druckraum 3 und den Ringka- nal 18 ist der Zulaufkanal 2 mit dem Ventilsitz 7 verbunden. Bei der nach innen gerichteten Öffnungshubbewegung des Ventilgliedes 4 gibt die Ventildichtflache 6 die Verbindung vom Ringkanal 18 zum Sackloch 19 frei, wodurch der Zulaufkanal 2 mit der Einspritzöffnung 8 verbunden wird.A fuel injection valve for internal combustion engines according to the invention is shown in longitudinal section in FIG. The structure is first described with reference to FIG. 1 and then the mode of operation of the fuel injection valve is explained. A valve body 1, which can be constructed in several parts, is arranged in a receiving bore of the housing of an internal combustion engine (not shown in the drawing), the upper end of the valve body 1 facing away from the combustion chamber being fixed in the receiving bore, while the lower end facing the combustion chamber is fixed in the Combustion chamber of the internal combustion engine protrudes. A bore 5 is formed in the valve body 1 and is divided into an upper section 5a and a lower section 5b. The bore 5 ends at its end on the combustion chamber side within the valve body 1, the part of the valve body 1 which closes the bore 5 towards the combustion chamber being designed as an essentially conical valve seat 7. A blind hole 19 adjoins the valve seat 7 toward the combustion chamber, in which at least one injection opening 8 is arranged, which connects the blind hole 19 with the combustion chamber. In the bore 5 a piston-shaped, axially movable valve member 4 is arranged, which its combustion chamber end has an essentially conical valve sealing surface 6 which interacts with the valve seat 7 formed in the valve body. The valve member 4 is stepped in diameter, being divided into an upper section 4a and a lower section 4b. The valve member 4 is guided with its upper portion 4a in the bore 5. The lower section 4b of the valve member 4 is made smaller in diameter than the upper section 4a, so that a pressure shoulder 9 is formed at the transition between the two sections 4a, 4b. Between the wall of the bore 5 and the lower section 4b of the valve member 4, an annular channel 18 is formed, which forms a pressure chamber 3 in the area of the pressure shoulder 9 through a radial cross-sectional expansion. An inlet channel 2, which runs in the valve body 1, opens into the pressure chamber 3 and can be connected at its other end to a high-pressure fuel pump or another high-pressure source via a high-pressure inlet line (not shown in the drawing). The inlet channel 2 is connected to the valve seat 7 via the pressure chamber 3 and the ring channel 18. During the inward opening stroke movement of the valve member 4, the valve sealing surface 6 releases the connection from the ring channel 18 to the blind hole 19, as a result of which the inlet channel 2 is connected to the injection opening 8.
An den oberen Abschnitt 4a des Ventilgliedes 4 schließt sich ein im wesentlichen zylinderförmiger, im Durchmesser größer ausgebilder Steuerkolben 11 an, wodurch am Übergang vom Ventilglied 4 zum Steuerkolben 11 eine Druckfläche 12 angeord- net ist. Im Bereich des oberen Abschnitts 4a des Ventilgliedes 4 ist durch eine radiale Querschnittserweiterung der Bohrung 5 ein Steuerraum 10 ausgebildet. Die Mantelfläche des Steuerkolbens 11 weist an ihrem dem Brennraum zugewandten Ende eine Dämpfungskante 13 auf, die mit einer Steuer- kante zusammenwirkt, die durch einen als Steuerbohrung 40 ausgebildeten Abschnitt der Bohrung 5 ausgebildet ist. An den Steuerkolben 11 schließt sich ein koaxial zum Ventilglied 4 in einer Zwischenbohrung 26 angeordneter Zwischenstift 17 an, der wiederum mit einem Federteller 22 verbunden ist, der in einen am brennraumsabgewandten Ende des Ventil - körpers 1 ausgebildeten Leckolraum 20 ragt. Über diese Zwi- schehbohrung 26 ist der obere Abschnitt 5a der Bohrung 5 mit dem Leckolraum 20 verbunden, der wiederum über einen im Ventilkörper 1 ausgebildeten Ablaufkanal 30 mit einem AblaufSystem 35 verbunden ist. Zwischen dem brennraumabgewandten En- de des Leckölraums 20 und dem Federteller 22 ist eine Feder 21 unter Vorspannung angeordnet, die das Ventilglied 4 über den Federteller 22, den Zwischenstift 17 und den Steuerkol- ben 11 mit der Ventildichtflache 6 gegen den Ventilsitz 7 preßt . Der Zwischenstift 17 ist im Durchmesser kleiner ausgebildet als der Steuerkolben 11, wodurch am Übergang vom Steuerkol- ben 11 zum Zwischenstift 17 eine Anschlagschulter 24 ausgebildet ist. Am Übergang der Bohrung 5 zur Zwischenbohrung 26 ist koaxial zur Achse des Ventilgliedes 4 ein Anschlagring 23 angeordnet. Der Anschlagring 23 ist in der Zwischenbohrung 26 fixiert, und die dem Brennraum zugewandte Seite des Anschlagrings 23 ist als Hubanschlag 25 ausgebildet, wobei der axiale Abstand des Hubanschlags 25 von der Anschlagschulter 24 im geschlossenen Zustand des Kraftstoffein- spritzventils den Öffnungshub h des Ventilgliedes 4 bestimmt. Die Überdeckung s der Dämpfungskante 13 und der Steuerkante 14 in Schließstellung des Ventilgliedes 4 ist stets so bemessen, daß sie kleiner als der Öffnungshub h des Ventilgliedes 4 ist. Vorzugsweise beträgt die Überdeckung s 10 bis 50 % des Öffnungshubes h.The upper section 4a of the valve member 4 is followed by an essentially cylindrical control piston 11 with a larger diameter, as a result of which a pressure surface 12 is arranged at the transition from the valve member 4 to the control piston 11. A control chamber 10 is formed in the area of the upper section 4a of the valve member 4 by a radial cross-sectional expansion of the bore 5. At its end facing the combustion chamber, the lateral surface of the control piston 11 has a damping edge 13 which interacts with a control edge which is formed by a section of the bore 5 designed as a control bore 40. On the control piston 11 is followed by an intermediate pin 17 arranged coaxially to the valve member 4 in an intermediate bore 26, which in turn is connected to a spring plate 22 which projects into a leak oil space 20 formed at the end of the valve body 1 facing away from the combustion chamber. Via this intermediate bore 26, the upper section 5a of the bore 5 is connected to the leak oil chamber 20, which in turn is connected to an outlet system 35 via an outlet channel 30 formed in the valve body 1. Between the end of the leakage oil chamber 20 facing away from the combustion chamber and the spring plate 22, a spring 21 is arranged under prestress, which presses the valve member 4 against the valve seat 7 via the spring plate 22, the intermediate pin 17 and the control piston 11 with the valve sealing surface 6. The diameter of the intermediate pin 17 is smaller than that of the control piston 11, as a result of which a stop shoulder 24 is formed at the transition from the control piston 11 to the intermediate pin 17. At the transition from the bore 5 to the intermediate bore 26, a stop ring 23 is arranged coaxially to the axis of the valve member 4. The stop ring 23 is fixed in the intermediate bore 26 and the side of the stop ring 23 facing the combustion chamber is designed as a stroke stop 25, the axial distance of the stroke stop 25 from the stop shoulder 24 in the closed state of the fuel injection valve determining the opening stroke h of the valve member 4 , The overlap s of the damping edge 13 and the control edge 14 in the closed position of the valve member 4 is always such that it is smaller than the opening stroke h of the valve member 4. The overlap s is preferably 10 to 50% of the opening stroke h.
In der Figur 2 ist der Bereich des Steuerraumes 11 des Kraftstoffeinspritzventils nochmals vergrößert dargestellt. Im geschlossenen Zustand des Kraftstoffeinspritzventils überdecken sich die Dämpfungskante 13 und die Steuerkante 14, so daß der Steuerraum 10 mit dem Leckolraum 20 nur über einen Drosselspalt 15 verbunden ist. Die zweite Öffnung des Steuerraums 10 ist über den zwischen dem oberen Abschnitt des Ventilgliedes 4a und der Bohrung 5 ausgebildeten drosselnden Ringspalt 16 gegeben, wobei der Durchflußwiderstand des Kraftstoffs durch den Drosselkanal 15 kleiner als der des Ringspalts 16 ist. Der Steuerraum 10 ist in der Figur 2 als radiale Erweiterung des oberen Abschnitts der Bohrung 5 ausgebildet, so daß sich das Volumen des Steuerraums 10 beim Eintauchen des Steuerkolbens 11 bei der Schließbewegung des Ventilgliedes 4 verringert.FIG. 2 shows the area of the control chamber 11 of the fuel injection valve enlarged again. In the closed state of the fuel injection valve, the damping edge 13 and the control edge 14 overlap, so that the control chamber 10 is connected to the leak oil chamber 20 only via a throttle gap 15. The second opening of the Control chamber 10 is provided via the throttling annular gap 16 formed between the upper section of the valve member 4a and the bore 5, the flow resistance of the fuel through the throttle duct 15 being smaller than that of the annular gap 16. The control chamber 10 is formed in Figure 2 as a radial extension of the upper portion of the bore 5, so that the volume of the control chamber 10 decreases when the control piston 11 is immersed in the closing movement of the valve member 4.
Die Funktionsweise des ersten Ausführungsbeispiels des Kraftstoffeinspritzventils nach Figur 1 ist wie folgt: Durch eine Kraftstoffhochdruckpumpe wird über eine Kraftstoffzu- laufleitung Kraftstoff unter hohem Druck in den Zulaufkanal 2 eingeführt. Dadurch erhöht sich auch der Kraftstoffdruck im Druckraum 3 und im Ringraum 18. Durch die im Bereich des Druckraums 13 angeordnete Druckschulter 9 ergibt sich eine auf das Ventilglied 4 wirkende, in axialer Richtung vom Brennraum weg gerichtete resultierende Kraft, die der Schließkraft der Feder 21 entgegenwirkt. Übersteigt diese resultierende Kraft die Schließkraft der Feder 21, so bewegt sich das Ventilglied 4 in axialer Richtung vom Brennraum weg und die Ventildichtflache 6 hebt vom Ventilsitz 7 ab. Dadurch wird die Einspritzöffnung 8 über das Sackloch 19 und den Ringkanal 18 mit dem Druckraum 3 verbunden und Kraftstoff wird in den Brennraum eingespritzt.The method of operation of the first exemplary embodiment of the fuel injection valve according to FIG. 1 is as follows: A high-pressure fuel pump introduces fuel under high pressure into the inlet channel 2 via a fuel feed line. This also increases the fuel pressure in the pressure chamber 3 and in the annular space 18. The pressure shoulder 9 arranged in the region of the pressure chamber 13 results in a force acting on the valve member 4 and directed in the axial direction away from the combustion chamber, which counteracts the closing force of the spring 21 , If this resulting force exceeds the closing force of the spring 21, the valve member 4 moves in the axial direction away from the combustion chamber and the valve sealing surface 6 lifts off the valve seat 7. As a result, the injection opening 8 is connected to the pressure chamber 3 via the blind hole 19 and the annular channel 18 and fuel is injected into the combustion chamber.
Zu Beginn der Öffnungshubbewegung des Ventilgliedes 4 überdeckt die Steuerkante 14 die Dämpfungskante 13 und der Steuerraum 10 ist über den Drosselspalt 15 mit dem Leckolraum 20 verbunden. Im Verlauf der Öffnungshubbewegung überschreitet die Drosselkante 13 die Steuerkante 14 und bewegt sich über diese hinaus, bis das Ventilglied 4 mit seiner Anschlagschulter 24 am Hubanschlag 25 anliegt. Durch den hohen Kraftstoffdruck im Druckraum 3 wird auch ein Teil des Kraft - Stoffs durch den Ringspalt 16 in den Steuerraum 10 gepreßt. Die Schließbewegung des Ventilgliedes 4 wird dadurch eingeleitet, daß der Kraftstoffdruck im Zulaufkanal 2 und damit auch im Druckraum 3 abfällt. Sobald die resultierende Kraft auf die Druckschulter 9 kleiner wird als die Schließkraft der Feder 21, wird das Ventilglied 4 in Richtung auf den Ventilsitz 7 hin beschleunigt. Durch das Eintauchen der Druckfläche 12 in den Steuerraum 10 wird der dort befindliche Kraftstoff verdrängt und aus dem Steuerraum 10 in den Leckolraum 20 gepreßt. Solange die Dämpfungskante 13 die Steuerkante 14 noch nicht erreicht hat, geschieht dies mit einem vergleichsweise geringen Strömungswiderstand des Kraftstoffs, so daß der Druck im Steuerraum 10 weitgehend dem im Leckolraum 20 entspricht. Sobald die Dämpfungskante 13 die Steuerkante 14 erreicht, wird der Steuerraum 10 zum Leckolraum 20 hin bis auf den Drosselspalt 15 verschlossen. Der Kraftstoffdruck im Steuerraum 10 steigt daraufhin an und wird nur langsam durch den Abfluß des Kraftstoffs über den Drosselspalt 15 abgebaut. Durch den erhöhten Kraftstoffdruck im Steuerraum 10 ergibt sich eine Kraft auf die Druckfläche 12 und damit auf das Ventilglied 4 entgegen der Schließkraft der Feder 21. Die Bewegung des Ventilgliedes 4 in Richtung auf den Ventilsitz 7 wird dadurch verlangsamt, das Aufsetzen der Ventildichtflache 6 auf dem Ventilsitz 7 erfolgt weniger hart und die beim Aufschlag entstehenden hochfrequenten Schwingungen des Einspritzdrucks und des Ventilgliedes 4 werden gedämpft. Es tritt eine deutliche Beruhigung des Druckverlaufs am Kraftstoffeinspritzventil auf, und durch das weichere Aufsetzen des Ventilgliedes 4 am Ventilsitz 7 werden die maximalen Kräfte auf das Ventilglied 4 stark re- duziert, was wiederum zu einem geringeren Laufgeräusch der Brennkraftmaschine beiträgt. Der Verschleiß des Ventilgliedes 4 vom Ventilsitz 7 und an der Ventildichtflache 6 wird dadurch deutlich vermindert und damit die Lebensdauer des Kraftstoffeinspritzventils verlängert . In der Figur 3 ist als zweites Ausführungsbeispiel der Längsschnitt eines nach außen öffnenden Kraftstoffeinspritzventils dargestellt. Das Ventilglied 4 unterteilt sich ebenfalls in einen oberen, in der Bohrung 5 geführten Abschnitt 4a und einen unteren Abschnitt 4b, der frei in die Bohrung 5 ragt. Der untere Abschnitt 4b des Ventilgliedes 4 ist im Durchmesser kleiner ausgebildet als der obere Abschnitt 4a, so daß am Übergang der beiden Abschnitte 4a, 4b eine obere Druckschulter 50 ausgebildet ist. Am unteren Ende des Ven- tilgliedes 4 ist ein Schließkopf 53 angeordnet, in dem wenigstens ein Einspritzkanal 52 mit einer Einspritzöffnung 108 ausgebildet ist. Der Schließkopf 53 ist im Durchmesser größer ausgebildet als der obere Abschnitts 4a, so daß an der brennraumabgewandten Seite des Schließkopfs 53 eine un- tere Druckschulter 51 ausgebildet ist. Am brennraumseitigen Ende weist der Schließkopf 53 einen Schließteller 54 auf, dessen dem Ventilkörper 1 zugewandte Ringstirnfläche als Ventildichtflache 106 ausgebildet ist. Die dem Brennraum zugewandte Stirnfläche des Ventilkörpers 1 ist als Ventilsitz 107 ausgebildet und wirkt mit der Ventildichtflache 106 zusammen. Im geschlossenen Zustand des Ventilgliedes 4 wird die Öffnung des Einspritzkanals 52 vom Ventilkörper 1 verschlossen, und durch die Ventildichtflache 106 und den Ventilsitz 107 ist eine sichere Abdichtung der Einspritzöffnung 108 gegen den Brennraum gegeben.At the beginning of the opening stroke movement of the valve member 4, the control edge 14 covers the damping edge 13 and the control chamber 10 is connected to the leakage chamber 20 via the throttle gap 15. In the course of the opening stroke movement, the throttle edge 13 exceeds the control edge 14 and moves beyond it until the valve member 4 abuts the stroke stop 25 with its stop shoulder 24. Due to the high fuel pressure in the pressure chamber 3, part of the fuel is pressed through the annular gap 16 into the control chamber 10. The closing movement of the valve member 4 is initiated in that the fuel pressure in the inlet channel 2 and thus also in the pressure chamber 3 drops. As soon as the resulting force on the pressure shoulder 9 becomes smaller than the closing force of the spring 21, the valve member 4 is accelerated in the direction of the valve seat 7. By immersing the pressure surface 12 in the control chamber 10, the fuel located there is displaced and pressed out of the control chamber 10 into the leak oil chamber 20. As long as the damping edge 13 has not yet reached the control edge 14, this occurs with a comparatively low flow resistance of the fuel, so that the pressure in the control chamber 10 largely corresponds to that in the leak oil chamber 20. As soon as the damping edge 13 reaches the control edge 14, the control chamber 10 is closed towards the leak oil chamber 20 except for the throttle gap 15. The fuel pressure in the control chamber 10 then increases and is only slowly reduced by the outflow of the fuel through the throttle gap 15. The increased fuel pressure in the control chamber 10 results in a force on the pressure surface 12 and thus on the valve member 4 against the closing force of the spring 21 Valve seat 7 takes place less hard and the high-frequency vibrations of the injection pressure and the valve member 4 which occur upon impact are damped. There is a clear calming of the pressure curve at the fuel injection valve, and the softer placement of the valve member 4 on the valve seat 7 greatly reduces the maximum forces on the valve member 4, which in turn contributes to a lower running noise of the internal combustion engine. The wear of the valve member 4 from the valve seat 7 and on the valve sealing surface 6 is thereby significantly reduced and the service life of the fuel injector is thus extended. FIG. 3 shows the longitudinal section of an outwardly opening fuel injection valve as a second exemplary embodiment. The valve member 4 is also divided into an upper section 4a, which is guided in the bore 5, and a lower section 4b, which projects freely into the bore 5. The lower section 4b of the valve member 4 is smaller in diameter than the upper section 4a, so that an upper pressure shoulder 50 is formed at the transition between the two sections 4a, 4b. At the lower end of the valve member 4, a closing head 53 is arranged, in which at least one injection channel 52 with an injection opening 108 is formed. The diameter of the closing head 53 is larger than that of the upper section 4a, so that a lower pressure shoulder 51 is formed on the side of the closing head 53 facing away from the combustion chamber. At the end on the combustion chamber side, the closing head 53 has a closing plate 54, the ring end face of which faces the valve body 1 is designed as a valve sealing surface 106. The end face of the valve body 1 facing the combustion chamber is designed as a valve seat 107 and interacts with the valve sealing surface 106. In the closed state of the valve member 4, the opening of the injection channel 52 is closed by the valve body 1, and the valve sealing surface 106 and the valve seat 107 provide a secure seal of the injection opening 108 against the combustion chamber.
An die Bohrung 5 schließt sich am brennraumabgewandten Ende des Ventilgliedes 4 eine Steuerbohrung 40 an und an diese ein Leckolraum 20. Das Ventilglied 4 geht am brennraumseitigen Ende in einen Steuerkolben 111 über, der im Durchmesser kleiner ausgebildet ist als der geführte Abschnitt 4a des Ventilgliedes 4. Am Übergang vom Ventilglied 4 zum Steuerkolben 111 ist dadurch eine Druckfläche 112 ausgebildet und durch die verjüngte Ausbildung des Steuerkolbens 111 zwischen diesem und der Bohrung 5 ein Steuerraum 10. An den Steuerkolben 111 schließt sich ein Federstößel 44 an, der bis in den Leckolraum 20 ragt, und an diesen ein Ventiltel- ler 122. Der Federstößel 44 ist dabei im Durchmesser kleiner ausgebildet als der Steuerkolben 111. In der Steuerbohrung 40 ist ein als ringförmiger Absatz ausgebildeter Hubanschlag 125 ausgebildet, der mit einem am Federstift angeordneten ringkragenförmigen Anschlagring 123 zusammenwirkt. Der axiale Abstand der unteren Fläche des Anschlagrings 123 und der oberen Fläche des Hubanschlags 125 bestimmen den Öffnungshub h des Ventilgliedes 4. Zwischen dem brennraumseitigen Ende des Leckölraums 20 und dem Federteller 122 ist eine Feder 21 angeordnet, die vorzugsweise als Schraubendruckfeder ausgebildet ist . Sie verspannt den Federteller 122 vom Brennraum weg, so daß über den Federstößel 44 und den Steuerkolben 111 das Ventilglied 4 mit seiner Ventildichtflache 106 gegen den Ventilsitz 107 gedrückt wird. Am brennraumabgewandten Ende der Mantelfläche des Steuerkol- bens 111 ist eine Dämpfungskante 113 ausgebildet, die mit einer Steuerkante 114 zusammenwirkt, die durch den Übergang der Steuerbohrung 40 in die Bohrung 5 gebildet wird. Der Steuerkolben 111 taucht im geschlossenen Zustand des Kraft- stoffeinspritzventils mit der Überdeckung s in die Steuerbohrung 40 ein. Da der Steuerkolben 111 einen Durchmesser aufweist, der nur geringfügig kleiner als der der Steuerbohrung 40 ist, wird zwischen Steuerkolben 111 und Steuerbohrung 40 ein Drosselspalt 115 ausgebildet, über den der Steu- erraum 10 mit dem Leckolraum 20 verbunden ist. Die Überdek- kung s der Kanten 113 und 114 ist kleiner als der Offnungshub h des Ventilgliedes 4, so daß der Steuerkolben 111 bei voll geöffnetem Kraftstoffeinspritzventil aus der Steuerbohrung 40 austritt. Das in Figur 3 dargestellte, nach außen öffnende Kraftstoff - einspritzventil weist folgende Funktionsweise auf: Der durch den Zulaufkanal 2 in den Ringkanal 18 eingeführte Kraftstoff beaufschlagt sowohl die obere 50 als auch die untere Druckschulter 51. Da die untere Druckschulter 51 eine größere, in axialer Richtung wirksame Fläche aufweist, überwiegt die Kraft auf das Ventilglied 4 zum Brennraum hin. Ist der Kraftstoffdruck gleich einem Öffnungsdruck, so übersteigt die resultierende Kraft die Schließkraft der Feder 21. Die Ventildichtflache 106 bewegt sich vom Ventilsitz 107 weg und die Einspritzöffnung 108 taucht aus der Bohrung 5 aus, bis der Anschlagring 123 am Hubanschlag 125 anliegt. Der Steuerkolben 111 befindet sich in der geöffneten Stellung des Ventilgliedes 4 außerhalb der Steuerbohrung 40. Durch einen Druckabfall im Ringkanal 18 unterhalb des Öffnungsdrucks wird das Ventilglied 4 von der Feder 21 in Schließrichtung beschleunigt . Dadurch bewegt sich die Druckfläche 112 in den Steuerraum 10, wodurch Kraftstoff über die Steuerbohrung 40 in den Leckolraum 20 gepreßt wird. Dies geschieht anfangs mit einem geringen Strömungswiderstand; erst wenn die Dämpfungskante 113 die Steuerkante 114 erreicht, verengt sich der Durchgang in die Steuerbohrung 40 bis auf den Drosselspalt 115. Der Druck im Steuerraum 10 steigt an und bewirkt durch die daraus resultierende Kraft auf die Druckfläche 112 eine gebremste Bewegung des Ventilgliedes 4 und damit ein gedämpftes Aufsetzen der Ventildichtflache 106 auf dem Ventilsitz 107.A control bore 40 connects to the bore 5 at the end of the valve member 4 facing away from the combustion chamber, and a leakage space 20 adjoins this. The valve member 4 merges at the end of the combustion chamber into a control piston 111, which is smaller in diameter than the guided section 4a of the valve member 4 At the transition from the valve member 4 to the control piston 111, a pressure surface 112 is thereby formed and, through the tapered design of the control piston 111, a control chamber 10 between the latter and the bore 5. A spring tappet 44 connects to the control piston 111 and extends into the leakage chamber 20 protrudes, and a valve ler 122. The spring plunger 44 is smaller in diameter than the control piston 111. In the control bore 40 is formed as an annular shoulder stroke stop 125 which cooperates with an annular collar-shaped stop ring 123 arranged on the spring pin. The axial distance between the lower surface of the stop ring 123 and the upper surface of the stroke stop 125 determine the opening stroke h of the valve member 4. Between the end of the leakage oil chamber 20 on the combustion chamber side and the spring plate 122, a spring 21 is arranged, which is preferably designed as a helical compression spring. It braces the spring plate 122 away from the combustion chamber, so that the valve member 4 with its valve sealing surface 106 is pressed against the valve seat 107 via the spring tappet 44 and the control piston 111. At the end of the outer surface of the control piston 111 facing away from the combustion chamber, a damping edge 113 is formed which interacts with a control edge 114, which is formed by the transition of the control bore 40 into the bore 5. In the closed state of the fuel injection valve, the control piston 111 dips into the control bore 40 with the overlap s. Since the control piston 111 has a diameter that is only slightly smaller than that of the control bore 40, a throttle gap 115 is formed between the control piston 111 and the control bore 40, via which the control chamber 10 is connected to the leak oil chamber 20. The overlap s of the edges 113 and 114 is smaller than the opening stroke h of the valve member 4, so that the control piston 111 emerges from the control bore 40 when the fuel injection valve is fully open. The fuel injection valve shown in FIG. 3 and opening to the outside has the following mode of operation: The fuel introduced through the inlet channel 2 into the ring channel 18 acts on both the upper 50 and the lower pressure shoulder 51. Since the lower pressure shoulder 51 has a larger one in the axial direction Has direction effective surface, the force on the valve member 4 outweighs the combustion chamber. Is the If the fuel pressure is equal to an opening pressure, the resulting force exceeds the closing force of the spring 21. The valve sealing surface 106 moves away from the valve seat 107 and the injection opening 108 emerges from the bore 5 until the stop ring 123 bears against the stroke stop 125. The control piston 111 is in the open position of the valve member 4 outside the control bore 40. Due to a pressure drop in the annular channel 18 below the opening pressure, the valve member 4 is accelerated in the closing direction by the spring 21. As a result, the pressure surface 112 moves into the control chamber 10, as a result of which fuel is pressed into the leakage chamber 20 via the control bore 40. This happens initially with a low flow resistance; Only when the damping edge 113 reaches the control edge 114 does the passage into the control bore 40 narrow down to the throttle gap 115. The pressure in the control chamber 10 increases and, as a result of the force resulting from this on the pressure surface 112, causes the valve member 4 to slow down and thus to move a dampened placement of the valve sealing surface 106 on the valve seat 107.
In der Figur 4a ist ein Ausführungsbeispiel des Ablaufsystems 35 des Kraftstoffs aus dem Leckolraum 20 schematisch dargestellt. Im Verlauf der Ablaufleitung 31 ist ein Druck- halteventil 32 angeordnet, das nur bei einem bestimmtenFIG. 4a schematically shows an embodiment of the drain system 35 of the fuel from the leak oil space 20. A pressure-maintaining valve 32 is arranged in the course of the drain line 31, and only in the case of a certain one
Druck in der Ablaufleitung 31 in Abiaufrichtung zum Kraft- Stoffvorratstank 34 hin öffnet. Dadurch wird in der Ablauf- leitung zwischen Kraftstoffeinspritzventil und dem Druckhalteventil 32 und damit auch im Leckolraum 20 ein bestimmter Haltedruck aufrecht erhalten. In Figur 4b ist eine alternative Anordnung des Druckhalteventils 32 gezeigt, welches hier im Ablaufkanal 30 des Ventilkörpers 1 angeordnet ist. Bei dieser Anordnung ist es für die Montage nicht notwendig, das sonstige Ablaufsystem 35 an das geänderte Kraftstoffein- spritzventil anzupassen. Der Haltedruck des Kraftstoffeinspritzventils beträgt in beiden Ausführungsformen etwa 0,15 bis 1,0 MPa. Durch den Haltedruck im Leckolraum 20 wird der Abfluß des Kraftstoffs aus dem Steuerraum 10 in den Leckolraum 20 während der Schließbewegung des Ventilgliedes 4 beeinflußt, da die Abflußrate nicht nur vom Querschnitt des Drosselspalts 15, sondern auch von der Druckdifferenz zwischen Leckolraum 20 und Steuerraum 10 abhängt. Es kann auch vorgesehen sein, daß der Haltedruck am Druckhalteventil 32 regelbar ist. Dadurch ist es möglich, den Haltedruck abhängig vom Betriebszustand der Brennkraftma- schine zu steuern und so den jeweiligen Erfordernissen gezielt anzupassen. Pressure in the drain line 31 in the drain direction to the fuel tank 34 opens. As a result, a certain holding pressure is maintained in the drain line between the fuel injection valve and the pressure holding valve 32 and thus also in the leakage space 20. FIG. 4b shows an alternative arrangement of the pressure holding valve 32, which is arranged here in the outlet channel 30 of the valve body 1. With this arrangement, it is not necessary for the assembly to adapt the other drain system 35 to the modified fuel injection valve. The holding pressure of the fuel injector is approximately 0.15 in both embodiments up to 1.0 MPa. Due to the holding pressure in the leak oil chamber 20, the outflow of the fuel from the control chamber 10 into the leak oil chamber 20 is influenced during the closing movement of the valve member 4, since the outflow rate depends not only on the cross section of the throttle gap 15, but also on the pressure difference between the leak oil chamber 20 and the control chamber 10 , It can also be provided that the holding pressure at the pressure holding valve 32 can be regulated. This makes it possible to control the holding pressure as a function of the operating state of the internal combustion engine and thus to adapt it in a targeted manner to the respective requirements.

Claims

Ansprüche Expectations
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einer im Ventilkörper (1) ausgebildeten Bohrung (5) , in der ein kolbenförmiges, entgegen der Schließkraft einer Feder (21) axial bewegliches Ventilglied (4) angeordnet ist, das an seinem brennraumseitigen Ende wenigstens eine Einspritzöffnung (8) steuert und das einen brennraumseitigen Abschnitt (4b) aufweist, welcher in einem mit Kraftstoff unter hohem Druck gefüllten Ringkanal (3,18) angeordnet ist und an welchem Abschnitt (4b) des Ventilgliedes (4) eine Druckschulter (9) ausgebildet ist, wobei der Druck des Kraftstoffs auf die Druckschulter (9) entgegen der Schließkraft der Feder (21) wirkt, dadurch gekennzeichnet, daß das Ventilglied (1) eine Druckfläche (12,122) aufweist, durch die ein das Ventilglied (4) umgebender1. Fuel injection valve for internal combustion engines with a bore (5) formed in the valve body (1), in which a piston-shaped valve member (4) which is axially movable counter to the closing force of a spring (21) is arranged and has at least one injection opening (8 ) and which has a combustion chamber side section (4b) which is arranged in an annular channel (3,18) filled with fuel under high pressure and on which section (4b) of the valve member (4) a pressure shoulder (9) is formed, wherein the pressure of the fuel on the pressure shoulder (9) acts counter to the closing force of the spring (21), characterized in that the valve member (1) has a pressure surface (12, 122) through which a surrounding the valve member (4)
Steuerraum (10) begrenzbar ist und durch die bei der Schließbewegung des Ventilgliedes (4) das Volumen des Steuerraums (10) verkleinerbar ist, wobei der Steuerraum (10) eine ständige Verbindung über einen Drosselspalt (16) mit dem Hochdruckraum (3,18) am Ventilglied (4) und eine weitere Verbindung mit einem Leckolraum (20) hat, welche ab einem bestimmten Hub der Schließbewegung des Ventilgliedes (4) über einen Ringspalt (15,115) gedrosselt ist, der zwischen einer Steuerbohrung (40), die zwi- sehen dem Steuerraum (10) und dem Leckolraum (20) angeordnet ist, und einem beim Schließen in die Steuerbohrung (40) eintauchenden Steuerkolben (11,111) des Ventilgliedes (4) gebildet wird.Control chamber (10) can be limited and by means of which the volume of the control chamber (10) can be reduced during the closing movement of the valve member (4), the control chamber (10) being in permanent communication with the high-pressure chamber (3, 18) via a throttle gap (16). on the valve member (4) and has a further connection with a leakage space (20), which is throttled from a certain stroke of the closing movement of the valve member (4) via an annular gap (15, 115), which can be seen between a control bore (40) the control chamber (10) and the leak oil chamber (20) is arranged, and a control piston (11, 111) of the valve member (4), which plunges into the control bore (40) when it is closed, is formed.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch ge- kennzeichnet, daß die Strömungsrichtung des Kraftstoffs aus dem Steuerraum (10) bei der Schließbewegung des Ven- tilgliedes (4) im wesentlichen entgegen der Schließrichtung des Ventilgliedes (4) gerichtet ist.2. Fuel injection valve according to claim 1, characterized in that the flow direction of the fuel from the control chamber (10) during the closing movement of the valve. tilliedes (4) is directed essentially against the closing direction of the valve member (4).
3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Strömungsrichtung des Kraftstoffs aus dem Steuerraum (10) bei der Schließbewegung des Ventilgliedes (4) im wesentlichen in Schließrichtung des Ventilgliedes (4) gerichtet ist.3. Fuel injection valve according to claim 1, characterized in that the flow direction of the fuel from the control chamber (10) during the closing movement of the valve member (4) is directed essentially in the closing direction of the valve member (4).
4. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß das Ventilglied (4) eine vom Brennraum weg gerichtete Öffnungshubbewegung aufweist.4. Fuel injection valve according to claim 2, characterized in that the valve member (4) has an opening stroke movement directed away from the combustion chamber.
5. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, daß der Steuerraum (10) zwischen dem geführten Abschnitt (4b) des Ventilgliedes (4) und dem Steuerkolben (11) angeordnet ist. 5. Fuel injection valve according to claim 4, characterized in that the control chamber (10) between the guided section (4b) of the valve member (4) and the control piston (11) is arranged.
6. Kraftstoffeinspritzventil nach Anspruch 5, dadurch gekennzeichnet, daß die Mantelfläche des Kolbens (11) an ihrem brennraumseitigen Ende eine Dämpfungskante (13) aufweist, die mit einer am brennraumabgewandten Ende der Steuerbohrung (40) ausgebildeten Steuerkante (14) zusam- menwirkt .6. Fuel injection valve according to claim 5, characterized in that the outer surface of the piston (11) has at its combustion chamber end a damping edge (13) which cooperates with a control edge (14) formed on the end of the control bore (40) facing away from the combustion chamber.
7. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, daß die Dämpfungskante (13) bei geschlossenem Kraftstoffeinspritzventil eine Überdeckung (s) mit der Steuerkante (14) aufweist, die 10 bis 50 % des gesam- ten Öffnungshubs (h) des Ventilgliedes (4) beträgt.7. Fuel injection valve according to claim 6, characterized in that the damping edge (13) when the fuel injection valve is closed has an overlap (s) with the control edge (14) which 10 to 50% of the total opening stroke (h) of the valve member (4) is.
8. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß das Ventilglied (4) eine zum Brennraum hin gerichtete Öffnungshubbeweung aufweist.8. Fuel injection valve according to claim 3, characterized in that the valve member (4) has an opening stroke movement directed towards the combustion chamber.
9. Kraftstoffeinspritzventil nach Anspruch 8, dadurch ge- kennzeichnet, daß am brennraumabgewandten Ende der Mantelfläche des Steuerkolbens (111) eine Dämpfungskante9. Fuel injection valve according to claim 8, characterized in that a damping edge at the end of the outer surface of the control piston (111) facing away from the combustion chamber
(113) ausgebildet ist, die mit einer am brennraumseitigen Ende der Steuerbohrung (40) ausgebildeten Steuerkante(113) is formed with a control edge formed on the combustion chamber end of the control bore (40)
(114) zusammenwirkt. (114) interacts.
10. Kraf stoffeinspritzventil nach Anspruch 9, dadurch gekennzeichnet, daß die Dämpfungskante (113) bei geschlos- senem Kraftstoffeinspritzventil eine Überdeckung (s) mit der Steuerkante (114) aufweist, die 10 bis 50 % des gesamten Öffnungshubs (h) des Ventilgliedes (4) beträgt. 10. Kraf fuel injection valve according to claim 9, characterized in that the damping edge (113) when closed senem fuel injection valve has an overlap (s) with the control edge (114), which is 10 to 50% of the total opening stroke (h) of the valve member (4).
11. Kraftstoffeinspritzventil nach einem der vorstehenden An- sprüche, dadurch gekennzeichnet, daß der Leckolraum (20) einen Ablaufkanal (30) aufweist, der mit einem AblaufSystem (35) verbunden ist, welches in einen Kraftstoffvorratstank (34) mündet. 11. Fuel injection valve according to one of the preceding claims, characterized in that the leakage space (20) has an outlet channel (30) which is connected to an outlet system (35) which opens into a fuel storage tank (34).
12. Kraftstoffeinspritzventil nach Anspruch 11, dadurch ge- kennzeichnet, daß das Druckhalteventil (32) in der Ab- laufbohrung (30) angeordnet ist. 12. Fuel injection valve according to claim 11, characterized in that the pressure holding valve (32) is arranged in the drain hole (30).
13. Kraftstoffeinspritzventil nach Anspruch 12, dadurch gekennzeichnet, daß das Druckhalteventil (32) in der Ablaufleitung (31) des AblaufSystems (35) angeordnet ist. 13. Fuel injection valve according to claim 12, characterized in that the pressure holding valve (32) in the drain line (31) of the drain system (35) is arranged.
14.Kraftstoffeinspritzventil nach einem der Ansprüche 12 bis14. Fuel injector according to one of claims 12 to
13, dadurch gekennzeichnet, daß der Haltedruck am Druckhalteventil (32) einstellbar ist.13, characterized in that the holding pressure on the pressure holding valve (32) is adjustable.
15. Kraftstoffeinspritzventil nach einem der Ansprüche 12 bis15. Fuel injection valve according to one of claims 12 to
14, dadurch gekennzeichnet, daß der Haltedruck 0,15 bis 1,0 MPa beträgt.14, characterized in that the holding pressure is 0.15 to 1.0 MPa.
16. Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens eine weitere Drosselverbindung zwischen dem Steuerraum (10) und dem Leckolraum (20) ausgebildet ist. 16. Fuel injection valve according to one of the preceding claims, characterized in that at least one further throttle connection between the control chamber (10) and the leakage oil chamber (20) is formed.
17. Kraftstoffeinspritzventil nach Anspruch 16, dadurch gekennzeichnet, daß die Drosselverbindung als ein im Ventilglied (4) ausgebildeter Kanal ausgebildet ist. 17. Fuel injection valve according to claim 16, characterized in that the throttle connection is designed as a channel formed in the valve member (4).
18. Kraftstoffeinspritzventil nach Anspruch 16, dadurch gekennzeichnet, daß die Drosselverbindung als ein im Ven- tilkörper (1) ausgebildeter Kanal ausgebildet ist. 18. Fuel injection valve according to claim 16, characterized in that the throttle connection is designed as a channel formed in the valve body (1).
EP00967602A 1999-10-01 2000-09-20 Fuel injection valve for internal combustion engines Expired - Lifetime EP1135606B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19947194A DE19947194A1 (en) 1999-10-01 1999-10-01 Fuel injection valve for diesel engine has fuel displaced between control space enclosing valve element and leakage oil space during closure movement of valve element
DE19947194 1999-10-01
PCT/DE2000/003269 WO2001025622A1 (en) 1999-10-01 2000-09-20 Fuel injection valve for internal combustion engines

Publications (2)

Publication Number Publication Date
EP1135606A1 true EP1135606A1 (en) 2001-09-26
EP1135606B1 EP1135606B1 (en) 2005-02-02

Family

ID=7924065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967602A Expired - Lifetime EP1135606B1 (en) 1999-10-01 2000-09-20 Fuel injection valve for internal combustion engines

Country Status (5)

Country Link
US (1) US6712296B1 (en)
EP (1) EP1135606B1 (en)
JP (1) JP2003511611A (en)
DE (2) DE19947194A1 (en)
WO (1) WO2001025622A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221384A1 (en) * 2002-05-14 2003-11-27 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
DE10254789A1 (en) * 2002-11-22 2004-06-17 L'orange Gmbh Fuel injection valve for internal combustion engines
US20060196974A1 (en) * 2005-03-01 2006-09-07 Caterpillar Inc. Fuel injector having a gradually restricted drain passageway
CN101929491B (en) * 2009-06-23 2012-10-24 上海立新液压有限公司 Balance valve with secondary pressure overflow
US20140054396A1 (en) * 2012-08-21 2014-02-27 International Engine Intellectual Property Company, Llc Fluid injector
WO2018098308A1 (en) * 2016-11-22 2018-05-31 Cummins Inc. Injector method of switching between injection state and drain state
DE102016123055A1 (en) * 2016-11-30 2018-05-30 Man Diesel & Turbo Se Fuel supply system and power distribution block
CN106704283B (en) * 2017-02-17 2018-03-20 洛阳理工学院 A kind of low-loss and the guide type sequence valve of vibration damping

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784102A (en) * 1984-12-25 1988-11-15 Nippon Soken, Inc. Fuel injector and fuel injection system
KR880005354A (en) * 1986-10-08 1988-06-28 나까무라 겐조 Electronic actuator
DE3900763C2 (en) * 1989-01-12 1994-05-19 Robert Bosch Ag Wien Fuel injection nozzle, in particular pump nozzle, for an internal combustion engine
US5176115A (en) * 1991-10-11 1993-01-05 Caterpillar Inc. Methods of operating a hydraulically-actuated electronically-controlled fuel injection system adapted for starting an engine
DE4421714A1 (en) * 1994-06-21 1996-01-04 Bosch Gmbh Robert Fuel injection system
DE19508636A1 (en) 1995-03-10 1996-09-12 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
US5868317A (en) * 1997-08-22 1999-02-09 Caterpillar Inc. Stepped rate shaping fuel injector
US6029628A (en) * 1998-05-07 2000-02-29 Navistar International Transportation Corp. Electric-operated fuel injection having de-coupled supply and drain passages to and from an intensifier piston
DE19940558C2 (en) * 1998-09-16 2003-11-20 Siemens Ag Device for delaying the deflection of the nozzle needle of a fuel injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0125622A1 *

Also Published As

Publication number Publication date
DE19947194A1 (en) 2001-04-05
DE50009419D1 (en) 2005-03-10
US6712296B1 (en) 2004-03-30
WO2001025622A1 (en) 2001-04-12
JP2003511611A (en) 2003-03-25
EP1135606B1 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
EP1332282B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
DE19706591A1 (en) Pressure valve
EP1135606B1 (en) Fuel injection valve for internal combustion engines
EP2294309A1 (en) Fuel injector
EP1144842B1 (en) Injector for a fuel injection system for internal combustion engines comprising an injector needle that projects into the valve control space
DE102004054108B4 (en) Three-way valve and having this fuel injector
WO2008049668A1 (en) Injector for injecting fuel into combustion chambers of internal combustion engines
EP2275666B1 (en) Fuel injector with pressure-equalised control valve
DE10307002A1 (en) Fuel injection nozzle has outer nozzle needle and control element in form of inner nozzle needle with first and second lower and higher fuel outlet cross-section positions
EP2138704B1 (en) Fuel injector
DE102006050033A1 (en) Injector, in particular common rail injector
EP1952012A1 (en) Injector
DE10160490B4 (en) Fuel injection device, fuel system and internal combustion engine
EP1384000A1 (en) Fuel injection device for an internal combustion engine
DE19947196A1 (en) Fuel injection device for diesel engine has control valve for regulating fuel feed from high pressure space to injection valve
DE102007011788A1 (en) Fuel injector for injecting fuel into combustion chamber of diesel engine, has pressure accumulator volume subjecting nozzle needle or control rod with closing pressure, which is larger than pressure dropping when needle is opened
EP1430219A1 (en) Fuel injection device for an internal combustion engine
DE102012205696A1 (en) Fuel injector, particularly common rail injector, for injecting fuel into combustion chamber, has high-pressure chamber divided two subspaces by separating element that is movably arranged with nozzle needle in longitudinal axis direction
EP1284360A2 (en) Fuel injection device for an internal combustion engine
DE102008001600A1 (en) Fuel injector with a pressure valve having a control valve
DE102007018042A1 (en) Fuel injector i.e. common-rail-injector, for internal combustion engine, has valve element including control rod and needle, which are hydraulically coupled with each other, where coupler area is temporarily connected with low-pressure area
DE4041878A1 (en) Diesel engine fuel injection valve - delays pressure rise and fall in back pressure chamber to allow valve operation
DE19949526A1 (en) Injector for a common rail fuel injection system for internal combustion engines with partial force compensation of the nozzle needle
DE10146532A1 (en) Fuel injection device for IC engine, has pressure converter provided with stepped piston with auxiliary work space selectively coupled to low pressure reservoir for control
WO2004079181A1 (en) Fuel injection valve for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20011012

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050202

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050202

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009419

Country of ref document: DE

Date of ref document: 20050310

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130918

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181121

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009419

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401