EP1135606B1 - Fuel injection valve for internal combustion engines - Google Patents

Fuel injection valve for internal combustion engines Download PDF

Info

Publication number
EP1135606B1
EP1135606B1 EP00967602A EP00967602A EP1135606B1 EP 1135606 B1 EP1135606 B1 EP 1135606B1 EP 00967602 A EP00967602 A EP 00967602A EP 00967602 A EP00967602 A EP 00967602A EP 1135606 B1 EP1135606 B1 EP 1135606B1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
control
valve member
injection valve
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00967602A
Other languages
German (de)
French (fr)
Other versions
EP1135606A1 (en
Inventor
Jaroslaw Hlousek
Heinrich Werger
Otto Hagenauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1135606A1 publication Critical patent/EP1135606A1/en
Application granted granted Critical
Publication of EP1135606B1 publication Critical patent/EP1135606B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • F02M61/045The valves being provided with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Definitions

  • the invention is based on a fuel injection valve for Internal combustion engine according to the preamble of claim 1 out.
  • a fuel injection valve is known from the document DE 4 421 714 A.
  • Such a fuel injection valve is also from the Publication DE 195 08 636 A1 discloses.
  • Fuel injector is in the bore of the valve body a against the closing force of a spring axially movable, piston-shaped valve member arranged.
  • the valve member has at its combustion chamber end a valve sealing surface on, with a trained in the valve body Valve seat cooperates, creating at least one injection port is controlled.
  • the inward or outward directed Opening stroke of the valve member is of a Stroke limit limited.
  • the fuel injection valve according to the invention for internal combustion engines with the characterizing features of claim 1 has the advantage that the placement of the valve member is additionally damped on the valve seat during the closing movement.
  • a control chamber is arranged, which surrounds the valve member over its entire circumference.
  • valve member In a partial stroke of the valve member, a cylindrical part of the valve member immersed in the control bore, which forms an annular throttle gap between the control bore and the cylindrical part of the valve member, through which the fuel from the control chamber can flow only throttled.
  • the placement of the valve member is damped on the valve seat and reduces the maximum forces.
  • the noise caused by the closing of the valve member is thus reduced, resulting in a quieter running of the internal combustion engine.
  • it comes through the damping to a lower wear of the valve sealing surface or the valve seat.
  • Another advantage of the invention is that it can be applied to both fuel injection valves opening inwardly from the combustion chamber and outwardly opening fuel injection valves. For this purpose, only the arrangement of control piston and control bore must be reversed.
  • the outflow of fuel from the control chamber does not have to be done exclusively via the annular throttle gap.
  • additional throttle channels are formed in the valve body or in the valve member, which connect the control chamber with the leakage oil space. This also gives the possibility to make the throttling effect of the control chamber adjustable via adjustable throttle connections.
  • the valve member loading spring is arranged in the leakage oil space, which has a spillway through which the fuel is passed through a drain line back into the fuel tank. The outflow rate of the fuel from the control room depends not only on the flow resistance of the throttle connection to the leakage oil chamber, but also on the pressure difference between the leakage oil chamber and the control chamber.
  • the pressure of the fuel in the leakage oil space is relatively high, the fuel will run out of the control chamber at a slower rate than at low pressure. As a result, a higher pressure can build up in the control chamber, which more strongly dampens the seating movement of the valve member via the higher force on the pressure surface.
  • a pressure holding valve in the drainage channel of the leakage oil space or in the drain line, a predetermined pressure in the leakage oil space can be maintained.
  • the drain rate from the control room and thus the damping effect of the control chamber can be influenced by the holding pressure.
  • the pressure-holding valve is designed to be adjustable, the damping effect can be adapted to the respective requirements depending on the operating state of the internal combustion engine.
  • Fuel injection valve for internal combustion engines shown. 1 shows a longitudinal section by the first embodiment of an inwardly opening Fuel injection valve, Figure 2 is an enlargement 1 in the region of the control room, Figure 3 a Longitudinal section through the second embodiment of an after outward opening fuel injector and the figures 4a and 4b two embodiments of the fuel drain system with pressure relief valve.
  • a valve body 1 which may be constructed in several parts, is arranged in a receiving bore of the housing of an internal combustion engine, not shown in the drawing, wherein the upper end of the valve body 1 remote from the combustion chamber is fixed in the receiving bore, while the lower end facing the combustion chamber into the combustion chamber Internal combustion engine protrudes.
  • a bore 5 is formed, which is divided into an upper portion 5a and a lower portion 5b.
  • the bore 5 ends at its combustion chamber end inside the valve body 1, wherein the part of the valve body 1, which closes the bore 5 toward the combustion chamber, is formed as a substantially conical valve seat 7.
  • the valve seat 7 is followed by a blind hole 19 towards the combustion chamber, in which at least one injection opening 8 is arranged, which connects the blind hole 19 with the combustion chamber.
  • a piston-shaped, axially movable valve member 4 is arranged, which has a substantially conical valve sealing surface 6 at its combustion chamber end, which cooperates with the valve seat 7 formed in the valve body.
  • the valve member 4 is stepped in diameter, dividing into an upper portion 4a and a lower portion 4b. The valve member 4 is guided with its upper portion 4 a in the bore 5.
  • the lower portion 4b of the valve member 4 is formed smaller in diameter than the upper portion 4a, so that at the transition of the two sections 4a, 4b, a pressure shoulder 9 is formed.
  • annular channel 18 is formed, which forms a pressure chamber 3 in the region of the pressure shoulder 9 by a radial cross-sectional widening.
  • In the pressure chamber 3 opens a running in the valve body 1 inlet channel 2, which is connectable at its other end via a high-pressure feed line, not shown in the drawing with a high-pressure fuel pump or other high-pressure source.
  • About the pressure chamber 3 and the annular channel 18 of the inlet channel 2 is connected to the valve seat 7.
  • the valve sealing surface 6 releases the connection from the annular channel 18 to the blind hole 19, whereby the inlet channel 2 is connected to the injection opening 8.
  • a pressure surface 12 is arranged at the upper portion 4a of the valve member 4 at the upper portion 4a of the valve member 4 at the upper portion 4a of the valve member 4 at the upper portion 4a of the valve member 4 at the transition from the valve member 4 to the control piston 11, a pressure surface 12 is arranged.
  • a control chamber 10 In the region of the upper portion 4 a of the valve member 4 is formed by a radial cross-sectional widening of the bore 5, a control chamber 10.
  • the lateral surface of the control piston 11 has at its end facing the combustion chamber on a damping edge 13 which cooperates with a control edge which is formed by a control bore 40 formed as a portion of the bore 5.
  • a coaxial with the valve member 4 in an intermediate bore 26 arranged intermediate pin 17 connects, which in turn is connected to a spring plate 22 which projects into a formed at the combustion chamber end facing away from the valve body 1 leakage oil space 20.
  • a spring 21 is arranged under bias, which presses the valve member 4 via the spring plate 22, the intermediate pin 17 and the control piston 11 with the valve sealing surface 6 against the valve seat 7.
  • the intermediate pin 17 is formed smaller in diameter than the control piston 11, whereby at the transition from the control piston 11 to the intermediate pin 17, a stop shoulder 24 is formed.
  • a stop ring 23 is arranged at the transition of the bore 5 to the intermediate bore 26 coaxial with the axis of the valve member 4.
  • the stop ring 23 is fixed in the intermediate bore 26, and the combustion chamber facing side of the stop ring 23 is formed as a stroke stop 25, wherein the axial distance of the stroke stop 25 of the stop shoulder 24 in the closed state of the fuel injection valve determines the opening stroke h of the valve member 4.
  • the overlap s of the damping edge 13 and the control edge 14 in the closed position of the valve member 4 is always such that it is smaller than the opening stroke h of the valve member 4.
  • the overlap s is 10 to 50% of the opening stroke h.
  • the area of the control chamber 11 of the fuel injection valve is shown enlarged again.
  • the damping edge 13 and the control edge 14 overlap, so that the control chamber 10 is connected to the leakage oil chamber 20 only via a throttle gap 15.
  • the second opening of the control chamber 10 is provided via the throttling annular gap 16 formed between the upper portion of the valve member 4 a and the bore 5, wherein the flow resistance of the fuel through the throttle channel 15 is smaller than that of the annular gap 16.
  • the control chamber 10 is formed in the figure 2 as a radial extension of the upper portion of the bore 5, so that the volume of the control chamber 10 is reduced during immersion of the control piston 11 during the closing movement of the valve member 4.
  • the mode of operation of the first exemplary embodiment of the fuel injection valve according to FIG. 1 is as follows: Fuel is introduced into the inlet channel 2 through a high-pressure fuel pump via a fuel feed line at high pressure. This also increases the fuel pressure in the pressure chamber 3 and in the annular space 18. By acting in the region of the pressure chamber 13 pressure shoulder 9 results in acting on the valve member 4, in the axial direction of the combustion chamber directed away force, which counteracts the closing force of the spring 21 , If this resultant force exceeds the closing force of the spring 21, the valve member 4 moves away from the combustion chamber in the axial direction and the valve sealing surface 6 lifts off from the valve seat 7.
  • the injection port 8 is connected via the blind hole 19 and the annular channel 18 with the pressure chamber 3 and fuel is injected into the combustion chamber.
  • the control edge 14 covers the damping edge 13 and the control chamber 10 is connected via the throttle gap 15 with the leakage oil chamber 20.
  • the throttle edge 13 exceeds the control edge 14 and moves beyond this until the valve member 4 rests with its stop shoulder 24 on the stroke stop 25. Due to the high fuel pressure in the pressure chamber 3, a portion of the fuel through the annular gap 16 is pressed into the control chamber 10.
  • the closing movement of the valve member 4 is initiated by that the fuel pressure in the inlet channel 2 and thus also drops in the pressure chamber 3. Once the resulting force on the pressure shoulder 9 is smaller than the closing force the spring 21, the valve member 4 in the direction of the Valve seat 7 accelerates towards. By dipping the Pressure surface 12 in the control room 10 is located there Fuel displaced and out of the control room 10 in the Leak oil room 20 pressed. As long as the damping edge 13 the Control edge 14 has not yet reached, this is done with a comparatively low flow resistance of Fuel, so that the pressure in the control chamber 10 largely in the leakage oil space 20 corresponds. Once the damping edge 13 reaches the control edge 14, the control chamber 10 is the Leakage oil chamber 20 is closed down to the throttle gap 15.
  • the fuel pressure in the control chamber 10 then rises and is only slowly due to the outflow of fuel over the Throttle gap 15 degraded. Due to the increased fuel pressure in the control room 10 results in a force on the pressure surface 12 and thus on the valve member 4 against the closing force the spring 21. The movement of the valve member 4 in the direction on the valve seat 7 is slowed down, the touchdown the valve sealing surface 6 on the valve seat 7 is less hard and the resulting high frequency at impact Vibrations of the injection pressure and the valve member. 4 are muffled. There is a significant calming of the Pressure curve on the fuel injection valve, and through the softer placement of the valve member 4 on the valve seat.
  • valve member 4 of the valve seat 7 the maximum forces on the valve member 4 are greatly reduced, which in turn leads to a lower running noise of the Internal combustion engine contributes.
  • the wear of the valve member 4 of the valve seat 7 and the valve sealing surface 6 is Significantly reduced and thus the life of the Fuel injector extended.
  • valve member 4 is also divided into an upper, guided in the bore 5 section 4 a and a lower portion 4 b, which projects freely into the bore 5.
  • the lower portion 4b of the valve member 4 is formed smaller in diameter than the upper portion 4a, so that at the transition of the two sections 4a, 4b, an upper pressure shoulder 50 is formed.
  • a closing head 53 is arranged, in which at least one injection channel 52 is formed with an injection opening 108.
  • the closing head 53 is formed larger in diameter than the upper portion 4a, so that on the combustion chamber side facing away from the closing head 53, a lower pressure shoulder 51 is formed.
  • the closing head 53 has a closing plate 54, the valve body 1 facing annular end face is formed as a valve sealing surface 106.
  • the combustion chamber facing the end face of the valve body 1 is formed as a valve seat 107 and cooperates with the valve sealing surface 106.
  • the opening of the injection channel 52 is closed by the valve body 1, and through the valve sealing surface 106 and the valve seat 107 is a secure seal of the injection port 108 is provided against the combustion chamber.
  • the valve member 4 passes at the combustion chamber end in a control piston 111 which is formed smaller in diameter than the guided portion 4 a of the valve member.
  • a pressure surface 112 is formed and by the tapered design of the control piston 111 between this and the bore 5, a control chamber 10.
  • a spring plunger 44 which extends into the leakage oil space 20th
  • the spring plunger 44 is formed smaller in diameter than the control piston 111.
  • the control bore 40 designed as an annular shoulder stroke stop 125 is formed, which cooperates with an arranged on the spring pin ring collar-shaped stop ring 123. The axial distance of the lower surface of the stop ring 123 and the upper surface of the stroke stop 125 determine the opening stroke h of the valve member 4.
  • a spring 21 is arranged, which is preferably designed as a helical compression spring. It braces the spring plate 122 away from the combustion chamber, so that the valve member 4 is pressed with its valve sealing surface 106 against the valve seat 107 via the spring tappet 44 and the control piston 111.
  • a damping edge 113 is formed, which cooperates with a control edge 114 which is formed by the transition of the control bore 40 into the bore 5.
  • the control piston 111 is immersed in the control bore 40 in the closed state of the fuel injection valve with the overlap s.
  • the outwardly opening fuel injection valve illustrated in FIG. 3 has the following mode of operation: the fuel introduced into the annular channel 18 through the inlet channel 2 acts on both the upper 50 and lower pressure shoulders 51. Since the lower pressure shoulder 51 has a larger, axially effective one Has surface, the force on the valve member 4 outweighs the combustion chamber.
  • FIG. 4 a shows an exemplary embodiment of the drainage system 35 of the fuel from the leakage oil space 20.
  • a pressure-holding valve 32 is arranged, which opens only at a certain pressure in the drain line 31 in the direction of flow to the fuel tank 34 toward. Characterized a certain holding pressure is maintained in the drain line between the fuel injection valve and the pressure holding valve 32 and thus also in the leakage oil chamber 20.
  • FIG 4b an alternative arrangement of the pressure holding valve 32 is shown, which is arranged here in the outlet channel 30 of the valve body 1. With this arrangement, it is not necessary for the assembly to adapt the other drain system 35 to the modified fuel injection valve.
  • the holding pressure of the fuel injection valve is about 0.15 to 1.0 MPa in both embodiments.
  • the holding pressure in the leakage oil chamber 20 Due to the holding pressure in the leakage oil chamber 20, the outflow of fuel from the control chamber 10 into the leakage oil chamber 20 during the closing movement of the valve member 4 is affected, since the outflow rate depends not only on the cross section of the throttle gap 15, but also on the pressure difference between the leakage oil chamber 20 and the control chamber 10 , It can also be provided that the holding pressure at the pressure-holding valve 32 can be regulated. As a result, it is possible to control the holding pressure as a function of the operating state of the internal combustion engine and thus to tailor it to the respective requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Ein derartiges Kraftstoff einspritz ventil ist aus der Druckschrift DE 4 421 714 A bekannt. Ein derartiges Kraftstoffeinspritzventil ist auch aus der Offenlegungsschrift DE 195 08 636 A1 bekannt. Bei einem solchen Kraftstoffeinspritzventil ist in der Bohrung des Ventilkörpers ein entgegen der Schließkraft einer Feder axial bewegliches, kolbenförmiges Ventilglied angeordnet. Das Ventilglied weist an seinem brennraumseitigen Ende eine Ventildichtfläche auf, die mit einem im Ventilkörper ausgebildeten Ventilsitz zusammenwirkt, wodurch wenigstens eine Einspritzöffnung gesteuert wird. Die nach innen oder außen gerichtete Öffnungshubbewegung des Ventilgliedes wird von einem Hubanschlag begrenzt. Bei der Schließbewegung des Ventilgliedes vom Hubanschlag weg wird das Ventilglied durch die Kraft der Feder in Richtung auf den Ventilsitz beschleunigt. Dabei muß der Kraftstoff, der sich zwischen der Ventildichtfläche und dem Ventilsitz befindet, herausgepreßt werden. Dadurch ist zwar eine gewisse Dämpfung des Aufschlags des Ventilgliedes am Ventilsitz gegeben, jedoch ist die Kraft auf das Ventilglied beim Aufschlag auf den Ventilsitz immer noch so groß, daß es zu einem relativ lauten Motorgeräusch kommt. Darüber hinaus kann es im Dauerbetrieb zu Verschleißerscheinungen im Bereich des Ventilsitzes kommen und zu einer nicht vollständigen Abdichtung der Einspritzöffnungen gegen den Brennraum. The invention is based on a fuel injection valve for Internal combustion engine according to the preamble of claim 1 out. Such a fuel injection valve is known from the document DE 4 421 714 A. Such a fuel injection valve is also from the Publication DE 195 08 636 A1 discloses. In such a Fuel injector is in the bore of the valve body a against the closing force of a spring axially movable, piston-shaped valve member arranged. The valve member has at its combustion chamber end a valve sealing surface on, with a trained in the valve body Valve seat cooperates, creating at least one injection port is controlled. The inward or outward directed Opening stroke of the valve member is of a Stroke limit limited. During the closing movement of the valve member away from the stroke stop, the valve member is through accelerates the force of the spring in the direction of the valve seat. The fuel, which is between the valve sealing surface and the valve seat, squeezed out become. This is indeed a certain damping of the impact the valve member is given to the valve seat, however the force on the valve member when impacting the valve seat still so big that it causes a relatively loud engine noise comes. In addition, it can be used continuously Wear phenomena come in the region of the valve seat and an incomplete sealing of the injection openings against the combustion chamber.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß das Aufsetzen des Ventilgliedes am Ventilsitz bei der Schließbewegung zusätzlich gedämpft ist. Zwischen dem in der Bohrung geführten Abschnitt des Ventilgliedes und dem Leckölraum ist ein Steuerraum angeordnet, der das Ventilglied auf seinem gesamten Umfang umgibt. Durch eine am Ventilglied ausgebildete Druckfläche wird bei der Schließbewegung des Ventilgliedes Kraftstoff aus dem Steuerraum durch die Steuerbohrung in den Leckölraum gepreßt, was bei Beginn der Schließbewegung ungedrosselt geschieht. Bei einem Teilhub des Ventilgliedes taucht ein zylindrischer Teil des Ventilgliedes in die Steuerbohrung ein, wodurch sich zwischen der Steuerbohrung und dem zylindrischen Teil des Ventilgliedes ein ringförmiger Drosselspalt bildet, durch den der Kraftstoff aus dem Steuerraum nur noch gedrosselt abfließen kann. Dadurch wird das Aufsetzen des Ventilgliedes auf dem Ventilsitz gedämpft und die maximalen Kräfte reduziert. Das durch das Schließen des Ventilgliedes verursachte Geräusch wird somit reduziert, was zu einem leiseren Lauf der Brennkraftmaschine führt. Darüber hinaus kommt es durch die Dämpfung zu einem geringeren Verschleiß der Ventildichtfläche beziehungsweise des Ventilsitzes.
Ein weiterer Vorteil der Erfindung ist, daß sie sowohl bei nach innen, vom Brennraum weg öffnenden Kraftstoffeinspritzventilen als auch bei nach außen öffnenden Kraftstoffeinspritzventilen angewandt werden kann. Dazu muß lediglich die Anordnung von Steuerkolben und Steuerbohrung vertauscht werden.
Der Abfluß des Kraftstoffs aus dem Steuerraum muß dabei nicht ausschließlich über den ringförmigen Drosselspalt erfolgen. In einer weiteren Ausführung gemäß den Ansprüchen 16 bis 18 kann es auch vorgesehen sein, daß zusätzliche Drosselkanäle im Ventilkörper oder im Ventilglied ausgebildet sind, die den Steuerraum mit dem Leckölraum verbinden. Damit ist auch die Möglichkeit gegeben, die Drosselwirkung des Steuerraums über einstellbare Drosselverbindungen regelbar zu gestalten.
Bei beiden Ausführungen ist die das Ventilglied belastende Feder im Leckölraum angeordnet, welcher einen Abflußkanal aufweist, durch den der Kraftstoff über eine Abflußleitung zurück in den Kraftstoffvorratstank geführt wird. Die Abflußrate des Kraftstoffs aus dem Steuerraum hängt nicht nur vom Durchflußwiderstand der Drosselverbindung zum Leckölraum ab, sondern auch von der Druckdifferenz zwischen Leckölraum und Steuerraum. Ist der Druck des Kraftstoffs im Leckölraum relativ hoch, so wird der Ablauf des Kraftstoffs aus dem Steuerraum langsamer erfolgen als bei niedrigem Druck. Dadurch kann sich im Steuerraum ein höherer Druck aufbauen, der über die höhere Kraft auf die Druckfläche die Aufsetzbewegung des Ventilgliedes stärker dämpft. Durch die Anordnung eines Druckhalteventils im Ablaufkanal des Leckölraums oder in der Ablaufleitung kann ein vorher bestimmter Druck im Leckölraum aufrecht erhalten werden. Die Ablaufrate aus dem Steuerraum und damit die Dämpfungswirkung des Steuerraums kann so über den Haltedruck beeinflußt werden. Ist das Druckhalteventil regelbar ausgestaltet, so kann die Dämpfungswirkung abhängig vom Betriebszustand der Brennkraftmaschine den jeweiligen Erfordernissen angepaßt werden.
The fuel injection valve according to the invention for internal combustion engines with the characterizing features of claim 1 has the advantage that the placement of the valve member is additionally damped on the valve seat during the closing movement. Between the guided in the bore portion of the valve member and the leakage oil chamber, a control chamber is arranged, which surrounds the valve member over its entire circumference. By means of a pressure surface formed on the valve member, fuel is pressed out of the control chamber through the control bore into the leakage oil space during the closing movement of the valve member, which occurs unthrottled at the beginning of the closing movement. In a partial stroke of the valve member, a cylindrical part of the valve member immersed in the control bore, which forms an annular throttle gap between the control bore and the cylindrical part of the valve member, through which the fuel from the control chamber can flow only throttled. As a result, the placement of the valve member is damped on the valve seat and reduces the maximum forces. The noise caused by the closing of the valve member is thus reduced, resulting in a quieter running of the internal combustion engine. In addition, it comes through the damping to a lower wear of the valve sealing surface or the valve seat.
Another advantage of the invention is that it can be applied to both fuel injection valves opening inwardly from the combustion chamber and outwardly opening fuel injection valves. For this purpose, only the arrangement of control piston and control bore must be reversed.
The outflow of fuel from the control chamber does not have to be done exclusively via the annular throttle gap. In a further embodiment according to claims 16 to 18, it may also be provided that additional throttle channels are formed in the valve body or in the valve member, which connect the control chamber with the leakage oil space. This also gives the possibility to make the throttling effect of the control chamber adjustable via adjustable throttle connections.
In both embodiments, the valve member loading spring is arranged in the leakage oil space, which has a spillway through which the fuel is passed through a drain line back into the fuel tank. The outflow rate of the fuel from the control room depends not only on the flow resistance of the throttle connection to the leakage oil chamber, but also on the pressure difference between the leakage oil chamber and the control chamber. If the pressure of the fuel in the leakage oil space is relatively high, the fuel will run out of the control chamber at a slower rate than at low pressure. As a result, a higher pressure can build up in the control chamber, which more strongly dampens the seating movement of the valve member via the higher force on the pressure surface. By arranging a pressure holding valve in the drainage channel of the leakage oil space or in the drain line, a predetermined pressure in the leakage oil space can be maintained. The drain rate from the control room and thus the damping effect of the control chamber can be influenced by the holding pressure. If the pressure-holding valve is designed to be adjustable, the damping effect can be adapted to the respective requirements depending on the operating state of the internal combustion engine.

Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.Further advantages and advantageous embodiments of the subject The invention are the description, the drawing and the claims removed.

Zeichnungdrawing

In der Zeichnung sind zwei Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen dargestellt. Es zeigt die Figur 1 einen Längsschnitt durch das erste Ausführungsbeispiel eines nach innen öffnenden Kraftstoffeinspritzventils, die Figur 2 eine Vergrößerung der Figur 1 im Bereich des Steuerraumes, Figur 3 einen Längsschnitt durch das zweite Ausführungsbeispiel eines nach außen öffnenden Kraftstoffeinspritzventils und die Figuren 4a und 4b zwei Ausgestaltungen des Kraftstoffablaufsystems mit Druckhalteventil.In the drawing, two embodiments of the invention Fuel injection valve for internal combustion engines shown. 1 shows a longitudinal section by the first embodiment of an inwardly opening Fuel injection valve, Figure 2 is an enlargement 1 in the region of the control room, Figure 3 a Longitudinal section through the second embodiment of an after outward opening fuel injector and the figures 4a and 4b two embodiments of the fuel drain system with pressure relief valve.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In der Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil für Brennkraftmaschinen im Längsschnitt dargestellt. Es wird anhand der Figur 1 erst der Aufbau beschrieben und anschließend die Funktionsweise des Kraftstoffeinspritzventils erläutert.
Ein Ventilkörper 1, der mehrteilig aufgebaut sein kann, ist in einer Aufnahmebohrung des Gehäuses einer in der Zeichnung nicht dargestellten Brennkraftmaschine angeordnet, wobei das obere, brennraumabgewandte Ende des Ventilkörpers 1 in der Aufnahmebohrung fixiert ist, während das untere, brennraumzugewandte Ende in den Brennraum der Brennkraftmaschine ragt. Im Ventilkörper 1 ist eine Bohrung 5 ausgebildet, die sich in einen oberen Abschnitt 5a und einen unteren Abschnitt 5b unterteilt. Die Bohrung 5 endet an ihrem brennraumseitigen Ende innerhalb des Ventilkörpers 1, wobei der Teil des Ventilkörpers 1, der die Bohrung 5 zum Brennraum hin verschließt, als im wesentlichen konischer Ventilsitz 7 ausgebildet ist. An den Ventilsitz 7 schließt sich zum Brennraum hin ein Sackloch 19 an, in dem wenigstens eine Einspritzöffnung 8 angeordnet ist, die das Sackloch 19 mit dem Brennraum verbindet. In der Bohrung 5 ist ein kolbenförmiges, axial bewegliches Ventilglied 4 angeordnet, das an seinem brennraumseitigen Ende eine im wesentlichen kegelförmige Ventildichtfläche 6 aufweist, die mit dem im Ventilkörper ausgebildeten Ventilsitz 7 zusammenwirkt. Das Ventilglied 4 ist im Durchmesser gestuft ausgebildet, wobei es sich in einen oberen Abschnitt 4a und einen unteren Abschnitt 4b unterteilt. Das Ventilglied 4 wird mit seinem oberen Abschnitt 4a in der Bohrung 5 geführt. Der untere Abschnitt 4b des Ventilgliedes 4 ist im Durchmesser kleiner ausgebildet als der obere Abschnitt 4a, so daß am Übergang der beiden Abschnitte 4a,4b eine Druckschulter 9 ausgebildet ist. Zwischen der Wand der Bohrung 5 und dem unteren Abschnitt 4b des Ventilgliedes 4 ist ein Ringkanal 18 ausgebildet, der im Bereich der Druckschulter 9 durch eine radiale Querschnittserweiterung einen Druckraum 3 bildet. In den Druckraum 3 mündet ein im Ventilkörper 1 verlaufender Zulaufkanal 2, der an seinem anderen Ende über eine in der Zeichnung nicht dargestellte Hochdruckzulaufleitung mit einer Kraftstoffhochdruckpumpe oder einer anderen Hochdruckquelle verbindbar ist. Über den Druckraum 3 und den Ringkanal 18 ist der Zulaufkanal 2 mit dem Ventilsitz 7 verbunden. Bei der nach innen gerichteten Öffnungshubbewegung des Ventilgliedes 4 gibt die Ventildichtfläche 6 die Verbindung vom Ringkanal 18 zum Sackloch 19 frei, wodurch der Zulaufkanal 2 mit der Einspritzöffnung 8 verbunden wird.
1 shows a fuel injection valve according to the invention for internal combustion engines is shown in longitudinal section. It will be described with reference to the figure 1, only the structure and then explains the operation of the fuel injection valve.
A valve body 1, which may be constructed in several parts, is arranged in a receiving bore of the housing of an internal combustion engine, not shown in the drawing, wherein the upper end of the valve body 1 remote from the combustion chamber is fixed in the receiving bore, while the lower end facing the combustion chamber into the combustion chamber Internal combustion engine protrudes. In the valve body 1, a bore 5 is formed, which is divided into an upper portion 5a and a lower portion 5b. The bore 5 ends at its combustion chamber end inside the valve body 1, wherein the part of the valve body 1, which closes the bore 5 toward the combustion chamber, is formed as a substantially conical valve seat 7. The valve seat 7 is followed by a blind hole 19 towards the combustion chamber, in which at least one injection opening 8 is arranged, which connects the blind hole 19 with the combustion chamber. In the bore 5 a piston-shaped, axially movable valve member 4 is arranged, which has a substantially conical valve sealing surface 6 at its combustion chamber end, which cooperates with the valve seat 7 formed in the valve body. The valve member 4 is stepped in diameter, dividing into an upper portion 4a and a lower portion 4b. The valve member 4 is guided with its upper portion 4 a in the bore 5. The lower portion 4b of the valve member 4 is formed smaller in diameter than the upper portion 4a, so that at the transition of the two sections 4a, 4b, a pressure shoulder 9 is formed. Between the wall of the bore 5 and the lower portion 4b of the valve member 4, an annular channel 18 is formed, which forms a pressure chamber 3 in the region of the pressure shoulder 9 by a radial cross-sectional widening. In the pressure chamber 3 opens a running in the valve body 1 inlet channel 2, which is connectable at its other end via a high-pressure feed line, not shown in the drawing with a high-pressure fuel pump or other high-pressure source. About the pressure chamber 3 and the annular channel 18 of the inlet channel 2 is connected to the valve seat 7. During the inwardly directed opening stroke movement of the valve member 4, the valve sealing surface 6 releases the connection from the annular channel 18 to the blind hole 19, whereby the inlet channel 2 is connected to the injection opening 8.

An den oberen Abschnitt 4a des Ventilgliedes 4 schließt sich ein im wesentlichen zylinder-förmiger, im Durchmesser größer ausgebilder Steuerkolben 11 an, wodurch am Übergang vom Ventilglied 4 zum Steuerkolben 11 eine Druckfläche 12 angeordnet ist. Im Bereich des oberen Abschnitts 4a des Ventilgliedes 4 ist durch eine radiale Querschnittserweiterung der Bohrung 5 ein Steuerraum 10 ausgebildet. Die Mantelfläche des Steuerkolbens 11 weist an ihrem dem Brennraum zugewandten Ende eine Dämpfungskante 13 auf, die mit einer Steuerkante zusammenwirkt, die durch einen als Steuerbohrung 40 ausgebildeten Abschnitt der Bohrung 5 ausgebildet ist. An den Steuerkolben 11 schließt sich ein koaxial zum Ventilglied 4 in einer Zwischenbohrung 26 angeordneter Zwischenstift 17 an, der wiederum mit einem Federteller 22 verbunden ist, der in einen am brennraumsabgewandten Ende des Ventilkörpers 1 ausgebildeten Leckölraum 20 ragt. Über diese Zwischenbohrung 26 ist der obere Abschnitt 5a der Bohrung 5 mit dem Leckölraum 20 verbunden, der wiederum über einen im Ventilkörper 1 ausgebildeten Ablaufkanal 30 mit einem Ablaufsystem 35 verbunden ist. Zwischen dem brennraumabgewandten Ende des Leckölraums 20 und dem Federteller 22 ist eine Feder 21 unter Vorspannung angeordnet, die das Ventilglied 4 über den Federteller 22, den Zwischenstift 17 und den Steuerkolben 11 mit der Ventildichtfläche 6 gegen den Ventilsitz 7 preßt.
Der Zwischenstift 17 ist im Durchmesser kleiner ausgebildet als der Steuerkolben 11, wodurch am Übergang vom Steuerkolben 11 zum Zwischenstift 17 eine Anschlagschulter 24 ausgebildet ist. Am Übergang der Bohrung 5 zur Zwischenbohrung 26 ist koaxial zur Achse des Ventilgliedes 4 ein Anschlagring 23 angeordnet. Der Anschlagring 23 ist in der Zwischenbohrung 26 fixiert, und die dem Brennraum zugewandte Seite des Anschlagrings 23 ist als Hubanschlag 25 ausgebildet, wobei der axiale Abstand des Hubanschlags 25 von der Anschlagschulter 24 im geschlossenen Zustand des Kraftstoffeinspritzventils den Öffnungshub h des Ventilgliedes 4 bestimmt. Die Überdeckung s der Dämpfungskante 13 und der Steuerkante 14 in Schließstellung des Ventilgliedes 4 ist stets so bemessen, daß sie kleiner als der Öffnungshub h des Ventilgliedes 4 ist. Vorzugsweise beträgt die Überdeckung s 10 bis 50 % des Öffnungshubes h.
In der Figur 2 ist der Bereich des Steuerraumes 11 des Kraftstoffeinspritzventils nochmals vergrößert dargestellt. Im geschlossenen Zustand des Kraftstoffeinspritzventils überdecken sich die Dämpfungskante 13 und die Steuerkante 14, so daß der Steuerraum 10 mit dem Leckölraum 20 nur über einen Drosselspalt 15 verbunden ist. Die zweite Öffnung des Steuerraums 10 ist über den zwischen dem oberen Abschnitt des Ventilgliedes 4a und der Bohrung 5 ausgebildeten drosselnden Ringspalt 16 gegeben, wobei der Durchflußwiderstand des Kraftstoffs durch den Drosselkanal 15 kleiner als der des Ringspalts 16 ist. Der Steuerraum 10 ist in der Figur 2 als radiale Erweiterung des oberen Abschnitts der Bohrung 5 ausgebildet, so daß sich das Volumen des Steuerraums 10 beim Eintauchen des Steuerkolbens 11 bei der Schließbewegung des Ventilgliedes 4 verringert.
At the upper portion 4a of the valve member 4 is followed by a substantially cylindrical-shaped, larger in diameter ausgebild control piston 11, whereby at the transition from the valve member 4 to the control piston 11, a pressure surface 12 is arranged. In the region of the upper portion 4 a of the valve member 4 is formed by a radial cross-sectional widening of the bore 5, a control chamber 10. The lateral surface of the control piston 11 has at its end facing the combustion chamber on a damping edge 13 which cooperates with a control edge which is formed by a control bore 40 formed as a portion of the bore 5. To the control piston 11, a coaxial with the valve member 4 in an intermediate bore 26 arranged intermediate pin 17 connects, which in turn is connected to a spring plate 22 which projects into a formed at the combustion chamber end facing away from the valve body 1 leakage oil space 20. About this intermediate bore 26 of the upper portion 5a of the bore 5 is connected to the leakage oil chamber 20, which in turn is connected via a formed in the valve body 1 drain passage 30 with a drain system 35. Between the combustion chamber facing away from the end of the leakage oil chamber 20 and the spring plate 22, a spring 21 is arranged under bias, which presses the valve member 4 via the spring plate 22, the intermediate pin 17 and the control piston 11 with the valve sealing surface 6 against the valve seat 7.
The intermediate pin 17 is formed smaller in diameter than the control piston 11, whereby at the transition from the control piston 11 to the intermediate pin 17, a stop shoulder 24 is formed. At the transition of the bore 5 to the intermediate bore 26 coaxial with the axis of the valve member 4, a stop ring 23 is arranged. The stop ring 23 is fixed in the intermediate bore 26, and the combustion chamber facing side of the stop ring 23 is formed as a stroke stop 25, wherein the axial distance of the stroke stop 25 of the stop shoulder 24 in the closed state of the fuel injection valve determines the opening stroke h of the valve member 4. The overlap s of the damping edge 13 and the control edge 14 in the closed position of the valve member 4 is always such that it is smaller than the opening stroke h of the valve member 4. Preferably, the overlap s is 10 to 50% of the opening stroke h.
In the figure 2, the area of the control chamber 11 of the fuel injection valve is shown enlarged again. In the closed state of the fuel injection valve, the damping edge 13 and the control edge 14 overlap, so that the control chamber 10 is connected to the leakage oil chamber 20 only via a throttle gap 15. The second opening of the control chamber 10 is provided via the throttling annular gap 16 formed between the upper portion of the valve member 4 a and the bore 5, wherein the flow resistance of the fuel through the throttle channel 15 is smaller than that of the annular gap 16. The control chamber 10 is formed in the figure 2 as a radial extension of the upper portion of the bore 5, so that the volume of the control chamber 10 is reduced during immersion of the control piston 11 during the closing movement of the valve member 4.

Die Funktionsweise des ersten Ausführungsbeispiels des Kraftstoffeinspritzventils nach Figur 1 ist wie folgt: Durch eine Kraftstoffhochdruckpumpe wird über eine Kraftstoffzulaufleitung Kraftstoff unter hohem Druck in den Zulaufkanal 2 eingeführt. Dadurch erhöht sich auch der Kraftstoffdruck im Druckraum 3 und im Ringraum 18. Durch die im Bereich des Druckraums 13 angeordnete Druckschulter 9 ergibt sich eine auf das Ventilglied 4 wirkende, in axialer Richtung vom Brennraum weg gerichtete resultierende Kraft, die der Schließkraft der Feder 21 entgegenwirkt. Übersteigt diese resultierende Kraft die Schließkraft der Feder 21, so bewegt sich das Ventilglied 4 in axialer Richtung vom Brennraum weg und die Ventildichtfläche 6 hebt vom Ventilsitz 7 ab. Dadurch wird die Einspritzöffnung 8 über das Sackloch 19 und den Ringkanal 18 mit dem Druckraum 3 verbunden und Kraftstoff wird in den Brennraum eingespritzt.
Zu Beginn der Öffnungshubbewegung des Ventilgliedes 4 überdeckt die Steuerkante 14 die Dämpfungskante 13 und der Steuerraum 10 ist über den Drosselspalt 15 mit dem Leckölraum 20 verbunden. Im Verlauf der Öffnungshubbewegung überschreitet die Drosselkante 13 die Steuerkante 14 und bewegt sich über diese hinaus, bis das Ventilglied 4 mit seiner Anschlagschulter 24 am Hubanschlag 25 anliegt. Durch den hohen Kraftstoffdruck im Druckraum 3 wird auch ein Teil des Kraftstoffs durch den Ringspalt 16 in den Steuerraum 10 gepreßt.
The mode of operation of the first exemplary embodiment of the fuel injection valve according to FIG. 1 is as follows: Fuel is introduced into the inlet channel 2 through a high-pressure fuel pump via a fuel feed line at high pressure. This also increases the fuel pressure in the pressure chamber 3 and in the annular space 18. By acting in the region of the pressure chamber 13 pressure shoulder 9 results in acting on the valve member 4, in the axial direction of the combustion chamber directed away force, which counteracts the closing force of the spring 21 , If this resultant force exceeds the closing force of the spring 21, the valve member 4 moves away from the combustion chamber in the axial direction and the valve sealing surface 6 lifts off from the valve seat 7. Characterized the injection port 8 is connected via the blind hole 19 and the annular channel 18 with the pressure chamber 3 and fuel is injected into the combustion chamber.
At the beginning of the opening stroke of the valve member 4, the control edge 14 covers the damping edge 13 and the control chamber 10 is connected via the throttle gap 15 with the leakage oil chamber 20. In the course of the opening stroke, the throttle edge 13 exceeds the control edge 14 and moves beyond this until the valve member 4 rests with its stop shoulder 24 on the stroke stop 25. Due to the high fuel pressure in the pressure chamber 3, a portion of the fuel through the annular gap 16 is pressed into the control chamber 10.

Die Schließbewegung des Ventilgliedes 4 wird dadurch eingeleitet, daß der Kraftstoffdruck im Zulaufkanal 2 und damit auch im Druckraum 3 abfällt. Sobald die resultierende Kraft auf die Druckschulter 9 kleiner wird als die Schließkraft der Feder 21, wird das Ventilglied 4 in Richtung auf den Ventilsitz 7 hin beschleunigt. Durch das Eintauchen der Druckfläche 12 in den Steuerraum 10 wird der dort befindliche Kraftstoff verdrängt und aus dem Steuerraum 10 in den Leckölraum 20 gepreßt. Solange die Dämpfungskante 13 die Steuerkante 14 noch nicht erreicht hat, geschieht dies mit einem vergleichsweise geringen Strömungswiderstand des Kraftstoffs, so daß der Druck im Steuerraum 10 weitgehend dem im Leckölraum 20 entspricht. Sobald die Dämpfungskante 13 die Steuerkante 14 erreicht, wird der Steuerraum 10 zum Leckölraum 20 hin bis auf den Drosselspalt 15 verschlossen. Der Kraftstoffdruck im Steuerraum 10 steigt daraufhin an und wird nur langsam durch den Abfluß des Kraftstoffs über den Drosselspalt 15 abgebaut. Durch den erhöhten Kraftstoffdruck im Steuerraum 10 ergibt sich eine Kraft auf die Druckfläche 12 und damit auf das Ventilglied 4 entgegen der Schließkraft der Feder 21. Die Bewegung des Ventilgliedes 4 in Richtung auf den Ventilsitz 7 wird dadurch verlangsamt, das Aufsetzen der Ventildichtfläche 6 auf dem Ventilsitz 7 erfolgt weniger hart und die beim Aufschlag entstehenden hochfrequenten Schwingungen des Einspritzdrucks und des Ventilgliedes 4 werden gedämpft. Es tritt eine deutliche Beruhigung des Druckverlaufs am Kraftstoffeinspritzventil auf, und durch das weichere Aufsetzen des Ventilgliedes 4 am Ventilsitz 7 werden die maximalen Kräfte auf das Ventilglied 4 stark reduziert, was wiederum zu einem geringeren Laufgeräusch der Brennkraftmaschine beiträgt. Der Verschleiß des Ventilgliedes 4 vom Ventilsitz 7 und an der Ventildichtfläche 6 wird dadurch deutlich vermindert und damit die Lebensdauer des Kraftstoffeinspritzventils verlängert. The closing movement of the valve member 4 is initiated by that the fuel pressure in the inlet channel 2 and thus also drops in the pressure chamber 3. Once the resulting force on the pressure shoulder 9 is smaller than the closing force the spring 21, the valve member 4 in the direction of the Valve seat 7 accelerates towards. By dipping the Pressure surface 12 in the control room 10 is located there Fuel displaced and out of the control room 10 in the Leak oil room 20 pressed. As long as the damping edge 13 the Control edge 14 has not yet reached, this is done with a comparatively low flow resistance of Fuel, so that the pressure in the control chamber 10 largely in the leakage oil space 20 corresponds. Once the damping edge 13 reaches the control edge 14, the control chamber 10 is the Leakage oil chamber 20 is closed down to the throttle gap 15. The fuel pressure in the control chamber 10 then rises and is only slowly due to the outflow of fuel over the Throttle gap 15 degraded. Due to the increased fuel pressure in the control room 10 results in a force on the pressure surface 12 and thus on the valve member 4 against the closing force the spring 21. The movement of the valve member 4 in the direction on the valve seat 7 is slowed down, the touchdown the valve sealing surface 6 on the valve seat 7 is less hard and the resulting high frequency at impact Vibrations of the injection pressure and the valve member. 4 are muffled. There is a significant calming of the Pressure curve on the fuel injection valve, and through the softer placement of the valve member 4 on the valve seat. 7 the maximum forces on the valve member 4 are greatly reduced, which in turn leads to a lower running noise of the Internal combustion engine contributes. The wear of the valve member 4 of the valve seat 7 and the valve sealing surface 6 is Significantly reduced and thus the life of the Fuel injector extended.

In der Figur 3 ist als zweites Ausführungsbeispiel der Längsschnitt eines nach außen öffnenden Kraftstoffeinspritzventils dargestellt. Das Ventilglied 4 unterteilt sich ebenfalls in einen oberen, in der Bohrung 5 geführten Abschnitt 4a und einen unteren Abschnitt 4b, der frei in die Bohrung 5 ragt. Der untere Abschnitt 4b des Ventilgliedes 4 ist im Durchmesser kleiner ausgebildet als der obere Abschnitt 4a, so daß am Übergang der beiden Abschnitte 4a,4b eine obere Druckschulter 50 ausgebildet ist. Am unteren Ende des Ventilgliedes 4 ist ein Schließkopf 53 angeordnet, in dem wenigstens ein Einspritzkanal 52 mit einer Einspritzöffnung 108 ausgebildet ist. Der Schließkopf 53 ist im Durchmesser größer ausgebildet als der obere Abschnitts 4a, so daß an der brennraumabgewandten Seite des Schließkopfs 53 eine untere Druckschulter 51 ausgebildet ist. Am brennraumseitigen Ende weist der Schließkopf 53 einen Schließteller 54 auf, dessen dem Ventilkörper 1 zugewandte Ringstirnfläche als Ventildichtfläche 106 ausgebildet ist. Die dem Brennraum zugewandte Stirnfläche des Ventilkörpers 1 ist als Ventilsitz 107 ausgebildet und wirkt mit der Ventildichtfläche 106 zusammen. Im geschlossenen Zustand des Ventilgliedes 4 wird die Öffnung des Einspritzkanals 52 vom Ventilkörper 1 verschlossen, und durch die Ventildichtfläche 106 und den Ventilsitz 107 ist eine sichere Abdichtung der Einspritzöffnung 108 gegen den Brennraum gegeben.
An die Bohrung 5 schließt sich am brennraumabgewandten Ende des Ventilgliedes 4 eine Steuerbohrung 40 an und an diese ein Leckölraum 20. Das Ventilglied 4 geht am brennraumseitigen Ende in einen Steuerkolben 111 über, der im Durchmesser kleiner ausgebildet ist als der geführte Abschnitt 4a des Ventilgliedes 4. Am Übergang vom Ventilglied 4 zum Steuerkolben 111 ist dadurch eine Druckfläche 112 ausgebildet und durch die verjüngte Ausbildung des Steuerkolbens 111 zwischen diesem und der Bohrung 5 ein Steuerraum 10. An den Steuerkolben 111 schließt sich ein Federstößel 44 an, der bis in den Leckölraum 20 ragt, und an diesen ein Ventilteller 122. Der Federstößel 44 ist dabei im Durchmesser kleiner ausgebildet als der Steuerkolben 111. In der Steuerbohrung 40 ist ein als ringförmiger Absatz ausgebildeter Hubanschlag 125 ausgebildet, der mit einem am Federstift angeordneten ringkragenförmigen Anschlagring 123 zusammenwirkt. Der axiale Abstand der unteren Fläche des Anschlagrings 123 und der oberen Fläche des Hubanschlags 125 bestimmen den Öffnungshub h des Ventilgliedes 4. Zwischen dem brennraumseitigen Ende des Leckölraums 20 und dem Federteller 122 ist eine Feder 21 angeordnet, die vorzugsweise als Schraubendruckfeder ausgebildet ist. Sie verspannt den Federteller 122 vom Brennraum weg, so daß über den Federstößel 44 und den Steuerkolben 111 das Ventilglied 4 mit seiner Ventildichtfläche 106 gegen den Ventilsitz 107 gedrückt wird.
Am brennraumabgewandten Ende der Mantelfläche des Steuerkolbens 111 ist eine Dämpfungskante 113 ausgebildet, die mit einer Steuerkante 114 zusammenwirkt, die durch den Übergang der Steuerbohrung 40 in die Bohrung 5 gebildet wird. Der Steuerkolben 111 taucht im geschlossenen Zustand des Kraftstoffeinspritzventils mit der Überdeckung s in die Steuerbohrung 40 ein. Da der Steuerkolben 111 einen Durchmesser aufweist, der nur geringfügig kleiner als der der Steuerbohrung 40 ist, wird zwischen Steuerkolben 111 und Steuerbohrung 40 ein Drosselspalt 115 ausgebildet, über den der Steuerraum 10 mit dem Leckölraum 20 verbunden ist. Die Überdekkung s der Kanten 113 und 114 ist kleiner als der Öffnungshub h des Ventilgliedes 4, so daß der Steuerkolben 111 bei voll geöffnetem Kraftstoffeinspritzventil aus der Steuerbohrung 40 austritt.
Das in Figur 3 dargestellte, nach außen öffnende Kraftstoffeinspritzventil weist folgende Funktionsweise auf: Der durch den Zulaufkanal 2 in den Ringkanal 18 eingeführte Kraftstoff beaufschlagt sowohl die obere 50 als auch die untere Druckschulter 51. Da die untere Druckschulter 51 eine größere, in axialer Richtung wirksame Fläche aufweist, überwiegt die Kraft auf das Ventilglied 4 zum Brennraum hin. Ist der Kraftstoffdruck gleich einem Öffnungsdruck, so übersteigt die resultierende Kraft die Schließkraft der Feder 21. Die Ventildichtfläche 106 bewegt sich vom Ventilsitz 107 weg und die Einspritzöffnung 108 taucht aus der Bohrung 5 aus, bis der Anschlagring 123 am Hubanschlag 125 anliegt. Der Steuerkolben 111 befindet sich in der geöffneten Stellung des Ventilgliedes 4 außerhalb der Steuerbohrung 40. Durch einen Druckabfall im Ringkanal 18 unterhalb des Öffnungsdrucks wird das Ventilglied 4 von der Feder 21 in Schließrichtung beschleunigt. Dadurch bewegt sich die Druckfläche 112 in den Steuerraum 10, wodurch Kraftstoff über die Steuerbohrung 40 in den Leckölraum 20 gepreßt wird. Dies geschieht anfangs mit einem geringen Strömungswiderstand; erst wenn die Dämpfungskante 113 die Steuerkante 114 erreicht, verengt sich der Durchgang in die Steuerbohrung 40 bis auf den Drosselspalt 115. Der Druck im Steuerraum 10 steigt an und bewirkt durch die daraus resultierende Kraft auf die Druckfläche 112 eine gebremste Bewegung des Ventilgliedes 4 und damit ein gedämpftes Aufsetzen der Ventildichtfläche 106 auf dem Ventilsitz 107.
In the figure 3 is shown as a second embodiment, the longitudinal section of an outwardly opening fuel injection valve. The valve member 4 is also divided into an upper, guided in the bore 5 section 4 a and a lower portion 4 b, which projects freely into the bore 5. The lower portion 4b of the valve member 4 is formed smaller in diameter than the upper portion 4a, so that at the transition of the two sections 4a, 4b, an upper pressure shoulder 50 is formed. At the lower end of the valve member 4, a closing head 53 is arranged, in which at least one injection channel 52 is formed with an injection opening 108. The closing head 53 is formed larger in diameter than the upper portion 4a, so that on the combustion chamber side facing away from the closing head 53, a lower pressure shoulder 51 is formed. At the combustion chamber end, the closing head 53 has a closing plate 54, the valve body 1 facing annular end face is formed as a valve sealing surface 106. The combustion chamber facing the end face of the valve body 1 is formed as a valve seat 107 and cooperates with the valve sealing surface 106. In the closed state of the valve member 4, the opening of the injection channel 52 is closed by the valve body 1, and through the valve sealing surface 106 and the valve seat 107 is a secure seal of the injection port 108 is provided against the combustion chamber.
The valve member 4 passes at the combustion chamber end in a control piston 111 which is formed smaller in diameter than the guided portion 4 a of the valve member. 4 At the transition from the valve member 4 to the control piston 111 thereby a pressure surface 112 is formed and by the tapered design of the control piston 111 between this and the bore 5, a control chamber 10. At the control piston 111 is followed by a spring plunger 44 which extends into the leakage oil space 20th The spring plunger 44 is formed smaller in diameter than the control piston 111. In the control bore 40 designed as an annular shoulder stroke stop 125 is formed, which cooperates with an arranged on the spring pin ring collar-shaped stop ring 123. The axial distance of the lower surface of the stop ring 123 and the upper surface of the stroke stop 125 determine the opening stroke h of the valve member 4. Between the combustion chamber end of the leakage oil chamber 20 and the spring plate 122, a spring 21 is arranged, which is preferably designed as a helical compression spring. It braces the spring plate 122 away from the combustion chamber, so that the valve member 4 is pressed with its valve sealing surface 106 against the valve seat 107 via the spring tappet 44 and the control piston 111.
At the combustion chamber end remote from the lateral surface of the control piston 111, a damping edge 113 is formed, which cooperates with a control edge 114 which is formed by the transition of the control bore 40 into the bore 5. The control piston 111 is immersed in the control bore 40 in the closed state of the fuel injection valve with the overlap s. Since the control piston 111 has a diameter which is only slightly smaller than that of the control bore 40, a throttle gap 115 is formed between the control piston 111 and the control bore 40, via which the control chamber 10 is connected to the leakage oil chamber 20. The Überdekkung s of the edges 113 and 114 is smaller than the opening stroke h of the valve member 4, so that the control piston 111 exits the control bore 40 with the fuel injection valve fully open.
The outwardly opening fuel injection valve illustrated in FIG. 3 has the following mode of operation: the fuel introduced into the annular channel 18 through the inlet channel 2 acts on both the upper 50 and lower pressure shoulders 51. Since the lower pressure shoulder 51 has a larger, axially effective one Has surface, the force on the valve member 4 outweighs the combustion chamber. When the fuel pressure is equal to an opening pressure, the resultant force exceeds the closing force of the spring 21. The valve sealing surface 106 moves away from the valve seat 107 and the injection port 108 emerges from the bore 5 until the stopper ring 123 abuts on the stroke stopper 125. The control piston 111 is located in the open position of the valve member 4 outside the control bore 40. By a pressure drop in the annular channel 18 below the opening pressure, the valve member 4 is accelerated by the spring 21 in the closing direction. As a result, the pressure surface 112 moves into the control chamber 10, whereby fuel is forced through the control bore 40 into the leakage oil chamber 20. This initially happens with a low flow resistance; only when the damping edge 113 reaches the control edge 114, the passage narrows in the control bore 40 to the throttle gap 115. The pressure in the control chamber 10 increases and causes by the resulting force on the pressure surface 112 a braked movement of the valve member 4 and thus a damped placement of the valve sealing surface 106 on the valve seat 107th

In der Figur 4a ist ein Ausführungsbeispiel des Ablaufsystems 35 des Kraftstoffs aus dem Leckölraum 20 schematisch dargestellt. Im Verlauf der Ablaufleitung 31 ist ein Druckhalteventil 32 angeordnet, das nur bei einem bestimmten Druck in der Ablaufleitung 31 in Ablaufrichtung zum Kraftstoffvorratstank 34 hin öffnet. Dadurch wird in der Ablaufleitung zwischen Kraftstoffeinspritzventil und dem Druckhalteventil 32 und damit auch im Leckölraum 20 ein bestimmter Haltedruck aufrecht erhalten. In Figur 4b ist eine alternative Anordnung des Druckhalteventils 32 gezeigt, welches hier im Ablaufkanal 30 des Ventilkörpers 1 angeordnet ist. Bei dieser Anordnung ist es für die Montage nicht notwendig, das sonstige Ablaufsystem 35 an das geänderte Kraftstoffeinspritzventil anzupassen. Der Haltedruck des Kraftetoffeinspritzventils beträgt in beiden Ausführungsformen etwa 0,15 bis 1,0 MPa. Durch den Haltedruck im Leckölraum 20 wird der Abfluß des Kraftstoffs aus dem Steuerraum 10 in den Leckölraum 20 während der Schließbewegung des Ventilgliedes 4 beeinflußt, da die Abflußrate nicht nur vom Querschnitt des Drosselspalts 15, sondern auch von der Druckdifferenz zwischen Leckölraum 20 und Steuerraum 10 abhängt.
Es kann auch vorgesehen sein, daß der Haltedruck am Druckhalteventil 32 regelbar ist. Dadurch ist es möglich, den Haltedruck abhängig vom Betriebszustand der Brennkraftmaschine zu steuern und so den jeweiligen Erfordernissen gezielt anzupassen.
FIG. 4 a shows an exemplary embodiment of the drainage system 35 of the fuel from the leakage oil space 20. In the course of the drain line 31, a pressure-holding valve 32 is arranged, which opens only at a certain pressure in the drain line 31 in the direction of flow to the fuel tank 34 toward. Characterized a certain holding pressure is maintained in the drain line between the fuel injection valve and the pressure holding valve 32 and thus also in the leakage oil chamber 20. In Figure 4b, an alternative arrangement of the pressure holding valve 32 is shown, which is arranged here in the outlet channel 30 of the valve body 1. With this arrangement, it is not necessary for the assembly to adapt the other drain system 35 to the modified fuel injection valve. The holding pressure of the fuel injection valve is about 0.15 to 1.0 MPa in both embodiments. Due to the holding pressure in the leakage oil chamber 20, the outflow of fuel from the control chamber 10 into the leakage oil chamber 20 during the closing movement of the valve member 4 is affected, since the outflow rate depends not only on the cross section of the throttle gap 15, but also on the pressure difference between the leakage oil chamber 20 and the control chamber 10 ,
It can also be provided that the holding pressure at the pressure-holding valve 32 can be regulated. As a result, it is possible to control the holding pressure as a function of the operating state of the internal combustion engine and thus to tailor it to the respective requirements.

Claims (18)

  1. Fuel injection valve for internal combustion engines, with a bore (5) which is formed in the valve body (1) and in which is arranged a piston-shaped valve member (4) which is moveable axially counter to the closing force of a spring (21) and at its end located on the combustion-space side controls at least one injection orifice (8) and which has a portion (4b) located on the combustion-space side which is arranged in an annular duct (3, 18) filled with fuel under high pressure, a pressure shoulder (9) being formed on the said portion (4b) of the valve member (4), the pressure of the fuel acting on the pressure shoulder (9) counter to the closing force of the spring (21), characterized in that the valve member (1) has a pressure face (12, 122), by means of which a control space (10) surrounding the valve member (4) can be delimited and by means of which the volume of the control space (10) can be reduced during the closing movement of the valve member (4), the control space (10) having a constant connection via a throttle gap (16) to the high-pressure space (3, 18) of the valve member (4) and a further connection to a leakage-oil space (20), which further connection is throttled, from a defined stroke of the closing movement of the valve member (4), via an annular gap (15, 115) which is formed between a control bore (40), arranged between the control space (10) and the leakage-oil space (20), and a control piston (11, 111) of the valve member (4), the said control piston penetrating into the control bore (40) during closing.
  2. Fuel injection valve according to Claim 1, characterized in that the direction of flow of the fuel out of the control space (10) during the closing movement of the valve member (4) is directed essentially opposite to the closing direction of the valve member (4).
  3. Fuel injection valve according to Claim 1, characterized in that the direction of flow of the fuel out of the control space (10) during the closing movement of the valve member (4) is directed essentially in the closing direction of the valve member (4).
  4. Fuel injection valve according to Claim 2, characterized in that the valve member (4) has an opening-stroke movement directed away from the combustion space.
  5. Fuel injection valve according to Claim 4, characterized in that the control space (10) is arranged between the guided portion (4b) of the valve member (4) and the control piston (11).
  6. Fuel injection valve according to Claim 5, characterized in that the outer surface area of the piston (11) has, at its end located in the combustion-space side, a damping edge (13) which cooperates with a control edge (14) formed at that end of the control bore (40) which faces away from the combustion space.
  7. Fuel injection valve according to Claim 6, characterized in that, with the fuel injection valve closed, the damping edge (13) has with the control edge (14) an overlap (s) which amounts to 10 to 50% of the total opening stroke (h) of the valve member (4).
  8. Fuel injection valve according to Claim 3, characterized in that the valve member (4) has an opening-stroke movement directed towards the combustion space.
  9. Fuel injection valve according to Claim 8, characterized in that a damping edge (113) is formed at that end of the outer surface area of the control piston (111) which faces away from the combustion space, the said damping edge cooperating with a control edge (114) formed at that end of the control bore (40) which is located on the combustion-space side.
  10. Fuel injection valve according to Claim 9, characterized in that, with the fuel injection valve closed, the damping edge (113) has with the control edge (114) an overlap (s) which amounts to 10 to 50% of the total opening stroke (h) of the valve member (4).
  11. Fuel injection valve according to one of the preceding claims, characterized in that the leakage-oil space (20) has an outflow duct (30) connected to an outflow system (35) which issues into a fuel storage tank (34).
  12. Fuel injection valve according to Claim 11, characterized in that the pressure-holding valve (32) is arranged in the outflow bore (30).
  13. Fuel injection valve according to Claim 12, characterized in that the pressure-holding valve (32) is arranged in the outflow line (31) of the outflow system (35).
  14. Fuel injection valve according to one of Claims 12 and 13, characterized in that the holding pressure of the pressure-holding valve (32) is adjustable.
  15. Fuel injection valve according to one of Claims 12 to 14, characterized in that the holding pressure amounts to 0.15 to 1.0 MPa.
  16. Fuel injection valve according to one of the preceding claims, characterized in that at least one further throttle connection is formed between the control space (10) and the leakage-oil space (20).
  17. Fuel injection valve according to Claim 16, characterized in that the throttle connection is designed as a duct formed in the valve member (4).
  18. Fuel injection valve according to Claim 16, characterized in that the throttle connection is designed as a duct formed in the valve body (1).
EP00967602A 1999-10-01 2000-09-20 Fuel injection valve for internal combustion engines Expired - Lifetime EP1135606B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19947194A DE19947194A1 (en) 1999-10-01 1999-10-01 Fuel injection valve for diesel engine has fuel displaced between control space enclosing valve element and leakage oil space during closure movement of valve element
DE19947194 1999-10-01
PCT/DE2000/003269 WO2001025622A1 (en) 1999-10-01 2000-09-20 Fuel injection valve for internal combustion engines

Publications (2)

Publication Number Publication Date
EP1135606A1 EP1135606A1 (en) 2001-09-26
EP1135606B1 true EP1135606B1 (en) 2005-02-02

Family

ID=7924065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967602A Expired - Lifetime EP1135606B1 (en) 1999-10-01 2000-09-20 Fuel injection valve for internal combustion engines

Country Status (5)

Country Link
US (1) US6712296B1 (en)
EP (1) EP1135606B1 (en)
JP (1) JP2003511611A (en)
DE (2) DE19947194A1 (en)
WO (1) WO2001025622A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221384A1 (en) * 2002-05-14 2003-11-27 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
DE10254789A1 (en) * 2002-11-22 2004-06-17 L'orange Gmbh Fuel injection valve for internal combustion engines
US20060196974A1 (en) * 2005-03-01 2006-09-07 Caterpillar Inc. Fuel injector having a gradually restricted drain passageway
CN101929491B (en) * 2009-06-23 2012-10-24 上海立新液压有限公司 Balance valve with secondary pressure overflow
US20140054396A1 (en) * 2012-08-21 2014-02-27 International Engine Intellectual Property Company, Llc Fluid injector
WO2018098308A1 (en) * 2016-11-22 2018-05-31 Cummins Inc. Injector method of switching between injection state and drain state
DE102016123055A1 (en) * 2016-11-30 2018-05-30 Man Diesel & Turbo Se Fuel supply system and power distribution block
CN106704283B (en) * 2017-02-17 2018-03-20 洛阳理工学院 A kind of low-loss and the guide type sequence valve of vibration damping

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784102A (en) * 1984-12-25 1988-11-15 Nippon Soken, Inc. Fuel injector and fuel injection system
KR880005354A (en) * 1986-10-08 1988-06-28 나까무라 겐조 Electronic actuator
DE3900763C2 (en) * 1989-01-12 1994-05-19 Robert Bosch Ag Wien Fuel injection nozzle, in particular pump nozzle, for an internal combustion engine
US5176115A (en) * 1991-10-11 1993-01-05 Caterpillar Inc. Methods of operating a hydraulically-actuated electronically-controlled fuel injection system adapted for starting an engine
DE4421714A1 (en) * 1994-06-21 1996-01-04 Bosch Gmbh Robert Fuel injection system
DE19508636A1 (en) 1995-03-10 1996-09-12 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
US5868317A (en) * 1997-08-22 1999-02-09 Caterpillar Inc. Stepped rate shaping fuel injector
US6029628A (en) * 1998-05-07 2000-02-29 Navistar International Transportation Corp. Electric-operated fuel injection having de-coupled supply and drain passages to and from an intensifier piston
DE19940558C2 (en) * 1998-09-16 2003-11-20 Siemens Ag Device for delaying the deflection of the nozzle needle of a fuel injector

Also Published As

Publication number Publication date
DE50009419D1 (en) 2005-03-10
US6712296B1 (en) 2004-03-30
WO2001025622A1 (en) 2001-04-12
DE19947194A1 (en) 2001-04-05
EP1135606A1 (en) 2001-09-26
JP2003511611A (en) 2003-03-25

Similar Documents

Publication Publication Date Title
EP1332282B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP1966481B1 (en) High-pressure pump, in particular for a fuel injection device of an internal combustion engine
WO2008155275A1 (en) Control valve for a fuel injection valve
DE10335211A1 (en) Fuel injection device for an internal combustion engine
DE4440182C2 (en) Fuel injection valve for internal combustion engines
EP1135606B1 (en) Fuel injection valve for internal combustion engines
EP2743493A2 (en) Fuel injector
WO2008049668A1 (en) Injector for injecting fuel into combustion chambers of internal combustion engines
DE2159356C2 (en) Fuel injection pump for internal combustion engines
EP2275666A1 (en) Fuel injector with pressure-equalised control valve
DE2165443A1 (en) Injector
DE102009026564A1 (en) Fuel injector for injecting fuel into combustion chamber of internal-combustion engine, has control valve element that is formed and arranged such that small resulting hydraulic force is applied on control valve element
EP1952012A1 (en) Injector
DE102006050033A1 (en) Injector, in particular common rail injector
DE102004010759A1 (en) Common rail injector
DE10348978A1 (en) Fuel injection device, in particular for a direct injection internal combustion engine
DE10160490B4 (en) Fuel injection device, fuel system and internal combustion engine
WO2002086307A1 (en) Fuel injection device for an internal combustion engine
WO2006079425A1 (en) Fuel injection device
DE3201044A1 (en) Fuel injection nozzle for internal combustion engines
DE19947196A1 (en) Fuel injection device for diesel engine has control valve for regulating fuel feed from high pressure space to injection valve
DE102016201539A1 (en) fuel injector
EP1606511B1 (en) Fuel injection device for a combustion engine
DE102004046609A1 (en) Fuel injection valve has movable drive element arranged in control chamber so outer valve needle and inner needle are forced towards valve seat when drive element moves towards valve seat
DE102012205696A1 (en) Fuel injector, particularly common rail injector, for injecting fuel into combustion chamber, has high-pressure chamber divided two subspaces by separating element that is movably arranged with nozzle needle in longitudinal axis direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20011012

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050202

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050202

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009419

Country of ref document: DE

Date of ref document: 20050310

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130918

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181121

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009419

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401