EP1133577B1 - Method for producing soft-magnetic sintered components - Google Patents

Method for producing soft-magnetic sintered components Download PDF

Info

Publication number
EP1133577B1
EP1133577B1 EP99960891A EP99960891A EP1133577B1 EP 1133577 B1 EP1133577 B1 EP 1133577B1 EP 99960891 A EP99960891 A EP 99960891A EP 99960891 A EP99960891 A EP 99960891A EP 1133577 B1 EP1133577 B1 EP 1133577B1
Authority
EP
European Patent Office
Prior art keywords
powder
mixture
binder
process according
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99960891A
Other languages
German (de)
French (fr)
Other versions
EP1133577A1 (en
Inventor
Rudolf Schneider
Georg Veltl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Sinterwerke Herne GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
BT Magnet Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19951963A external-priority patent/DE19951963A1/en
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, BT Magnet Technologie GmbH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1133577A1 publication Critical patent/EP1133577A1/en
Application granted granted Critical
Publication of EP1133577B1 publication Critical patent/EP1133577B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Definitions

  • the invention relates to a process for the preparation of soft magnetic sintered components according to the preamble of Claim 1.
  • Soft magnetic components require in addition to the magnetic Properties (high magnetic permeability and low Coercive force), depending on the application, a complex Geometry. Such components can be powder metallurgical getting produced.
  • US-A-5 443 787 discloses a method of preparation of soft magnetic sintered components.
  • the inventive method with the characterizing features of claim 1 offers the advantage that with less Process complexity a much higher shape complexity of reached to be produced soft magnetic sintered components is, than with the conventional axial pressing method is possible. Another advantage is that the Components with the high shape complexity no further require mechanical reworkability. Moreover, show produced by the process according to the invention Components have better magnetic properties than components, which are produced by conventional pressing. The inventive method also allows in Comparison to the metal powder injection molding process (MIM process) a lower proportion of fine powder, whereby the process becomes cheaper.
  • MIM process metal powder injection molding process
  • thermoplastic properties of a temporary binder which is added to the starting powders, exploited. there is caused by heating and softening or liquefaction of the Binders the flowability of the powder starting material improved so far that while avoiding cross-flow cracks a material transport in the trained in a tool Shape can be made for the components transverse to the pressing direction.
  • thermoplastic Binders By adding a small amount of the thermoplastic Binders becomes a high density in a powder pack realized.
  • the properties of the Starting powder mixture so affected that it having required viscosity behavior. It is the Proportion of binder chosen so that the applied pressure when heated and at least softening of the binder the Allow mixture of starting powder and binder to flow can, but it is avoided that due to the binder content, the weight of the green compact, whose yield point at Heating up to sintering temperature exceeds.
  • the binder as a mixture of a Polymer and wax with the mixture of the starting powder at be mixed together at a temperature at which the Polymer already softened and the wax has melted.
  • the Use of two different polymers with different viscosity behavior is also conceivable.
  • the powder thus treated is good manageable and pourable and is available as a composite powder.
  • This composite powder can be preheated to a temperature where the binder softens again and then in the Heatable tool in which the shape of the produced Components is included, are introduced.
  • the added proportion of fine powders increases the Sintering activity and consequently also the sintering density of finished sintered soft magnetic sintered components.
  • the conventional pressing method is the The initial powder is loosely packed and the compaction takes place mainly in the molding process during pressing.
  • the density increase is only achieved during sintering and the shaping runs almost without Compaction.
  • starting component A are 60 to 93.5 mass .-% of Fe 13 Cr standard powder having an average particle size of 40 to 150 microns and as starting component B 5 to 30 mass .-% of Fe 13 Cr ultrafine powder having an average particle size of 5 to 40 microns used.
  • starting component C 1.5 to 4% by weight of a binder is used.
  • the binder used is a mixture of 70% wax and 30% by weight of polyethylene (PE).
  • a binder also a Polymer-polymer mixture with different Viscosity behavior of the individual polymers to use
  • a first process stage 1 the Starting components A, B and C in a heatable kneading mixer to a homogeneous, flowable starting powder mixture mixed.
  • the resulting mixture is then poured into a second process stage 2 using a conventional press with a pressure of 400 to 800 MPa and at a temperature of 60 to 100 ° C to one Green body pressed with the desired shape.
  • a conventional press with a pressure of 400 to 800 MPa and at a temperature of 60 to 100 ° C to one Green body pressed with the desired shape.
  • a second process stage 2 using a conventional press with a pressure of 400 to 800 MPa and at a temperature of 60 to 100 ° C to one Green body pressed with the desired shape.
  • the soft magnetic sintered component of Fe 13 Cr, Fe 17 Co and Fe 48 Co 2 V powder produced by the process described has the magnetic properties listed in Tables 1 and 2 below and also the hysteresis loops shown in FIGS. 2, 3 and 4. Magnetization curves on.
  • Table 1 The results of Table 1 were obtained with the starting powders A and B in the upper particle size range.
  • a starting powder with a d 50 of 100 .mu.m was used as component A
  • a starting powder having a d 50 of 35 microns was used as component A.
  • FIG. 2 shows the hysteresis loops of the soft magnetic sintered components of Fe 13 Cr, Fe 17 Co and Fe 48 Co 2 V powders listed in Table 1.
  • the hysteresis curves show the magnetic induction B as a function of the magnetic field strength H. The course of the magnetization curves makes it clear that all three materials have a low coercive force at a relatively high permeability.
  • FIGS. 3 and 4 show the state variables magnetic polarization J as a function of the magnetic field strength H on the basis of the magnetization curves for the soft magnetic sintered components of Fe 13 Cr and Fe 48 Co 2 V powder listed in Table 2.
  • the Fe 13 Cr sintered component a remanence of 0.487 T and a saturation polarization or saturation induction of 1.439 T at a maximum field strength of 10.24 kA / m were measured.
  • the values of the Fe 48 Co 2 V sintered component have a remanence of 1.072 T and a saturation polarization or saturation induction of 1.89 T at a maximum field strength of 10.31 kA / m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von weichmagnetischen Sinterbauteilen nach dem Oberbegriff des Anspruchs 1.The invention relates to a process for the preparation of soft magnetic sintered components according to the preamble of Claim 1.

Stand der TechnikState of the art

Weichmagnetische Bauteile erfordern neben den magnetischen Eigenschaften (hohe magnetische Permeabilität und geringe Koerzitivfeldstärke) je nach Anwendungsfall eine komplexe Geometrie. Derartige Bauteile können pulvermetallurgisch hergestellt werden.Soft magnetic components require in addition to the magnetic Properties (high magnetic permeability and low Coercive force), depending on the application, a complex Geometry. Such components can be powder metallurgical getting produced.

In der DE 197 45 283 A1 wird bereits ein Verfahren zur Herstellung von Sinterbauteilen, das auch als Warmfließkompaktierverfahren bezeichnet wird, beschrieben. Bei diesem Verfahren werden Ausgangspulver mit einem Binder oder Bindergemisch vermischt und das Gemisch in einem Werkzeug bei erhöhter Temperatur, die über der Erweichungstemperatur des Binders liegt, zu einem Grünkörper verpreßt. Anschließend wird der Grünkörper gesintert. Mit diesem Verfahren lassen sich Bauteile mit komplexer Geometrie herstellen.In DE 197 45 283 A1, a method for Production of sintered components, also known as Warmfließkompaktierverfahren is described. In this process, starting powders with a binder or mixed mixtures and the mixture in one Tool at elevated temperature, above the Softening temperature of the binder is, to a green body pressed. Subsequently, the green body is sintered. With this process makes components more complex Create geometry.

US-A-5 443 787 offenbart ein Verfahren zur Herstellung von weichmagnetischen Sinterbauteilen.US-A-5 443 787 discloses a method of preparation of soft magnetic sintered components.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 bietet den Vorteil, daß mit geringerem Verfahrensaufwand eine wesentlich höhere Formkomplexität der herzustellenden weichmagnetischen Sinterbauteile erreicht wird, als dies mit dem herkömmlichen axialen Preßverfahren möglich ist. Ein weiterer Vorteil besteht darin, daß die Bauteile mit der hohen Formkomplexität keine weitere mechanische Nachbearbeitbarkeit erfordern. Überdies weisen die nach dem erfindungsgemäßen Verfahren hergestellten Bauteile bessere magnetische Eigenschaften auf als Bauteile, die nach konventionellen Preßverfahren hergestellt werden. Das erfindungsgemäße Verfahren ermöglicht außerdem im Vergleich zum Metallpulver-Spritzgußverfahren (MIM-Prozeß) einen geringeren Feinpulveranteil, wodurch das Verfahren kostengünstiger wird.The inventive method with the characterizing features of claim 1 offers the advantage that with less Process complexity a much higher shape complexity of reached to be produced soft magnetic sintered components is, than with the conventional axial pressing method is possible. Another advantage is that the Components with the high shape complexity no further require mechanical reworkability. Moreover, show produced by the process according to the invention Components have better magnetic properties than components, which are produced by conventional pressing. The inventive method also allows in Comparison to the metal powder injection molding process (MIM process) a lower proportion of fine powder, whereby the process becomes cheaper.

Bei dem erfindungsgemäßen Verfahren werden die thermoplastischen Eigenschaften eines temporären Binders, der den Ausgangspulvern zugesetzt wird, ausgenutzt. Dabei wird durch Erwärmung und Erweichung bzw. Verflüssigung des Binders die Fließfähigkeit des Pulverausgangsmaterials soweit verbessert, daß unter Vermeidung von Querfließrissen ein Materialtransport in der in einem Werkzeug ausgebildeten Form für die Bauteile quer zur Preßrichtung erfolgen kann.In the method according to the invention, the thermoplastic properties of a temporary binder, which is added to the starting powders, exploited. there is caused by heating and softening or liquefaction of the Binders the flowability of the powder starting material improved so far that while avoiding cross-flow cracks a material transport in the trained in a tool Shape can be made for the components transverse to the pressing direction.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des erfindungsgemäßen Verfahrens möglich.By the measures listed in the dependent claims are advantageous developments and improvements of inventive method possible.

Durch die Zugabe einer geringen Menge des thermoplastischen Binders wird eine hohe Dichte in einer Pulverpackung realisiert. Außerdem werden dadurch die Eigenschaften des Ausgangspulvergemisches so beeinflußt, daß es das erforderliche Viskositätsverhalten aufweist. Dabei wird der Anteil an Binder so gewählt, daß der aufgebrachte Preßdruck bei Erwärmung und zumindest Erweichung des Binders das Gemisch aus Ausgangspulver und Binder zum Fließen bringen kann, jedoch vermieden wird, daß infolge des Binderanteils, das Eigengewicht des Grünlings, dessen Fließgrenze beim Aufheizen auf Sintertemperatur überschreitet.By adding a small amount of the thermoplastic Binders becomes a high density in a powder pack realized. In addition, the properties of the Starting powder mixture so affected that it having required viscosity behavior. It is the Proportion of binder chosen so that the applied pressure when heated and at least softening of the binder the Allow mixture of starting powder and binder to flow can, but it is avoided that due to the binder content, the weight of the green compact, whose yield point at Heating up to sintering temperature exceeds.

Dem handelsüblichen Standardpulver, das als Ausgangsmaterial verwendet wird, wird ein Anteil an Feinpulver hinzugegeben. Diese Ausgangspulver werden dann mit dem verwendeten Binder vermischt. Dabei kann der Binder als Gemisch aus einem Polymer und Wachs mit dem Gemisch der Ausgangspulver bei einer Temperatur zusammen gemischt werden, bei der das Polymer bereits erweicht und das Wachs geschmolzen ist. Die Verwendung von zwei verschiedenen Polymeren mit unterschiedlichen Viskositätsverhalten ist ebenso denkbar. Dadurch werden die feinen Pulverpartikel durch den Binder an die gröberen Pulverpartikel gebunden und die gröberen Partikel des Pulvers von einer Binderschicht mit feinen Pulverpartikeln umgeben. Das so behandelte Pulver ist gut handhabbar und rieselfähig und liegt als Verbundpulver vor. Dieses Verbundpulver kann auf eine Temperatur vorgewärmt werden, bei der der Binder wieder erweicht und dann in dem beheizbaren Werkzeug, in dem die Form des herzustellenden Bauteiles enthalten ist, eingebracht werden.The standard commercial powder, as the starting material is used, a proportion of fine powder is added. These starting powders are then mixed with the binder used mixed. In this case, the binder as a mixture of a Polymer and wax with the mixture of the starting powder at be mixed together at a temperature at which the Polymer already softened and the wax has melted. The Use of two different polymers with different viscosity behavior is also conceivable. As a result, the fine powder particles through the binder to the coarser powder particles bound and the coarser ones Particles of the powder from a binder layer with fine Surrounded by powder particles. The powder thus treated is good manageable and pourable and is available as a composite powder. This composite powder can be preheated to a temperature where the binder softens again and then in the Heatable tool in which the shape of the produced Components is included, are introduced.

Durch den zugegebenen Anteil an Feinpulvern erhöht sich die Sinteraktivität und demzufolge auch die Sinterdichte der fertig gesinterten weichmagnetischen Sinterbauteile.The added proportion of fine powders increases the Sintering activity and consequently also the sintering density of finished sintered soft magnetic sintered components.

Bei dem vorliegenden erfindungsgemäßen Verfahren wird die Dichtezunahme auf die Formgebung bei der Verdichtung durch Pressen und durch die Schwindung beim Sintern verteilt. Im Gegensatz dazu wird bei den herkömmlichen Preßverfahren das Ausgangspulver erst lose gepackt und die Verdichtung erfolgt hauptsächlich im Formgebungsprozeß beim Pressen. Beim Metallpulver-Spritzgußverfahren wird die Dichtezunahme erst beim Sintern erreicht und die Formgebung läuft nahezu ohne Verdichtung ab.In the present inventive method, the Density increase on shaping during compaction by Pressing and distributed by the shrinkage during sintering. in the In contrast, in the conventional pressing method is the The initial powder is loosely packed and the compaction takes place mainly in the molding process during pressing. At the Metal powder injection molding process, the density increase is only achieved during sintering and the shaping runs almost without Compaction.

Zeichnungdrawing

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen näher erläutert werden.The invention will be described below with reference to embodiments be explained in more detail.

Es zeigen:

Figur 1
ein Verfahrensschema zur Herstellung eines weichmagnetischen Sinterbauteils,
Figur 2
Darstellungen von Hystereseschleifen weichmagnetischer Sinterbauteile aus Fe13Cr-, Fe17Co- und Fe48Co2V-Pulver,
Figur 3
Darstellung der ermittelten Magnetisierungskurve eines Fe13Cr-Sinterbauteils und
Figur 4
Darstellung der ermittelten Magnetisierungskurve eines Fe48Co2V-Sinterbauteils.
Show it:
FIG. 1
a process scheme for producing a soft magnetic sintered component,
FIG. 2
Illustrations of hysteresis loops of soft-magnetic sintered components made of Fe 13 Cr, Fe 17 Co and Fe 48 Co 2 V powder,
FIG. 3
Representation of the determined magnetization curve of a Fe 13 Cr sintered component and
FIG. 4
Representation of the determined magnetization curve of a Fe 48 Co 2 V sintered component.

Ausführungsbeispieleembodiments

Zur Herstellung eines weichmagnetischen Sinterbauteils werden zunächst gemäß Figur 1 drei Ausgangskomponenten A, B und C eingesetzt. Als Ausgangskomponente A werden 60 bis 93,5 Masse.-% eines Fe13Cr-Standardpulvers mit einer durchschnittlichen Korngröße von 40 bis 150 µm und als Ausgangskomponente B 5 bis 30 Masse.-% eines Fe13Cr-Feinstpulvers mit einer durchschnittlichen Korngröße von 5 bis 40 µm eingesetzt. Als Ausgangskomponente C werden 1,5 bis 4 Masse.-% eines Binders verwendet. Als Binder dient eine Mischung aus 70 % Wachs und 30 Masse.-% Polyethylen (PE).To produce a soft-magnetic sintered component, initially three starting components A, B and C are used according to FIG. As starting component A are 60 to 93.5 mass .-% of Fe 13 Cr standard powder having an average particle size of 40 to 150 microns and as starting component B 5 to 30 mass .-% of Fe 13 Cr ultrafine powder having an average particle size of 5 to 40 microns used. As the starting component C, 1.5 to 4% by weight of a binder is used. The binder used is a mixture of 70% wax and 30% by weight of polyethylene (PE).

Als zweckmäßig hat sich herausgestellt, als Binder auch ein Polymer-Polymer-Gemisch mit unterschiedlichen Viskositätsverhalten der einzelnen Polymere zu verwenden In einer ersten Verfahrensstufe 1 werden die Ausgangskomponenten A, B und C in einem heizbaren Knetmischer zu einer homogenen, fließfähigen Ausgangspulver-Mischung vermischt. Die erhaltene Mischung wird dann in einer zweiten Verfahrensstufe 2 unter Verwendung einer konventionellen Presse mit einem Preßdruck von 400 bis 800 MPa und bei einer Temperatur von 60 bis 100°C zu einem Grünkörper mit der gewünschten Form gepreßt. Bei dieser Temperatur wird der Binder zumindest erweicht und das Ausgangspulvergemisch mit mindesten einem Preßstempel im Werkzeug verdichtet. Dadurch wird die Ausgangspulver-Mischung kompaktiert. Wenn die Mischung durch den Stempeldruck soweit kompaktiert ist, daß der Binder eine durchgängige Phase bildet, setzt ein viskoses Fließen mit einer radiale Fließfähigkeit von > 3 mm ein (Fließkompaktieren). Dieses viskose Fließen sichert, daß auch Hohlräume im Werkzeug, die quer zur Preßrichtung des Stempels ausgebildet sind, mit der Ausgangspulver-Binder-Mischung gefüllt werden. So können auch Hinterschneidungen mit ausreichender Dichte gefüllt werden. Der Grünkörper wird dann durch Öffnen des Werkzeuges entformt.As appropriate, it has been found, as a binder also a Polymer-polymer mixture with different Viscosity behavior of the individual polymers to use In a first process stage 1, the Starting components A, B and C in a heatable kneading mixer to a homogeneous, flowable starting powder mixture mixed. The resulting mixture is then poured into a second process stage 2 using a conventional press with a pressure of 400 to 800 MPa and at a temperature of 60 to 100 ° C to one Green body pressed with the desired shape. At this Temperature of the binder is at least softened and the Starting powder mixture with at least one ram in the Compacted tool. This will make the starting powder mixture compacted. If the mixture by the Stamp printing is compacted so far that the binder a continuous phase, involves a viscous flow a radial flowability of> 3 mm (Fließkompaktieren). This viscous flow ensures that also cavities in the tool, which are transverse to the pressing direction of the Stamp are formed, with the starting powder binder mixture be filled. So can also undercuts filled with sufficient density. The green body will then demolded by opening the tool.

Nachfolgend wird der erhaltene Grünkörper gemäß der weiteren Verfahrensstufe 3 einer Hochtemperatursinterung bei Temperaturen von 1.250 °C bis 1.350 °C unter beispielsweise Schutzgas unterzogen. Beim Sintern verdampft der Binder restlos.Subsequently, the obtained green body according to the other Process stage 3 of a high-temperature sintering at Temperatures of 1250 ° C to 1350 ° C, for example Subjected to inert gas. During sintering, the binder evaporates completely.

Das nach dem geschilderten Verfahren hergestellte weichmagnetische Sinterbauteil aus Fe13Cr, Fe17Co und Fe48Co2V - Pulver weisen die in den nachfolgenden Tabellen 1 und 2 aufgeführten magnetischen Eigenschaften sowie die in den Figuren 2, 3 und 4 dargestellten Hystereseschleifen bzw. Magnetisierungskurven auf. Fe13Cr Fe17Co Fe48Co2V Raumerfüllung 97 % 92 % 92 % Induktion B80 1,34 T 1,38 T 1,61 T Koerzitivfeldstärke Hc 0,10 kA/m 0,22 kA/m 0,15 kA/m Permeabilität µm 1700 2500 3500 Fe13Cr Fe48Co2V Raumerfüllung 99,7 % 94,8 % Sättigungsinduktion Bs 1,4394 T 1,89 T Koerzitivfeldstärke Hc 0,056 kA/m 0,125 kA/m Remanenz Br 0,487 T 1,072 T Permeabilität µm 3171 4047 The soft magnetic sintered component of Fe 13 Cr, Fe 17 Co and Fe 48 Co 2 V powder produced by the process described has the magnetic properties listed in Tables 1 and 2 below and also the hysteresis loops shown in FIGS. 2, 3 and 4. Magnetization curves on. Fe 13 Cr Fe 17 Co Fe 48 Co 2 V space-filling 97% 92% 92% Induction B 80 1.34 T 1.38 T 1.61 T Coercivity H c 0.10 kA / m 0.22 kA / m 0.15 kA / m Permeability μm 1700 2500 3500 Fe 13 Cr Fe 48 Co 2 V space-filling 99.7% 94.8% Saturation induction B s 1,4394T 1.89 t Coercive force H c 0.056 kA / m 0.125 kA / m Remanence Br 0.487 T 1,072T Permeability μm 3171 4047

Die Ergebnisse der Tabelle 1 wurden mit den Ausgangspulvern A und B im oberen Korngrößenbereich erzielt. Dabei wurde als Komponente A ein Ausgangspulver mit einem d50 von 100 µm als Komponente B ein Ausgangspulver mit einem d50 von 35 µm eingesetzt.The results of Table 1 were obtained with the starting powders A and B in the upper particle size range. In this case, a starting powder with a d 50 of 100 .mu.m was used as component A, a starting powder having a d 50 of 35 microns as component A.

Bei den Ergebnissen nach Tabelle 2 wurden die gleichen Ausgangskomponenten A und B verwendet, wobei allerdings der mittlere bis untere Korngrößenbereich benutzt wurde. Als Komponente A wurde ein Ausgangspulver mit einem d50 von 70 µm und als Komponente B ein Ausgangspulver mit einem d50 von 10 µm eingesetzt. Mit diesen Korngrößen wurde überraschend eine deutliche Verbesserung der Raumerfüllung aber auch der magnetischen Parameter des hergestellten weichmagnetischen Sinterbauteils festgestellt.In the results according to Table 2, the same starting components A and B were used, although the middle to lower particle size range was used. Component A used was a starting powder with a d 50 of 70 μm and as component B an initial powder with a d 50 of 10 μm. Surprisingly, a significant improvement in the space filling but also in the magnetic parameters of the produced soft-magnetic sintered component was found with these particle sizes.

In Figur 2 sind die Hystereseschleifen der aus den in der Tabelle 1 aufgeführten weichmagnetischen Sinterbauteile aus Fe13Cr-, Fe17Co- und Fe48Co2V-Pulver dargestellt. Die Hysteresekurven zeigen die magnetische Induktion B in Abhängigkeit der magnetischen Feldstärke H. Der Verlauf der Magnetisierungskurven verdeutlicht, daß alle drei Werkstoffe bei einer relativ hohen Permeabilität eine geringe Koerzitivfeldstärke aufweisen.FIG. 2 shows the hysteresis loops of the soft magnetic sintered components of Fe 13 Cr, Fe 17 Co and Fe 48 Co 2 V powders listed in Table 1. The hysteresis curves show the magnetic induction B as a function of the magnetic field strength H. The course of the magnetization curves makes it clear that all three materials have a low coercive force at a relatively high permeability.

Die Figuren 3 und 4 zeigen die Zustandsgrößen magnetische Polarisation J in Abhängigkeit von der magnetischen Feldstärke H anhand der Magnetisierungskurven für die in Tabelle 2 aufgeführten weichmagnetischen Sinterbauteile aus Fe13Cr- und Fe48Co2V-Pulver. Dabei wurde bei dem Fe13Cr-Sinterbauteil eine Remanenz von 0,487 T und eine Sättigungspolarisation bzw. Sättigungsinduktion von 1,439 T bei einer maximalen Feldstärke von 10,24 kA/m gemessen. Die Werte des Fe48Co2V-Sinterbauteils weisen eine Remanenz von 1,072 T und eine Sättigungspolarisation bzw. Sättigungsinduktion von 1,89 T bei einer maximalen Feldstärke von 10,31 kA/m auf.FIGS. 3 and 4 show the state variables magnetic polarization J as a function of the magnetic field strength H on the basis of the magnetization curves for the soft magnetic sintered components of Fe 13 Cr and Fe 48 Co 2 V powder listed in Table 2. In the case of the Fe 13 Cr sintered component, a remanence of 0.487 T and a saturation polarization or saturation induction of 1.439 T at a maximum field strength of 10.24 kA / m were measured. The values of the Fe 48 Co 2 V sintered component have a remanence of 1.072 T and a saturation polarization or saturation induction of 1.89 T at a maximum field strength of 10.31 kA / m.

Claims (9)

  1. Process for producing soft-magnetic sintered components, in which a thermoplastic binder is added to a powder mixture and the shape of a powder preform is produced by pressing, and the powder preform is then sintered, characterized in that an Fe13Cr, Fe17Co or Fe48Co2V powder or a mixture of these powders is used as starting material for the powder mixture, in that the powder mixture has a fine-powder content of 5 to 30% by mass, based on the total starting materials with a mean grain size of 5 to 40 µm, and in that the mixture is pressed to form the powder preform at a temperature which is higher than the softening point of the thermoplastic binder.
  2. Process according to Claim 1, characterized in that the binder is added to the powder mixture in an amount of from 1.5 to 4% by mass.
  3. Process according to Claim 1, characterized in that an Fe13Cr, Fe17Co or Fe48Co2V powder of a mixture of these powders is used as staring materials of the powder mixture.
  4. Process according to Claims 1 to 5, characterized in that the powder mixture and the binder are mixed at elevated temperature, at which the binder softens and/or melts.
  5. Process according to Claim 1, characterized in that a pressure of from 400 to 800 Mpa is used to press the powder preform.
  6. Process according to Claim 1, characterized in that the pressing of the powder preform takes place at a temperature of 60 to 100°C.
  7. Process according to Claim 1, characterized in that a polymer-wax mixture is used as binder.
  8. Process according to Claim 7, characterized in that the amount of wax is greater than the amount of polymer.
  9. Process according to Claim 1, characterized in that a polymer-polymer mixture with different viscosities of the individual polymers is used as binder.
EP99960891A 1998-11-16 1999-11-11 Method for producing soft-magnetic sintered components Expired - Lifetime EP1133577B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19852699 1998-11-16
DE19852699 1998-11-16
DE19951963A DE19951963A1 (en) 1998-11-16 1999-10-28 Sintered soft magnetic components are produced by pressing a standard powder, fine powder and thermoplastic binder mixture at above the binder softening temperature
DE19951963 1999-10-28
PCT/DE1999/003588 WO2000029631A1 (en) 1998-11-16 1999-11-11 Method for producing soft-magnetic sintered components

Publications (2)

Publication Number Publication Date
EP1133577A1 EP1133577A1 (en) 2001-09-19
EP1133577B1 true EP1133577B1 (en) 2003-03-05

Family

ID=26050175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99960891A Expired - Lifetime EP1133577B1 (en) 1998-11-16 1999-11-11 Method for producing soft-magnetic sintered components

Country Status (6)

Country Link
EP (1) EP1133577B1 (en)
JP (1) JP2002530522A (en)
CN (1) CN1123645C (en)
CZ (1) CZ300322B6 (en)
ES (1) ES2194538T3 (en)
WO (1) WO2000029631A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614908B2 (en) * 2005-05-11 2011-01-19 日立粉末冶金株式会社 Cold cathode fluorescent lamp electrode
US20180236537A1 (en) * 2015-02-09 2018-08-23 Jfe Steel Corporation Raw material powder for soft magnetic powder, and soft magnetic powder for dust core
JP7217856B2 (en) * 2017-10-31 2023-02-06 株式会社レゾナック Manufacturing method of sintered magnetic core, green compact, and sintered magnetic core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3135661A1 (en) * 1981-09-09 1983-03-17 Sumitomo Special Metals Co., Ltd., Osaka Sintered magnetic alloy of the Fe-Cr-Co type and process for producing articles with such an alloy
FR2655355B1 (en) * 1989-12-01 1993-06-18 Aimants Ugimag Sa ALLOY FOR PERMANENT MAGNET TYPE FE ND B, SINTERED PERMANENT MAGNET AND PROCESS FOR OBTAINING SAME.
US5368630A (en) * 1993-04-13 1994-11-29 Hoeganaes Corporation Metal powder compositions containing binding agents for elevated temperature compaction
JP3400027B2 (en) * 1993-07-13 2003-04-28 ティーディーケイ株式会社 Method for producing iron-based soft magnetic sintered body and iron-based soft magnetic sintered body obtained by the method
DE19745283C2 (en) * 1997-10-15 2000-02-24 Fraunhofer Ges Forschung Process for manufacturing components from powder

Also Published As

Publication number Publication date
CZ300322B6 (en) 2009-04-22
CN1326517A (en) 2001-12-12
EP1133577A1 (en) 2001-09-19
CN1123645C (en) 2003-10-08
WO2000029631A1 (en) 2000-05-25
ES2194538T3 (en) 2003-11-16
CZ20011699A3 (en) 2002-10-16
JP2002530522A (en) 2002-09-17

Similar Documents

Publication Publication Date Title
DE10207133B4 (en) Powdered magnetic core and production thereof
DE69915797T2 (en) METHOD FOR PRODUCING SEALED PARTS THROUGH UNIAXIAL PRESSING AGGLOMERED BALL-MOLDED METAL POWDER.
DE69627610T2 (en) Rare earth bonded magnet, rare earth magnetic composition and method of manufacture thereof
DE69619460T2 (en) Rare earth composite magnet and composition therefor
EP2121222A2 (en) Ceramic and/or powder-metallurgical composite shaped body and method for the production thereof
DE60120886T2 (en) Process for the production of sintered moldings of different materials
DE60019697T2 (en) Production method of a soft magnetic amorphous body
DE69015035T2 (en) Process for producing sintered Fe-P alloy moldings with soft magnetic properties.
DE102019113879A1 (en) MAGNETIC PRODUCTION BY ADDITIVE PRODUCTION USING SLURRY
EP1133577B1 (en) Method for producing soft-magnetic sintered components
EP1576057B1 (en) Mixture for the production of sintered molded parts
DE102017223268A1 (en) Method for producing a magnetic material, magnetic material, hard magnet, electric motor, starter and generator
EP0936638A2 (en) Process for producing a ferromagnetic compact,ferromagnetic compact and its utilisation
EP1231003A2 (en) Process for preparing an article of soft magnetic composite material
DE1571622A1 (en) Method of manufacturing magnets
DE202010000306U1 (en) Cold pour mass element
DE19951963A1 (en) Sintered soft magnetic components are produced by pressing a standard powder, fine powder and thermoplastic binder mixture at above the binder softening temperature
AT521006B1 (en) Process for manufacturing a component with soft magnetic properties
DE102008013471A1 (en) Ceramic substrates whose sintering shrinkage can be adjusted comprise particles with specified maximum primary particle size and specified percentage by volume of particles of significantly greater primary particle size
DE69303313T2 (en) Manufacturing process for an anisotropic rare earth magnet
DE2823054B1 (en) Process for the production of plastic-bonded anisotropic permanent magnets
DE19745283C2 (en) Process for manufacturing components from powder
DE2417589A1 (en) PROCESS AND ARRANGEMENT FOR MANUFACTURING COMPACTED ALLOYED OBJECTS WITH AN INTERNAL PASSAGE
DE3311865C1 (en) Process for powder-metallurgical production of a hot working tool mould
DE1918909C3 (en) Process for the production of sintered ferrite molded bodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59904489

Country of ref document: DE

Date of ref document: 20030410

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1133577E

Country of ref document: IE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2194538

Country of ref document: ES

Kind code of ref document: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

Owner name: BT MAGNET-TECHNOLOGIE GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181218

Year of fee payment: 20

Ref country code: IT

Payment date: 20181122

Year of fee payment: 20

Ref country code: GB

Payment date: 20181126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190124

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59904489

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191112