EP1123550B1 - Device for attenuating parasitic voltages - Google Patents

Device for attenuating parasitic voltages Download PDF

Info

Publication number
EP1123550B1
EP1123550B1 EP99960802A EP99960802A EP1123550B1 EP 1123550 B1 EP1123550 B1 EP 1123550B1 EP 99960802 A EP99960802 A EP 99960802A EP 99960802 A EP99960802 A EP 99960802A EP 1123550 B1 EP1123550 B1 EP 1123550B1
Authority
EP
European Patent Office
Prior art keywords
magnetic core
inductance
coil
choke coil
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99960802A
Other languages
German (de)
French (fr)
Other versions
EP1123550A1 (en
Inventor
Hans-Joachim Pöss
Franz Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1123550A1 publication Critical patent/EP1123550A1/en
Application granted granted Critical
Publication of EP1123550B1 publication Critical patent/EP1123550B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the invention relates to a device for damping of Interference voltages with a magnetic core and at least one order the magnetic core wound choke coil with a variety of turns.
  • Such devices are known for example from DE 3112296, DE 3220737 and EP0635853 and are common used to feed in interference voltages by network users into the network to suppress.
  • a good damping effect requires one as possible high impedance of the choke in as wide as possible Frequency range.
  • DE-A-3 112 296 describes a device for damping interference voltages in accordance with Preamble of claim 1.
  • the task is based, a device for damping interference voltages to create a high impedance in a wide has defined frequency range.
  • each choke coil comprises closely wound winding sections, the number of turns is high overall, so that gives a high value for the inductance of the device.
  • the capacity of the reactor by the widely wound winding sections determined so that Overall, a small capacitance value for each inductor results. Both have the consequence that due to the inductance and the capacitance occurring resonances a big one Bandwidth and a large maximum value for the impedance.
  • By a suitable dimensioning it is there possible to value the resonant frequencies of the device in which the spectrum of the interference signals has maxima, and in this way the suppression of the interference signals to optimize.
  • FIG. 1 shows a current-compensated reactor 1, which has a Ring core 2 has. On the ring core 2 are inductors. 3 wound up over tightly wound coil sectors 4 as well have winding gaps 5.
  • the current-compensated choke 1 serves to power lines suppress asymmetric interference voltages. there the nominal current should not drive the throttle 1 into saturation.
  • the throttle 1 via leads 6 connected to power lines, that of the Rated current in the two reactors 3 generated flux in the Toroidal core 2 compensated to zero.
  • FIG. 2 shows the course with a dashed line 7 the impedance of a throttle, not shown in the drawing without winding gap 5.
  • the impedance curve of Throttle 1 shown in FIG 2 with a solid curve 8.
  • the impedance curve 8 has a greater impedance maximum than the Impedance curve 7.
  • the half-widths of the resonances are greater in the impedance curve 8 than in the impedance curve 7.
  • the throttle 1 with the winding gap 5 at the same Number of turns and same toroid higher values for the impedance in a wider frequency range.
  • FIG. 3 shows an equivalent circuit diagram for the choke coil 3.
  • Inductors L1 to L3 and L5 to L7 illustrate the inductance of the turns in the coil sectors 4, whereas the inductance L4 the inductance of the winding gap 5 represents.
  • the resistors R1 to R7 stand for the Line resistance of the turns. Set in the same way the capacities Cw1 to Cw3 and Cw5 to Cw7 the capacities between adjacent turns in the coil sectors 4, the capacity Cw4 finally indicates the capacity the winding gap 5 at.
  • the toroidal core 2 is not an insulator, which is shown in FIG is indicated by the resistors R12 to R78.
  • High-frequency voltage components couple via capacitors Ck1 to Ck8 in the ring core 2 a.
  • the capacity of the choke coil 3 is substantially equal to the capacitance Cw4 of the choke coil 3rd in the winding gap 5.
  • the inductance of the choke coil 3 however, it is equal to the sum of the inductances L1 to L7.
  • the inductance L represents the sum of the inductances L1 to L7 in FIG. 3.
  • a line resistance R L is plotted, to which a capacitance C is connected in parallel.
  • the value of the capacitance C corresponds essentially to the value of the capacitance Cw4 from FIG. 3.
  • an impedance R P is connected in parallel with the resistor R L and the inductance L of the choke coil 3, which illustrates the current path leading via the toroidal core 2.
  • the schematic diagram shown in Figure 4 is the schematic diagram of a lossy parallel resonant circuit.
  • R P is much larger than R L
  • ⁇ f is the bandwidth
  • f 0 is the resonance frequency.
  • the bandwidth increases at least with vanishing line resistance R L and finite parallel resistance R P with increasing ratio of inductance L to capacitance C. Accordingly, it is necessary for a large bandwidth to make the inductance of the choke coil 3 as large as possible and the capacitance C of the choke coil 3 as small as possible.
  • FIG. 5 shows how the ratio of L to C develops when, for a given choke coil, reducing the capacitance C increases the resonant frequency f 0 , with a dashed line 9 in FIG. 5 representing the ideal case of a frequency independent inductor while the solid curve 10 was calculated based on inductor inductance readings.
  • FIG. 5 shows the rectilinear increase in the ratio of the ideal frequency-independent inductance L to the capacitance C in the double-logarithmic representation.
  • the curve calculated from measured values runs essentially parallel to the ideal curve 9 between 100 Hz and 30 kHz, and then at high frequencies Flattening inductors above 30 kHz flatten and eventually drop for frequencies above 10 MHz. Up to this upper limit value, it is thus possible for the measured inductance coil 3 to reduce the capacitance of the inductance coil 3 by forming a winding gap 5, thereby increasing the maximum value and the bandwidth of the resonances.
  • the choke coil 3 is short-circuited via the toroidal core 2 becomes. This can be avoided by the coil sectors 4 multi-layer running and in the extreme case by Heap windings are replaced. Due to the larger distance to the core couple the outer layers of the heap winding no longer capacitive with the ring core 2, so that the choke coil 3 not even at high frequencies on the ring core. 2 shorted. Through the pile winding arises In addition, a choke coil with high inductance at the same time very small capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Details Of Television Scanning (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

A reactance coil (1) has an annular core (2) on which reactance coils are wound. Said reactance coils (3) are divided up into coil sectors 6 (4) that are separated from each other by means of gaps (5) in the windings. The gaps (5) in the windings reduce reactance coil (3) capacity and the reactance coils (3) have resonances with higher maximum values for impedance and greater bandwidths.

Description

Die Erfindung betrifft eine Vorrichtung zur Dämpfung von Störspannungen mit einem Magnetkern und wenigstens einer um den Magnetkern gewickelten Drosselspule mit einer Vielzahl von Windungen.The invention relates to a device for damping of Interference voltages with a magnetic core and at least one order the magnetic core wound choke coil with a variety of turns.

Derartige Vorrichtungen sind beispielsweise aus der DE 3112296, DE 3220737 und EP0635853 bekannt und werden häufig dazu verwendet, das Einspeisen von Störspannungen durch Netzverbraucher ins Netz zu unterdrücken. Für eine gute Dämpfungswirkung ist es erforderlich, eine möglichst hohe Impedanz der Drossel in einem möglichst breiten Frequenzbereich zu erzielen.Such devices are known for example from DE 3112296, DE 3220737 and EP0635853 and are common used to feed in interference voltages by network users into the network to suppress. For A good damping effect requires one as possible high impedance of the choke in as wide as possible Frequency range.

Insbesondere beschreibt DE-A-3 112 296 eine Vorrichtung zur Dämpfung von Störspannungen gemäss dem Oberbegriff des Anspruchs 1.In particular, DE-A-3 112 296 describes a device for damping interference voltages in accordance with Preamble of claim 1.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur Dämpfung von Störspannungen zu schaffen, die eine hohe Impedanz in einem breiten definierten Frequenzbereich aufweist.Based on this prior art, the invention the task is based, a device for damping interference voltages to create a high impedance in a wide has defined frequency range.

Diese Aufgabe wird erfindungsgemäß durch Anspruch 1 gelöst. Ausgestaltungen und weiter bildungen sind. Gegenstand von Unteransprüchen.This object is achieved by claim 1. refinements and further education are. Subject of dependent claims.

Da jede Drosselspule eng gewickelte Wicklungsabschnitte umfaßt, ist die Zahl der Windungen insgesamt hoch, so daß sich ein hoher Wert für die Induktivität der Vorrichtung ergibt. Andererseits wird die Kapazität der Drosselspule durch die weit gewickelten Wicklungsabschnitte bestimmt, so daß sich insgesamt ein kleiner Kapazitätswert für jede Drosselspule ergibt. Beides hat zur Folge, daß die aufgrund der Induktivität und der Kapazität auftretenden Resonanzen eine große Bandbreite und einen großen Maximalwert für die Impedanz aufweisen. Durch eine geeignete Dimensionierung ist es dabei möglich, die Resonanzfrequenzen der Vorrichtung auf Werte zu legen, bei denen das Spektrum der Störsignale Maxima aufweist, und auf diese Weise die Unterdrückung der Störungssignale zu optimieren.Since each choke coil comprises closely wound winding sections, the number of turns is high overall, so that gives a high value for the inductance of the device. On the other hand, the capacity of the reactor by the widely wound winding sections determined so that Overall, a small capacitance value for each inductor results. Both have the consequence that due to the inductance and the capacitance occurring resonances a big one Bandwidth and a large maximum value for the impedance. By a suitable dimensioning it is there possible to value the resonant frequencies of the device in which the spectrum of the interference signals has maxima, and in this way the suppression of the interference signals to optimize.

Weitere Ausführungsbeispiele und vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.Further embodiments and advantageous embodiments are given in the subclaims.

Nachfolgend wird ein Ausführungsbeispiel anhand der Zeichnung im einzelnen beschrieben. Es zeigen:

Figur 1
eine Draufsicht auf eine stromkompensierte Drossel;
Figur 2
den Impedanzverlauf der Drossel aus Figur 1, aufgetragen über die Frequenz;
Figur 3
ein Ersatzschaltbild für eine der Drosselspulen der Drossel aus Figur 1;
Figur 4
ein Prinzipschaltbild für die Drossel aus Figur 1; und
Figur 5
eine Darstellung des Verlaufs des Verhältnisses von Induktivität zur Kapazität in Abhängigkeit von der Resonanzfrequenz für eine ideelle und eine reelle Drossel.
Hereinafter, an embodiment will be described in detail with reference to the drawings. Show it:
FIG. 1
a plan view of a current-compensated throttle;
FIG. 2
the impedance curve of the reactor of Figure 1, plotted against the frequency;
FIG. 3
an equivalent circuit diagram for one of the choke coils of the reactor of Figure 1;
FIG. 4
a schematic diagram for the throttle of Figure 1; and
FIG. 5
a representation of the course of the ratio of inductance to capacitance as a function of the resonance frequency for an ideal and a real throttle.

Figur 1 zeigt eine stromkompensierte Drossel 1, die einen Ringkern 2 aufweist. Auf den Ringkern 2 sind Drosselspulen 3 aufgewickelt, die über eng gewickelte Spulensektoren 4 sowie über Wicklungslücken 5 verfügen.FIG. 1 shows a current-compensated reactor 1, which has a Ring core 2 has. On the ring core 2 are inductors. 3 wound up over tightly wound coil sectors 4 as well have winding gaps 5.

Die stromkompensierte Drossel 1 dient dazu, auf Netzleitungen entstehende asymmetrische Störspannungen zu unterdrücken. Dabei soll der Nennstrom die Drossel 1 nicht in Sättigung treiben. Zu diesem Zweck wird die Drossel 1 über Anschlußleitungen 6 so an Netzleitungen angeschlossen, daß sich der vom Nennstrom in den beiden Drosselspulen 3 erzeugte Fluß im Ringkern 2 zu Null kompensiert.The current-compensated choke 1 serves to power lines suppress asymmetric interference voltages. there the nominal current should not drive the throttle 1 into saturation. For this purpose, the throttle 1 via leads 6 connected to power lines, that of the Rated current in the two reactors 3 generated flux in the Toroidal core 2 compensated to zero.

Zur Unterdrückung asymmetrischer Störspannungen ist es nun erforderlich, daß die Drossel 1 in einem möglichst weiten Frequenzbereich eine möglichst hohe Impedanz aufweist. To suppress asymmetric interference voltages, it is now required that the throttle 1 in as wide as possible Frequency range has the highest possible impedance.

Figur 2 stellt mit einer gestrichelten Linie 7 den Verlauf der Impedanz einer in der Zeichnung nicht dargestellten Drossel ohne Wicklungslücke 5 dar. Im Vergleich dazu ist in Figur 2 mit einer durchgezogenen Kurve 8 der Impedanzverlauf der Drossel 1 dargestellt. Aus Figur 2 wird deutlich, daß die Impedanzkurve 8 ein größeres Impedanzmaximum aufweist als die Impedanzkurve 7. Auch die Halbwertsbreiten der Resonanzen sind bei der Impedanzkurve 8 größer als bei der Impedanzkurve 7. Im Vergleich zu einer Drossel ohne Wicklungslücke weist somit die Drossel 1 mit der Wicklungslücke 5 bei gleicher Windungszahl und gleichem Ringkern höhere Werte für die Impedanz in einem größeren Frequenzbereich auf.FIG. 2 shows the course with a dashed line 7 the impedance of a throttle, not shown in the drawing without winding gap 5. In comparison, in FIG 2 with a solid curve 8, the impedance curve of Throttle 1 shown. From Figure 2 it is clear that the impedance curve 8 has a greater impedance maximum than the Impedance curve 7. Also the half-widths of the resonances are greater in the impedance curve 8 than in the impedance curve 7. Compared to a choke without a winding gap points thus the throttle 1 with the winding gap 5 at the same Number of turns and same toroid higher values for the impedance in a wider frequency range.

Dieser Effekt soll nun anhand Figur 3 bis 5 weiter erläutert werden.This effect will now be explained with reference to Figure 3 to 5 become.

Figur 3 zeigt ein Ersatzschaltbild für die Drosselspule 3. Die Induktivitäten L1 bis L3 sowie L5 bis L7 veranschaulichen die Induktivität der Windungen in den Spulensektoren 4 , wohingegen die Induktivität L4 die Induktivität der Wicklungslücke 5 darstellt. Die Widerstände R1 bis R7 stehen für die Leitungswiderstände der Windungen. In gleicher Weise stellen die Kapazitäten Cw1 bis Cw3 sowie Cw5 bis Cw7 die Kapazitäten zwischen nebeneinanderliegenden Windungen in den Spulensektoren 4 dar. Die Kapazität Cw4 schließlich deutet die Kapazität der Wicklungslücke 5 an. Ferner ist in Figur 3 berücksichtigt, daß der Ringkern 2 kein Isolator ist, was in Figur 3 durch die Widerstände R12 bis R78 angedeutet ist. Insbesondere hochfrequente Spannungskomponenten koppeln über Kondensatoren Ck1 bis Ck8 in den Ringkern 2 ein.FIG. 3 shows an equivalent circuit diagram for the choke coil 3. Inductors L1 to L3 and L5 to L7 illustrate the inductance of the turns in the coil sectors 4, whereas the inductance L4 the inductance of the winding gap 5 represents. The resistors R1 to R7 stand for the Line resistance of the turns. Set in the same way the capacities Cw1 to Cw3 and Cw5 to Cw7 the capacities between adjacent turns in the coil sectors 4, the capacity Cw4 finally indicates the capacity the winding gap 5 at. Furthermore, in FIG. 3, that the toroidal core 2 is not an insulator, which is shown in FIG is indicated by the resistors R12 to R78. Especially High-frequency voltage components couple via capacitors Ck1 to Ck8 in the ring core 2 a.

Da die Kapazität Cw4 der Drosselspule 3 im Bereich der Wicklungslücke 5 wesentlich kleiner als die Kapazitäten Cw1 bis Cw3 sowie Cw5 bis Cw7 ist, ist die Kapazität der Drosselspule 3 im wesentlichen gleich der Kapazität Cw4 der Drosselspule 3 in der Wicklungslücke 5. Die Induktivität der Drosselspule 3 ist jedoch gleich der Summe der Induktivitäten L1 bis L7.Since the capacitance Cw4 of the choke coil 3 in the region of the winding gap 5 much smaller than the capacities Cw1 to Cw3 and Cw5 to Cw7 is the capacity of the choke coil 3 is substantially equal to the capacitance Cw4 of the choke coil 3rd in the winding gap 5. The inductance of the choke coil 3 however, it is equal to the sum of the inductances L1 to L7.

Der sich aufgrund der Verkleinerung der Kapazität Cw4 ergebende Effekt läßt sich nun anhand des in der Figur 4 dargestellten Prinzipschaltbildes erklären.The resulting due to the reduction of the capacity Cw4 Effect can now be based on that shown in the figure 4 Explain the block diagram.

In Figur 4 steht die Induktivität L für die Summe der Induktivitäten L1 bis L7 in Figur 3. Vor der Induktivität L ist in Figur 4 ein Leitungswiderstand RL eingezeichnet, zu dem eine Kapazität C parallel geschaltet ist. Der Wert der Kapazität C entspricht im wesentlichen dem Wert der Kapazität Cw4 aus Figur 3. Außerdem ist zum Widerstand RL und der Induktivität L der Drosselspule 3 eine Impedanz RP parallel geschaltet, die den über den Ringkern 2 führenden Strompfad verdeutlicht.In FIG. 4, the inductance L represents the sum of the inductances L1 to L7 in FIG. 3. Before the inductance L, in FIG. 4 a line resistance R L is plotted, to which a capacitance C is connected in parallel. The value of the capacitance C corresponds essentially to the value of the capacitance Cw4 from FIG. 3. In addition, an impedance R P is connected in parallel with the resistor R L and the inductance L of the choke coil 3, which illustrates the current path leading via the toroidal core 2.

Das in Figur 4 dargestellte Prinzipschaltbild ist das Prinzipschaltbild eines verlustbehafteten Parallelschwingkreises. Für den Fall, daß RP wesentlich größer als RL ist, gilt für die Bandbreite Δff0 = RL CL + 1RP LC wobei Δf die Bandbreite und f0 die Resonanzfrequenz ist. Daraus ergibt sich, daß die Bandbreite zumindest bei verschwindendem Leitungswiderstand RL und endlichem Parallelwiderstand RP mit zunehmendem Verhältnis von Induktivität L zu Kapazität C wächst. Demnach ist es für eine große Bandbreite erforderlich, die Induktivität der Drosselspule 3 möglichst groß und die Kapazität C der Drosselspule 3 möglichst klein zu machen.The schematic diagram shown in Figure 4 is the schematic diagram of a lossy parallel resonant circuit. For the case that R P is much larger than R L , the bandwidth is valid .delta.f f 0 = R L C L + 1 R P L C where Δf is the bandwidth and f 0 is the resonance frequency. It follows that the bandwidth increases at least with vanishing line resistance R L and finite parallel resistance R P with increasing ratio of inductance L to capacitance C. Accordingly, it is necessary for a large bandwidth to make the inductance of the choke coil 3 as large as possible and the capacitance C of the choke coil 3 as small as possible.

Für die Impendanz bei der Resonanzfrequenz ergibt sich unter der Bedingung, daß RP sehr viel größer als RL ist, die Formel R o = L C R L + 1 R P · L C For the impedance at the resonance frequency, under the condition that R P is much larger than R L , the formula R O = L C R L + 1 R P · L C

Anhand dieser Formel wird deutlich, daß der Resonanzwiderstand ebenfalls mit wachsendem Verhältnis von Induktivität L zu Kapazität C zunimmt. Um große Maximalwerte bei den Resonanzfrequenzen für die Impendanz zu erzielen, ist es demnach wiederum erforderlich, die Induktivität L möglichst groß und die Kapazität C möglichst klein werden zu lassen.It is clear from this formula that the resonance resistance also with increasing ratio of inductance L to capacity C increases. To large maximum values at the resonance frequencies for the Impendanz to achieve, it is accordingly again required, the inductance L as large as possible and the capacity C to be as small as possible.

Anhand der beiden Formeln wird auch deutlich, daß der beschriebene Effekt von gleichzeitiger Erhöhung von Bandbreite und Resonanzwiderstand nur auftritt, wenn der Parallelwiderstand RP nicht allzu hohe Werte annimmt. Da die spezifischen Widerstände von Ferriten wesentlich größer als die spezifischen Widerstände von weichmagnetischen nanokristallinen Legierungen sind, sind die beschriebenen Effekte bei mit Ferritkernen ausgestatteten Drosselspulen wesentlich schwächer. Unter einer weichmagnetischen nanokristallinen Legierung werden dabei beispielsweise die aus der EP 0 271 657 B1 bekannten Legierungen verstanden.It also becomes clear from the two formulas that the described effect of simultaneous increase in bandwidth and resonance resistance only occurs if the parallel resistance R P does not assume too high values. Since the specific resistances of ferrites are much larger than the resistivities of soft magnetic nanocrystalline alloys, the effects described are much weaker in the case of ferrite cores. A soft magnetic nanocrystalline alloy is understood as meaning, for example, the alloys known from EP 0 271 657 B1.

Figur 5 schließlich zeigt, wie sich das Verhältnis von L zu C entwickelt, wenn bei einer gegebenen Drosselspule durch Verringern der Kapazität C die Resonanzfrequenz f0 erhöht wird, wobei in Figur 5 eine gestrichelte Linie 9 den idealen Fall einer von der Frequenz unabhängigen Induktivität darstellt, während die durchgezogene Kurve 10 aufgrund von Meßwerten für die Induktivität einer Drosselspule berechnet wurde. Man erkennt in Figur 5 den in der doppellogarithmischen Darstellung geradlinigen Anstieg des Verhältnisses der idealen frequenzunabhängigen Induktivität L zur Kapazität C. Die aus Meßwerten errechnete Kurve verläuft zwischen 100 Hz und 30 kHz im wesentlichen parallel zur idealen Kurve 9, um dann aufgrund der bei hohen Frequenzen kleiner werdenden Induktivitäten oberhalb von 30 kHz abzuflachen und schließlich für Frequenzen über 10 MHz abzufallen. Bis zu diesem oberen Grenzwert ist es somit bei der vermessenen Drosselspule 3 möglich, durch Ausbilden einer Wicklungslücke 5 die Kapazität der Drosselspule 3 zu verringern und dadurch den Maximalwert und die Bandbreite der Resonanzen zu erhöhen.Finally, FIG. 5 shows how the ratio of L to C develops when, for a given choke coil, reducing the capacitance C increases the resonant frequency f 0 , with a dashed line 9 in FIG. 5 representing the ideal case of a frequency independent inductor while the solid curve 10 was calculated based on inductor inductance readings. FIG. 5 shows the rectilinear increase in the ratio of the ideal frequency-independent inductance L to the capacitance C in the double-logarithmic representation. The curve calculated from measured values runs essentially parallel to the ideal curve 9 between 100 Hz and 30 kHz, and then at high frequencies Flattening inductors above 30 kHz flatten and eventually drop for frequencies above 10 MHz. Up to this upper limit value, it is thus possible for the measured inductance coil 3 to reduce the capacitance of the inductance coil 3 by forming a winding gap 5, thereby increasing the maximum value and the bandwidth of the resonances.

Durch eine geeignete Dimensionierung von Windungszahlen und Abmessungen von Spulensektoren 4 ist es dabei möglich, in Frequenzbereichen, in denen die Störsignale starke Frequenzkomponenten aufweisen, Resonanzen der Drosselspule 3 zu legen und auf diese Weise die in diesem Frequenzbereich auftretenden Störsignale auf wirksame Weise zu unterdrücken.By a suitable dimensioning of turns numbers and Dimensions of coil sectors 4, it is possible in Frequency ranges in which the interference signals strong frequency components have to put resonances of the choke coil 3 and in this way those occurring in this frequency range To effectively suppress interference signals.

Dabei ist jedoch zu beachten, daß insbesondere bei hohen Frequenzen die Drosselspule 3 über den Ringkern 2 kurzgeschlossen wird. Dies läßt sich vermeiden, indem die Spulensektoren 4 mehrlagig ausgeführt werden und im äußersten Fall durch Haufenwicklungen ersetzt werden. Aufgrund des größeren Abstands zum Kern koppeln die äußeren Lagen der Haufenwicklung nicht mehr kapazitiv mit dem Ringskern 2, so daß die Drosselspule 3 auch bei hohen Frequenzen nicht über den Ringkern 2 kurzgeschlossen wird. Durch die Haufenwicklung ergibt sich außerdem eine Drosselspule mit großer Induktivität bei gleichzeitig sehr kleiner Kapazität.It should be noted, however, that especially at high frequencies the choke coil 3 is short-circuited via the toroidal core 2 becomes. This can be avoided by the coil sectors 4 multi-layer running and in the extreme case by Heap windings are replaced. Due to the larger distance to the core couple the outer layers of the heap winding no longer capacitive with the ring core 2, so that the choke coil 3 not even at high frequencies on the ring core. 2 shorted. Through the pile winding arises In addition, a choke coil with high inductance at the same time very small capacity.

Es sei angemerkt, daß die ausgeführten Erläuterungen nicht nur für stromkompensierte Drosseln mit zwei Phasen gelten, sondern auch für Drosseln mit drei oder mehr Phasen uneingeschränkt gültig sind.It should be noted that the explanations given do not apply only to current-compensated chokes with two phases, but also for chokes with three or more phases unrestricted are valid.

Claims (5)

  1. Device for attenuating interference voltages comprising a magnetic core (2) and at least two choke coils (3) each with multiple turns wound around the magnetic core, tightly wound winding sections (4) alternating with loosely wound winding sections (5) along each choke coil (3), characterised in that the magnetic core (2) is made from a soft-magnetic nanocrystalline alloy and that the tightly wound winding sections (4) of the respective choke coil (3) are contiguous, separated only by the loosely wound winding sections (5).
  2. Device according to claim 1, characterised in that the magnetic core is a toroidal core (2).
  3. Device according to claim 1 or claim 2, characterised in that three choke coils (3) are mounted on the magnetic core (2).
  4. Device according to one of claims 1 to 3, characterised in that the choke coils (3) are wound on to the magnetic core (2) in sectors.
  5. Device according to one of claims 1 to 4, characterised in that each choke coil (3) is wound around the magnetic core (2) in multiple layers.
EP99960802A 1998-10-22 1999-10-21 Device for attenuating parasitic voltages Expired - Lifetime EP1123550B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19848827A DE19848827A1 (en) 1998-10-22 1998-10-22 Device for damping interference voltages
DE19848827 1998-10-22
PCT/DE1999/003382 WO2000025329A1 (en) 1998-10-22 1999-10-21 Device for attenuating parasitic voltages

Publications (2)

Publication Number Publication Date
EP1123550A1 EP1123550A1 (en) 2001-08-16
EP1123550B1 true EP1123550B1 (en) 2005-12-28

Family

ID=7885358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99960802A Expired - Lifetime EP1123550B1 (en) 1998-10-22 1999-10-21 Device for attenuating parasitic voltages

Country Status (5)

Country Link
US (1) US6483279B1 (en)
EP (1) EP1123550B1 (en)
AT (1) ATE314724T1 (en)
DE (2) DE19848827A1 (en)
WO (1) WO2000025329A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235052C1 (en) * 2002-07-31 2003-12-04 Siemens Ag Multi-axis industrial manufacturing machine has central regulated supply module inductively coupled to impedance for damping characteristic vibration of multi-axis electrical drive system
GB0503502D0 (en) * 2005-02-19 2005-03-30 Tyco Electronics Ltd Uk An energy storage coil
US7375611B1 (en) * 2007-04-19 2008-05-20 Harris Corporation Embedded step-up toroidal transformer
DE102008054939A1 (en) 2008-12-18 2010-07-01 Vacuumschmelze Gmbh & Co. Kg Current-compensated choke and method of making a current-compensated choke
CN103515057B (en) * 2012-06-26 2016-04-13 立讯精密工业股份有限公司 The manufacture method of magnetic module
DE102014226285A1 (en) 2013-12-20 2015-06-25 Semiconductor Components Industries, Llc Motor control circuit and method
AT518097B1 (en) * 2015-12-22 2017-11-15 Minebea Co Ltd Method for winding a ring coil segment
CN114915173A (en) * 2021-02-08 2022-08-16 台达电子工业股份有限公司 Flexible cutting type power converter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE667796C (en) * 1932-08-17 1938-11-19 Aeg High frequency coil
GB512760A (en) 1936-11-26 1939-09-25 Siemens Ag Improvements in or relating to electric inductors for use at high frequencies
DE2832731A1 (en) * 1978-07-26 1980-02-07 Vacuumschmelze Gmbh MAGNETIC CORE MADE OF A SOFT MAGNETIC AMORPHOUS ALLOY
DE3112296A1 (en) * 1981-03-27 1982-10-07 Siemens AG, 1000 Berlin und 8000 München Current-compensated annular-core inductor
DE3220737A1 (en) * 1982-06-02 1983-12-08 Siemens AG, 1000 Berlin und 8000 München COLUMN-LOW RADIO EMISSION CONTROL
JPS6074412A (en) * 1983-09-28 1985-04-26 Toshiba Corp Multi-output common choke coil
JPH0748428B2 (en) * 1989-04-18 1995-05-24 松下電器産業株式会社 Common mode choke coil
US5252148A (en) * 1989-05-27 1993-10-12 Tdk Corporation Soft magnetic alloy, method for making, magnetic core, magnetic shield and compressed powder core using the same
JP3233313B2 (en) * 1993-07-21 2001-11-26 日立金属株式会社 Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP3231149B2 (en) 1993-07-30 2001-11-19 アルプス電気株式会社 Noise filter
JPH07153628A (en) * 1993-11-26 1995-06-16 Hitachi Metals Ltd Choke coil for active filter, active filter circuit and power-supply device using that
JPH07335450A (en) * 1994-06-10 1995-12-22 Hitachi Metals Ltd Compact transformer, inverter circuit, and discharge tube lighting circuit
EP0794538A1 (en) 1996-03-07 1997-09-10 Vacuumschmelze GmbH Toroidal core for inductance, in particular for radio interference suppression of phase-controllable semiconductor circuits
JPH10212503A (en) * 1996-11-26 1998-08-11 Kubota Corp Compact of amorphous soft magnetic alloy powder and its production

Also Published As

Publication number Publication date
DE59912992D1 (en) 2006-02-02
US6483279B1 (en) 2002-11-19
EP1123550A1 (en) 2001-08-16
ATE314724T1 (en) 2006-01-15
DE19848827A1 (en) 2000-05-04
WO2000025329A1 (en) 2000-05-04

Similar Documents

Publication Publication Date Title
DE112011101193B4 (en) Leakage current reduction device
EP1547245A2 (en) Filter circuit
DE19714977B4 (en) Device with inverter
EP1512214B1 (en) Current-compensated choke and circuit arrangement comprising the current-compensated choke
DE102009036396A1 (en) Current-compensated choke and method for producing a current-compensated choke
EP1123550B1 (en) Device for attenuating parasitic voltages
DE69006655T2 (en) Generator for generating an electrical voltage.
WO2002050758A1 (en) Device and method for the simultaneous reading of passive inductive transponders
DE846874C (en) Transformer system with a line character
DE3888750T2 (en) Device and method for discriminating signals.
EP0684688B1 (en) Power generator with a transformer
DE19850853A1 (en) Frequency converter with damped DC link
DE102013204638A1 (en) Device for detecting fault currents
DE4421986A1 (en) Radio interference filter for electronically-controlled device
EP0275499B1 (en) Current-compensated choke coil for spark interference suppression
DE102022115293B4 (en) Hybrid filter circuit and system with hybrid filter circuit
DE10049817A1 (en) Induction device with damping device
DE19843465B4 (en) Current-compensated radio interference suppression choke
DE4123812C2 (en) transformer
DE4437444C1 (en) Coupling circuit for centralised multistation control system
DE4103184A1 (en) HIGH-FREQUENCY BROADBAND TRANSMITTER
DE102018133507A1 (en) Metal detector
EP0783171B1 (en) Inductive component for damping asymmetrical and symmetrical parasitics
DE859176C (en) Decoupling arrangement in communication systems with multiple carrier frequencies
DE1259391B (en) Transmitter arrangement with ferromagnetic core material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011010

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051229

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 59912992

Country of ref document: DE

Date of ref document: 20060202

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060529

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VACUUMSCHMELZE GMBH & CO. KG

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061021

BERE Be: lapsed

Owner name: VACUUMSCHMELZE G.M.B.H.

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141021

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141029

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151021

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170102

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59912992

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501