EP1120856B1 - Reflecteurs plats en technologie des circuits imprimes multicouches et procedes de conception associes - Google Patents

Reflecteurs plats en technologie des circuits imprimes multicouches et procedes de conception associes Download PDF

Info

Publication number
EP1120856B1
EP1120856B1 EP00935227A EP00935227A EP1120856B1 EP 1120856 B1 EP1120856 B1 EP 1120856B1 EP 00935227 A EP00935227 A EP 00935227A EP 00935227 A EP00935227 A EP 00935227A EP 1120856 B1 EP1120856 B1 EP 1120856B1
Authority
EP
European Patent Office
Prior art keywords
feed
phase
reflector
patches
dimensions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00935227A
Other languages
German (de)
English (en)
Other versions
EP1120856A1 (fr
Inventor
José Antonio ENCINAR GARCINUNO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad Politecnica de Madrid
Original Assignee
Universidad Politecnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica de Madrid filed Critical Universidad Politecnica de Madrid
Publication of EP1120856A1 publication Critical patent/EP1120856A1/fr
Application granted granted Critical
Publication of EP1120856B1 publication Critical patent/EP1120856B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • This invention is related to planar reflector antennas, as an alternative to parabolic or shaped reflectors that are used in radar systems, in terrestrial and satellite communications, in both earth and flight segments.
  • a reflectarray consists of an array of radiating elements on a plane with a certain adjustment that allows a collimated reflected electromagnetic field to be obtained when it is illuminated by a feed (figure 1) in a similar way to that of a parabolic antenna. This is equivalent to obtaining a reflected field with a planar wave front, i.e. with a progressive phase distribution on the planar surface.
  • the reflectarray concept is old, as it can be seen in a number of references, [D. G. Berry, R. G. Malech W. A. Kennedy, 'The Reflectarray Antenna ', IEEE Trans. on Antennas and Propagat., Vol.
  • Microstrip antenna arrays are well-known [R. J. Mailloux, J. F. McIlvenna, N. P. Kernweis, 'Microstrip Array Technology ', IEEE Trans. on Antennas and Propagat., Vol. 29, No. 1 Jan. 1981, pp. 25-37], and they are used as high-gain antennas as an alternative to reflectors.
  • Microstrip arrays consist of a group of printed metallic patches that are fed individually by means of a complicated feeding network to get the progressive phase distribution on the array surface. These arrays have advantages over reflectors as their low profile, low volume and weight, low cross polarisation and ease of manufacture by conventional photo-etching techniques. However, the frequency band is narrow and the antenna efficiency is reduced at microwave frequencies, due to the losses in the complex feeding network.
  • the reflectarray since the feeding is the same as that of reflectors, the inconveniences of microstrip arrays as a result of the feeding network are eliminated, i.e. the design and manufacture processes are simplified, losses are reduced and the antenna efficiency is improved.
  • the reflectarrays have the advantage of their low profile, smaller distortion and lower levels of cross polarisation, at the cost of a very narrow band, as described in [J. Huang, 'Bandwidth study of Microstrip Reflectarray and a Novel Phased Reflectarray Concept ', 1995 IEEE Intl. Symposium on Antennas and Propagat., pp. 582-585].
  • each patch receives the signal from the feed, which is propagated along the transmission line until the end, which can be either a short or open circuit, where it is reflected, propagated back and radiated by the microstrip patch with a phase shift proportional to twice the line length.
  • the printed line segments generate dissipative losses and spurious radiation that cause a reduction in the antenna efficiency and an increase in the cross polarisation levels.
  • phase adjustment in each element of the reflectarray such as the size variation of the resonant patches [D. M. Pozar, T. Metzler, 'Analysis of to Reflectarray Antenna Using Microstrip Patches Variable of Size ', Electronic Letters, 15th April 1993 Vol. 29 No. 8, pp. 657-658], the use of phase shifters [J. R. Profera, E. Charles, 'Active Reflectarray Antenna for Communication Satellite Frequency Re-use', patent US5280297, January 1994], or by the polarisation voltage control in diodes connected to the radiating elements [F.
  • phase adjustment by means of the variation of the resonant patch length is very easy to carry out by using dielectric sheets with printed metallic patches. Also the inconveniences due to the printed lines, that appear in reflectarrays with line segments, are eliminated in this implementation.
  • the operating principle of the reflectarrays of variable-sized printed elements is based on the fact that the phase of the reflected wave varies with the resonant length of the elements.
  • a microstrip patch is a resonant antenna, so that its length should be approximately half a wavelength in the dielectric. If the patch length is modified in an array of identical rectangular patches on a ground plane, as shown in figure 2, the module of the reflection coefficient remains equal to one, owing to the ground plane, but the phase of the reflected wave changes.
  • the total range of phase variation that can be achieved by varying the length of the patches depends on the separation between patches and ground plane, i.e. the thickness of the substrate (210).
  • the reflectarrays based on this adjustment technique use thin dielectric substrates.
  • the phase variation versus the length is strongly non-linear, exhibiting very rapid variations near the resonance, and very slow in the extreme values, as can be seen in figure 6.
  • the rapid phase variation makes the phase distribution very sensitive to manufacturing tolerance errors. Because of the non-linear behaviour, the phase is very sensitive to variations in frequency, significantly reducing the working band of the reflectarray.
  • reflectarrays are their use as dual polarisation reflectors for frequency reuse.
  • independent signals are transmitted and received through the different channels, with an overlap in their frequency bands.
  • the adjacent channels are transmitted or received in orthogonal polarisations, to allow frequency reuse.
  • the two orthogonal polarisations can be circular, clockwise and anti clockwise, the most common case is to use two linear polarisations, designated as vertical and horizontal.
  • the frequency reuse requires a very high isolation between polarisations, which cannot be achieved with parabolic or shaped reflectors.
  • two superposed grid reflectors with a separate feed for each polarisation can be used.
  • Each grid reflector is made up of parallel metallic strips on a parabolic or conformal surface, so that it is transparent to one of the polarisations and acts as a reflector for the orthogonal one.
  • a reflectarray acting as a dual polarisation reflector for frequency reuse has been patented [J. R. Profera, E. Charles, 'Reflectarray Antenna for Communication Satellite Frequency Re-use Applications ', patent US5543809, August 1996], which is made up of two arrays of orthogonal dipoles of variable lengths.
  • the array of vertical dipoles acts as a reflector for the vertical polarisation and that of horizontal dipoles for the other polarisation.
  • the invention includes reflectarrays in both, printed and non-printed technology, and also the possibility of including segments of transmission lines to obtain phase adjustment in the 360° range. But, like all reflectarrays based on radiating elements of variable sizes, this reflectarray has the inconvenience of a very small bandwidth, and is not suitable for most commercial applications.
  • the planar reflectors based on printed circuit technology that exist until now have several disadvantages.
  • the reflectarrays that use segments of microstrip line for phase adjustment have a lower efficiency and a higher level of cross polarisation owing to the losses and the spurious radiation of the lines respectively.
  • the reflectarrays with variable sized radiating elements do not present these problems, but on the other hand they are very sensitive to errors in manufacturing tolerance, and their operation is limited to a very narrow band, because of the rapid variation of the phase with the length in a range limited to 330°.
  • the same limitations apply to the configuration proposed for dual frequency operation [J. A. Encinar, "Design of a dual frequency reflectarray using microstrip stacked patches of variable size", Electronics Letters, 6th June 1996 Vol. 32 No. 12 pp. 1049-1050].
  • phase of the reflection coefficient are required in the range from 0 to 360°, and they cannot be achieved for a thicker substrate.
  • a reflectarray configuration that consists of two or more array layers with patches of variable sizes (Figs. 4, 5 and 8) is proposed, in which the thickness of layers and the patch dimensions are chosen to produce a more linear behaviour of the phase versus size in a range larger than 360°, in order to achieve realisations less sensitive to manufacturing tolerances and with a larger bandwidth.
  • the innovation of stacking two or more array layers allows the phase shift in the reflected field to be increased to values greater than the 360° required for the reflectarray design.
  • An array of rectangular metallic patches behaves as a resonant circuit, in which the phase of the reflected field varies with the size of the patches in a range of up to 180°.
  • the maximum range of phase shift approaches 360°, if the separation between the patches and the plane is very small (much smaller than ⁇ , ⁇ being the wavelength).
  • Figure 6 shows the phase as a function of the side for an array of square patches at frequencies 11.5, 12 and 12.5 GHz.
  • the phase range is 305°, for a separator substrate (210) with dielectric constant 1.05 and 1 mm. thick (0,04 ⁇ ).
  • the phase shift range decreases as the separation increases between patches and metallic plane, i.e. the thickness of the substrate (210).
  • each of them behaves like a resonant circuit, and the phase of the reflected field varies with the patch size in a similar way to that of one layer, but the phase shift can reach values of several times 360°. Therefore, with several array layers, the separation between them, and the separation between the first array and the metallic plane, can be increased to achieve a smoother and more linear behaviour of the phase as a function of the patch size, maintaining a range for phase shift greater than 360°.
  • Figure 7 shows the phase curves as a function of the square patch size at the same frequencies for two stacked arrays on a ground plane, in which two 3-mm. thick separators, (420) and (430) have been used.
  • An object of this invention is a planar reflector, or reflectarray, in multilayer printed circuit technology for bandwidth improvement.
  • Figure 4 shows a simplified lateral view of the multilayer reflectarray. This configuration allows the feed to be located at any angle and to redirect the reflected beam in any direction of the space ( ⁇ 0 , ⁇ 0 ), being ⁇ 0 and ⁇ 0 the usual angles in spherical co-ordinates, by means of an appropriate design of the reflection coefficient phase in each element of the reflectarray.
  • This planar reflector reflects the electromagnetic field coming from a feed (110) located at a focal point, forming a collimated beam in a given direction at a given frequency.
  • the reflector receives a collimated beam from a direction at a given frequency and reflects it, concentrating it at the focal point where the feed (110) is located.
  • the phase in each element can be adjusted so that the planar reflector exhibits the same radiation characteristics as a parabolic reflector.
  • the phase control is carried out by adjusting the dimensions in each radiating element.
  • Each element of the reflectarray consists of several stacked layers of conductive patches separated by dielectric sheets, all of them above a conductor plane, as shown in figure 5 for the case of 2 layers.
  • This description is based on rectangular shaped patches, but the same effect is obtained using conductive patches with other geometric shapes, in which at least two dimensions can be independently adjusted to control the phase of the reflection coefficient for the two orthogonal polarisations of the incident field on the reflector.
  • cross-shaped metalisations can be used, controlling the phase for each polarisation with the length of each arm of the cross.
  • a local periodicity approach is considered, which assumes each element with its dimensions, but in a periodic environment, and the phase of the reflection coefficient is calculated as a function of the patch side.
  • the periodic structure is analysed by a previously developed full wave method, which is based on the Moments Method in the spectral domain.
  • An object of this invention consists of manufacturing each layer of the planar reflector, made up of printed rectangular metallisations on sheets of dielectric material, by means of conventional photo-etching procedures, such as those used in the production of printed-circuit boards. These processes consist of the selective elimination of conductive material starting from a dielectric sheet covered with a conductive film, by photo-etching and chemical etching techniques. The selective elimination of the conductive material can also be carried out by laser, or by cutting the conductive patches with a cutting plotter, and then removing the conductive material from between the patches. In the manufacturing process, the planar array of conductive patches can be deposited either, directly onto the dielectric separator, or onto a support made up of one or more layers of dielectric material.
  • the use of flexible materials allows the reflector to be shaped, in order to fit pre-existing curved surfaces.
  • the frequency band of conventional reflectarrays is very narrow, avoiding their use in a large number of commercial applications.
  • a factor that produces the band limitation is the difference in propagating distance for the rays that propagates from the feed (110) to the wave front (150), as shown in figure 9.
  • the difference in propagating distances is compensated at the central frequency by means of a phase shift in each element.
  • the phase compensation should be slightly different, since the wavelength changes, and the error will be bigger for larger difference of distances to be compensated.
  • Figure 9 shows the lateral view of a configuration, in which the surface of the planar reflector (100) has been chosen as the aperture plane of an equivalent parabolic reflector (140) and the feed (110) has been located at the focus of the paraboloid. Therefore the propagating distances (160) and (170) are equal, i.e. the distances are the same in the whole contour of the reflectarray, minimising the phase to be compensated in the planar reflector and consequently a larger bandwidth is achieved.
  • the other significant limitation in the band for reflectarrays based on patches of variable sizes is imposed by the strong dependence of the phase versus patch-size curves with frequency variations.
  • the use of several array layers allows phase curves as a function of the size to be less sensitive to frequency variations, which produces an increase in bandwidth. Additionally, an adjustment in the dimensions of each element of the reflectarray can be carried out to improve the behaviour in the whole working band.
  • another object of this invention consists of its application as dual polarisation reflectarrays as an alternative to grid reflectors.
  • the phase correction in the reflectarray is carried out independently for each polarisation, allowing the use of two separate feeds (110) and (111) of linear polarisation, as shown in figure 10.
  • the dimensions can also be adjusted in order to generate two collimated beams in different directions, one for each polarisation.
  • Another object of the invention consists of the use of the planar reflector as an antenna with multiple beams. To do that, the dimensions are adjusted in each element in order to obtain a phase distribution of the reflected field that provides several collimated beams in different directions, as shown in figure 11.
  • Another object of this invention is its application in the construction of folding reflectors.
  • large reflectors that should be folded for transportation are required.
  • folding reflectors are used in mobile terminal equipment.
  • the multilayer planar reflector can be built in four or more pieces that can be stacked for transportation for later assembly. The assembly is not critical, since there is no electric contact between the metalisations of the reflectarray.
  • the folding reflectors also have an important application field in onboard satellite reflectors, so that the reflector is folded during the launch and deployed in space.
  • a second main object of the invention is the procedure for designing a multilayer reflectarray in a given frequency band. This procedure provides the dimensions of all the metalisations and therefore the photo-etching masks, and it consists of the following steps:
  • Another object of this invention is the use of the multilayer planar reflector as a polariser, since it allows the phase in each element of the planar reflector to be adjusted in order to generate a collimated beam with a different polarisation than the incident field coming from the feed.
  • An interesting application consists of generating a circular polarised beam from a linear polarisation feed, which is easier to build, or to receive a circular polarised beam concentrating it at the feed with linear polarisation.
  • a conformal beam reflector such as those used in satellites for direct broadcast TV, consists of a reflector with deformities on its surface, so that the radiation diagram illuminates a certain geographical area.
  • the design and construction of conformal beam reflectors should be carried out specifically for each application.
  • moulds which are very expensive to manufacture, are required and they cannot be reused for other antennas.
  • the multilayer reflectarray and its design procedure can be used to adjust the phase in each element so that a conformal beam is achieved, with the same characteristics as that of a shaped reflector.
  • the design procedure is the one described previously, but in the first step the phase shift at each element is defined to get a conformal beam, instead of a progressive phase.
  • the construction of the conformal beam planar reflector is carried out by means of simple photo-etching techniques, which produce a significant reduction in the production costs by eliminating the expensive conformal moulds.
  • the planar reflector for collimated or conformal beam can be built for space applications, using the technology developed for the dichroic subreflectors.
  • This technology uses materials qualified for space that basically consist of arrays of copper or aluminium metalisations (400 and 410) on very thin (between 25 and 160 microns) Kapton or Kevlar sheets (450 and 460) as shown in figure 8.
  • a dielectric separator (420 and 430) between different array layers a kevlar core with a honeycomb structure can be used, which exhibits a very low dielectric constant (of approximately 1.05) and very low losses (loss tangent in the order of 10 -3 ).
  • These materials are flexible and they allow a multilayer structure with metalisations that fit a curved surface to be built. Later on they are subjected to a curing process in which they acquire enough rigidity for their use in space applications.
  • the conformal beam reflectors In order to obtain a further bandwidth improvement in the conformal beam reflectors based on multilayer reflectarrays, they can be built in the shape of a parabolic reflector, and the phase is adjusted by varying the metalisation size only for the small phase differences that produce the conformal beam. Although the planar characteristic of the reflector is lost in this configuration, and consequently the manufacturing process is more complicated, conformal beam reflectors can be built with parabolic moulds, which are reusable for several applications and don't require such a rigorous technology as those with a conformal surface.
  • two independent feeds can be used, one for each linear polarisation, which are located in the vicinities of the paraboloid focus, and the dimensions of the conductive patches are adjusted in each element to compensate each feed position and to conform the beam in the two polarisations.
  • a commercial foam known as ROHACELL 51
  • ROHACELL 51 has been chosen as the material for the separators between the layers with metalisations which has a relative dielectric constant of 1.05 and a loss tangent of 10 -3 .
  • the arrays of rectangular metallic patches are built starting from a metallised dielectric support of small thickness, such as for example, a 25 micron Kapton film with an 18 micron copper cladding.
  • the Kapton has a relative dielectric constant of 3.5 and a loss tangent of 3x10 -3 , although owing to its small thickness its effect is negligible.
  • a multilayer periodic structure is analysed, which is made up of two or more stacked layers of metallic patches on a metallic plane, separated by dielectric separators.
  • a periodic cell is shown in figure 5 for the case of two layers.
  • a full wave method is used such as the well-known Moments Method in spectral domain, and the phase of the reflection coefficient is computed for the two possible polarisations of the incident field as a function of the different geometric parameters and excitation.
  • Arrays of square resonant patches with the side of approximately half a wavelength are considered as starting point and the size is modified continuously to study the behaviour of the phase versus the resonant length.
  • the size of the patches is varied simultaneously in all the layers maintaining a fixed ratio between the sizes in each layer and a fixed period in all the layers. It has been proven that the array closer to the ground plane should be made up of slightly larger patches.
  • the variation in the reflection coefficient phase is analysed for each one of the two orthogonal polarizations, i.e. for an incident electric field with x component (E x ), and for an electric field with y component ( E y ), for different angles of incidence and for several frequencies within the working band.
  • some geometric parameters such as the patch repetition period a, the thickness of separators h 1 and h 2 , and the relative size of the patches in each layer are adjusted in order to achieve a sufficiently linear phase variation as a function of the patch dimensions for different angles of incidence, for different frequencies and which cover at least a 360° phase range.
  • the position of the feed with respect to the reflector, the size of the reflector and the direction of radiation are fixed.
  • a circular reflector of 40cm in diameter has been considered, and a commercial feed used in satellite television receivers from the company SATELITE ROVER, with reference FOLWR75, has been used.
  • the traditional photo-etching techniques used in the production of printed circuits can be used.
  • the photo-etching masks for each reflectarray layer have been generated with AUTOCAD from the file with the dimensions of the patches obtained in the design stage.
  • Figures 12 and 13 show the masks to scale 1:4 with the contours of the rectangular patches for the first and second array layers, respectively.
  • the rectangular patches have been cut from a copper-clad Kapton sheet by a cutting plotter using the AUTOCAD files. Afterwards, the patches are transferred to a 100 micron adhesive film, and this sheet is then adhered to the ROHACELL which acts as separator.
  • a copper-clad Kapton sheet has been used as the metallic plane.
  • This prototype has been built and measured in an anechoic chamber.
  • a photograph of the two layer planar reflector with its feed is shown in figure 14.
  • the measured characteristics of the reflector meet the specifications considered in the design.
  • the radiation patterns are practically the same for the two linear polarisations and they coincide with those obtained by the analysis method.
  • the gain is 31 dB, with ⁇ 0.15dB gain variations in the 11.5 to 12.4 GHz band.
  • the cross polarisation is below -33dB.
  • this invention can be applied to reflector antennas in radar and both terrestrial and satellite communications, with significant advantages compared to conventional parabolic reflectors. Because of the planar characteristic, it can be built in several pieces to be folded and later deployed, being of great use in applications in which large reflectors that need transporting are required. Owing to the fact that is a planar reflector with the possibility of redirecting the beam, the reflector surface can be fitted to existing structures, such as building walls, structural planes in communication satellites, etc. It can be used as a dual polarisation reflector with an isolation level between polarisations better than those obtained with conventional reflectors.
  • the present invention can be built using space qualified materials and a technology already developed in space applications for the manufacture of dichroic subreflectors. Therefore, this type of multilayer planar reflectors is very suitable for a significant range of applications in the space industry as an alternative to the different types of onboard reflectors in satellites, such as parabolic, grid or shaped reflectors.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (22)

  1. Un réflecteur plan en technologie des circuits imprimés qui réfléchit l'énergie électromagnétique provenant d'une alimentation (110) située en un point focal, formant un faisceau colimaté dans une direction donnée à une fréquence donnée, ou qui reçoit un faisceau colimaté provenant d'une direction donnée à une fréquence donnée et la réfléchit en la concentrant au niveau du point focal où l'alimentation est située, ayant un réseau multicouche formé par un plan conducteur (440), une feuille de matériau diélectrique appelée un séparateur (430), un film mince de matériau diélectrique (460) qui supporte un réseau plan de plages conductrices rectangulaires (410), une nouvelle couche de séparateur (420) et une nouvelle couche de plages conductrices (400) sur un support diélectrique (450),
    caractérisé en ce que l'épaisseur des séparateurs (420 et 430) et la taille relative des plages (400, 410) dans chaque couche sont choisies pour avoir une variation de phase en fonction des dimensions de plages dans une gamme plus grande que 360 °, qui donne une plus petite sensibilité aux tolérances de fabrication et une plus grande largeur de bande pour l'antenne de réseau de réflexion, et en ce que les dimensions des plages conductrices dans chaque couche sont ajustées individuellement pour atteindre un déphasage dans le champ réfléchi pour colimater le champ électromagnétique provenant de l'alimentation (110) ou pour concentrer le faisceau colimaté incident sur le réflecteur au niveau de l'alimentation (110), à une fréquence donnée.
  2. Réflecteur plan selon la revendication 1, dans lequel les plages conductrices (400, 410) sont déposées directement sur les séparateurs dits électriques (420, 430).
  3. Réflecteur plan selon la revendication 1, caractérisé en ce qu'il comporte plus de deux couches de matériau diélectriques entre le plan conducteur (440) et les plages conductrices (410) ou entre les réseaux plans de plages (400 et 410).
  4. Réflecteur plan selon la revendication 1, 2 ou 3, construit dans les matériaux qualifiés pour des applications spatiales.
  5. Réflecteur plan selon la revendication 1, 2, 3 ou 4, caractérisé en ce qu'il comporte plus de deux couches de réseaux de plages conductrices (400, 410) et de feuilles diélectriques empilées (420, 450 ou 430, 460).
  6. Réflecteur plan selon la revendication 1, 2, 3, 4 ou 5, dans lequel les plages conductrices (400, 410) dans toute couche sont carrées, rectangulaires ou en forme de croix.
  7. Réflecteur plan selon la revendication 6, dans lequel le réseau de plages (400, 410) dans chaque couche est fabriqué au moyen d'une élimination sélective de matériau conducteur à partir d'une feuille diélectrique couverte par un film conducteur, au moyen de techniques de photo-gravure et de gravure chimique, ou par élimination sélective du matériau conducteur par laser, ou en coupant les plages conductrices (400, 410) en utilisant un traceur coupant et en éliminant le matériau conducteur entre les plages.
  8. Réflecteur plan selon la revendication 6 ou 7, caractérisé en ce qu'il est construit en plusieurs pièces à plier et déployer.
  9. Réflecteur plan selon la revendication 6 ou 7, caractérisé en ce qu'il est construit dans des matériaux flexibles à ajuster sur les surfaces incurvées.
  10. Réflecteur plan selon la revendication 6, dans lequel les dimensions des plages (400, 410) sont ajustées dans chaque élément pour colimater le faisceau provenant de l'alimentation (110), ou pour concentrer le faisceau colimaté incident sur le réflecteur au niveau du point focal où l'alimentation (110) est située, avec les mêmes caractéristiques que celles d'un réflecteur parabolique.
  11. Réflecteur plan selon la revendication 6, dans lequel les dimensions des plages conductrices (400, 410) dans chaque couche sont ajustées pour colimater le faisceau provenant de l'alimentation (110) ou pour concentrer le faisceau colimaté incident sur le réflecteur au niveau du plan focal de l'alimentation, pour deux polarisations du champ électromagnétique simultanément.
  12. Réflecteur plan selon la revendication 6, avec une ou deux alimentations (110, 111) fonctionnant dans deux polarisations orthogonales, caractérisé par la génération ou la réception de deux faisceaux colimatés, un pour chaque polarisation du champ incident, dans différentes directions.
  13. Réflecteur plan selon la revendication 6, dans lequel les dimensions des plages conductrices (400, 410) sont ajustées dans chaque couche pour obtenir un faisceau réfléchi colimaté avec une polarisation circulaire lorsqu'un champ polarisé linéaire provenant de l'alimentation (110) est incident ou pour concentrer au niveau du point focal de l'alimentation (110) un champ polarisé linéaire lorsqu'un champ colimaté avec une polarisation circulaire heurte le réflecteur.
  14. Réflecteur plan selon les revendications 6, 11 ou 13, dans lequel les dimensions des plages conductrices (400, 410) dans chaque élément sont ajustées pour atteindre les caractéristiques électriques d'un réflecteur de faisceau conforme.
  15. Réflecteur multicouche selon la revendication 14, ayant une forme parabolique, au lieu de plane, avec l'alimentation (110) ou les alimentations (110 et 111) près du foyer de la paraboloïde, dans lequel les dimensions des plages conductrices (400 et 410) dans chaque élément sont ajustées pour atteindre les caractéristiques électriques d'un réflecteur de faisceau conforme, pour une polarisation unique ou double.
  16. Réflecteur plan selon la revendication 6, avec une alimentation fonctionnant en polarisation unique ou double, caractérisé par la génération de plusieurs faisceaux colimatés dans différentes directions comme montrées sur la figure 11, ou pour recevoir des signaux électromagnétiques de différentes directions et pour les concentrer au niveau du point focal où l'alimentation (110) est située.
  17. Procédé de conception pour obtenir les masques de photo-gravure pour la construction d'un réflecteur plan selon l'une quelconque des revendications précédentes, basées sur le programme du procédé des moments pour l'analyse des structures périodiques multicouches,
    caractérisé en ce qu'il comprend les étapes suivantes consistant à : 1) définir la phase du coefficient de réflexion pour chaque élément de sorte que l'énergie électromagnétique d'une certaine fréquence provenant d'une alimentation (110) située en un point focal est réfléchie formant un faisceau colimaté dans une certaine direction, où chaque élément est constitué de deux ou plusieurs plages conductrices empilées (400, 410) au-dessus d'un plan conducteur séparé l'un de l'autre par des feuilles diélectriques ; 2) déterminer les dimensions de la plage de sorte que la phase du coefficient de réflexion dans chaque élément défini dans l'étage précédent est atteint en utilisant un programme itératif pour la recherche de zéro qui ajuste les dimensions de la plage et calcule le coefficient de réflexion par le programme d'analyse, jusqu'à ce que la phase requise soit atteinte ; 3) ajuster finement les dimensions de la plage conductrice dans chaque élément du réflecteur multicouche, au moyen d'un programme d'optimisation, pour atteindre la phase définie dans l'étage 1) pour un champ incident avec tout type de polarisation pour une ou plusieurs fréquences dans la bande de travail du réflecteur.
  18. Procédé de conception selon la revendication 17, dans lequel l'ajustement des dimensions des plages conductrices (400, 410) dans chaque élément dans les étages 2) et 3) est réalisé simultanément pour deux polarisations orthogonales indépendantes du champ incident.
  19. Procédé de conception selon la revendication 18, dans lequel la phase du coefficient de réflexion est définie dans l'étage 1) de sorte que le champ provenant d'une alimentation (110) ou de deux alimentations (110 et 111) est réfléchi, formant deux faisceaux colimatés, un pour chaque polarisation du champ incident, dans différentes directions.
  20. Procédé de conception selon la revendication 17, dans lequel la phase du coefficient de réflexion est définie dans l'étage 1) de sorte que le champ provenant de l'alimentation (110) est réfléchi formant un faisceau colimaté avec une polarisation différente de celle du champ incident.
  21. Procédé de conception selon la revendication 17, 18 ou 20, dans lequel la phase du coefficient de réflexion est définie dans l'étage 1) de sorte que le champ provenant de l'alimentation (110) ou des alimentations (110 et 111) est réfléchi formant un faisceau conforme, au lieu d'un faisceau colimaté.
  22. Procédé de conception selon la revendication 17 ou 18, dans lequel la phase du coefficient de réflexion est définie dans l'étage 1) de sorte que le champ provenant de l'alimentation (110) est réfléchi, formant plusieurs faisceaux colimatés dans différentes directions.
EP00935227A 1999-06-07 2000-06-07 Reflecteurs plats en technologie des circuits imprimes multicouches et procedes de conception associes Expired - Lifetime EP1120856B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES009901248A ES2153323B1 (es) 1999-06-07 1999-06-07 Reflectores planos en tecnologia impresa multicapa y su procedimiento de diseño.
ES9901248 1999-06-07
PCT/ES2000/000203 WO2000076026A1 (fr) 1999-06-07 2000-06-07 Reflecteurs plats en technologie des circuits imprimes multicouches et procedes de conception associes

Publications (2)

Publication Number Publication Date
EP1120856A1 EP1120856A1 (fr) 2001-08-01
EP1120856B1 true EP1120856B1 (fr) 2006-04-26

Family

ID=8308735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00935227A Expired - Lifetime EP1120856B1 (fr) 1999-06-07 2000-06-07 Reflecteurs plats en technologie des circuits imprimes multicouches et procedes de conception associes

Country Status (5)

Country Link
EP (1) EP1120856B1 (fr)
AT (1) ATE324679T1 (fr)
DE (1) DE60027530T2 (fr)
ES (1) ES2153323B1 (fr)
WO (1) WO2000076026A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667669B (zh) * 2008-09-01 2013-06-12 株式会社Ntt都科摩 无线通信系统、周期构造反射板以及带有锥度的伞形构造
RU199128U1 (ru) * 2019-12-24 2020-08-17 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Отражательная антенная решетка
EP4266489A4 (fr) * 2021-12-09 2024-01-10 Guangdong Broadradio Communication Technology Co., Ltd Directeur à double couche et réseau d'antennes à station de base multifréquence

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483481B1 (en) 2000-11-14 2002-11-19 Hrl Laboratories, Llc Textured surface having high electromagnetic impedance in multiple frequency bands
DE10118866A1 (de) * 2001-04-18 2002-10-24 Swoboda Gmbh Geb Verfahren zur Herstellung einer Radarantenne
US6765535B1 (en) 2002-05-20 2004-07-20 Raytheon Company Monolithic millimeter wave reflect array system
AU2003247456A1 (en) * 2003-05-30 2005-01-04 Raytheon Company Monolithic millmeter wave reflect array system
US7190325B2 (en) * 2004-02-18 2007-03-13 Delphi Technologies, Inc. Dynamic frequency selective surfaces
US7446710B2 (en) 2005-03-17 2008-11-04 The Chinese University Of Hong Kong Integrated LTCC mm-wave planar array antenna with low loss feeding network
US7304617B2 (en) * 2005-04-05 2007-12-04 Raytheon Company Millimeter-wave transreflector and system for generating a collimated coherent wavefront
US8380132B2 (en) 2005-09-14 2013-02-19 Delphi Technologies, Inc. Self-structuring antenna with addressable switch controller
FR2893478B1 (fr) 2005-11-14 2011-05-20 Eads Space Transp Sas Circuit imprime a surface non developpable a trois dimensions et son procede de fabrication.
US7558555B2 (en) 2005-11-17 2009-07-07 Delphi Technologies, Inc. Self-structuring subsystems for glass antenna
EP1881556A1 (fr) * 2006-07-07 2008-01-23 Fondazione Torino Wireless Antenne de reflexion en réseau
EP1881557A1 (fr) * 2006-07-07 2008-01-23 Fondazione Torino Wireless Antenne, procédé de fabrication d'une antenne et appareil de fabrication d'une antenne
EP1956677B1 (fr) * 2007-02-08 2010-12-15 SISVEL Technology Srl Antenne plate hautement intégrable pour réception de vidéo satellite
US8212739B2 (en) 2007-05-15 2012-07-03 Hrl Laboratories, Llc Multiband tunable impedance surface
US8217847B2 (en) 2007-09-26 2012-07-10 Raytheon Company Low loss, variable phase reflect array
US7623088B2 (en) 2007-12-07 2009-11-24 Raytheon Company Multiple frequency reflect array
KR101015889B1 (ko) * 2008-09-23 2011-02-23 한국전자통신연구원 안테나 이득향상을 위한 전도성 구조체 및 안테나
US8149179B2 (en) 2009-05-29 2012-04-03 Raytheon Company Low loss variable phase reflect array using dual resonance phase-shifting element
ES2339099B2 (es) 2009-12-10 2010-10-13 Universidad Politecnica De Madrid Antena reflectarray de polarizacion dual lineal con propiedades de polarizacion cruzada mejoradas.
JP5236754B2 (ja) * 2010-02-26 2013-07-17 株式会社エヌ・ティ・ティ・ドコモ マッシュルーム構造を有する装置
JP5162677B2 (ja) * 2010-02-26 2013-03-13 株式会社エヌ・ティ・ティ・ドコモ マッシュルーム構造を有する装置
JP5650172B2 (ja) * 2010-02-26 2015-01-07 株式会社Nttドコモ 反射素子を有するリフレクトアレイ
JP5162678B2 (ja) * 2010-02-26 2013-03-13 株式会社エヌ・ティ・ティ・ドコモ マッシュルーム構造を有する装置
FR2971094B1 (fr) * 2011-01-31 2013-10-25 Centre Nat Etd Spatiales Dispositif antennaire multireflecteurs
JP2012209827A (ja) * 2011-03-30 2012-10-25 Mitsubishi Electric Corp 反射構造
JP5352645B2 (ja) * 2011-08-29 2013-11-27 株式会社エヌ・ティ・ティ・ドコモ マルチビームリフレクトアレイ
JP5410559B2 (ja) * 2012-02-29 2014-02-05 株式会社Nttドコモ リフレクトアレー及び設計方法
US9620862B2 (en) * 2012-07-31 2017-04-11 Ntt Docomo, Inc. Reflectarray
FR2997796B1 (fr) * 2012-11-08 2017-11-03 Inst Nat Des Sciences Appliquees Dispositif en forme de diedre aplati possedant une surface equivalente radar adaptee (maximisation ou minimisation)
EP2916388B1 (fr) * 2012-12-05 2017-07-26 Huawei Technologies Co., Ltd. Antenne réseau, procédé de configuration et système de communication
JP5674838B2 (ja) * 2013-03-04 2015-02-25 電気興業株式会社 アンテナ装置
CN103560336A (zh) * 2013-10-16 2014-02-05 北京航天福道高技术股份有限公司 Ku频段双频双极化微带平面反射阵天线
CN103730739B (zh) * 2013-12-25 2015-12-02 西安电子科技大学 旋转单元型双频圆极化反射阵天线
CN103887604A (zh) * 2014-03-27 2014-06-25 清华大学 民用平面卫星接收天线
EP3138157A1 (fr) 2014-04-30 2017-03-08 Agence Spatiale Européenne Antenne à réseau réflecteur à large bande pour applications à double polarisation
WO2016027119A1 (fr) * 2014-08-22 2016-02-25 Eutelsat S A Unité d'antenne multibande pour satellite
CN105261842A (zh) * 2015-09-06 2016-01-20 中国科学院国家空间科学中心 一种地面加载十字形缝隙的微带反射阵单元及反射阵天线
CN105261836A (zh) * 2015-09-06 2016-01-20 中国科学院国家空间科学中心 一种有源微带反射阵单元及微带反射阵列天线
CN109935964B (zh) * 2017-12-15 2021-04-09 华为技术有限公司 一种天线单元和天线阵列
US20220239009A1 (en) * 2019-05-27 2022-07-28 Ticra Fond Antenna system for satellite applications
CN111562551A (zh) * 2020-04-28 2020-08-21 苏州瑞地测控技术有限公司 一种用于车载雷达测试的雷达散射截面增强表面结构
US11431103B2 (en) * 2020-07-17 2022-08-30 Huawei Technologies Co., Ltd. Systems and methods for beamforming using integrated configurable surfaces in antenna
CN112736487B (zh) * 2020-12-28 2022-01-25 中国科学院国家空间科学中心 一种采用锯齿形地板的微带反射阵列天线
CN117498039B (zh) * 2023-12-10 2024-08-06 中国航天科工集团八五一一研究所 一种全相位可调的宽带可重构反射阵天线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684952A (en) * 1982-09-24 1987-08-04 Ball Corporation Microstrip reflectarray for satellite communication and radar cross-section enhancement or reduction
US5543809A (en) * 1992-03-09 1996-08-06 Martin Marietta Corp. Reflectarray antenna for communication satellite frequency re-use applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667669B (zh) * 2008-09-01 2013-06-12 株式会社Ntt都科摩 无线通信系统、周期构造反射板以及带有锥度的伞形构造
RU199128U1 (ru) * 2019-12-24 2020-08-17 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Отражательная антенная решетка
EP4266489A4 (fr) * 2021-12-09 2024-01-10 Guangdong Broadradio Communication Technology Co., Ltd Directeur à double couche et réseau d'antennes à station de base multifréquence

Also Published As

Publication number Publication date
ES2153323B1 (es) 2001-07-16
ES2153323A1 (es) 2001-02-16
DE60027530D1 (de) 2006-06-01
ATE324679T1 (de) 2006-05-15
DE60027530T2 (de) 2007-05-10
EP1120856A1 (fr) 2001-08-01
WO2000076026A1 (fr) 2000-12-14

Similar Documents

Publication Publication Date Title
EP1120856B1 (fr) Reflecteurs plats en technologie des circuits imprimes multicouches et procedes de conception associes
Encinar Design of two-layer printed reflectarrays using patches of variable size
Wang et al. 1 bit electronically reconfigurable folded reflectarray antenna based on pin diodes for wide-angle beam-scanning applications
Huang et al. Reflectarray antennas
Nicholls et al. Full-space electronic beam-steering transmitarray with integrated leaky-wave feed
EP2337152B1 (fr) Antenne à réseau de réflexion à double polarisation dotée de propriétés de polarisation croisée améliorées
Agrawal et al. Design of a dichroic Cassegrain subreflector
US20170179596A1 (en) Wideband reflectarray antenna for dual polarization applications
Encinar et al. Dual-polarization reflectarray in Ku-band based on two layers of dipole arrays for a transmit–receive satellite antenna with South American coverage
Akbar et al. Parallel-plate slot array antenna for deployable SAR antenna onboard small satellite
Carrasco et al. Reflectarray antennas: A review
US20110025432A1 (en) Phase element for introducing a phase shift pattern into an electromagnetic wave
Legay et al. A multi facets composite panel reflectarray antenna for a space contoured beam antenna in Ku band
Geaney et al. Reflectarray antennas for independent dual linear and circular polarization control
US7429962B2 (en) Millimeter-wave transreflector and system for generating a collimated coherent wavefront
Ravindra et al. A Dual-Polarization $ X $-Band Traveling-Wave Antenna Panel for Small-Satellite Synthetic Aperture Radar
Narayanasamy et al. A comprehensive analysis on the state‐of‐the‐art developments in reflectarray, transmitarray, and transmit‐reflectarray antennas
Song et al. Ultrawideband conformal transmitarray employing connected slot-bowtie elements
Melendro-Jimenez et al. 3D printed directive beam-steering antenna based on gradient index flat lens with an integrated polarizer for dual circular polarization at W-band
Encinar Recent advances in reflectarray antennas
Honari et al. A dual-band transmitarray antenna employing ultra-thin, polarization-rotating spatial phase shifters
WO2020239865A1 (fr) Système d'antenne pour applications satellites
US6067050A (en) Techniques for the cancellation of beam squint in planar printed reflectors
US11476587B2 (en) Dielectric reflectarray antenna and method for making the same
CA2712165A1 (fr) Element de phase permettant d'introduire un decalage de phase dans une onde electromagnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20050427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60027530

Country of ref document: DE

Date of ref document: 20060601

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060726

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090424

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090619

Year of fee payment: 10

Ref country code: FR

Payment date: 20090612

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090603

Year of fee payment: 10

Ref country code: DE

Payment date: 20090622

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100607

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100607