EP1120797B1 - Manufacturing process for a wire-conductor made of composite material with a copper matrix and wire-conductor obtained by the process - Google Patents

Manufacturing process for a wire-conductor made of composite material with a copper matrix and wire-conductor obtained by the process Download PDF

Info

Publication number
EP1120797B1
EP1120797B1 EP01400151A EP01400151A EP1120797B1 EP 1120797 B1 EP1120797 B1 EP 1120797B1 EP 01400151 A EP01400151 A EP 01400151A EP 01400151 A EP01400151 A EP 01400151A EP 1120797 B1 EP1120797 B1 EP 1120797B1
Authority
EP
European Patent Office
Prior art keywords
wire
fact
cable
silver
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01400151A
Other languages
German (de)
French (fr)
Other versions
EP1120797A1 (en
Inventor
Ning Yu
Jean-Paul Le Roy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axon Cable SA
Original Assignee
Axon Cable SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axon Cable SA filed Critical Axon Cable SA
Publication of EP1120797A1 publication Critical patent/EP1120797A1/en
Application granted granted Critical
Publication of EP1120797B1 publication Critical patent/EP1120797B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the invention relates to a method for manufacturing a conductive wire made of a copper matrix composite material in which are scattered metal or ceramic particles, the wire conductor obtained from this method, and a shielding braid.
  • Copper is a widely used material, because of its high electrical conductivity, as the material constituting the conducting wire in electrical and electronic cables.
  • copper has mechanical characteristics mediocre often insufficient to make it the material of the thread cable conductor having to have a high mechanical strength, especially in flexion and torsion.
  • a copper alloy which, by different hardening mechanisms, has a mechanical strength superior to copper, while exhibiting electrical conductivity at less than 85% of the electrical conductivity of copper.
  • these alloys include Cu-Cd, Cu-Zr, Cu-Fe and Cu-Cd-Cr.
  • the present invention aims to provide a method of making it possible to obtain a conductive wire having a better electrical conductivity than the alloys of the prior art, at the same time more mechanical resistance, especially in torsion and in bending, as well as good high temperature stability of these properties mechanical.
  • said ductile material belongs to the group including silver, gold, platinum, palladium and their alloys.
  • said particles comprise aluminum oxide, preferably from 0.2 to 0.4% by weight composite material.
  • said coating step of the base wire includes the electrolytic deposition of a layer silver having a thickness of between 1 and 10 ⁇ m, preferably between 3 and 6 ⁇ m.
  • a favorable solution for the manufacturing technique provides that the drawing includes several passes in a machine of multi-cold wire drawing and allows to obtain a final diameter for the wire secondary at least five times smaller than the nominal diameter of the wire primary, preferably substantially ten times smaller.
  • the present invention also relates to a thread as a result of the aforementioned manufacturing method, this thread being made of a copper matrix composite material in which are dispersed metal or ceramic particles, this wire being characterized by it further comprises a coating of ductile material and in that it has an electrical conductivity of not less than 92% of the Electrical conductivity of copper (International Annealed Copper Standard).
  • the wire according to the present invention is characterized in that when a braid shielding electromagnetic cable is made with said conductive wire, when said cable is subjected to one million (1,000,000) cycles of flexion and torsion combined, each cycle of flexion and torsion corresponding to the passage of a cable section relative to an initial position, on the one hand relative to a main direction of the cable from a 0 ° position, to a position at + 140 °, a position at -140 ° and the return at the 0 ° position (torsion), and secondly with respect to a direction orthogonal to said main direction of the cable from a 0 ° position, to a position at + 140 °, to a position at -140 ° and the return to the 0 ° position (bending), said Braid has a maximum electrical resistance variation of 7%.
  • the conducting wire has a value of tensile breaking load greater than or equal to 300 MPa.
  • said ductile material belongs to the group including silver, gold, platinum, palladium and their alloys.
  • the ductile material is a layer electrolytically obtained silver and said particles comprise aluminum oxide, preferably from 0.2 to 0.4% by weight of the material composite.
  • the method of manufacturing the lead wire uses a basic wire made of a copper matrix composite material in which are dispersed metal or ceramic particles.
  • the composite material used is therefore developed by powder metallurgy by dispersing homogeneous way of metallic or ceramic fine particles (eg examples of oxides, carbides, nitrides or silicides) in a copper matrix.
  • the effect of these scattered particles on the microstructure copper metallurgy makes it possible, on the one hand, to increase the resistances mechanical properties of the material and, on the other hand, to maintain this mechanical strength up to high temperatures, without much altering the electrical conductivity of the copper matrix.
  • the manufacturing method according to the present invention allows obtaining a conductive wire having, surprisingly, very high mechanical performance, electrical conductivity and holding high temperature mechanics.
  • the manufacturing method according to the present invention comprises essentially three basic wire processing steps performed in the said composite material, namely successively silvering, wire drawing and annealing heat treatment.
  • GLIDCOP registered trademark sold by SCM Metal Products Inc.
  • This composite material contains 0.25 to 0.35% by weight of aluminum oxide particles dispersed in the copper matrix and has a maximum electrical conductivity equal to 92% of that of copper. The size of these particles is between 3 and 12 nanometers.
  • a 0.8 mm diameter base wire made of this material was used as a starting point to develop a common thread according to the present invention.
  • the next stage of the manufacturing process consists, in particular to avoid breakage of the basic wire during the subsequent passage through the cold wire drawing machine for continuous reduction of the section of the base wire, to deposit a silver coating on the base wire, this coating being preferentially carried out electrolytically and having a thickness of 3 to 6 ⁇ m.
  • this step of coating the base wire silver comprises the following steps: alkaline degreasing of the wire of base, baseline water rinse, acid stripping of base wire, rinsing base wire water, electrolytic deposition of silver underlayment on the base wire, electrolytic deposit of a layer of silver on the underlayer to form a primary wire, and rinsing with water of the primary wire.
  • This primary wire (silver wire) is then, in a second step, drawn continuously using a multipass cold drawing machine, the last channels used to lead to a secondary line having a final diameter of 0.106 mm, or 0.100 mm or 0.079 mm.
  • the silver coating remains continuous and homogeneous and results in a layer of thickness about 1 micron.
  • the last stage of the manufacturing process consists of a heat treatment.
  • This heat treatment is intended to restore the ductility of the composite material by attenuating the internal stresses of the material created by the drawing step.
  • this treatment thermal will consist of an annealing during which the secondary wire has been brought to a temperature between 450 and 520 ° C for a time between 150 and 210 min.
  • the Cu-Cd alloy conductor wire has a loss of 20% of its load at break in tension while the wire conductor according to the present invention has only a loss in load at break of 5%.
  • the result is that the common thread from manufacturing method according to the present invention presents a better thermal resistance with respect to a conductor wire Cu-Cd alloy.
  • This cable 10 includes one hundred and forty two coaxial conductors distributed in eight groups (reference 12) of sixteen coaxial cables and seven pairs (reference 14) of coaxial cables.
  • the set of cables coaxial cable is twisted around a central anti-wrenching fiber 16, the whole being wrapped in a ribbon 18 surrounded by the armor braid 20, itself protected by an outer sheath 22 made of plastic.
  • the flexion aspect includes rotational movements with respect to a horizontal axis (X, X '), these movements being constituted by the passage of the sample 24 since a initial position 0 at position + 140 °, then its transition from position + 140 ° at the -140 ° position and finally its passage from the -140 ° position to the position initial 0.
  • the sample 24 orthogonally crosses a horizontal beam 26 driven in rotation (non drive mechanism represented) and which imposes the movement previously described back and forth in rotation (arrow A in FIG. 2) around the horizontal axis (X, X ') which is parallel to the longitudinal direction of the beam 26.
  • the twist aspect includes rotational movements with respect to an axis (Y, Y ') orthogonal to the axis horizontal (X, X '), these movements being constituted by the passage sample 24 from an initial position 0 to the position + 140 °, and then its passage from position + 140 ° to position -140 ° and finally its passage from the position -140 ° at the initial position 0.
  • a torsion module 28 passes through the beam 26 according to the axis (Y, Y ') forming a pivot connection, a section of the sample 24 being housed integrally inside the torsion module 28 according to the axis (Y, Y ').
  • a first end 24a of sample section protrudes from a first sleeve 28a surrounded by a stirrup 28a ', these two elements forming a first part of the module 28, and a second end 24b of the section of the sample exceeds a second sleeve 28b forming a second part of the module 28.
  • the sample 24 is entirely subject to the movements of module 28, including the previously described movement of back and forth in rotation (arrows B in FIG. 2) about the axis (Y, Y ') (mechanism driving in rotation around (Y, Y ') not shown).
  • the sample 24 of the cable is completely free of movement, so subject only to the gravity. This test makes it possible to reconstitute the requests to which a cable connected to a portable medical electrical appliance is subjected such as a probe.
  • the thread resulting from the manufacturing process according to the The present invention thus appears to have a greater mechanical resistance, combined with better thermal resistance, while having a higher electrical conductivity than the conductor wires of the prior art.
  • the present invention also relates to a braiding shield electromagnetic device for an electric cable, comprising at least one wire driver as defined above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Description

L'invention concerne un procédé de fabrication d'un fil conducteur réalisé dans un matériau composite à matrice en cuivre dans laquelle sont dispersées des particules métalliques ou céramiques, le fil conducteur obtenu à partir de ce procédé, et une tresse de blindage.The invention relates to a method for manufacturing a conductive wire made of a copper matrix composite material in which are scattered metal or ceramic particles, the wire conductor obtained from this method, and a shielding braid.

Le cuivre est un matériau largement utilisé, du fait de sa haute conductivité électrique, en tant que matériau constituant le fil conducteur dans les câbles électriques et électroniques.Copper is a widely used material, because of its high electrical conductivity, as the material constituting the conducting wire in electrical and electronic cables.

Cependant, le cuivre présente des caractéristiques mécaniques médiocres souvent insuffisantes pour qu'il constitue le matériau du fil conducteur de câbles devant présenter une forte résistance mécanique, notamment en flexion et en torsion.However, copper has mechanical characteristics mediocre often insufficient to make it the material of the thread cable conductor having to have a high mechanical strength, especially in flexion and torsion.

Traditionnellement, on utilise alors un alliage de cuivre qui, par différents mécanismes de durcissement, présente une tenue mécanique supérieure au cuivre, tout en présentant une conductivité électrique au moins égale à 85 % de la conductivité électrique du cuivre. Parmi ces alliages, on peut citer Cu-Cd, Cu-Zr, Cu-Fe et Cu-Cd-Cr.Traditionally, a copper alloy is used which, by different hardening mechanisms, has a mechanical strength superior to copper, while exhibiting electrical conductivity at less than 85% of the electrical conductivity of copper. Among these alloys include Cu-Cd, Cu-Zr, Cu-Fe and Cu-Cd-Cr.

Parmi ces alliages, le dernier alliage précité (cuivre-cadmium-chrome) est très utilisé du fait qu'il présente une conductivité électrique intéressante (90 % de celle du cuivre) et une résistance mécanique bien meilleure que le cuivre (charge à la rupture en traction = 420 MPa).Among these alloys, the last aforementioned alloy (copper-cadmium-chromium) is widely used because it has electrical conductivity interesting (90% of that of copper) and a good mechanical resistance better than copper (load at break in tension = 420 MPa).

La présente invention a pour objet de fournir un procédé de fabrication permettant l'obtention d'un fil conducteur présentant une meilleure conductivité électrique que les alliages de l'art antérieur, en même temps qu'une résistance mécanique accrue, notamment en torsion et en flexion, ainsi qu'une bonne stabilité à haute température de ces propriétés mécaniques.The present invention aims to provide a method of making it possible to obtain a conductive wire having a better electrical conductivity than the alloys of the prior art, at the same time more mechanical resistance, especially in torsion and in bending, as well as good high temperature stability of these properties mechanical.

Le procédé de fabrication selon la présente invention est caractérisé en ce qu'il comporte les étapes suivantes :

  • on fournit un fil de base réalisé dans ledit matériau composite,
  • on réalise un revêtement du fil de base avec un matériau ductile afin d'obtenir un fil primaire présentant un diamètre nominal,
  • on réalise le tréfilage dudit fil primaire pour aboutir à un fil secondaire présentant un diamètre final, et
  • on réalise un traitement de recuit dudit fil secondaire afin de relâcher les contraintes induites par le tréfilage.
The manufacturing method according to the present invention is characterized in that it comprises the following steps:
  • providing a base wire made of said composite material,
  • the base wire is coated with a ductile material to obtain a primary wire having a nominal diameter,
  • drawing of said primary wire to obtain a secondary wire having a final diameter, and
  • an annealing treatment of said secondary wire is carried out in order to release the stresses induced by drawing.

Avantageusement, ledit matériau ductile appartient au groupe comprenant l'argent, l'or, le platine, le palladium et leurs alliages.Advantageously, said ductile material belongs to the group including silver, gold, platinum, palladium and their alloys.

De manière particulièrement avantageuse, lesdites particules comportent de l'oxyde d'aluminium, de préférence de 0.2 à 0.4 % en poids du matériau composite.In a particularly advantageous manner, said particles comprise aluminum oxide, preferably from 0.2 to 0.4% by weight composite material.

Selon une autre disposition avantageuse, ladite étape de revêtement du fil de base comprend le dépôt par voie électrolytique, d'une couche d'argent présentant une épaisseur comprise entre 1 et 10 µm, de préférence entre 3 et 6 µm.According to another advantageous arrangement, said coating step of the base wire includes the electrolytic deposition of a layer silver having a thickness of between 1 and 10 μm, preferably between 3 and 6 μm.

De manière préférentielle, ladite étape de revêtement du fil de base comprend les étapes suivantes :

  • dégraissage alcalin du fil de base,
  • rinçage à l'eau du fil de base,
  • décapage acide du fil de base,
  • rinçage à l'eau du fil de base.
  • dépôt par voie électrolytique d'une sous-couche d'argent sur le fil de base,
  • dépôt par voie électrolytique d'une couche d'argent sur ladite sous-couche afin de former le fil primaire, et
  • rinçage à l'eau du fil primaire.
Preferably, said step of coating the base wire comprises the following steps:
  • alkaline degreasing of the base wire,
  • rinsing with water of the basic thread,
  • acid pickling of the base wire,
  • rinsing with water of the base wire.
  • electrolytic deposition of a silver underlayer on the base wire,
  • electrolytically deposition of a silver layer on said underlayer to form the primary wire, and
  • rinsing the primary wire with water.

Une solution favorable quant à la technique de fabrication prévoit que le tréfilage comprend plusieurs passages dans une machine de tréfilage multipasse à froid et permet d'obtenir un diamètre final pour le fil secondaire au moins cinq fois plus petit que le diamètre nominal du fil primaire, de préférence sensiblement dix fois plus petit.A favorable solution for the manufacturing technique provides that the drawing includes several passes in a machine of multi-cold wire drawing and allows to obtain a final diameter for the wire secondary at least five times smaller than the nominal diameter of the wire primary, preferably substantially ten times smaller.

La présente invention a également pour objet un fil conducteur tel qu'il résulte du procédé de fabrication précité, ce fil conducteur étant réalisé dans un matériau composite à matrice en cuivre dans laquelle sont dispersées les particules métalliques ou céramiques, ce fil se caractérisant en ce qu'il comporte en outre un revêtement en matériau ductile et en ce qu'il présente une conductivité électrique au moins égale à 92% de la conductivité électrique du cuivre (International Annealed Copper Standard). The present invention also relates to a thread as a result of the aforementioned manufacturing method, this thread being made of a copper matrix composite material in which are dispersed metal or ceramic particles, this wire being characterized by it further comprises a coating of ductile material and in that it has an electrical conductivity of not less than 92% of the Electrical conductivity of copper (International Annealed Copper Standard).

En outre, de préférence, le fil conducteur selon la présente invention se caractérise en ce que lorsqu'une tresse de blindage électromagnétique de câble est réalisée avec ledit fil conducteur, lorsque ledit câble est soumis à un million (1.000.000) de cycles de flexion et de torsion combinées, chaque cycle de flexion et de torsion correspondant au passage d'un tronçon de câble par rapport à une position initiale, d'une part par rapport à une direction principale du câble depuis une position 0°, vers une position à +140°, vers une position à -140° et le retour à la position 0° (torsion), et d'autre part par rapport à une direction orthogonale à ladite direction principale du câble depuis une position 0°, vers une position à +140°, vers une position à -140° et le retour à la position 0° (flexion), ladite tresse présente une variation de résistance électrique maximale de 7%.In addition, preferably, the wire according to the present invention is characterized in that when a braid shielding electromagnetic cable is made with said conductive wire, when said cable is subjected to one million (1,000,000) cycles of flexion and torsion combined, each cycle of flexion and torsion corresponding to the passage of a cable section relative to an initial position, on the one hand relative to a main direction of the cable from a 0 ° position, to a position at + 140 °, a position at -140 ° and the return at the 0 ° position (torsion), and secondly with respect to a direction orthogonal to said main direction of the cable from a 0 ° position, to a position at + 140 °, to a position at -140 ° and the return to the 0 ° position (bending), said Braid has a maximum electrical resistance variation of 7%.

De plus, de préférence, le fil conducteur présente une valeur de charge à la rupture en traction supérieure ou égale à 300 MPa.In addition, preferably, the conducting wire has a value of tensile breaking load greater than or equal to 300 MPa.

Avantageusement, ledit matériau ductile appartient au groupe comprenant l'argent, l'or, le platine, le palladium et leurs alliages.Advantageously, said ductile material belongs to the group including silver, gold, platinum, palladium and their alloys.

De manière préférentielle, le matériau ductile est une couche d'argent obtenue par voie électrolytique et lesdites particules comportent de l'oxyde d'aluminium, de préférence de 0.2 à 0.4 % en poids du matériau composite.Preferably, the ductile material is a layer electrolytically obtained silver and said particles comprise aluminum oxide, preferably from 0.2 to 0.4% by weight of the material composite.

Un exemple de réalisation va maintenant être décrit et illustré ci-après. Il est entendu que la description et les dessins ne sont donnés qu'à titre indicatif et non limitatif.An exemplary embodiment will now be described and illustrated below. It is understood that the description and drawings are given only indicative and not limiting.

Il sera fait référence aux dessins annexés, dans lesquels :

  • la figure 1 est une section transversale d'un câble utilisé pour effectuer des tests de résistance mécanique du fil conducteur objet de la présente invention,
  • la figure 2 est une représentation schématique du test de tenue à la flexion et à la torsion mis en oeuvre, et
  • la figure 3 est une courbe comparative de la tenue en flexion et en torsion du câble de la figure 1 selon qu'il utilise ou non le fil conducteur selon la présente invention.
Reference will be made to the accompanying drawings, in which:
  • FIG. 1 is a cross section of a cable used to perform mechanical strength tests on the conductor wire of the present invention,
  • FIG. 2 is a schematic representation of the bending and torsion strength test used, and
  • Figure 3 is a comparative curve of the bending and torsion resistance of the cable of Figure 1 according to whether or not it uses the conductive wire according to the present invention.

Selon une des caractéristiques essentielles de la présente invention, le procédé de fabrication du fil conducteur utilise un fil de base réalisé dans un matériau composite à matrice en cuivre dans laquelle sont dispersées des particules métalliques ou céramiques. Le matériau composite utilisé est donc élaboré par la métallurgie de poudre en faisant disperser de façon homogène des particules fines métalliques ou céramiques (par exemple des oxydes, des carbures, des nitrures ou des siliciures) dans une matrice en cuivre.According to one of the essential characteristics of this invention, the method of manufacturing the lead wire uses a basic wire made of a copper matrix composite material in which are dispersed metal or ceramic particles. The composite material used is therefore developed by powder metallurgy by dispersing homogeneous way of metallic or ceramic fine particles (eg examples of oxides, carbides, nitrides or silicides) in a copper matrix.

Ainsi, l'effet de ces particules dispersées sur la microstructure métallurgique de cuivre permet, d'une part, d'augmenter les résistances mécaniques du matériau et, d'autre part, de maintenir cette tenue mécanique jusqu'à de hautes températures, sans trop altérer la conductivité électrique de la matrice en cuivre.Thus, the effect of these scattered particles on the microstructure copper metallurgy makes it possible, on the one hand, to increase the resistances mechanical properties of the material and, on the other hand, to maintain this mechanical strength up to high temperatures, without much altering the electrical conductivity of the copper matrix.

Le procédé de fabrication selon la présente invention permet l'obtention d'un fil conducteur présentant, de manière surprenante, de très hautes performances mécaniques, de conductivité électrique et de tenue mécanique à haute température.The manufacturing method according to the present invention allows obtaining a conductive wire having, surprisingly, very high mechanical performance, electrical conductivity and holding high temperature mechanics.

Le procédé de fabrication selon la présente invention comprend essentiellement trois étapes de traitement du fil de base réalisé dans le matériau composite précité, à savoir successivement l'argentage, le tréfilage et le traitement thermique de recuit.The manufacturing method according to the present invention comprises essentially three basic wire processing steps performed in the said composite material, namely successively silvering, wire drawing and annealing heat treatment.

Les essais effectués ont utilisé comme matériau composite le "GLIDCOP" (marque déposée) commercialisé par la société SCM Metal Products Inc. (référence UNS C15 715). Ce matériau composite contient de 0.25 à 0.35 % en poids de particules d'oxyde d'aluminium dispersées dans la matrice en cuivre et il possède une conductivité électrique maximale égale à 92 % de celle du cuivre. La taille de ces particules est comprise entre 3 et 12 nanomètres.The tests carried out used as composite material the "GLIDCOP" (registered trademark) sold by SCM Metal Products Inc. (reference UNS C15 715). This composite material contains 0.25 to 0.35% by weight of aluminum oxide particles dispersed in the copper matrix and has a maximum electrical conductivity equal to 92% of that of copper. The size of these particles is between 3 and 12 nanometers.

Un fil de base de diamètre 0.8 mm réalisé dans ce matériau a été utilisé comme point de départ pour élaborer un fil conducteur selon la présente invention.A 0.8 mm diameter base wire made of this material was used as a starting point to develop a common thread according to the present invention.

L'étape suivante du procédé de fabrication consiste, notamment afin d'éviter une rupture du fil de base lors du passage ultérieur dans la machine de tréfilage à froid permettant la réduction en continu de la section du fil de base, à déposer un revêtement en argent sur le fil de base, ce revêtement étant préférentiellement réalisé par voie électrolytique et présentant une épaisseur de 3 à 6 µm.The next stage of the manufacturing process consists, in particular to avoid breakage of the basic wire during the subsequent passage through the cold wire drawing machine for continuous reduction of the section of the base wire, to deposit a silver coating on the base wire, this coating being preferentially carried out electrolytically and having a thickness of 3 to 6 μm.

De manière plus précise, cette étape de revêtement du fil de base par de l'argent comprend les étapes suivantes : dégraissage alcalin du fil de base, rinçage à l'eau du fil de base, décapage acide du fil de base, rinçage à l'eau du fil de base, dépôt par voie électrolytique d'une sous-couche d'argent sur le fil de base, dépôt par voie électrolytique d'une couche d'argent sur la sous-couche afin de former un fil primaire, et rinçage à l'eau du fil primaire.More specifically, this step of coating the base wire silver comprises the following steps: alkaline degreasing of the wire of base, baseline water rinse, acid stripping of base wire, rinsing base wire water, electrolytic deposition of silver underlayment on the base wire, electrolytic deposit of a layer of silver on the underlayer to form a primary wire, and rinsing with water of the primary wire.

Ce fil primaire (fil argenté) est ensuite, dans une deuxième étape, tréfilé en continu en utilisant une machine de tréfilage multipasse à froid, les dernières filières utilisées permettant d'aboutir à un fil secondaire présentant un diamètre final de 0.106 mm, ou 0.100 mm ou 0.079 mm. Au cours de cette étape, on constate que le revêtement en argent reste continu et homogène et aboutit à une couche d'épaisseur environ 1 µm.This primary wire (silver wire) is then, in a second step, drawn continuously using a multipass cold drawing machine, the last channels used to lead to a secondary line having a final diameter of 0.106 mm, or 0.100 mm or 0.079 mm. At During this stage, we note that the silver coating remains continuous and homogeneous and results in a layer of thickness about 1 micron.

La dernière étape du procédé de fabrication est constituée d'un traitement thermique. Ce traitement thermique a pour but de restaurer la ductilité du matériau composite en atténuant les contraintes internes du matériau créées par l'étape du tréfilage. Avantageusement, ce traitement thermique va consister en un recuit au cours duquel le fil secondaire a été porté à une température comprise entre 450 et 520°C pendant un temps compris entre 150 et 210 min.The last stage of the manufacturing process consists of a heat treatment. This heat treatment is intended to restore the ductility of the composite material by attenuating the internal stresses of the material created by the drawing step. Advantageously, this treatment thermal will consist of an annealing during which the secondary wire has been brought to a temperature between 450 and 520 ° C for a time between 150 and 210 min.

Comme on peut le voir sur le tableau I ci-après, ce traitement thermique du recuit permet d'améliorer de façon très significative les caractéristiques mécaniques et électriques des fils tréfilés. Dans ce tableau, on a en effet reporté la valeur de la charge à la rupture et de l'allongement lors de la rupture dans un essai de traction, ainsi que la conductivité électrique des fils exprimés en pourcentage de la conductivité électrique du cuivre dénommée IACS (International Annealed Copper Standard correspondant à 1,7241 micro.ohms.cm à 20°C).

Figure 00060001
As can be seen in Table I below, this annealing heat treatment makes it possible to very significantly improve the mechanical and electrical characteristics of the drawn wires. In this table, the value of the load at break and the elongation at break in a tensile test, as well as the electrical conductivity of the wires expressed as a percentage of the electrical conductivity of the copper referred to as IACS, have indeed been reported. (International Annealed Copper Standard corresponding to 1.7241 micro.ohms.cm at 20 ° C).
Figure 00060001

De manière étonnante, on constate donc qu'après le traitement de recuit précité, on obtient un fil conducteur présentant une conductivité électrique de l'ordre de 95 % (94 ou 96 %) de la conductivité électrique du cuivre, c'est-à-dire largement supérieure à celle du fil de base. En outre, on constate que le fil conducteur selon la présente invention présente une meilleure conductivité électrique que les alliages utilisés dans l'art antérieur.Surprisingly, it can be seen that after the treatment of annealing, a conductive wire having a conductivity about 95% (94% or 96%) of the electrical conductivity of the copper, that is to say, much higher than that of the base wire. In addition, notes that the conductive wire according to the present invention has a better electrical conductivity than the alloys used in the prior art.

Afin d'illustrer la tenue thermique du fil conducteur obtenu selon le procédé de la présente invention, c'est-à-dire la stabilité à haute température de ces propriétés mécaniques, le test suivant a été mis en oeuvre.In order to illustrate the thermal behavior of the conductive wire obtained according to the process of the present invention, i.e., high temperature stability of these mechanical properties, the following test was implemented.

Un fil conducteur en alliage Cu-Cd et un fil conducteur résultant du procédé selon la présente invention, les deux fils présentant un diamètre de 0.1 mm, ont été portés à 400°C pendant une heure. La réduction de la résistance à la rupture en traction de ces fils a été mesurée à l'issue de ce vieillissement thermique.A Cu-Cd alloy wire and a resulting lead of the process according to the present invention, the two wires having a diameter 0.1 mm, were heated to 400 ° C for one hour. The reduction of the tensile strength of these yarns was measured at the end of this thermal aging.

On constate que le fil conducteur en alliage Cu-Cd présente une perte de 20 % de sa charge à la rupture en traction alors que le fil conducteur selon la présente invention présente seulement une perte en charge à la rupture de 5 %. Il en résulte donc que le fil conducteur issu du procédé de fabrication selon la présente invention présente une meilleure tenue thermique par rapport à un fil conducteur en alliage Cu-Cd. It can be seen that the Cu-Cd alloy conductor wire has a loss of 20% of its load at break in tension while the wire conductor according to the present invention has only a loss in load at break of 5%. The result is that the common thread from manufacturing method according to the present invention presents a better thermal resistance with respect to a conductor wire Cu-Cd alloy.

Afin de compléter les tests permettant d'évaluer la résistance mécanique du fil conducteur issu du procédé selon la présente invention, un test de tenue à la flexion et à la torsion a été mis en place. Dans ce test, le fil conducteur résultant du procédé de fabrication selon la présente invention a été utilisé pour la formation d'une tresse de blindage électromagnétique au sein d'un câble électrique qui est illustré sur la figure 1.To complete the tests to evaluate the resistance of the conductive wire from the process according to the present invention, a Bending and torsion strength test was set up. In this test, the thread resulting from the manufacturing process according to the present invention has been used for the formation of an electromagnetic shielding braid at within an electric cable which is illustrated in Figure 1.

Ce câble 10 comprend cent quarante deux conducteurs coaxiaux répartis au sein de huit groupes (référence 12) de seize câbles coaxiaux et de sept paires (référence 14) de câbles coaxiaux. L'ensemble des câbles coaxiaux est torsadé autour d'une fibre centrale anti-arrachement 16, le tout étant enveloppé dans un ruban 18 entouré de la tresse de blindage 20, elle-même protégée par une gaine extérieure 22 en matière plastique.This cable 10 includes one hundred and forty two coaxial conductors distributed in eight groups (reference 12) of sixteen coaxial cables and seven pairs (reference 14) of coaxial cables. The set of cables coaxial cable is twisted around a central anti-wrenching fiber 16, the whole being wrapped in a ribbon 18 surrounded by the armor braid 20, itself protected by an outer sheath 22 made of plastic.

Au cours de ce test de tenue à la flexion et à la torsion illustré à la figure 2, on soumet un échantillon 24 du câble 10 décrit précédemment à des cycles de flexion et de torsion combinées.During this bending and torsion strength test shown in FIG. FIG. 2, a sample 24 of the cable 10 described above is subjected to combined bending and torsion cycles.

Au cours de chaque cycle, l'aspect flexion comprend des mouvements de rotation par rapport à un axe horizontal (X, X'), ces mouvements étant constitués par le passage de l'échantillon 24 depuis une position initiale 0 à la position +140°, puis son passage de la position +140° à la position -140° et enfin son passage de la position -140° à la position initiale 0.During each cycle, the flexion aspect includes rotational movements with respect to a horizontal axis (X, X '), these movements being constituted by the passage of the sample 24 since a initial position 0 at position + 140 °, then its transition from position + 140 ° at the -140 ° position and finally its passage from the -140 ° position to the position initial 0.

Pour cela, l'échantillon 24 traverse de manière orthogonale une poutre horizontale 26 entraínée en rotation (mécanisme d'entraínement non représenté) et qui impose le mouvement décrit précédemment de va-et-vient en rotation (flèche A sur la figure 2) autour de l'axe horizontal (X, X') qui est parallèle à la direction longitudinale de la poutre 26.For this, the sample 24 orthogonally crosses a horizontal beam 26 driven in rotation (non drive mechanism represented) and which imposes the movement previously described back and forth in rotation (arrow A in FIG. 2) around the horizontal axis (X, X ') which is parallel to the longitudinal direction of the beam 26.

Au cours de chaque cycle, l'aspect torsion comprend des mouvements de rotation par rapport à un axe (Y,Y') orthogonal à l'axe horizontal (X, X') précité, ces mouvements étant constitués par le passage de l'échantillon 24 depuis une position initiale 0 à la position +140°, puis son passage de la position +140° à la position -140° et enfin son passage de la position -140° à la position initiale 0.During each cycle, the twist aspect includes rotational movements with respect to an axis (Y, Y ') orthogonal to the axis horizontal (X, X '), these movements being constituted by the passage sample 24 from an initial position 0 to the position + 140 °, and then its passage from position + 140 ° to position -140 ° and finally its passage from the position -140 ° at the initial position 0.

A cet effet, un module de torsion 28 traverse la poutre 26 selon l'axe (Y, Y') en formant une liaison pivot, un tronçon de l'échantillon 24 étant logé de manière solidaire à l'intérieur du module de torsion 28 selon l'axe (Y,Y').For this purpose, a torsion module 28 passes through the beam 26 according to the axis (Y, Y ') forming a pivot connection, a section of the sample 24 being housed integrally inside the torsion module 28 according to the axis (Y, Y ').

Plus précisément, comme on peut le voir sur la figure 2 qui représente sensiblement la position à +140°, une première extrémité 24a du tronçon de l'échantillon dépasse d'un premier manchon 28a entouré d'un étrier 28a', ces deux éléments formant une première partie du module 28, et une deuxième extrémité 24b du tronçon de l'échantillon dépasse d'un deuxième manchon 28b formant une deuxième partie du module 28.More specifically, as can be seen in Figure 2 which substantially represents the position at + 140 °, a first end 24a of sample section protrudes from a first sleeve 28a surrounded by a stirrup 28a ', these two elements forming a first part of the module 28, and a second end 24b of the section of the sample exceeds a second sleeve 28b forming a second part of the module 28.

Ainsi, l'échantillon 24 est entièrement soumis aux mouvements du module 28, incluant le mouvement décrit précédemment de va-et-vient en rotation (flèches B sur la figure 2) autour de l'axe (Y, Y') (mécanisme d'entraínement en rotation autour de (Y, Y') non représenté).Thus, the sample 24 is entirely subject to the movements of module 28, including the previously described movement of back and forth in rotation (arrows B in FIG. 2) about the axis (Y, Y ') (mechanism driving in rotation around (Y, Y ') not shown).

On comprend que les rotations autour des axes (X, X') et (Y, Y') se déroulent en même temps, la position angulaire de l'échantillon 24 ayant à chaque instant la même valeur entre -140° et +140°, d'une part en flexion autour de l'axe (X, X'), et d'autre part en torsion autour de l'axe (Y, Y').We understand that the rotations around the axes (X, X ') and (Y, Y') at the same time, the angular position of the sample 24 having at each moment the same value between -140 ° and + 140 °, on the one hand in flexion around the axis (X, X '), and on the other hand in torsion around the axis (Y, Y').

A part le tronçon retenu par le module 28, l'échantillon 24 du câble est entièrement libre de mouvement, donc soumis uniquement à la gravité. Ce test permet notamment de reconstituer les sollicitations auxquelles est soumis un câble relié à un appareil électrique médical portatif tel qu'une sonde.Apart from the section retained by the module 28, the sample 24 of the cable is completely free of movement, so subject only to the gravity. This test makes it possible to reconstitute the requests to which a cable connected to a portable medical electrical appliance is subjected such as a probe.

Cet essai est mis en oeuvre dans les conditions suivantes :

  • point de départ :position à 0° correspondant à une position verticale du câble, l'étrier 28a' étant en bas,
  • flexion :280°/cycle,
  • torsion : 280°/cycle,
  • fréquence de cycle : 9 cycles/min,
  • nombre de cycles : 1 000 000 au moins sans rupture de fil conducteur dans la tresse.
This test is carried out under the following conditions:
  • starting point: position at 0 ° corresponding to a vertical position of the cable, the stirrup 28a 'being at the bottom,
  • flexion: 280 ° / cycle,
  • twist: 280 ° / cycle,
  • cycle frequency: 9 cycles / min,
  • number of cycles: 1 000 000 at least without breakage of conductive wire in the braid.

A des fins de comparaison, ce même essai a été mis en oeuvre pour un câble A tel que défini précédemment ayant une tresse de blindage 20 réalisée en alliage Cu-Cd-Cr et pour un câble B présentant une tresse de blindage 20 réalisée avec le fil conducteur résultant du procédé de fabrication selon la présente invention. For comparison purposes, this same test was implemented for a cable A as defined above having a braid shielding 20 made of Cu-Cd-Cr alloy and for a cable B having a braid of shielding made with the lead wire resulting from the method of manufacture according to the present invention.

Il ressort du graphique de la figure 3 que le câble B présente une résistance électrique bien plus stable, entraínant par là même une efficacité de blindage plus importante, que le câble A.It is apparent from the graph in Figure 3 that cable B has a electrical resistance much more stable, thereby leading to an efficiency more shielding than the A cable.

En effet, dans le cas de l'essai correspondant à la figure 3, on constate une variation maximale de la résistance électrique de la tresse de 20.4% pour le câble A et de 4.4% pour le câble B. Au cours d'une campagne d'essais, on a constaté que la valeur la plus importante de la variation maximale de la résistance électrique d'une tresse réalisée avec le fil conducteur selon l'invention, c'est-à-dire le plus fort écart de la résistance électrique au cours d'un essai, est de 7% .Indeed, in the case of the test corresponding to FIG. notes a maximum variation of the electrical resistance of the braid of 20.4% for cable A and 4.4% for cable B. During a test campaign, it has been found that the most important value of the maximum variation of the electrical resistance of a braid made with the conductive thread according to the invention, that is to say the largest difference in the electrical resistance during a test, is 7%.

Le fil conducteur résultant du procédé de fabrication selon la présente invention apparaít donc comme présentant une plus grande résistance mécanique, alliée à une meilleure tenue thermique, tout en présentant une conductivité électrique supérieure aux fils conducteurs de l'art antérieur.The thread resulting from the manufacturing process according to the The present invention thus appears to have a greater mechanical resistance, combined with better thermal resistance, while having a higher electrical conductivity than the conductor wires of the prior art.

La présente invention concerne également une tresse de blindage électromagnétique pour un câble électrique, comprenant au moins un fil conducteur tel que défini précédemment.The present invention also relates to a braiding shield electromagnetic device for an electric cable, comprising at least one wire driver as defined above.

Claims (14)

  1. Process for manufacture of a conductor wire made from a composite material with a copper matrix in which metallic or ceramic particles are dispersed, characterised by the fact that it includes the following steps:
    a basic wire is provided made from the said composite material,
    the basic wire is coated with a ductile material in order to obtain a primary wire having a nominal diameter,
    wiredrawing of the said primary wire is performed in order to obtain a secondary wire having a final diameter, and
    the said secondary wire is subjected to an annealing treatment in order to relax the stresses caused by the wiredrawing.
  2. Process as described in claim 1, characterised by the fact that the said ductile material belongs to the group comprising silver, gold, platinum, palladium and their alloys.
  3. Process as described in any one of the preceding claims, characterised by the fact that the said particles include aluminium oxide, preferably at the rate of 0.2 to 0.4% by weight of the composite material.
  4. Process as described in any one of the preceding claims, characterised by the fact that the said step of coating the basic wire comprises electrolytic deposition of a layer of silver having a thickness of between 1 and 10 µm, and preferably between 3 and 6 µm.
  5. Process as described in claim 4, characterised by the fact that the said step of coating the basic wire comprises the following steps:
    alkaline degreasing of the basic wire,
    rinsing of the basic wire with water,
    acidic cleaning of the basic wire,
    rinsing of the basic wire with water,
    electrolytic deposition of an under-layer of silver on the basic wire,
    electrolytic deposition of a layer of silver on the said under-layer in order to form the primary wire, and
    rinsing of the primary wire with water.
  6. Process as described in any one of the preceding claims, characterised by the fact that the wiredrawing comprises a plurality of passes in a cold multipass wiredrawing machine and allows a final diameter to be obtained for the secondary wire at least five times smaller than the nominal diameter of the primary wire, and preferably substantially ten times smaller.
  7. Process as described in any one of the preceding claims, characterised by the fact that the said annealing treatment includes the heating of the said secondary wire between 450 and 520°C for 150 to 210 minutes.
  8. Conductor wire resulting from the manufacturing process as described in any one of claims 1 to 7, this conductor wire being made from a composite material with a copper matrix in which metallic or ceramic particles are dispersed, this wire being characterised by the fact that it also includes a coating of a ductile material and by the fact that it has an electrical conductivity at least equal to 92% of the electrical conductivity of copper called International Annealed Copper Standard, corresponding to 1.7241 microohm.cm at 20°C.
  9. Process for manufacture of an electromagnetic shielding braid (20) for a cable (10) with the said conductor wire as described in claim 8, characterised by the fact that, when the said cable (10) is subjected to a million (1 000 000) cycles of combined flexing and twisting, each cycle corresponding, on passage of a section of cable relative to an initial position, on the one hand, for twisting (B), relative to a main direction (Y, Y') of the cable from a 0° position, to a position at +140°, to a position at -140° and return to the 0° position, and on the other hand, for flexing (A), relative to a direction (X, X') at right-angles to the said main direction (Y, Y') of the cable from a 0° position, to a position at +140°, to a position at -140° and return to the 0° position, the said braid (20) has a maximum variation in electrical resistance of 7%.
  10. Conductor wire as described in claim 8, characterised by the fact that it has a breakage load value under traction greater than or equal to 300 MPa.
  11. Conductor wire as described in claim 8, characterised by the fact that the said ductile material belongs to the group comprising silver, gold, platinum, palladium and their alloys.
  12. Conductor wire as described in claim 11, characterised by the fact that the said ductile material is a layer of silver obtained electrolytically.
  13. Conductor wire as described in any one of claims 8 and 10 to 12, characterised by the fact that the said particles include aluminium oxide, preferably at the rate of 0.2 to 0.4% by weight of the composite material.
  14. Electromagnetic shielding braid (20) for an electric cable, comprising at least a conductor wire as described in one of claims 8 and 10 to 13.
EP01400151A 2000-01-27 2001-01-19 Manufacturing process for a wire-conductor made of composite material with a copper matrix and wire-conductor obtained by the process Expired - Lifetime EP1120797B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0001039 2000-01-27
FR0001039A FR2804539B1 (en) 2000-01-27 2000-01-27 METHOD FOR MANUFACTURING A CONDUCTIVE WIRE MADE OF A COPPER MATRIX COMPOSITE MATERIAL AND CONDUCTIVE WIRE OBTAINED BY SAID METHOD

Publications (2)

Publication Number Publication Date
EP1120797A1 EP1120797A1 (en) 2001-08-01
EP1120797B1 true EP1120797B1 (en) 2005-07-27

Family

ID=8846368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400151A Expired - Lifetime EP1120797B1 (en) 2000-01-27 2001-01-19 Manufacturing process for a wire-conductor made of composite material with a copper matrix and wire-conductor obtained by the process

Country Status (3)

Country Link
EP (1) EP1120797B1 (en)
DE (1) DE60112138T2 (en)
FR (1) FR2804539B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789882B2 (en) 2006-05-09 2010-09-07 Kirwan Surgical Products, Inc. Electrosurgical forceps with composite material tips

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640779A (en) * 1969-09-30 1972-02-08 Olin Corp High-conductivity copper alloys
US4427469A (en) * 1981-02-23 1984-01-24 Western Electric Co., Inc. Methods of and apparatus for controlling plastic-to-conductor adhesion of plastic-insulated, tinned conductors

Also Published As

Publication number Publication date
FR2804539A1 (en) 2001-08-03
FR2804539B1 (en) 2002-05-10
DE60112138T2 (en) 2006-04-13
DE60112138D1 (en) 2005-09-01
EP1120797A1 (en) 2001-08-01

Similar Documents

Publication Publication Date Title
EP1647996B2 (en) Copper plated aluminum stranded cable and its fabrication method
KR102005669B1 (en) Metallic/carbon nanotube composite wire
KR102301262B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, insulated wire, and terminal wire
EP0119553B2 (en) Method of making super-conductors
KR102361777B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, sheathed wire, and terminal-mounted wire
KR102361765B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, sheathed wire, and terminal-mounted wire
WO2018124114A1 (en) Surface treatment material and article fabricated using same
KR102362938B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, insulated wire, and terminal-attached wire
EP1120797B1 (en) Manufacturing process for a wire-conductor made of composite material with a copper matrix and wire-conductor obtained by the process
JP6535136B2 (en) SURFACE TREATMENT MATERIAL AND PARTS PRODUCED BY USING THE SAME
KR102301263B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, insulated wire, and terminal wire
JP2001101929A (en) Flexible high strength and light weight conductor
EP2931928B1 (en) An electrical conductor made from a copper alloy
JP5468872B2 (en) Metal-metal glass composite material, electrical contact member, and method for producing metal-metal glass composite material
EP4323565A1 (en) Electric wires and cables for space applications
WO2007147872A2 (en) Method of producing an aluminium wire covered with a copper layer, and wire obtained
EP2192596B1 (en) Brand with limited spring effect
EP1118397A1 (en) A deformed metal composite wire
CN113498543B (en) Aluminum-based wire rod, stranded wire, and method for producing aluminum-based wire rod
JP2000282157A (en) Foil conductor
JP7171667B2 (en) Conductive wire and cable
FR3078078A1 (en) METHOD FOR MANUFACTURING A CONDUCTIVE END WIRE OR CATENARY CONTACT WIRE
FR2613528A1 (en) PROCESS FOR MANUFACTURING A CONDUCTIVE FLEXIBLE ELECTRICAL CABLE INCLUDING FINE ALUMINUM OR ALUMINUM ALLOY WIRES
CN110379555B (en) Signal transmission wire with large current carrying and high-frequency characteristics and application thereof
EP3913643A1 (en) Cable having improved corrosion resistance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020118

AKX Designation fees paid

Free format text: AT BE

RBV Designated contracting states (corrected)

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20040604

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LE ROY, JEAN-PAUL

Inventor name: YU, NING

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 60112138

Country of ref document: DE

Date of ref document: 20050901

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060428

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200113

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200122

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60112138

Country of ref document: DE