EP2931928B1 - An electrical conductor made from a copper alloy - Google Patents

An electrical conductor made from a copper alloy Download PDF

Info

Publication number
EP2931928B1
EP2931928B1 EP13818291.0A EP13818291A EP2931928B1 EP 2931928 B1 EP2931928 B1 EP 2931928B1 EP 13818291 A EP13818291 A EP 13818291A EP 2931928 B1 EP2931928 B1 EP 2931928B1
Authority
EP
European Patent Office
Prior art keywords
advantageously
alloy
electric conductor
comprised
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13818291.0A
Other languages
German (de)
French (fr)
Other versions
EP2931928A1 (en
Inventor
Ning Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axon Cable SA
Original Assignee
Axon Cable SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axon Cable SA filed Critical Axon Cable SA
Publication of EP2931928A1 publication Critical patent/EP2931928A1/en
Application granted granted Critical
Publication of EP2931928B1 publication Critical patent/EP2931928B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the chromium content of the alloy is between 0.15 and 0.5% by weight relative to the total weight of the alloy, in particular between 0.2 and 0.35% by weight.
  • the zirconium content of the alloy is between 0.02 and 0.12% by weight relative to the total weight of the alloy, in particular between 0.03 and 0.11% by weight.
  • the silver content of the alloy is between 0.03 and 0.12% by weight relative to the total weight of the alloy, in particular between 0.04 and 0.11% by weight.
  • the alloy according to the invention contains rare earths (for example La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and their mixtures), in particular cerium, yttrium or their mixture, advantageously cerium.
  • Its rare earth content, in particular cerium, yttrium or their mixture is between 0.001 and 0.1% by weight relative to the total weight of the alloy, preferably between 0.005 and 0.05%, in particular between 0.005 and 0.02% by weight, more particularly between 0.01 and 0.02% by weight, still more particularly between 0.01 and 0.015% by weight.
  • the alloy according to the present invention does not contain silicon or tin. Even more advantageously, it does not contain cadmium.
  • the electrical conductor according to the present invention may be a single-strand or multi-strand conductor.
  • the driver can thus have the shape of a simple wire or on the contrary have a construction consisting of several strands.
  • the use of several strands makes it possible to obtain different constructions that can improve the flexibility of the final cable in which the electrical conductor according to the present invention can be used.
  • the number of strands also has an impact on the electrical conductivity in general: the more strands a conductor contains, the better its mechanical behavior (especially resistance to fatigue cycles and flexibility).
  • the electrical conductor in general if the electrical conductor is not mono-stranded, it can contain 7, 19, 27, 37, 45, and 61 strands and 7 * 7 strands.
  • the electrical conductor according to the present invention contains 19 or 37 strands, more advantageously 19 strands.
  • the following assemblies can be used: twist, concentric (in particular 19, 61 or 37 strands), Equilay, semi-concentric, Unilay (in particular 19 strands) or Ropelay (in particular for 7 * 7 strands).
  • the electrical conductor contains 19 strands assembled concentrically.
  • the electrical conductor according to the present invention has a breaking strength greater than or equal to 414 MPa for a minimum elongation of 7 to 9%, advantageously a tensile strength greater than 450 MPa for a minimum elongation. from 7 to 9%.
  • the electrical conductor according to the present invention has a diameter ⁇ 8 mm, advantageously ⁇ 1.5 mm, in particular ⁇ 1.2 mm, advantageously between 0.05 and 1.2 mm.
  • the electrical conductor according to the present invention may have a diameter of between 0.1 and 1.2 mm, advantageously when it is a multi-stranded conductor. It may also have a diameter of between 0.05 and 0.25 mm in the case of a single-stranded conductor.
  • the electrical conductor (single or multi-strand, in particular multi-stranded) according to the present invention has a section less than or equal to 0.38 mm 2 .
  • the present invention further relates to an electrical conductor of copper alloy as defined above, characterized in that the conductor is coated with silver or nickel (respectively referred to as silver conductor or nickel-plated conductor).
  • silver conductor or nickel-plated conductor Such a coating makes it possible to reinforce the resistance of the conductor to oxidation and corrosion and to enable it to withstand high temperatures (typically 200 ° C. or 260 ° C.) while retaining good mechanical properties. It can be carried out by chemical or electrolytic means well known to those skilled in the art.
  • the thickness of the nickel layer is between 1 and 2 ⁇ m, in particular between 1 and 1.5 ⁇ m.
  • the thickness of the silver layer is between 9 and 11 ⁇ m, in particular between 10 and 11 ⁇ m, more particularly between 10 and 10.5 ⁇ m.
  • the conductor according to the invention is coated with silver and its operating temperature is less than or equal to 200 ° C. (for example it is a silver conductor classified at 200 ° C. operating temperature), preferably during a period of use of at least 20000 hours.
  • the conductor according to the invention is coated with nickel and its operating temperature is less than or equal to 260 ° C. (for example it is a nickel-plated conductor classified at 260 ° C. in temperature service), preferably during a period of use of at least 20000 hours.
  • the present invention further relates to the use of the electrical conductor according to the present invention as a conductor core of cables, preferably miniature cables, or as a cable shielding braid.
  • the present invention further relates to a method of manufacturing an electrical conductor according to the present invention characterized in that a structural hardening heat treatment step is carried out on a copper-wire stranded conductor or single-stranded conductor according to the present invention. .
  • this step of structural hardening heat treatment provides the driver with better electrical and mechanical properties.
  • This heat treatment of structural hardening is carried out at a temperature of between 450 and 540 ° C.
  • the duration of the structural hardening heat treatment according to the present invention is between 1 and 5 hours, advantageously it is between 3 and 4 hours.
  • the structural heat treatment heat treatment step according to the present invention can be carried out at a temperature of between 450 and 540 ° C.
  • this structural hardening heat treatment is implemented on the final construction of the electrical conductor, in particular on a multi-stranded conductor.
  • two successive structural heat-treatment treatments are implemented on a stranded conductor or single-strand copper alloy according to the present invention.
  • steps k) and I) are implemented by the strander technique or the bunch technique.
  • Steps I) and J) are carried out at a temperature between 450 and 540 ° C.
  • the duration of the heat treatment of steps I) and J) is between 1 and 5 hours, advantageously it is between 3 and 4 hours.
  • the processes according to the present invention may comprise two successive stages of structural hardening heat treatment.
  • An electrical conductor wire of 1.55 mm diameter was obtained by cold drawing from an 8.0 mm wire made of Cu-0.22Cr-0.04Zr-0.05Ag-0.01Ce alloy.
  • a continuous heat treatment (called reel to reel) was carried out on this wire in tubular equipment heated to 550 ° C, the speed of travel being 3 m / min.
  • a first cold drawing was then carried out and a 1.20 mm diameter conductor wire, hereinafter referred to as the rough conductor, was obtained.
  • a continuous electrolytic silver deposit was then made, the silvering speed being 6 m / min and the deposited silver thickness 10.2 ⁇ m.
  • the resulting AWG22x19 conductor was characterized by measuring its mechanical and electrical properties according to ASTM B298 and ASTM B193. The results obtained are collated in the following Table 2. ⁇ b> Table 2 ⁇ / b> Lengthening% MPa breaking strength Electrical conductivity% IACS 9.8 456 91.5
  • this conductor can be classified in 200 ° C at operating temperature, that is, it can be used in applications where the temperature of use (held in 20000 hours) can be up to 200 ° C.
  • a 1.20 mm blank conductive yarn made according to Example 1 was used.
  • Wire drawing of the blank conductor was implemented by reducing its diameter from 1.20 mm to 0.203 mm.
  • this conductor wire with a diameter of 0.203 mm was electrolessly deposition of nickel continuously and in parallel paths, the thickness of nickel on these wires being at least 1.27 ⁇ m.
  • the resulting AWG20x19 conductor was characterized by measuring its mechanical and electrical properties according to ASTM B298 and ASTM B193. The results obtained are collated in the following Table 3. ⁇ b> Table 3 ⁇ / b> Lengthening% MPa breaking strength Electrical conductivity% IACS 9.5 464 91.0
  • this conductor can be classified into 260 ° C service temperature
  • a 1.20 mm blank conductive yarn made according to Example 1 was used.
  • Drawing of the rough conductor was carried out by reducing its diameter from 1.20 mm to 0.012 mm.
  • the resulting AWG24x19 conductor was characterized by measuring its mechanical and electrical properties according to ASTM B298 and ASTM B193. The results obtained are collated in the following Table 4. ⁇ b> Table 4 ⁇ / b> Lengthening% MPa breaking strength Electrical conductivity% IACS 9.6 454 91.8
  • This conductor can be classified at 260 ° C at operating temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Description

Certaines performances fonctionnelles de câbles électroniques telles que les propriétés mécaniques et la conductivité électrique, dépendent de celles de leur âme conductrice, dit conducteur.
Un conducteur en cuivre présente une conductivité électrique qui est conventionnellement pris comme une référence dénommée 100% IACS (International Annealed Copper Standard), mais il présente des propriétés mécaniques limitées. Dans le cas de conducteurs miniatures où la section de ceux-ci est faible (à partir d'AWG 22, soit environ une section inférieure ou égale à 0,38 mm2), leurs propriétés mécaniques deviennent souvent insuffisantes pour beaucoup d'applications.
A titre d'exemple, la résistance à la rupture à la traction (ci-après Rr) du cuivre étant typiquement de l'ordre 240 MPa, un conducteur AWG 2419 (American Wire Gauge) d'une section de 0,24 mm2, peut être cassé sous une force de traction de 5,5 kg. Une des solutions à cette problématique consiste donc à recourir à des conducteurs faits d'alliages à base du cuivre, dits alliages cuivreux, qui présentent des propriétés mécaniques supérieures tout en gardant un niveau de conductivité électrique relativement élevé.
La norme ASTM B624 stipule un conducteur présentant les caractéristiques suivantes :

  1. a) Conductivité : 85% IACS.
  2. b) Résistance à la rupture : 414 MPa pour un allongement minimal de 7-9 %.
Cette norme a résulté en fait d'une gamme de conducteurs dénommée Tensile-Flex® ou TF® et faite d'un alliage Cu-Cr-Cd-Zn, qui était devenue pendant longtemps une référence en la matière à l'échelle internationale. Cependant, la récente application de la Directive Européenne dite RoHS (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment) a rendu cette famille de conducteur caduc dans beaucoup de secteurs en Europe car celle-ci contient du cadmium dont la teneur dépasse la limite imposée par ladite directive.
De nombreux travaux de recherche ont été menés ces dernières années afin de mettre au point des conducteurs respectant à la fois la norme ASTM B624 et la directive RoHS. On peut citer par exemple les brevets US6053994 et US6063217 dans lesquels sont décrits une famille de conducteurs faits d'un alliage type Cu-Cr-Zr. Le conducteur ayant la meilleure conductivité électrique dans cette famille présente une conductivité IACS à 85% et une Rr de 420 MPa pour un allongement de 7%. On peut également citer l'article de XIE Haofeng et al (RARE METALS, Vol.30, N°6, Dec 2011, p. 650 ) qui décrit un alliage de cuivre Cu-Cr-Zr-Ag ayant des caractéristiques de résistance à la rupture de 476,09MPa.s, d'allongement de 15,43% et de conductivité électrique de 88,68% IACs obtenu grâce à un traitement thermique à une température de 400°C.Some functional performances of electronic cables such as mechanical properties and electrical conductivity, depend on those of their conductive core, said conductor.
A copper conductor has electrical conductivity which is conventionally taken as a reference known as International Annealed Copper Standard (IACS), but it has limited mechanical properties. In the case of miniature conductors where the section thereof is small (from AWG 22, or about a section less than or equal to 0.38 mm 2 ), their mechanical properties often become insufficient for many applications.
For example, the tensile strength (hereinafter Rr) of copper being typically of the order of 240 MPa, a AWG 2419 conductor (American Wire Gauge) with a section of 0.24 mm 2 can be broken under a pulling force of 5.5 kg. One solution to this problem is to use conductors made of copper-based alloys, so-called copper alloys, which have superior mechanical properties while maintaining a relatively high level of electrical conductivity.
ASTM B624 specifies a conductor with the following characteristics:
  1. a) Conductivity: 85% IACS.
  2. b) Breaking strength: 414 MPa for a minimum elongation of 7-9%.
This standard has resulted in a range of conductors called Tensile-Flex® or TF® and made of a Cu-Cr-Cd-Zn alloy, which has long been a reference in the field internationally. However, the recent application of the RoHS European Directive (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment) has made this family of driver obsolete in many sectors in Europe because it contains cadmium whose content exceeds the limit imposed by this directive.
Much research has been conducted in recent years to develop drivers that meet both ASTM B624 and RoHS. Examples include patents US6053994 and US6063217 in which are described a family of conductors made of a Cu-Cr-Zr type alloy. The conductor with the best electrical conductivity in this family has an 85% IACS conductivity and a RPM of 420 MPa for an elongation of 7%. One can also quote the article of XIE Haofeng et al (RARE METALS, Vol.30, No. 6, Dec. 2011, p. ) which discloses a Cu-Cr-Zr-Ag copper alloy having breaking strength characteristics of 476.09MPa.s, elongation of 15.43% and electrical conductivity of 88.68% IACs obtained by a heat treatment at a temperature of 400 ° C.

Il existe donc un besoin à l'heure actuelle de conducteurs qui présentent des performances en conductivité IACS et résistance Rr encore meilleures à l'égard de ASTM B624 et RoHS que celles de l'art antérieur.
L'inventeur a donc découvert un alliage de cuivre présentant cet avantage.
Un autre avantage des conducteurs obtenus à partir de cet alliage réside dans le fait qu'ils peuvent être miniaturisés à un faible diamètre par des opérations de transformation telles qu'étirage et tréfilage à froid, ceci grâce à un procédé de fabrication de conducteur approprié.
Ils peuvent en outre être utilisés lorsqu'ils sont revêtus d'argent ou de nickel à des températures d'utilisation pouvant aller jusqu'à 200°C, et même jusqu'à 260 °C, en particulier pendant 20000 heures d'utilisation.
There is therefore a need at present for conductors that exhibit even better IACS and Rr conductivity performance with respect to ASTM B624 and RoHS than those of the prior art.
The inventor has thus discovered a copper alloy having this advantage.
Another advantage of the conductors obtained from this alloy lies in the fact that they can be miniaturized to a small diameter by processing operations such as stretching and cold drawing, thanks to a suitable conductor manufacturing process.
They can also be used when coated with silver or nickel at operating temperatures up to 200 ° C, and even up to 260 ° C, especially during 20000 hours of use.

En effet, l'ensemble du procédé a été ajusté de sorte à exploiter au mieux le mécanisme de durcissement structural qui permet d'accroitre de manière significative les propriétés mécaniques et la conductivité électrique.Indeed, the entire process has been adjusted so as to make the best use of the structural hardening mechanism that significantly increases the mechanical properties and electrical conductivity.

La présente invention concerne donc un conducteur électrique en alliage de cuivre constitué par, en pourcentage en poids par rapport au poids total de l'alliage, :

  • Chrome : 0,15 - 1,3 %
  • Zirconium : 0,01 - 0,15 %
  • Argent : 0,01 - 0,15 %
  • Terres rares, en particulier Cérium, yttrium ou leur mélange: 0,001 - 0,1 %
  • Cuivre : solde
et les impuretés inévitables, telles que par exemple le soufre et/ou le phosphore sous forme de traces, en général à des teneurs inférieures ou égales à quelques dizaines de ppm.
et présentant une conductivité supérieure ou égale à 85% IACS, avantageusement supérieure ou égale à 89% IACS, plus avantageusement supérieure ou égale à 90% IACS.The present invention therefore relates to an electrical conductor of copper alloy consisting of, in percentage by weight relative to the total weight of the alloy:
  • Chrome: 0.15 - 1.3%
  • Zirconium: 0.01 - 0.15%
  • Money: 0.01 - 0.15%
  • Rare earth, in particular cerium, yttrium or their mixture: 0.001 - 0.1%
  • Copper: balance
and unavoidable impurities, such as, for example, sulfur and / or phosphorus in the form of traces, generally at levels of less than or equal to a few tens of ppm.
and having a conductivity greater than or equal to 85% IACS, advantageously greater than or equal to 89% IACS, more preferably greater than or equal to 90% IACS.

Le rôle de l'ensemble des éléments constituants l'alliage peut être décrit de façon suivante. La solution solide Cu-Cr, grâce à la bonne solubilité du Cr dans le Cu, crée une matrice de base pour le durcissement structural doté d'une stabilité thermique élevée. Les composés intermétalliques Cu-Zr, notamment Cu5Zr, sous forme lamelle permettent de réaliser le durcissement proprement dit. L'élément Ag, permet de renforcer davantage l'effet du durcissement par le mécanisme de solution solide, alors que l'élément terres rares, en particulier cérium, yttrium ou leur mélange permet d'apporter des effets bénéfiques à l'alliage à travers deux actions microstructurelles :

  1. a) en absorbant par sa forte activité des traces d'impuretés, notamment S souvent présent dans les minéraux de Cu, et
  2. b) en réduisant davantage la taille des grains cristallins de celui-ci.
The role of all the elements constituting the alloy can be described as follows. The Cu-Cr solid solution, thanks to the good solubility of Cr in Cu, creates a basic matrix for structural hardening with high thermal stability. The Cu-Zr intermetallic compounds, in particular Cu5Zr, in lamellar form make it possible to carry out the hardening proper. The element Ag makes it possible to further reinforce the effect of hardening by the solid solution mechanism, whereas the rare earth element, in particular cerium, yttrium or their mixture, makes it possible to bring beneficial effects to the alloy through two microstructural actions:
  1. a) by absorbing by its strong activity traces of impurities, in particular S often present in Cu minerals, and
  2. b) further reducing the size of the crystal grains thereof.

Avantageusement, la teneur en chrome de l'alliage est comprise entre 0,15 et 0,5 % en poids par rapport au poids total de l'alliage, en particulier entre 0,2 et 0,35 % en poids.Advantageously, the chromium content of the alloy is between 0.15 and 0.5% by weight relative to the total weight of the alloy, in particular between 0.2 and 0.35% by weight.

De façon avantageuse la teneur en zirconium de l'alliage est comprise entre 0,02 et 0,12 % en poids par rapport au poids total de l'alliage, en particulier entre 0,03 et 0,11 % en poids.Advantageously, the zirconium content of the alloy is between 0.02 and 0.12% by weight relative to the total weight of the alloy, in particular between 0.03 and 0.11% by weight.

En particulier, la teneur en argent de l'alliage est comprise entre 0,03 et 0,12 % en poids par rapport au poids total de l'alliage, en particulier entre 0,04 et 0,11 % en poids.In particular, the silver content of the alloy is between 0.03 and 0.12% by weight relative to the total weight of the alloy, in particular between 0.04 and 0.11% by weight.

L'alliage selon l'invention contient des terres rares (par exemple La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y et leurs mélanges), en particulier du cérium, de l'yttrium ou leur mélange, avantageusement du cérium. Sa teneur en terres rares, en particulier en cérium, yttrium ou en leur mélange est comprise entre 0,001 et 0,1 % en poids par rapport au poids total de l'alliage, avantageusement entre 0,005 et 0,05 %, en particulier entre 0,005 et 0,02 % en poids, plus particulièrement entre 0,01 et 0,02% en poids, encore plus particulièrement entre 0,01 et 0,015% en poids.The alloy according to the invention contains rare earths (for example La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and their mixtures), in particular cerium, yttrium or their mixture, advantageously cerium. Its rare earth content, in particular cerium, yttrium or their mixture is between 0.001 and 0.1% by weight relative to the total weight of the alloy, preferably between 0.005 and 0.05%, in particular between 0.005 and 0.02% by weight, more particularly between 0.01 and 0.02% by weight, still more particularly between 0.01 and 0.015% by weight.

De façon avantageuse, l'alliage selon la présente invention ne contient pas de silicium ni d'étain. De façon encore plus avantageuse, il ne contient pas de cadmium.Advantageously, the alloy according to the present invention does not contain silicon or tin. Even more advantageously, it does not contain cadmium.

Le conducteur électrique selon la présente invention peut être un conducteur monobrin ou multibrin. Le conducteur peut ainsi avoir la forme d'un simple fil ou au contraire avoir une construction se composant de plusieurs brins. En effet l'utilisation de plusieurs brins permet d'obtenir différentes constructions qui peuvent améliorer la flexibilité du câble final dans lequel pourra être utilisé le conducteur électrique selon la présente invention. Le nombre de brins a également un impact sur la conductivité électrique en général : plus un conducteur contient de brins, meilleur est son comportement mécanique (en particulier la résistance aux cycles de fatigue et la flexibilité).The electrical conductor according to the present invention may be a single-strand or multi-strand conductor. The driver can thus have the shape of a simple wire or on the contrary have a construction consisting of several strands. In fact the use of several strands makes it possible to obtain different constructions that can improve the flexibility of the final cable in which the electrical conductor according to the present invention can be used. The number of strands also has an impact on the electrical conductivity in general: the more strands a conductor contains, the better its mechanical behavior (especially resistance to fatigue cycles and flexibility).

En général si le conducteur électrique n'est pas mono brin, il peut contenir 7, 19, 27, 37, 45, et 61 brins et 7*7 brins. Avantageusement le conducteur électrique selon la présente invention contient 19 ou 37 brins, encore plus avantageusement 19 brins. Suivant le nombre de brins, les assemblages suivants peuvent être utilisés : tordons, concentriques (en particulier 19, 61 ou 37 brins), Equilay, semi-concentriques, Unilay (en particulier 19 brins) ou Ropelay (en particulier pour 7 * 7 brins). Avantageusement le conducteur électrique contient 19 brins assemblés en concentriques.In general if the electrical conductor is not mono-stranded, it can contain 7, 19, 27, 37, 45, and 61 strands and 7 * 7 strands. Advantageously, the electrical conductor according to the present invention contains 19 or 37 strands, more advantageously 19 strands. Depending on the number of strands, the following assemblies can be used: twist, concentric (in particular 19, 61 or 37 strands), Equilay, semi-concentric, Unilay (in particular 19 strands) or Ropelay (in particular for 7 * 7 strands). ). Advantageously, the electrical conductor contains 19 strands assembled concentrically.

Dans un mode de réalisation avantageux, le conducteur électrique selon la présente invention présente une résistance à la rupture supérieure ou égale à 414 MPa pour un allongement minimal de 7 à 9 %, avantageusement une résistance à la rupture supérieure à 450 MPa pour un allongement minimal de 7 à 9%.In an advantageous embodiment, the electrical conductor according to the present invention has a breaking strength greater than or equal to 414 MPa for a minimum elongation of 7 to 9%, advantageously a tensile strength greater than 450 MPa for a minimum elongation. from 7 to 9%.

Dans un mode réalisation avantageux, le conducteur électrique selon la présente invention présente un diamètre ≤ 8 mm, avantageusement ≤ 1,5 mm, en particulier ≤ 1,2 mm, de façon avantageuse compris entre 0,05 et 1,2mm. Le conducteur électrique selon la présente invention peut présenter un diamètre compris entre 0,1 et 1,2 mm, avantageusement lorsqu'il s'agit d'un conducteur multibrin. Il peut également présenter un diamètre compris entre 0,05 et 0,25 mm lorsqu'il s'agit d'un conducteur monobrin.In an advantageous embodiment, the electrical conductor according to the present invention has a diameter ≤ 8 mm, advantageously ≤ 1.5 mm, in particular ≤ 1.2 mm, advantageously between 0.05 and 1.2 mm. The electrical conductor according to the present invention may have a diameter of between 0.1 and 1.2 mm, advantageously when it is a multi-stranded conductor. It may also have a diameter of between 0.05 and 0.25 mm in the case of a single-stranded conductor.

Dans un autre mode de réalisation avantageux, le conducteur électrique (mono ou multibrin, en particulier multibrin) selon la présente invention présente une section inférieure ou égale à 0,38 mm2.In another advantageous embodiment, the electrical conductor (single or multi-strand, in particular multi-stranded) according to the present invention has a section less than or equal to 0.38 mm 2 .

La présente invention concerne en outre un conducteur électrique en alliage de cuivre tel que défini ci-dessus, caractérisé en ce que le conducteur est revêtu d'argent ou de nickel (dénommé respectivement conducteur argenté ou conducteur nickelé).
Un tel revêtement permet de renforcer la résistance du conducteur à l'oxydation et à la corrosion et de lui permettre de résister à de hautes températures (typiquement 200°C ou 260°C) tout en gardant de bonnes propriétés mécaniques. Il peut être effectué par des moyens chimiques ou électrolytiques bien connus de l'homme du métier.
Avantageusement l'épaisseur de la couche de nickel est comprise entre 1 et 2 µm, en particulier entre 1 et 1,5 µm.
Avantageusement l'épaisseur de la couche d'argent est comprise entre 9 et 11 µm, en particulier entre 10 et 11 µm, plus particulièrement entre 10 et 10,5 µm.
Dans un mode de réalisation particulier, le conducteur selon l'invention est revêtu d'argent et sa température d'utilisation est inférieure ou égale à 200°C (par exemple il s'agit d'un conducteur argenté classé à 200°C en température de service), avantageusement pendant une durée d'utilisation d'au moins 20000 heures.
Dans un autre mode de réalisation particulier le conducteur selon l'invention est revêtu de nickel et sa température d'utilisation est inférieure ou égale à 260°C (par exemple il s'agit d'un conducteur nickelé classé à 260°C en température de service), avantageusement pendant une durée d'utilisation d'au moins 20000 heures.
The present invention further relates to an electrical conductor of copper alloy as defined above, characterized in that the conductor is coated with silver or nickel (respectively referred to as silver conductor or nickel-plated conductor).
Such a coating makes it possible to reinforce the resistance of the conductor to oxidation and corrosion and to enable it to withstand high temperatures (typically 200 ° C. or 260 ° C.) while retaining good mechanical properties. It can be carried out by chemical or electrolytic means well known to those skilled in the art.
Advantageously, the thickness of the nickel layer is between 1 and 2 μm, in particular between 1 and 1.5 μm.
Advantageously, the thickness of the silver layer is between 9 and 11 μm, in particular between 10 and 11 μm, more particularly between 10 and 10.5 μm.
In a particular embodiment, the conductor according to the invention is coated with silver and its operating temperature is less than or equal to 200 ° C. (for example it is a silver conductor classified at 200 ° C. operating temperature), preferably during a period of use of at least 20000 hours.
In another particular embodiment, the conductor according to the invention is coated with nickel and its operating temperature is less than or equal to 260 ° C. (for example it is a nickel-plated conductor classified at 260 ° C. in temperature service), preferably during a period of use of at least 20000 hours.

La présente invention concerne en outre l'utilisation du conducteur électrique selon la présente invention en tant qu'âme conductrice de câbles, avantageusement de câbles miniatures, ou en tant que tresse de blindage de câbles.The present invention further relates to the use of the electrical conductor according to the present invention as a conductor core of cables, preferably miniature cables, or as a cable shielding braid.

La présente invention concerne de plus un procédé de fabrication d'un conducteur électrique selon la présente invention caractérisé en ce qu'une étape de traitement thermique de durcissement structural est mise en oeuvre sur un conducteur multibrin ou monobrin en alliage de cuivre selon la présente invention. En effet, cette étape de traitement thermique de durcissement structural permet de doter le conducteur de meilleures propriétés électriques et mécaniques.
Ce traitement thermique de durcissement structural est mis en oeuvre à une température comprise entre 450 et 540 °C.
Dans un mode de réalisation avantageux, la durée du traitement thermique de durcissement structural selon la présente invention est comprise entre 1 et 5 heures, avantageusement elle est comprise entre 3 et 4 heures.
Ainsi avantageusement l'étape de traitement thermique de durcissement structural selon la présente invention peut être mise en oeuvre à une température comprise entre 450 et 540 °C et pendant une durée comprise entre 1 et 5 heures.
Dans un mode de réalisation particulièrement avantageux ce traitement thermique de durcissement structural est mis en oeuvre sur la construction finale du conducteur électrique, en particulier sur un conducteur multibrin. Dans un mode de réalisation particulier, deux traitements thermiques de durcissement structural successifs, en particulier ayant les caractéristiques indiquées ci-dessus, sont mis en oeuvre sur un conducteur multibrin ou monobrin en alliage de cuivre selon la présente invention.
The present invention further relates to a method of manufacturing an electrical conductor according to the present invention characterized in that a structural hardening heat treatment step is carried out on a copper-wire stranded conductor or single-stranded conductor according to the present invention. . Indeed, this step of structural hardening heat treatment provides the driver with better electrical and mechanical properties.
This heat treatment of structural hardening is carried out at a temperature of between 450 and 540 ° C.
In an advantageous embodiment, the duration of the structural hardening heat treatment according to the present invention is between 1 and 5 hours, advantageously it is between 3 and 4 hours.
Thus, advantageously, the structural heat treatment heat treatment step according to the present invention can be carried out at a temperature of between 450 and 540 ° C. and for a period of between 1 and 5 hours.
In a particularly advantageous embodiment, this structural hardening heat treatment is implemented on the final construction of the electrical conductor, in particular on a multi-stranded conductor. In a particular embodiment, two successive structural heat-treatment treatments, in particular having the characteristics indicated above, are implemented on a stranded conductor or single-strand copper alloy according to the present invention.

La présente invention concerne en outre un procédé de fabrication discontinu d'un conducteur électrique selon la présente invention caractérisé en ce qu'il comprend les étapes successives suivantes :

  • a) élaboration des alliages mères Cu-Cr et Cu-Zr par fusion et coulée ;
  • b) élaboration des alliages de cuivre selon la présente invention sous forme de lingots, en particulier de lingots cylindriques, par fusion et coulée à partir des alliages mères obtenus à l'étape a);
  • c) enlèvement des surfaces du lingot obtenu à l'étape b) et homogénéisation par traitement thermique, avantageusement à 850°C pendant 4 heures, de façon avantageuse de façon à obtenir un alliage type solution solide homogène;
  • d) transformation à froid, en particulier à température ambiante, du lingot obtenu à l'étape c) en barre puis en fil, avantageusement ayant un diamètre de 8mm ;
  • e) traitement thermique de trempe de l'alliage du fil obtenu à l'étape d), avantageusement à 920°C pendant 30 minutes ;
  • f) tréfilage à froid, avantageusement à température ambiante, de façon à réduire la section du fil obtenu à l'étape e), avantageusement en diminuant son diamètre d'environ 85 %, de façon avantageuse de façon à obtenir un fil de diamètre 1,2 mm ;
  • g) éventuel traitement thermique de l'alliage du fil obtenu à l'étape f), avantageusement à 550°C avec une vitesse de défilement de 3m/min ;
  • h) éventuel traitement de la surface du fil obtenu à l'éventuelle étape g) ou à l'étape f) par revêtement métallique, avantageusement par un métal choisi parmi Ni, Ag et Sn, plus particulièrement Ni ou Ag, en particulier pour améliorer les propriétés fonctionnelles du fil telles que la tenue à l'oxydation et à la corrosion, la soudabilité, et la conductivité à haute fréquence ;
  • i) tréfilage à froid, avantageusement à température ambiante, de façon à réduire la section du fil obtenu à l'éventuelle étape h), à l'éventuelle étape g) ou à l'étape f) de façon avantageuse en diminuant son diamètre de 83 à 96 %, et à obtenir un conducteur monobrin, avantageusement ayant un diamètre compris entre 0,05 et 0,25 mm ;
  • j) éventuel traitement de la surface du fil obtenu à l'étape i) par revêtement métallique, avantageusement par un métal choisi parmi Ni, Ag et Sn, plus particulièrement Ni ou Ag, en particulier pour améliorer les propriétés fonctionnelles du fil telles que la tenue à l'oxydation et à la corrosion, la soudabilité, et la conductivité à haute fréquence, si ce traitement n'a pas déjà été effectué à l'étape h) ;
  • k) assemblage de plusieurs brins obtenus à l'étape i) ou à l'éventuelle étape j) de façon à obtenir un conducteur multibrin ;
  • l) durcissement structural du conducteur obtenu l'étape k) par traitement thermique à une température comprise entre 450 et 540 °C de façon à obtenir un conducteur électrique selon la présente invention.
The present invention furthermore relates to a discontinuous manufacturing method of an electrical conductor according to the present invention characterized in that it comprises the following successive steps:
  • a) elaboration of the Cu-Cr and Cu-Zr parent alloys by melting and casting;
  • b) elaboration of the copper alloys according to the present invention in the form of ingots, in particular of cylindrical ingots, by melting and casting from the parent alloys obtained in step a);
  • c) removing the surfaces of the ingot obtained in step b) and homogenizing by heat treatment, advantageously at 850 ° C for 4 hours, advantageously so as to obtain a homogeneous solid solution type alloy;
  • d) cold processing, in particular at ambient temperature, of the ingot obtained in step c) in bar and then in wire, advantageously having a diameter of 8 mm;
  • e) quenching heat treatment of the yarn alloy obtained in step d), preferably at 920 ° C for 30 minutes;
  • f) cold drawing, advantageously at room temperature, so as to reduce the section of the wire obtained in step e), advantageously by reducing its diameter by about 85%, advantageously so as to obtain a wire of diameter 1 , 2 mm;
  • g) optional heat treatment of the wire alloy obtained in step f), advantageously at 550 ° C with a running speed of 3m / min;
  • h) possible treatment of the surface of the wire obtained in the optional step g) or in step f) by metal coating, advantageously with a metal chosen from Ni, Ag and Sn, more particularly Ni or Ag, in particular to improve the functional properties of the wire such as resistance to oxidation and corrosion, weldability, and high frequency conductivity;
  • i) cold drawing, advantageously at room temperature, so as to reduce the section of the wire obtained in the possible step h), in the possible step g) or in step f) advantageously by decreasing its diameter from 83 to 96%, and obtaining a single-stranded conductor, advantageously having a diameter of between 0.05 and 0.25 mm;
  • j) optional treatment of the surface of the wire obtained in step i) by metal coating, advantageously with a metal chosen from Ni, Ag and Sn, more particularly Ni or Ag, in particular to improve the functional properties of the wire such as resistance to oxidation and corrosion, weldability, and high frequency conductivity, if this treatment has not already been performed in step h);
  • k) assembling several strands obtained in step i) or in the optional step j) so as to obtain a multi-stranded conductor;
  • l) structural hardening of the conductor obtained step k) by heat treatment at a temperature between 450 and 540 ° C so as to obtain an electrical conductor according to the present invention.

La présente invention concerne enfin un procédé de fabrication continu d'un conducteur électrique selon la présente invention, caractérisé en ce qu'il comprend les étapes successives suivantes :

  • A) élaboration des alliages mères Cu-Cr et Cu-Zr par fusion et coulée ;
  • B) élaboration des alliages de cuivre selon la présente invention sous forme de fils, en particulier de diamètre 8 mm, par une opération de fusion- coulée continue à partir des alliages mères obtenus à l'étape a);
  • C) traitement thermique de trempe de l'alliage du fil obtenu à l'étape B) avantageusement à 920°C pendant 30 minutes ;
  • D) tréfilage à froid, de façon avantageuse à température ambiante, de façon à réduire la section du fil obtenu à l'étape C), avantageusement en diminuant son diamètre d'environ 85 %, en particulier de façon à obtenir un fil de diamètre 1,2 mm ;
  • E) éventuel traitement thermique de l'alliage du fil obtenu à l'étape D), avantageusement à 550°C avec une vitesse de défilement de 3m/min;
  • F) éventuel traitement de surface du fil obtenu à l'éventuelle étape E) ou à l'étape D) par revêtement métallique, avantageusement par un métal choisi parmi Ni, Ag et Sn, plus particulièrement Ni ou Ag, en particulier pour améliorer les propriétés fonctionnelles du fil telles que la tenue à l'oxydation et à la corrosion, la soudabilité, et la conductivité à haute fréquence ;
  • G) tréfilage à froid, avantageusement à température ambiante, de façon à réduire la section du fil obtenu à l'éventuelle étape F), à l'éventuelle étape E) ou à l'étape D) de façon avantageuse en diminuant son diamètre de 83 à 96 %, et à obtenir un conducteur monobrin, avantageusement ayant un diamètre compris entre 0,05 et 0,25 mm ;
  • H) éventuel traitement de la surface du fil obtenu à l'étape G) par revêtement métallique, avantageusement par un métal choisi parmi Ni, Ag et Sn, plus particulièrement Ni ou Ag, en particulier pour améliorer les propriétés fonctionnelles du fil telles que la tenue à l'oxydation et à la corrosion, la soudabilité, et la conductivité à haute fréquence, si ce traitement n'a pas déjà été effectué à l'étape E) ;
  • I) assemblage de plusieurs brins obtenus à l'étape G) ou à l'éventuelle étape H) de façon à obtenir un conducteur multibrin ;
  • J) durcissement structural du conducteur obtenu à l'étape I) par traitement thermique à une température comprise entre 450 et 540 °C de façon à obtenir un conducteur électrique selon la présente invention.
The present invention finally relates to a method of continuous manufacture of an electrical conductor according to the present invention, characterized in that it comprises the following successive steps:
  • A) elaboration of Cu-Cr and Cu-Zr parent alloys by melting and casting;
  • B) elaboration of the copper alloys according to the present invention in the form of son, in particular of diameter 8 mm, by a continuous melting-casting operation from the parent alloys obtained in step a);
  • C) quenching heat treatment of the yarn alloy obtained in step B) advantageously at 920 ° C for 30 minutes;
  • D) cold drawing, advantageously at room temperature, so as to reduce the section of the wire obtained in step C), advantageously by decreasing its diameter by about 85%, in particular so as to obtain a wire of diameter 1.2 mm;
  • E) optional heat treatment of the wire alloy obtained in step D), advantageously at 550 ° C with a running speed of 3m / min;
  • F) possible surface treatment of the wire obtained in the optional step E) or in step D) by metal coating, advantageously with a metal chosen from Ni, Ag and Sn, more particularly Ni or Ag, in particular to improve the functional properties of the wire such as resistance to oxidation and corrosion, weldability, and high frequency conductivity;
  • G) cold drawing, advantageously at room temperature, so as to reduce the section of the wire obtained in the optional step F), optionally in step E) or in step D) advantageously by decreasing its diameter. 83 to 96%, and to obtain a single-stranded conductor, advantageously having a diameter of between 0.05 and 0.25 mm;
  • H) possible treatment of the surface of the wire obtained in step G) by metal coating, advantageously with a metal chosen from Ni, Ag and Sn, more particularly Ni or Ag, in particular to improve the functional properties of the wire such as resistance to oxidation and corrosion, weldability, and high frequency conductivity, if this treatment has not already been performed in step E);
  • I) assembly of several strands obtained in step G) or in the optional step H) so as to obtain a multi-stranded conductor;
  • J) structural hardening of the conductor obtained in step I) by heat treatment at a temperature between 450 and 540 ° C so as to obtain an electrical conductor according to the present invention.

Dans un mode de réalisation particulier des procédés selon la présente invention, les étapes k) et I) sont mises en oeuvre par la technique strandeur ou la technique bunch.In a particular embodiment of the methods according to the present invention, steps k) and I) are implemented by the strander technique or the bunch technique.

Les étapes I) et J) sont mises en oeuvre à une température comprise entre 450 et 540 °C.Steps I) and J) are carried out at a temperature between 450 and 540 ° C.

De façon particulière, la durée du traitement thermique des étapes I) et J) est comprise entre 1 et 5 heures, avantageusement elle est comprise entre 3 et 4 heures.In particular, the duration of the heat treatment of steps I) and J) is between 1 and 5 hours, advantageously it is between 3 and 4 hours.

Les procédés selon la présente invention peuvent comporter deux étapes successives de traitement thermique de durcissement structural.The processes according to the present invention may comprise two successive stages of structural hardening heat treatment.

Ainsi donc, deux types de procédés peuvent être utilisés dans le cadre de l'invention : un procédé de type discontinu et un procédé de type continu.Thus, two types of processes can be used in the context of the invention: a batch type process and a continuous type process.

L'invention sera mieux comprise à la lumière des exemples qui suivent.The invention will be better understood in the light of the examples which follow.

Exemple 1Example 1

Une étude comparative a été menée entre Cu-Cr-Zr, Cu-Cr-Zr-Ag et Cu-Cr-Zr-Ag-Ce en vue de vérifier l'hypothèse du durcissement structural renforcé et l'impact de la présence de cérium dans les alliages selon la présente invention. Les compositions des alliages sont les suivantes :

  • Alliage Cu-Cr-Zr de l'art antérieur : Cu-0,3%Cr-0,1%Zr.
  • Alliage Cu-Cr-Zr-Ag : Cu-0,3%Cr-0,1%Zr-0,1%Ag ;
  • Alliage selon la présente invention :
    • Cu-Cr-Zr-Ag-Ce : Cu-0,3%Cr-0,1%Zr-0,1%Ag-0,015%Ce.
Des fils de diamètre de 8 mm en alliages indiqués ci-dessus ont subi un traitement thermique de durcissement structural d'une durée de 3h à différentes températures (entre 300 et 500 °C). On mesure ensuite le RΩ et Rr selon les normes ASTM B298 et ASTM B193 de ces fils.
Le tableau 1 ci-dessous donne les valeurs de la résistance électrique et de la résistance à la rupture de ces fils. Tableau 1 Température (°C) Résistance à la rupture (MPa) Conductivité électrique (%IACS) CuCrZr CuCrZrAg CuCrZrAgCe CuCrZr CuCrZrAg CuCrZrAgCe 300 412 457 472 61,16 57,29 59,30 350 423 465 500 64,89 60,10 60,60 400 454 496 520 83,54 80,13 82,55 450 455 481 495 87,56 82,37 86,38 500 414 450 440 88,35 84,05 88,01 A comparative study was conducted between Cu-Cr-Zr, Cu-Cr-Zr-Ag and Cu-Cr-Zr-Ag-Ce to test the hypothesis of reinforced structural hardening and the impact of the presence of cerium in the alloys according to the present invention. The compositions of the alloys are as follows:
  • Cu-Cr-Zr alloy of the prior art: Cu-0.3% Cr-0.1% Zr.
  • Cu-Cr-Zr-Ag alloy: Cu-0.3% Cr-0.1% Zr-0.1% Ag;
  • Alloy according to the present invention:
    • Cu-Cr-Zr-Ag-Ce: Cu-0.3% Cr-0.1% Zr-0.1% Ag-0.015% Ce.
8 mm diameter wires of the alloys indicated above have undergone a structural hardening heat treatment with a duration of 3 hours at different temperatures (between 300 and 500 ° C.). The RΩ and Rr are then measured according to the ASTM B298 and ASTM B193 standards of these wires.
Table 1 below gives the values of the electrical resistance and the resistance to breakage of these wires. <b> Table 1 </ b> Temperature (° C) Resistance to fracture (MPa) Electrical conductivity (% IACS) CuCrZr CuCrZrAg CuCrZrAgCe CuCrZr CuCrZrAg CuCrZrAgCe 300 412 457 472 61.16 57.29 59.30 350 423 465 500 64.89 60,10 60.60 400 454 496 520 83.54 80.13 82.55 450 455 481 495 87.56 82.37 86.38 500 414 450 440 88.35 84.05 88,01

Au vu de ces résultats, on peut en déduire que les propriétés électrique et mécanique sont nettement améliorées après un traitement thermique de durcissement structural à une température de 450°C.In view of these results, it can be deduced that the electrical and mechanical properties are significantly improved after a structural hardening heat treatment at a temperature of 450 ° C.

Au niveau de la composition, ces résultats ont aussi mis en évidence un renforcement du durcissement structural attendu dans le système Cu-0,3%Cr-0,1%Zr-0,1%Ag-0,015%Ce par rapport aux systèmes Cu-0,3%Cr-0,1%Zr-0,1%Ag et Cu-0,3%Cr-0,1%Zr.In terms of composition, these results have also demonstrated a strengthening of the expected structural hardening in the Cu-0.3% Cr-0.1% Zr-0.1% Ag-0.015% Ce system compared to Cu systems. -0.3% Cr-0.1% Zr-0.1% Ag and Cu-0.3% Cr-0.1% Zr.

Exemple 2Example 2

Un fil conducteur électrique de diamètre de 1,55 mm a été obtenu par étirage à froid à partir d'un fil de 8,0 mm fait en alliage Cu-0,22Cr-0,04Zr-0,05Ag-0,01Ce. Un traitement thermique en continu (dit reel to reel) a été mis en oeuvre sur ce fil dans un équipement tubulaire échauffé à 550°C, la vitesse de défilement étant 3 m/min.An electrical conductor wire of 1.55 mm diameter was obtained by cold drawing from an 8.0 mm wire made of Cu-0.22Cr-0.04Zr-0.05Ag-0.01Ce alloy. A continuous heat treatment (called reel to reel) was carried out on this wire in tubular equipment heated to 550 ° C, the speed of travel being 3 m / min.

Puis un premier tréfilage à froid a été mis en oeuvre et il a été obtenu un fil conducteur de 1,20 mm de diamètre, dénommé ci-après le conducteur ébauche.A first cold drawing was then carried out and a 1.20 mm diameter conductor wire, hereinafter referred to as the rough conductor, was obtained.

Un dépôt d'argent électrolytique en continu a ensuite été réalisé, la vitesse de l'argentage étant de 6 m/min et l'épaisseur d'argent déposé 10,2 µm.A continuous electrolytic silver deposit was then made, the silvering speed being 6 m / min and the deposited silver thickness 10.2 μm.

Puis un deuxième tréfilage a été mis en oeuvre afin de réduire le diamètre de 1,212 mm à 0,16 mm.Then a second drawing was carried out in order to reduce the diameter from 1.212 mm to 0.16 mm.

Puis il a été procédé à un assemblage de 19 fils de diamètre de 0,16 mm afin d'obtenir un conducteur du type AWG22x19 de diamètre de 0,8 mm.Then an assembly of 19 wires of diameter of 0.16 mm was carried out in order to obtain a conductor of the AWG22x19 type with a diameter of 0.8 mm.

Enfin, il a été procédé à un traitement thermique dit de durcissement structural en statique sous l'azote à 455°C pendant 3 heures.Finally, a so-called static hardening thermal treatment was carried out under nitrogen at 455 ° C. for 3 hours.

Le conducteur AWG22x19 obtenu a été caractérisé en mesurant ses propriétés mécaniques et électriques selon les normes ASTM B298 et ASTM B193. Les résultats obtenus sont rassemblés dans le tableau 2 suivant. Tableau 2 Allongement % Résistance à la rupture MPa Conductivité électrique %IACS 9,8 456 91,5 The resulting AWG22x19 conductor was characterized by measuring its mechanical and electrical properties according to ASTM B298 and ASTM B193. The results obtained are collated in the following Table 2. <b> Table 2 </ b> Lengthening% MPa breaking strength Electrical conductivity% IACS 9.8 456 91.5

Les résultats obtenus sont conformes à ceux stipulées dans la norme ASTM B624.The results obtained are in accordance with those stipulated in ASTM B624.

Compte tenu de la stabilité thermique de l'alliage et du revêtement, ce conducteur peut être classé en 200°C en température de service, autrement dit, il peut être utilisé dans les applications où la température d'utilisation (tenue en 20000 heures) peut être jusqu'à 200°C.Considering the thermal stability of the alloy and the coating, this conductor can be classified in 200 ° C at operating temperature, that is, it can be used in applications where the temperature of use (held in 20000 hours) can be up to 200 ° C.

Exemple 3Example 3

Un fil conducteur ébauche de 1,20 mm fabriqué conformément à l'exemple 1 a été utilisé.A 1.20 mm blank conductive yarn made according to Example 1 was used.

Un tréfilage du conducteur ébauche a été mis en oeuvre en réduisant son diamètre de 1,20 mm à 0,203 mm.Wire drawing of the blank conductor was implemented by reducing its diameter from 1.20 mm to 0.203 mm.

Puis il a été procédé sur ce fil conducteur de diamètre de 0,203 mm à un dépôt électrolytique de nickel en continu et en 5 voies parallèles, l'épaisseur de nickel sur ces 5 fils étant au minimum 1,27 µm.Then this conductor wire with a diameter of 0.203 mm was electrolessly deposition of nickel continuously and in parallel paths, the thickness of nickel on these wires being at least 1.27 μm.

Un assemblage de 19 fils nickelés de diamètre de 0,203 mm a été mis en oeuvre afin d'obtenir un conducteur du type AWG20x19.An assembly of 19 nickel-plated wires with a diameter of 0.203 mm was used to obtain a conductor of the AWG20x19 type.

Enfin, il a été procédé à un traitement thermique dit de durcissement structural en statique sous l'azote à 460°C pendant 3 heures.Finally, a so-called static hardening thermal treatment was carried out under nitrogen at 460 ° C. for 3 hours.

Le conducteur AWG20x19 obtenu a été caractérisé en mesurant ses propriétés mécaniques et électriques selon les normes ASTM B298 et ASTM B193. Les résultats obtenus sont rassemblés dans le tableau 3 suivant. Tableau 3 Allongement % Résistance à la rupture MPa Conductivité électrique %IACS 9,5 464 91,0 The resulting AWG20x19 conductor was characterized by measuring its mechanical and electrical properties according to ASTM B298 and ASTM B193. The results obtained are collated in the following Table 3. <b> Table 3 </ b> Lengthening% MPa breaking strength Electrical conductivity% IACS 9.5 464 91.0

Les résultats obtenus sont conformes à ceux stipulées dans la norme ASTM B624.The results obtained are in accordance with those stipulated in ASTM B624.

Compte tenu de la stabilité thermique de l'alliage et du revêtement, ce conducteur peut être classé en 260°C en température de serviceDue to the thermal stability of the alloy and the coating, this conductor can be classified into 260 ° C service temperature

Exemple 4Example 4

Un fil conducteur ébauche de 1,20 mm fabriqué conformément à l'exemple 1 a été utilisé.A 1.20 mm blank conductive yarn made according to Example 1 was used.

Un tréfilage du conducteur ébauche a été mis en oeuvre en réduisant son diamètre de 1,20 mm à 0, 127 mm.Drawing of the rough conductor was carried out by reducing its diameter from 1.20 mm to 0.012 mm.

Puis il a été procédé sur ce fil conducteur de 0,127 mm en diamètre à un dépôt de nickel en continu et en 5 voies parallèles, l'épaisseur de nickel sur ces 5 fils étant au minimum 1,27 µm.Then it was proceeded on this conductor wire 0,127 mm in diameter to a deposit of nickel continuously and in parallel 5 ways, the thickness of nickel on these 5 son being at least 1.27 microns.

Puis un assemblage de 19 fils de diamètre de 0,127 mm a été mis en oeuvre afin d'obtenir un conducteur du type AWG24x19.Then an assembly of 19 son diameter of 0.127 mm was implemented to obtain a conductor AWG24x19 type.

Enfin, il a été procédé à un traitement thermique dit de durcissement structural en statique sous l'azote à 455°C pendant 3 heures.Finally, a so-called static hardening thermal treatment was carried out under nitrogen at 455 ° C. for 3 hours.

Le conducteur AWG24x19 obtenu a été caractérisé en mesurant ses propriétés mécaniques et électriques selon les normes ASTM B298 et ASTM B193. Les résultats obtenus sont rassemblés dans le tableau 4 suivant. Tableau 4 Allongement % Résistance à la rupture MPa Conductivité électrique %IACS 9,6 454 91,8 The resulting AWG24x19 conductor was characterized by measuring its mechanical and electrical properties according to ASTM B298 and ASTM B193. The results obtained are collated in the following Table 4. <b> Table 4 </ b> Lengthening% MPa breaking strength Electrical conductivity% IACS 9.6 454 91.8

Les résultats obtenus sont conformes à ceux stipulées dans la norme ASTM B624.The results obtained are in accordance with those stipulated in ASTM B624.

Ce conducteur peut être classé en 260°C en température de service.This conductor can be classified at 260 ° C at operating temperature.

Claims (16)

  1. An electric conductor in copper alloy constituted by, in percentage by weight based on the total weight of the alloy:
    chromium: 0.15 - 1.3%
    zirconium: 0.01 - 0.15%
    silver: 0.01 - 0.15%
    rare earths, in particular cerium, yttrium and mixtures thereof: 0.001 - 0.1%
    copper: the balance
    and inevitable impurities
    and having a conductivity greater than or equal to 85% IACS, advantageously greater than 89% IACS.
  2. The electric conductor according to claim 1, characterized in that its alloy has a chromium content which is comprised between 0.15 and 0.5% by weight based on the total weight of the alloy, in particular between 0.2 and 0.35% by weight.
  3. The electric conductor according to any of claims 1 or 2, characterized in that its alloy has a zirconium content which is comprised between 0.02 and 0.12% by weight based on the total weight of the alloy, in particular between 0.03 and 0.11% by weight.
  4. The electric conductor according to any of claims 1 to 3, characterized in that its alloy has a silver content which is comprised between 0.03 and 0.12% by weight based on the total weight of the alloy, in particular between 0.04 and 0.11% by weight.
  5. The electric conductor according to any of claims 1 to 4, characterized in that its alloy has a rare earth content, in particular of cerium, yttrium or a mixture thereof, comprised between 0.005 and 0.05%, in particular comprised between 0.01 and 0.02% by weight.
  6. The electric conductor according to any of claims 1 to 5, characterized in that it has a breaking strength greater than or equal to 414 MPa for a minimum elongation from 7 to 9%, advantageously a breaking strength greater than 450 MPa for a minimum elongation from 7 to 9%.
  7. The electric conductor according to any of claims 1 to 6, characterized in that it has a diameter ≤ 8 mm, advantageously ≤ 1.5 mm, in particular comprised between 0.1 and 1.2 mm.
  8. The electric conductor according to any of claims 1 to 7, characterized in that it is coated with silver or nickel.
  9. The electric conductor according to claim 8, characterized in that it is coated with silver, and in that its temperature of use is less than or equal to 200°C, advantageously for a period of use of at least 20,000 hours.
  10. The electric conductor according to claim 8, characterized in that it is coated with nickel, and in that its temperature of use is less than or equal to 260°C, advantageously for a period of use of at least 20,000 hours.
  11. A discontinuous method for manufacturing an electric conductor according to any of claims 1 to 10, characterized in that it comprises the following successive steps:
    - a) elaborating mother Cu-Cr and Cu-Zr alloys by melting and casting;
    - b) elaborating copper alloys as defined in any of claims 1 to 5 as ingots by melting and casting from the mother alloys obtained in step a);
    - c) removing the surfaces from the ingot obtained in step b) and homogenization by heat treatment, advantageously at 850°C for 4 hours;
    - d) cold transformation of the ingot obtained in step c) into a bar and then into a wire advantageously having a diameter of 8 mm;
    - e) quenching heat treatment of the alloy of the wire obtained in step d), advantageously at 920°C for 30 minutes;
    - f) cold wire-drawing so as to reduce the section of the wire obtained in step e), advantageously by reducing its diameter by about 85%;
    - g) optional heat treatment of the alloy of the wire obtained in step f), advantageously at 550°C, with a running speed of 3m/min;
    - h) optional treatment of the surface of the wire obtained in step g) with a metal coating, advantageously with a metal selected from among Ni, Ag, and Sn;
    - i) cold wire-drawing so as to reduce the section of the wire obtained in the optional step h), in the optional step g) or in step f) and to obtain a single-strand conductor, advantageously having a diameter comprised between 0.05 and 0.25 mm;
    - j) optional treatment of the surface of the wire obtained in step i) with a metal coating, advantageously with a metal selected from among Ni, Ag and Sn, if this treatment has not already been carried out in step h);
    - k) assembling several strands obtained in step i) or in the optional step j) so as to obtain a multistrand conductor;
    - l) structural hardening of the conductor obtained in step k) by heat treatment at a temperature comprised between 450°C and 540°C so as to obtain an electric conductor according to any of claims 1 to 10.
  12. A continuous method for manufacturing an electric conductor according to any of claims 1 to 10, characterized in that it comprises the following successive steps:
    - A) elaborating mother Cu-Cr and Cu-Zr alloys by melting and casting;
    - B) elaborating copper alloys as defined in any of claims 1 to 5 as wires by a continuous melting-casting operation from the mother alloys obtained in step a);
    - C) quenching heat treatment of the alloy of the wire obtained in step B), advantageously at 920°C for 30 minutes;
    - D) cold wire-drawing so as to reduce the section of the wire obtained in step C), advantageously by reducing its diameter by about 85%;
    - E) optional heat treatment of the alloy of the wire obtained in step D), advantageously at 550°C, with a running speed of 3m/min;
    - F) optional treatment of the surface of the wire obtained in the optional step E) or in step D) with a metal coating, advantageously with a metal selected from among Ni, Ag and Sn,
    - G) cold wire-drawing so as to reduce the section of the wire obtained in the optional step F), in the optional step E) or in step D) and to obtain a single-strand conductor, advantageously having a diameter comprised between 0.05 and 0.25 mm;
    - H) optional treatment of the surface of the wire obtained in step G) with a metal coating, advantageously with a metal selected from among Ni, Ag and Sn, if this treatment has not already been carried out in step E);
    - I) assembling several strands obtained in step G) or in the optional step H) so as to obtain a multistrand conductor;
    - J) structural hardening of the conductor obtained in step I) by heat treatment at a temperature comprised between 450°C and 540°C so as to obtain an electric conductor according to any of claims 1 to 10.
  13. The method according to any of claims 11 or 12, characterized in that the steps K) and I) are applied with the strander technique or the bunch technique.
  14. The method according to any of claims 11 to 13, characterized in that the duration of the heat treatment of steps I) and J) is comprised between 1 and 5 hours, advantageously it is comprised between 3 and 4 hours.
  15. The use of the electric conductor according to any of claims 1 to 10 as a conductive core of cables, advantageously miniature cables, or as a shielding braid of cables.
  16. A method for manufacturing an electric conductor according to any of claims 1 to 10, characterized in that a heat treatment step for structural hardening, advantageously at a temperature comprised between 300 and 600°C, and for a period comprised between 1 and 5 hours, is applied on a multistrand or single-strand conductor in copper alloy as defined according to any of claims 1 to 10.
EP13818291.0A 2012-12-12 2013-12-11 An electrical conductor made from a copper alloy Active EP2931928B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1261928A FR2999192B1 (en) 2012-12-12 2012-12-12 COPPER ALLOY AND USE AS ELECTRICAL CONDUCTOR
PCT/FR2013/053026 WO2014091151A1 (en) 2012-12-12 2013-12-11 Electrical conductor made of copper alloy

Publications (2)

Publication Number Publication Date
EP2931928A1 EP2931928A1 (en) 2015-10-21
EP2931928B1 true EP2931928B1 (en) 2017-10-11

Family

ID=47833250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13818291.0A Active EP2931928B1 (en) 2012-12-12 2013-12-11 An electrical conductor made from a copper alloy

Country Status (3)

Country Link
EP (1) EP2931928B1 (en)
FR (1) FR2999192B1 (en)
WO (1) WO2014091151A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640640B (en) * 2017-09-22 2018-11-11 香港商駿碼科技(香港)有限公司 Dual-phase copper alloy wire resistant to repeated cold and heat shocks and manufacturing method thereof
CN114032414B (en) * 2021-11-17 2023-03-24 湖南稀土金属材料研究院有限责任公司 Modified copper-chromium alloy and preparation method and application thereof
CN116024453A (en) * 2022-12-30 2023-04-28 酒泉职业技术学院(甘肃广播电视大学酒泉市分校) Rare earth microalloyed CuFe in-situ composite material formula and preparation process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053994A (en) 1997-09-12 2000-04-25 Fisk Alloy Wire, Inc. Copper alloy wire and cable and method for preparing same
CN101717876A (en) * 2009-12-16 2010-06-02 北京有色金属研究总院 Chrome zirconium copper alloy and preparing and processing method thereof
CN102534291A (en) * 2010-12-09 2012-07-04 北京有色金属研究总院 CuCrZr alloy with high strength and high conductivity, and preparation and processing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014091151A1 (en) 2014-06-19
FR2999192B1 (en) 2015-05-01
EP2931928A1 (en) 2015-10-21
FR2999192A1 (en) 2014-06-13

Similar Documents

Publication Publication Date Title
EP2896708B1 (en) Aluminum alloy wire rod, alum1inum alloy stranded wire, sheathed wire, wire harness, and method for manufacturing aluminum alloy conductor
EP3115473B1 (en) Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
EP3199654B1 (en) Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
EP3228720B1 (en) Aluminum alloy wire rod, aluminum alloy stranded wire, covered wire and wire harness, and method of manufacturing aluminum alloy wire rod
EP2896707B1 (en) Aluminum alloy conductor, aluminum alloy twisted wire, coated electric wire, wire harness, and production method for aluminum alloy conductor
EP3266891B1 (en) Aluminum alloy conductor, aluminum alloy stranded wire, coated wire, wire harness and manufacturing method of aluminum alloy conductor
WO2015064357A1 (en) Copper alloy wire, copper alloy stranded wire, coated electric wire, wire harness and manufacturing method of copper alloy wire
KR102474538B1 (en) Aluminum alloy wire material, aluminum alloy stranded wire, covered electrical wire, wire harness, and method for producing aluminum alloy wire material
EP1973120B1 (en) Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
JP5193375B2 (en) Method for producing aluminum alloy conductor
EP3150732B1 (en) Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
JP6147167B2 (en) Aluminum alloy conductor, aluminum alloy stranded wire, covered electric wire and wire harness
EP3363025B1 (en) Cables and wires having conductive elements formed from improved aluminum-zirconium alloys
CN103996427A (en) Non-heat-treated intermediate-strength aluminum alloy wire and production technology thereof
EP2931928B1 (en) An electrical conductor made from a copper alloy
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP5228118B2 (en) Method for producing aluminum alloy conductor
CA2865151A1 (en) Aluminium alloy with high electrical conductivity
JP5468872B2 (en) Metal-metal glass composite material, electrical contact member, and method for producing metal-metal glass composite material
FR3078078A1 (en) METHOD FOR MANUFACTURING A CONDUCTIVE END WIRE OR CATENARY CONTACT WIRE
JP6009145B2 (en) Aluminum electric wire and method for manufacturing the same
EP1252662A1 (en) Supraconductive conductor comprising an aluminium-based cryogenic stabiliser
WO2013057415A1 (en) Aluminum alloy resistant to high temperatures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 936076

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013027900

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171011

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 936076

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180111

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013027900

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

26N No opposition filed

Effective date: 20180712

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131211

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602013027900

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 11

Ref country code: DE

Payment date: 20231208

Year of fee payment: 11