EP1117930B1 - Verfahren zum elektronischen trimmen einer einspritzvorrichtung - Google Patents
Verfahren zum elektronischen trimmen einer einspritzvorrichtung Download PDFInfo
- Publication number
- EP1117930B1 EP1117930B1 EP98955495A EP98955495A EP1117930B1 EP 1117930 B1 EP1117930 B1 EP 1117930B1 EP 98955495 A EP98955495 A EP 98955495A EP 98955495 A EP98955495 A EP 98955495A EP 1117930 B1 EP1117930 B1 EP 1117930B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- influence
- polynomial
- control signal
- injection pump
- values
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000009966 trimming Methods 0.000 title claims abstract description 10
- 238000002347 injection Methods 0.000 claims abstract description 96
- 239000007924 injection Substances 0.000 claims abstract description 96
- 239000012530 fluid Substances 0.000 claims abstract description 13
- 238000012937 correction Methods 0.000 claims description 30
- 239000000446 fuel Substances 0.000 claims description 25
- 238000004146 energy storage Methods 0.000 claims description 5
- 238000009825 accumulation Methods 0.000 abstract 1
- 239000007921 spray Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000011217 control strategy Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001595 flow curve Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
- F02D41/2467—Characteristics of actuators for injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2409—Addressing techniques specially adapted therefor
- F02D41/2412—One-parameter addressing technique
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2432—Methods of calibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M65/00—Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M65/00—Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
- F02M65/002—Measuring fuel delivery of multi-cylinder injection pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2477—Methods of calibrating or learning characterised by the method used for learning
Definitions
- the invention relates to a method for electronic minimization until eliminating nominal power deviations (trimming) a fluid injection device, in particular a fuel injection device, primarily a fuel injector with several injection pumps of an internal combustion engine.
- the control signal is calculated in an electronic control module and generated and sent to the electronic and / or electrical Devices of the injection device or the injection pump forwarded where it corresponds to the control signal Ejection of e.g. Fuel initiated and can run.
- the generation of the control signal is complex and includes in usually a special tax strategy. Be taken into account a variety of influencing factors, e.g. engine operation based, related to the engine environment, fuel type and / or fuel condition are. Data are usually used for these influencing factors determined by sensors and delivered to the control module. For example, the engine speed, the crankshaft position, the engine coolant temperature, the engine exhaust pressure, the throttle position, the outside temperature, air pressure, or the like detected at a certain point in time, fed to the control module and processed or offset in the form of data in the control module, The calculation results in a factor with which a in the control module for the engine, the nominal power of the engine corresponding control signal proportional to the quantity multiplied becomes.
- influencing factors e.g. engine operation based, related to the engine environment, fuel type and / or fuel condition are.
- Data are usually used for these influencing factors determined by sensors and delivered to the control module. For example, the engine speed, the crankshaft position, the engine coolant temperature, the engine exhaust
- the individual injection pumps are used to substantiate this idea into certain trim categories of similar deviations divided and a matching factor for each category Control signal set.
- EP 391 573 A2 becomes a method and a device for the so-called "closed-loop" injection quantity control method in which the relationship between the basic injection pulse width and injection quantity based on an experimentally determined Polynomial is calculated.
- a piston displacement of the pump by means of sensors converted into a signal which is the amount of fuel injected represents.
- This signal is used as a feedback signal for a "closed loop PID" which uses the injected amount compared with the required amount and for the next injection an adapted drive pulse for the injector delivers the error size of the hosed amount compared to the amount needed.
- a disadvantage of this type of injection control is that the change in the delivery rate of the injection system only on the Let the injection process follow that follows the injection process, at which the error was found.
- the object of the invention is a method for electronic Trimming an injector to create that without consuming constructional measures regarding the injection pump more precise adjustment of the control signal due to the injection pump the nominal injection power initiated by the control signal enables.
- injection pump type is essential. used becomes an electromagnetically operated injection pump, which according to the energy storage principle works and for example in the WO 92/14925 and WO 93/18297.
- the injection pumps used according to the invention can be structurally set up so that their injection characteristics as close as possible to at least a third curve Degrees follows.
- the spray characteristics of most known System storage injection pumps follow from the system approximates a curve of third or higher degree, so that this Pumps do not need any structural changes.
- the acceleration distance of the armature of the Extend pump for storing kinetic energy or shorten and / or the saturation behavior of the electromagnet of the electromagnetic drive of the injection pump adapt are so simple and require just such a small effort that they are almost ins Weight drop.
- These measures also favor usability of the full performance potential of the pumps and thus their efficiency in terms of both the delivery rate and with regard to the manufacturing effort for the respective application.
- the spray characteristics of each individual manufactured injection pump are determined under normal conditions (e.g. at 20 ° C and normal atmospheric pressure), whereby measured values of the so-called flow curve or delivery characteristic curve are determined and processed in sufficient numbers, for example in the form of a signal duration / spray quantity diagram ,
- the function is calculated from the measured values, which corresponds to the curve of the third or higher degree which can be determined from the measured values.
- Y is the control signal duration to be determined and X is the amount of fluid to be sprayed.
- the four parameters are stored electronically and if necessary e.g. linked to a serial number of the injection pump, electronically managed and represent the exact mathematical description of each point on the funding curve this individual injection pump.
- the electronic Control module of the electronic control system uses the If necessary, these parameters and calculate that for these individual Pump required switch-on duration signal for exact achievement of the requested injection quantity.
- the four parameters are expediently known per se Marked detectable on or on the injection pump and accompany the injection pump until it is used and when it is used Use.
- the measurement of a delivery curve of the injection pump is expedient due to time constraints on a limited number of individual measurements limited.
- each individual measurement can only be done with of finite accuracy, which results in that the measuring points correspond to the deviation tolerance Scatter the measuring device around the actual curve.
- a mathematically performed determination of the polynomial course not only interpolates between measurement errors and decreases their size but it also automatically leads to a non-linear Interpolation between the individual measuring points. This guaranteed according to the invention with a minimum of effort Maximum achievable precision in the reproduction of the injection quantity by means of an electrical signal duration.
- the engine is driven by a map in which the quantity of fuel to be injected or an engine-specific correction value proportional to it is stored as a function of speed, load and some other commonly used engine operating parameters.
- the processor of the control is calculated also in particular before each injection operation for the system-specific trimming a necessary for the respective injection pump electrical drive signal Y.
- an electronic engine control recognizes usually also relevant for engine operation changing environmental influences such as Temperature and pressure of the sucked in air and adjusts the injection quantity at the engine specific Correct these conditions. Usually will the corrections as a percentage change in the Map entered control variables made before these to Injection pump system are forwarded. For the influences which directly affect the engine and its work process, are therefore the stored injection quantities or the addition proportional sizes with a corresponding factor larger or multiplied less than 1 to reflect the current environmental conditions adapt.
- characteristic curves through measurement e.g. the delivery rate at some certain different States of an influence type determined and e.g. the four parameters of the respective corresponding third degree curve.
- a factor is then mathematically determined for each parameter, which its individual change among the different States of the relevant type of influence.
- Procedures are used for the shifts in the funding curve certain different states of an influence type ⁇ X- and ⁇ Y values determined instead of the polynomial or curve parameters and saved and made available to the control module. This procedure reduces the memory data and the computing power to be provided to a considerable extent.
- ⁇ X and ⁇ Y values uses an arithmetic operation for control signal generation, after which the environmental influences relevant for engine operation taking into account the fuel signal proportional control signal value (engine-specific correction) the corresponding Point on the funding curve corresponding to normal conditions (Normal polynomial or normal characteristic) e.g. third degree of Injection pump determined and then the ⁇ X value of the individualized, a previously determined state of a Injection pump trim correction according to the type of influence Addition or subtraction is assigned.
- Control signal value X is the Y value of the control module
- Third degree polynomial is calculated, which is shifted by the value ⁇ X is.
- the ⁇ X value is obtained by adding or subtracting assigned, resulting in a point on a corresponding two-dimensional shift, but in the course third degree coincidence correction polynomial, where a signal duration results from this point, which is below the relevant state of the type of influence for the required injection quantity the individualized injection pump required is.
- This condition-corrected signal duration is determined through the simplest and quickest for microprocessors Operation, namely the addition or subtraction of two Values.
- the choice of the type of influence to be corrected is arbitrary, the respective correction is equally simple. It can according to the number of influencing factors to be corrected correspondingly many assignments made at the same time become.
- each motor control becomes an electrical one Functional test, at which reactive loads instead of Injection pumps can be connected to the output channels.
- the Current rise curve of a single current pulse is on each Channel recorded and mathematically formed the integral below. This integral corresponds to the electrical performed Job. Does the measured integral value deviate from a given one If the target size decreases, a corresponding pair of addition or subtraction values is created selected, assigned to the relevant output channel and stored in the control. Independent of Each output channel is given the later controlled injection element the correction for his characteristic shortcoming or its excess of electrical work.
- the amount of fuel delivered in a unit of time is below among other things, a result of the pressure difference between the pressure inside the nozzle of the injection pump and outside of it taking into account the flow resistance of the nozzle.
- the control method according to the invention therefore sees a programmable one Threshold in the engine map before which none Fuel quantity corrections more regarding air temperature and Air pressure can be carried out.
- a programmable one Threshold in the engine map before which none Fuel quantity corrections more regarding air temperature and Air pressure can be carried out.
- Fig. 1 the injection quantity V e is plotted on the abscissa and the signal duration t i on the ordinate.
- a standard delivery characteristic curve 1 is drawn in as a 3rd degree curve, the parameters of which are indicated in box 2 (flow curve under normal conditions).
- a correction curve 3 of the same shape with a ⁇ X / ⁇ Y shift is shown above curve 1.
- Curve 3 of the third degree is a flow curve or delivery characteristic of the injection pump in a specific state of a specific type of influence, possible types of influence being listed, for example, in box 4.
- the correction according to the invention is based on the V e value S, which has already been corrected for the engine operation and is proportional to the fuel quantity and which results from the nominal value from the engine-specific correction.
- the correction value is added .DELTA.X the injection operation correction.
- the corresponding ⁇ X-shifted third-degree polynomial is calculated by the control module.
- the correction value ⁇ Y is then added to the injection pump operating correction and a point T 2 is determined, which lies on the state-related X / Y-shifted third-degree polynomial 3, the parameters of which are indicated in box 5.
- the point T 2 lying on the polynomial 3 represents a corresponding state-related corrected time period of t i in ms for the injection of the required fuel quantity.
- Fig. 2 illustrates the influence of a back pressure in the map diagram.
- the polynomials become third Grades 6 to 10 set at correspondingly higher back pressures.
- the position of these polynomials results in distortions, those with F * X and ⁇ Y values, based on norm polynomial 1 mathematically can be grasped exactly.
- a corresponding back pressure correction is made again only one multiplication and one addition or subtraction required.
- the described invention is not based on the examples given limited. Further types of influence can be determined the third or polynomials shifted from the norm polynomial higher degree or correspondingly distorted third or polynomials higher degree. The invention can also be implemented if only approximate third or higher polynomials Degrees arise because then still the simple described Correction procedure is applicable.
- the polynomials of higher degree than third degree are then always used when the measurement values for the norm polynomial are not exact enough to follow a third degree curve. It has shown, that in this case the measured values are usually higher on a curve Degrees. In any case, within the scope of the invention the higher degree curve can be determined, which the measured values on corresponds most precisely.
- a curve is preferably third Degree determined because compared to higher degree curves fewer parameters need to be set and saved.
- Fig. 3 illustrates a control strategy according to the invention Method.
- the outlined fields with the asterisk indicate a multiplication and the outlined fields with the + sign indicate an addition or subtraction.
- the basic map fuel delivers a signal value proportional to the amount of fuel, which Signal values of the motor-specific correction is multiplied.
- Engine-specific correction - as is evident from the dashed field and the lined fields contained therein results - e.g. a threshold load, the air temperature and the air pressure taken into account in the usual way.
- Fig. 3 On the right side of Fig. 3 is the system specific trimming shown for an injection pump.
- influence types in lined fields due to which the polynomial is corrected.
- the location of the asterisk field and the position of the + fields in Fig. 3 with respect to the thickly drawn Signal duration cylinder 1 line indicates when which correction to Trimming is done.
- the influence type "cylinder counter pressure” that the multiplication in advance is carried out and only after the polynomial calculation of the ⁇ Y value is added or subtracted.
- control strategy shown in FIG. 3 can of course be used also a different order of addition and subtraction provide for the types of influence, but it is essential that assumed a signal value proportional to the amount of fuel that already has the engine-specific corrections.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
- Fig. 1
- ein Signaldauer/Einspritzmengen-Diagramm mit Förderkennlinien einer bestimmten Einspritzpumpe;
- Fig. 2
- ein Signaldauer/Einspritzmengen-Diagramm mit Förderkennlinien einer bestimmten Einspritzpumpe bei unterschiedlichen Gegendrücken.
- Fig. 3
- schematisch eine nach dem erfindungsgemäßen Verfahren arbeitende Steuerstrategie.
Claims (9)
- Verfahren zum elektronischen Trimmen mindestens einer Fluideinspritzpumpe, wobei von einem Steuermodul einer elektronischen Steuereinrichtung ein einspritzpumpenbetriebskorrigiertes Steuersignal und vorzugsweise auch ein motorbetriebskorrigiertes Steuersignal ermittelt und für die Betätigung der Fluideinspritzpumpe verwendet wird,
dadurch gekennzeichnet, daßa) eine nach dem Energiespeicherprinzip arbeitende Fluideinspritzpumpe verwendet wird, deren Förderkennlinie einem Polynom mindestens dritten Grades identisch oder zumindest weitgehend angenähert folgt;b) die Parameter fluideinspritzpumpenspezifisch bei vorbestimmten Normbedingungen für ein Normpolynom mindestens dritten Grades ermittelt und gespeichert werden;c) mindestens ein weiteres einflußartspezifisches Korrekturpolynom mindestens dritten Grades einer bestimmten, auf die Fluideinspritzpumpe wirkenden Einflußart ermittelt und dessen Parameter gespeichert werden undd) die Parameter des Normpolynoms und der/des Korrekturpolynome(s) für die Ermittlung eines korrigierten Steuersignals zur Betätigung der Fluideinspritzpumpe verwendet werden. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, daß das einflußartspezifische Korrekturpolynom im Vergleich zum Normpolynom X-Y verschoben und vorzugsweise formgleich ist. - Verfahren nach Anspruch 1 und/oder 2,
dadurch gekennzeichnet, daß vom Steuermodul zunächst in üblicher Weise ein motorbetriebskorrigiertes, fluidmengenproportionales Steuersignal errechnet wird und diesem Steuersignal mindestens zwei Steuerwerte einer Einflußart durch Addition oder Subtraktion zugeordnet werden, die vom Steuermodul aus den Parametern des Normpolynoms und des Korrekturpolynoms errechnet werden, woraus ein korrigiertes fluidmengenproportionales Steuersignal resultiert. - Verfahren nach einem oder mehreren der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß dem motorbetriebskorrigierten, fluidmengenproportionalen Steuersignal ein Steuerwert einer Einflußart durch Multiplikation und ein weiterer Steuerwert dieser Einflußart durch Addition oder Subtraktion zugeordnet werden, die vom Steuermodul aus den Parametern des Normpolynoms und des Korrekturpolynoms errechnet werden. - Verfahren nach einem oder mehreren der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß für das korrigierte Steuersignal vom Steuermodul ein Zeitdauersteuersignal ermittelt wird. - Verfahren nach einem oder mehreren der Ansprüche 1 bis 5,
dadurch gekennzeichnet, daß zunächst die ΔX-Werte der Einflußarten und anschließend nach Berechnung der Polynome die ΔY-Werte dieser Einflußarten bei der Erzeugung des Steuersignals verwendet werden. - Verfahren nach einem oder mehreren der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß bei der Ermittlung der Normförderkennlinie unter Normalbedingungen Förderkennlinien durch Messen der Fördermenge bei einigen bestimmten unterschiedlichen Zuständen einer Einflußart ermittelt und die Parameter der jeweiligen entsprechenden Kurve festgelegt werden. - Verfahren nach einem oder mehreren der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß für die Verschiebungen der Förderkennlinie bei bestimmten unterschiedlichen Zuständen einer Einflußart ΔX- und ΔY-Werte anstelle der Polynomparameter festgestellt und gespeichert werden. - Verfahren nach Anspruch 8,
dadurch gekennzeichnet, daß eine Rechenoperation im Steuermodul durchgeführt wird, die für Zwischenzustände eine entsprechende lineare Interpolation vornimmt zwischen entweder den Parametern, falls diese abgelegt sind, oder für den Fall, daß ΔX- oder ΔY-Werte abgelegt sind, zwischen den abgelegten ΔX- und ΔY-Werten.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19845441A DE19845441C2 (de) | 1998-10-02 | 1998-10-02 | Verfahren zum elektronischen Trimmen einer Einspritzvorrichtung |
DE19845441 | 1998-10-02 | ||
PCT/EP1998/006644 WO2000020755A1 (de) | 1998-10-02 | 1998-10-20 | Verfahren zum elektronischen trimmen einer einspritzvorrichtung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1117930A1 EP1117930A1 (de) | 2001-07-25 |
EP1117930B1 true EP1117930B1 (de) | 2003-03-05 |
Family
ID=7883208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98955495A Expired - Lifetime EP1117930B1 (de) | 1998-10-02 | 1998-10-20 | Verfahren zum elektronischen trimmen einer einspritzvorrichtung |
Country Status (8)
Country | Link |
---|---|
US (1) | US6615128B1 (de) |
EP (1) | EP1117930B1 (de) |
JP (1) | JP2002526717A (de) |
AU (1) | AU1230299A (de) |
CA (1) | CA2325392A1 (de) |
DE (2) | DE19845441C2 (de) |
HK (1) | HK1039643A1 (de) |
WO (1) | WO2000020755A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6360161B1 (en) * | 2000-05-04 | 2002-03-19 | Bombardier Motor Corporation Of America | Method and system for fuel injector coefficient installation |
US6549843B1 (en) | 2000-11-13 | 2003-04-15 | Bombardier Motor Corporation Of America | Diagnostic system and method to temporarily adjust fuel quantity delivered to a fuel injected engine |
US6671611B1 (en) | 2000-11-28 | 2003-12-30 | Bombardier Motor Corporation Of America | Method and apparatus for identifying parameters of an engine component for assembly and programming |
US6810844B2 (en) * | 2002-12-10 | 2004-11-02 | Delphi Technologies, Inc. | Method for 3-step variable valve actuation |
FR2857700B1 (fr) | 2003-07-16 | 2005-09-30 | Magneti Marelli Motopropulsion | Procede de determination en temps reel de la caracteristique de debit d'injecteur de carburant |
US7305245B2 (en) * | 2004-10-29 | 2007-12-04 | Skyhook Wireless, Inc. | Location-based services that choose location algorithms based on number of detected access points within range of user device |
DE102008051820B4 (de) * | 2008-10-15 | 2016-02-18 | Continental Automotive Gmbh | Verfahren zur Korrektur von Einspritzmengen bzw. -dauern eines Kraftstoffinjektors |
KR102038408B1 (ko) * | 2012-10-25 | 2019-10-30 | 삼성전자주식회사 | 회귀 분석법을 사용하는 메모리 시스템 및 그것의 읽기 방법 |
DE102015015153B4 (de) | 2015-11-25 | 2019-10-17 | Dräger Safety AG & Co. KGaA | Verfahren zur Überprüfung einer Pumpeneinrichtung in einem Gasmessystem |
US11767782B2 (en) | 2018-05-25 | 2023-09-26 | Cummins Emission Solutions Inc. | Reductant dosing system with calibration value determined based on data from pressure sensor assembly and method of calibrating a reductant dosing system |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1052172A (de) * | 1963-02-05 | 1900-01-01 | ||
US4790277A (en) * | 1987-06-03 | 1988-12-13 | Ford Motor Company | Self-adjusting fuel injection system |
DE3914723C1 (en) * | 1989-05-04 | 1990-06-13 | Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De | IC engine tuning system - incorporates test stand with brake and iterative optimisation procedure is performed |
DE4015258C2 (de) * | 1990-05-12 | 1999-09-09 | Audi Ag | Steuerung der Einspritzung eines Ottomotors |
DE4106015A1 (de) * | 1991-02-26 | 1992-08-27 | Ficht Gmbh | Druckstoss-kraftstoffeinspritzung fuer verbrennungsmotoren |
WO1993018296A1 (de) * | 1992-03-04 | 1993-09-16 | Ficht Gmbh | Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen |
US5265576A (en) * | 1993-01-08 | 1993-11-30 | Stanadyne Automotive Corp. | Calibration system for electrically controlled fuel injection pump |
GB2277818A (en) * | 1993-05-08 | 1994-11-09 | Ford Motor Co | Dedicated control module for a fuel pump |
US5634448A (en) * | 1994-05-31 | 1997-06-03 | Caterpillar Inc. | Method and structure for controlling an apparatus, such as a fuel injector, using electronic trimming |
US5505180A (en) * | 1995-03-31 | 1996-04-09 | Ford Motor Company | Returnless fuel delivery mechanism with adaptive learning |
US5946911A (en) * | 1997-01-07 | 1999-09-07 | Valeo Electrical Systems, Inc. | Fluid control system for powering vehicle accessories |
US5927253A (en) * | 1998-02-26 | 1999-07-27 | Ford Global Technologies, Inc. | Fuel system priming method |
US6158416A (en) * | 1998-11-16 | 2000-12-12 | General Electric Company | Reduced emissions elevated altitude speed control for diesel engines |
US6148809A (en) * | 2000-01-10 | 2000-11-21 | Cinquegrani; Vincent J. | Oxygen sensor controlled continuous flow fuel system |
US6539299B2 (en) * | 2000-02-18 | 2003-03-25 | Optimum Power Technology | Apparatus and method for calibrating an engine management system |
-
1998
- 1998-10-02 DE DE19845441A patent/DE19845441C2/de not_active Expired - Fee Related
- 1998-10-20 WO PCT/EP1998/006644 patent/WO2000020755A1/de active IP Right Grant
- 1998-10-20 JP JP2000574834A patent/JP2002526717A/ja active Pending
- 1998-10-20 US US09/806,061 patent/US6615128B1/en not_active Expired - Lifetime
- 1998-10-20 DE DE59807422T patent/DE59807422D1/de not_active Expired - Fee Related
- 1998-10-20 EP EP98955495A patent/EP1117930B1/de not_active Expired - Lifetime
- 1998-10-20 CA CA002325392A patent/CA2325392A1/en not_active Abandoned
- 1998-10-20 AU AU12302/99A patent/AU1230299A/en not_active Abandoned
-
2002
- 2002-01-23 HK HK02100538.7A patent/HK1039643A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CA2325392A1 (en) | 2000-04-13 |
JP2002526717A (ja) | 2002-08-20 |
DE59807422D1 (de) | 2003-04-10 |
EP1117930A1 (de) | 2001-07-25 |
DE19845441C2 (de) | 2003-01-16 |
DE19845441A1 (de) | 2000-04-13 |
WO2000020755A1 (de) | 2000-04-13 |
AU1230299A (en) | 2000-04-26 |
US6615128B1 (en) | 2003-09-02 |
HK1039643A1 (zh) | 2002-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4446277B4 (de) | Kraftstoffversorgungssystem für eine Brennkraftmaschine | |
EP0970304B1 (de) | Vorrichtung und verfahren zum druckregeln in speichereinspritzsystemen mit einem elektromagnetisch betätigten druckstellglied | |
DE102006000012B4 (de) | Kraftstoffeinspritzsteuersystem | |
EP1568874B1 (de) | Verfahren und Vorrichtung zur Steuerung des Volumenstroms in einem Kraftstoff-Einspritzsystem einer Brennkraftmaschine | |
DE3207392C2 (de) | Vorrichtung zur selbstanpassenden Stellungsregelung eines Stellgliedes | |
EP2297444B1 (de) | Verfahren und vorrichtung zur druckwellenkompensation bei zeitlich aufeinander folgenden einspritzungen in einem einspritzsystem einer brennkraftmaschine | |
DE102017103056A1 (de) | Brennstoffzellensystem und Steuerverfahren für selbiges | |
EP2152555B1 (de) | Korrekturverfahren zum korrigieren von ansteuerkennlinien für analogisierte hydraulikventile in kraftfahrzeugbremssystemen | |
EP1117930B1 (de) | Verfahren zum elektronischen trimmen einer einspritzvorrichtung | |
EP2205846B1 (de) | Verfahren zur steuerung eines kraftstoffeinspritzsystems einer brennkraftmaschine | |
DE102005017837A1 (de) | Kraftstoffversorgungseinrichtung für Brennkraftmaschinen und zugehöriges Verfahren | |
DE102016100511B4 (de) | Motor mit interner Verbrennung | |
DE102014225920B4 (de) | Verfahren zum Betrieb eines Dieselmotors | |
DE10157641C2 (de) | Verfahren zur Steuerung einer Brennkraftmaschine | |
DE69923245T2 (de) | Vorrichtung zur Kraftstoffeinspritzung einer Brennkraftmaschine | |
DE19913477A1 (de) | Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs | |
DE102004011439B4 (de) | Steuerungssystem zur Treibstoffeinspritzung einer Verbrennungskraftmaschine | |
EP1802859A1 (de) | Verfahren zum betreiben einer kraftstoffeinspritzanlage insbesondere eines kraftfahrzeugs | |
DE19857971A1 (de) | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine | |
DE102014226259B4 (de) | Verfahren zum Betrieb eines Verbrennungsmotors | |
DE102008017160B3 (de) | Verfahren zum Bestimmen des effektiven Kompressibilitätsmoduls eines Einspritzsystems | |
WO2007141099A1 (de) | Verfahren und vorrichtung zur steuerung der kraftstoffzumessung in wenigstens einen brennraum einer brennkraftmaschine | |
DE102010016417B4 (de) | Vorrichtung zum Steuern eines Kraftstoffeinspritzsystems | |
DE102018205542A1 (de) | Verfahren zum Vermessen und Betreiben einer elektrischen Fluidpumpe | |
DE69703179T2 (de) | Verfahren zur Steuerung eines Kraftstoffversorgungssystems ohne Rücklaufleitung für eine Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000713 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20010801 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): BE DE ES FR GB IT SE |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOMBARDIER MOTOR CORPORATION OF AMERICA |
|
AK | Designated contracting states |
Designated state(s): BE DE ES FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20030305 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59807422 Country of ref document: DE Date of ref document: 20030410 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030605 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20031003 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20031016 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 1117930E Country of ref document: IE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20031030 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031208 |
|
BERE | Be: lapsed |
Owner name: *BOMBARDIER MOTOR CORP. OF AMERICA Effective date: 20031031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050503 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20041020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051020 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1039643 Country of ref document: HK |