EP1114488A1 - Antenne de station de base de radiocommunication - Google Patents

Antenne de station de base de radiocommunication

Info

Publication number
EP1114488A1
EP1114488A1 EP00949539A EP00949539A EP1114488A1 EP 1114488 A1 EP1114488 A1 EP 1114488A1 EP 00949539 A EP00949539 A EP 00949539A EP 00949539 A EP00949539 A EP 00949539A EP 1114488 A1 EP1114488 A1 EP 1114488A1
Authority
EP
European Patent Office
Prior art keywords
medium
antenna according
focusing
primary
primary sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00949539A
Other languages
German (de)
English (en)
Inventor
Thierry Lucidarme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks France SAS
Original Assignee
Nortel Networks France SAS
Nortel Matra Cellular SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nortel Networks France SAS, Nortel Matra Cellular SCA filed Critical Nortel Networks France SAS
Publication of EP1114488A1 publication Critical patent/EP1114488A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • H01Q1/405Radome integrated radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/09Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens wherein the primary active element is coated with or embedded in a dielectric or magnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • H01Q21/10Collinear arrangements of substantially straight elongated conductive units

Definitions

  • the present invention relates to antennas used in cellular radio base stations
  • multisecto ⁇ elle antennas makes it possible to reduce the number of base station sites for a given coverage (see EP-A-0 802 579)
  • these multisecto ⁇ elle antennas because of their directivity and their multiplicity, are significantly more bulky than omni-directional antennas
  • a network of radiating elements arranged in a particular manner with respect to the wavelength to be transmitted, and supplied by the same radio signals to which laws are applied. phase shift and appropriate amplitude
  • the dimensions of the network are all the more important when seeking a high directivity gain
  • the order of magnitude of the dimension of each radiating element is the transmitted wavelength, that is ie in the decimetric range, and their network arrangement leads to antennas whose dimensions can be from one to several meters
  • GSM Global System for Mobile
  • DCS Digital Cellular System
  • UMTS Universal Mobile Telecommunication System
  • a main aim of the present invention is to propose an arrangement of antennas which makes it possible to associate radiating elements having different radiation characteristics (directivity and / or frequency) in a relatively compact arrangement, in order to limit the difficulties mentioned above. -above
  • the invention thus provides a radiocommunication base station antenna, comprising several primary sources supplied independently and arranged so as to have different radiation characteristics, the primary sources being placed in a first medium so as to be spatially decoupled
  • the antenna further comprises at least a second medium covering the first medium and having a characteristic impedance substantially lower than the first medium
  • Each primary source has at least one focusing direction perpendicular to the interface between the first and second medium, according to which the distance d., between said primary source and said interface is substantially equal to ⁇ -, (2p 1 -1) / 4 and the second medium has a thickness e 2 substantially equal to ⁇ 2 (2p 2 - 1) / 4, where ⁇ -, and ⁇ 2 denote the wavelengths radiated by said primary source in the first and second mili them, respectively, and p-, and p 2 are integers
  • the media surrounding the primary sources present resonance conditions which provide a gain in directivity, in site and possibly in azimuth.
  • the physical principle of this resonance has been described for the case of antennas conformed in the article "Gain Enhancement Methods for P ⁇ nted Circuit Antennas "by DR Jackson et al, IEEE Transactions on Antennas and Propagation, Vol AP-33, No 9, September 1985, pages 976- 987
  • the gain in amplitude provided by the first and second media, of respective characteristic impedances Z c1 and Z c2 is of the order of 2.Z c1 / Z c2 .
  • the characteristic impedance Z c of a medium of relative dielectric permittivity ⁇ r and of relative magnetic permeability ⁇ r is given by
  • the first and second media can have parameters ⁇ r and ⁇ r adapted according to the desired gain.
  • Composite materials can also be used, which allows the values of ⁇ r and / or ⁇ r to be adjusted as required.
  • the first medium can be covered by a superposition of focusing layers, the first focusing layer, adjacent to the first medium, being formed by said second medium, and each focusing layer being formed by a medium of thickness substantially equal to ⁇ j . (2p r 1) / 4 along the focusing direction of each of the primary sources, where ⁇ j denotes the wavelength radiated by said primary source in the medium forming said focusing layer and P j is an integer.
  • the i-th focusing layer is formed, for each odd integer i, by a medium having a characteristic impedance substantially lower than the media located on either side of this i-th focusing layer.
  • the i-th focusing layer can in particular be formed, for each odd integer i, by a medium having an ⁇ r substantially higher than the media located on either side of this i-th focusing layer.
  • the primary sources are supplied and arranged so as to radiate at different wavelengths.
  • the antenna is then adapted to sites where base stations operating in different frequency bands are installed.
  • the dielectric media can be arranged parallel to a ground plane, the antenna then being able to be installed on a wall.
  • the primary sources are arranged along an axis around which said media have a symmetry of revolution. It is then possible to produce omnidirectional and / or multisectoral antennas having a reduced bulk.
  • FIG. 1 is a representation of a base station equipped with an antenna according to the invention
  • FIGS. 2 and 4 are perspective diagrams of an omnidirectional antenna and a trisectoral antenna according to the invention.
  • FIG. 3 and 5 are side sectional views of other antennas according to the invention.
  • FIG. 1 shows an antenna 1 according to the invention installed at the top of a mast 2 (or of any other building) and connected by means of cables 3 to a base station 4.
  • the antenna 1, shown in more detail in FIG. 2, is of the omnidirectional type, and makes it possible to communicate with mobile radio terminals according to three distinct frequency bands.
  • it can be the bands at 900 MHz from GSM, at 1800 MHz from DCS and at 2000 MHz from UMTS.
  • the base station 4 in fact gathers, functionally, three base stations corresponding to the three types of network, and three coaxial cables (feeders) connect these base stations to respective primary sources 6A, 6B, 6C of the antenna 1.
  • each of the primary sources 6A-6C is a dipole tuned to a central frequency of the frequency band associated with this source.
  • Each dipole is conventionally connected to its feeder (not shown in Figure 2) which feeds it independently of the other dipoles.
  • the three dipoles 6A-6C of the antenna of FIG. 2 are aligned on an X axis, and surrounded by a focusing structure having a symmetry of revolution around the X axis.
  • This focusing structure comprises a central medium having, with respect to radio waves, a relatively high characteristic impedance Z c1 .
  • This medium with high impedance occupies around each dipole 6A, 6B, 6C a cylindrical region 7A, 7B, 7C aligned and centered on this dipole.
  • the axial height of each of these regions 7A-7C is of the order of the wavelength radiated by the corresponding dipole 6A-6C.
  • Its radius d-, (indicated only for region 7A in FIG. 2) is of the form ⁇ 1. (2p 1 -1) / 4, where p-, is a positive integer preferably equal to 1, and ⁇ -, denotes the wavelength radiated by the dipole 6A, 6B, 6C in the medium of impedance Z c1 .
  • the central medium with high impedance 7A, 7B, 7C is surrounded by a focusing layer 8A, 8B, 8C formed by a medium having a relatively low characteristic impedance Z c2 .
  • a focusing layer 8A, 8B, 8C formed by a medium having a relatively low characteristic impedance Z c2 .
  • the medium with high impedance Z c1 used in the antenna 1 can be air. It can also be made using a honeycomb or foam material, the dielectric permittivity of which decreases with density (see “Radome Engineering Handbook, Design and Principles", JD WALTON Jr., Editions Marcel Dekker Inc., New York, 1970). Such a material can be produced from resins or polymers, for example of the polyester, epoxy, phenolic polyimide or polyurethane type.
  • Such materials can be diffused in a ceramic support matrix, for example made of silica, making it possible to adjust the value of ⁇ r
  • natural dielectric is understood here to mean a pure dielectric compound or a mixture on a microscopic scale of pure dielectric compounds.
  • a composite dielectric is a macroscopic assembly of discrete metallic or dielectric particles, regularly arranged according to the three dimensions of space and in various forms: spheres, discs, bands, rods or wires.
  • the assembly is held by a support: the particles are for example coated in a homogeneous dielectric medium, or arranged on dielectric plates.
  • the support index is, in each case little different from 1. If the particle dimensions and the distance Inter-particles are weak compared to the wavelength, the behavior of these assemblies is identical to that of a natural dielectric. On the other hand the weight can be very reduced and the value of the dielectric constant can be adjusted quite finely.
  • the value of ⁇ r for such an artificial dielectric is determined on a sample or by approximate formulas.
  • the assembly of the focusing structure is for example carried out by molding, after having positioned the sources 6A-6C and their feeders. If the mechanical strength of one or other of the dielectric media requires it, it can be reinforced, for example with glass fibers. It is also possible to use support, conditioning or protection elements which do not disturb the electromagnetic behavior of the assembly.
  • the focusing structure can also be produced in a modular fashion.
  • the largest dimension of the antenna 1 in FIG. 2 is its axial height which, in the example considered, can remain of the order of 50 cm.
  • the multi-frequency antenna therefore achieves the objective of being very compact.
  • Each of the dipoles 6A, 6B, 6C has an omnidirectional radiation diagram, with a set of focusing directions A, B, C contained in the equatorial plane of the dipole.
  • the aforementioned resonance phenomenon increases the focusing of the waves emitted by the dipoles 6A-6C in these directions AC (focusing in elevation).
  • the gain in amplitude provided by the composite focusing structure is given by 2.Z c1 / Z c2 .
  • the antenna 11 shown in Figure 3 has a generally planar configuration.
  • the medium 17A, 17B, 17C with high impedance containing the dipoles (or other primary sources) 16A, 16B, 16C is deposited on a conductive ground plane 15.
  • This medium 17A, 17B, 17C forms at the level of each source 16A, 16B , 16C a layer of thickness ⁇ -,. (2q-1) / 2, ⁇ -, being the wavelength radiated in the medium by the source in question, and q a positive integer advantageously equal to 1.
  • the distance d-, between the source 16A, 16B, 16C and the interface with the first low-impedance focusing layer 18A, 18B, 18C is of the form ⁇ 1. (2p 1 -1) / 4.
  • the thickness e of the (it) -th focusing layer (i> 2) is of the form ⁇ j . (2p r 1) / 4.
  • the successive focusing layers (18A, 19A, 20A), (18B, 19B, 20B), (18C, 19C, 20C) are alternately at low impedance and at high impedance, that is to say that for each odd integer i, the i-th focusing layer is formed by a medium whose characteristic impedance Z c2 is lower than that Z c1 of the medium located on either side of this i-th layer.
  • the antenna 11 according to FIG. 3 can be installed for example on a wall in order to radiate in a directive manner (directions A-C) towards an area to be covered by the base station.
  • FIG. 4 schematically illustrates a multisectoral antenna produced according to the invention.
  • the geometry of the focusing structure has symmetry of revolution about the X axis, along which three primary sources 26A, 26B, 26C are aligned.
  • Each of these primary sources is for example made up of a square conductive pattern (“patch”) formed on a dielectric substrate (microstrip technology). This type of source has a directivity in azimuth and in elevation, in a direction A, B, C perpendicular to the substrate.
  • the focusing structure with cylindrical geometry makes it possible to increase the focusing in site and therefore the gain of the antenna 21.
  • the sources 26A-26C can be produced on a substrate at high ⁇ r .
  • the three primary directive sources are for example made up of a square conductive pattern (“patch”) formed on a dielectric substrate (microstrip technology).
  • This type of source has a directivity in azimuth and in elevation, in a direction A, B, C perpendicular to the substrate
  • 26A-26C are tuned to the same frequency, and they are arranged on the X axis so that their focusing directions A-C are radial directions oriented at 120 ° from each other.
  • the antenna is therefore trisectoral.
  • the central medium with high impedance 27 and the focusing layer 28 (and possibly the following layers, not shown) have dimensions fixed as indicated above, taking into account the wavelength radiated by the sources 26A-26C.
  • the antenna 31 shown in FIG. 5 has a general configuration similar to that of FIG. 3, with a single focusing layer at low impedance 38A, 38B, 38C beyond the mediums 37A, 37B, 37C at high impedance containing the dipoles 36A, 36B, 36C.
  • the various media 37A-C, 38A-C meet the spatial conditions of resonance previously considered.
  • the interface between the successive media is inclined relative to the ground plane 35 and to the primary sources 36A-C, so that the phenomenon of refraction of the waves inclines the directions of focusing A-C, downwards in the example drawn. This makes it possible to adapt the antenna radiation pattern as needed.
  • the interfaces between dielectric layers are parallel to the ground plane, and it is the dipoles which are inclined.
  • An antenna according to the invention can be produced with various types of primary sources (simple or crossed dipoles, slots, microstrip patterns), each arranged outside the emission lobes of the others in order to ensure their electromagnetic decoupling.
  • the primary sources can be placed or shaped on a non-planar metal surface, for example a cylindrical or conical surface, which improves the front-rear ratio of the antenna.
  • a non-planar metal surface for example a cylindrical or conical surface, which improves the front-rear ratio of the antenna.
  • the cylinder or cone delimited by this surface has symmetry with respect to the axis of the antenna. It has for example a circular, triangular or polygonal section.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

L'antenne comprend plusieurs sources primaires (6A-6C) alimentées de manière indépendante et agencées de façon à présenter des caractéristiques de rayonnement différentes. Ces sources primaires sont placées dans un premier milieu (7A-7C) de façon à être spatialement découplées. Un second milieu (8A-8C), d'impédance caractéristique sensiblement plus basse que le premier milieu, recouvre le premier milieu. Chaque source primaire a une direction de focalisation (A-C) perpendiculaire à l'interface entre les premier et second milieux, suivant laquelle la distance (d1) entre ladite source primaire et ladite interface est μ1. (2p1-1)/4 et le second milieu a une épaisseur (e2) égale à μ2. (2p2-1)/4, où μ1 et μ2 désignent les longueurs d'onde rayonnées par ladite source primaire dans les premier et second milieux, respectivement, et p1 et p2 sont des entiers.

Description

ANTENNE DE STATION DE BASE DE RADIOCOMMUNICATION
La présente invention concerne les antennes utilisées dans les stations de base de radiocommunication cellulaire
L'essor des radiocommunications cellulaires requiert de nombreux sites d'installation de stations de base Les opérateurs cellulaires peuvent éprouver des difficultés pour trouver de tels sites Outre les problèmes de disponibilité des sites, il se pose le problème de la gêne perçue par le public du fait de l'encombrement et du manque d'esthétique des antennes des stations de base qui, pour l'efficacité du réseau, doivent bien entendu être placées en hauteur et de façon visible Dans certains pays, des réglementations, ou des taxations, visent à limiter le nombre de ces antennes
L'utilisation d'antennes multisectoπelles permet de réduire le nombre de sites des stations de base pour une couverture donnée (voir EP-A-0 802 579) Toutefois, ces antennes multisectoπelles, du fait de leur directivité et de leur multiplicité, sont sensiblement plus encombrantes que les antennes omnidirectionnelles
Pour augmenter le gain de directivité d'une antenne de station de base, on utilise un réseau d'éléments rayonnants disposés de façon particulière par rapport à la longueur d'onde à émettre, et alimentés par les mêmes signaux radio auxquels sont appliquées des lois de déphasage et d'amplitude appropriées Les dimensions du réseau sont d'autant plus importantes qu'on cherche un gain de directivité élevé L'ordre de grandeur de la dimension de chaque élément rayonnant est la longueur d'onde transmise, c'est-à-dire dans la gamme décimétrique, et leur agencement en réseau conduit à des antennes dont les dimensions peuvent être d'un à plusieurs mètres
Les difficultés évoquées ci-dessus sont encore aggravées par le déploiement de réseaux utilisant des gammes de longueur d'onde différentes Par exemple, en Europe, les systèmes numériques de seconde génération utilisent une bande voisine de 900 MHz (GSM, « Global System for Mobile communications ») et une bande voisine de 1800 MHz (DCS, « Digital Cellular System »), et les futurs systèmes de troisième génération (UMTS, « Universal Mobile Télécommunication System ») utiliseront une bande de fréquence voisine de 2000 MHz Pour mettre en place une infrastructure d'un nouveau type de réseau, un opérateur exploitant déjà un autre type de réseau doit prévoir de nouvelles antennes Soit il dispose de nouveaux sites d'installation, soit il est amené à multiplier les antennes sur ses sites préexistants Dans les deux cas, les antennes prolifèrent
En outre, l'installation sur le même site d'antennes fonctionnant dans des gammes de fréquences dont le rapport est un petit entier pose des problèmes d'isolation dus à la réception par une antenne d'harmoniques des fréquences émises par une autre antenne Ce cas de figure est celui des bandes du GSM et du DCS, pour lequel on estime que les antennes, déjà encombrantes, doivent être espacées d'au moins 50 centimètres
Un but principal de la présente invention est de proposer un agencement d'antennes qui permette d'associer des éléments rayonnants ayant des caractéristiques de rayonnement différentes (en directivité et/ou en fréquence) dans un agencement relativement compact, afin de limiter les difficultés ci-dessus
L'invention propose ainsi une antenne de station de base de radiocommunication, comprenant plusieurs sources primaires alimentées de manière indépendante et agencées de façon à présenter des caractéristiques de rayonnement différentes, les sources primaires étant placées dans un premier milieu de façon à être spatialement découplées Selon l'invention, l'antenne comprend en outre au moins un second milieu recouvrant le premier milieu et ayant une impédance caractéristique sensiblement plus basse que le premier milieu Chaque source primaire a au moins une direction de focalisation perpendiculaire à l'interface entre les premier et second milieux, suivant laquelle la distance d., entre ladite source primaire et ladite interface est sensiblement égale à λ-, (2p1-1 )/4 et le second milieu a une épaisseur e2 sensiblement égale à λ2 (2p2-1 )/4, où λ-, et λ2 désignent les longueurs d'onde rayonnées par ladite source primaire dans les premier et second milieux, respectivement, et p-, et p2 sont des entiers
Les milieux environnant les sources primaires présentent des conditions de résonance qui procurent un gain de directivité, en site et éventuellement en azimut Le principe physique de cette résonance a été décrit pour le cas d'antennes conformées dans l'article « Gain Enhancement Methods for Pπnted Circuit Antennas » de D R Jackson et al , IEEE Transactions on Antennas and Propagation, Vol AP-33, No 9, septembre 1985, pages 976- 987 Le gain en amplitude procuré par les premier et second milieux, d'impédances caractéristiques respectives Zc1 et Zc2, est de l'ordre de 2.Zc1/Zc2.
L'impédance caractéristique Zc d'un milieu de permittivité diélectrique relative εr et de perméabilité magnétique relative μr est donnée par
Zc = Zc0 avec Zc0 = 120π. En conséquence, les premier et second milieux peuvent avoir des paramètres εr et μr adaptés en fonction du gain recherché.
Dans une réalisation préférée, on jouera essentiellement sur les permittivités diélectriques εr, afin d'utiliser des matériaux plus aisément disponibles. En général, on prendra un milieu à fort εr pour le second milieu et εr ≈ 1 dans le premier milieu afin de maximiser le rapport
^d^c2 = i μ1 ≈ J— (avec εr = ε-, , μr = μ-, dans le premier milieu et εr = ε? , V ει -μ2 V ει μr = μ2 dans le second milieu).
On peut aussi utiliser des matériaux composites, ce qui permet d'ajuster selon les besoins les valeurs de εr et/ou de μr. Afin d'augmenter encore le gain de l'antenne, on peut recouvrir le premier milieu par une superposition de couches de focalisation, la première couche de focalisation, adjacente au premier milieu, étant formée par ledit second milieu, et chaque couche de focalisation étant formée par un milieu d'épaisseur sensiblement égale à λj.(2pr1 )/4 suivant la direction de focalisation de chacune des sources primaires, où λj désigne la longueur d'onde rayonnée par ladite source primaire dans le milieu formant ladite couche de focalisation et Pj est un entier. La i-ième couche de focalisation est formée, pour chaque entier impair i, par un milieu ayant une impédance caractéristique sensiblement plus basse que les milieux situés de part et d'autre de cette i-ième couche de focalisation. La i-ième couche de focalisation peut notamment être formée, pour chaque entier impair i, par un milieu ayant un εr sensiblement plus élevé que les milieux situés de part et d'autre de cette i-ième couche de focalisation.
Augmenter le nombre de couches de focalisation augmente le gain en amplitude, qui est de l'ordre de 2. TT — - — — s'il y a 2k couches de m=0 zc(2m) focalisation par dessus le milieu central à forte impédance, et de l'ordre de k 7
2 j — m~ s'il y a 2k-1 couches de focalisation, Zcj désignant pour i > 2 m=ι Zc(2m) l'impédance caractéristique de la (i-l )-ième couche de focalisation (voir H. Y. Yang et al., « Gain Enhancement Methods for Printed Circuit Antennas through Multiple Supertrates », IEEE Transactions on Antennas and Propagation, Vol. AP-35, No. 7, juillet 1987, pages 860-863).
Dans une forme de réalisation de l'antenne selon l'invention, les sources primaires sont alimentées et agencées de façon à rayonner selon des longueurs d'onde différentes. L'antenne est alors adaptée à des sites où sont installées des stations de base fonctionnant dans des bandes de fréquence différentes.
Les milieux diélectriques peuvent être disposés parallèlement à un plan de masse, l'antenne pouvant alors être installée sur une paroi. Dans un autre agencement avantageux, les sources primaires sont disposées le long d'un axe autour duquel lesdits milieux présentent une symétrie de révolution. On peut alors réaliser des antennes omnidirectionnelles et/ou multisectorielles présentant un encombrement réduit.
D'autres particularités et avantages de la présente invention apparaîtront dans la description ci-après d'exemples de réalisation non- limitatifs, en référence aux dessins annexés, dans lesquels :
- la figure 1 est une représentation d'une station de base équipée d'une antenne selon l'invention ;
- les figures 2 et 4 sont des schémas en perspective d'une antenne omnidirectionnelle et d'une antenne trisectorielle selon l'invention ; et
- les figures 3 et 5 sont des vues en coupe latérale d'autres antennes selon l'invention.
La figure 1 montre une antenne 1 selon l'invention installée au sommet d'un mât 2 (ou de tout autre édifice) et reliée au moyen de câbles 3 à une station de base 4.
Dans l'exemple de la figure 1 , l'antenne 1 , représentée plus en détail sur la figure 2, est de type omnidirectionnel, et permet de communiquer avec des terminaux radio mobiles selon trois bandes de fréquences distinctes. A titre d'exemple, cela peut être les bandes à 900 MHz du GSM, à 1800 MHz du DCS et à 2000 MHz de l'UMTS. Dans ce cas, la station de base 4 regroupe en fait, fonctionnellement, trois stations de base correspondant aux trois types de réseau, et trois câbles coaxiaux (feeders) relient ces stations de base à des sources primaires respectives 6A, 6B, 6C de l'antenne 1.
Dans l'exemple représenté sur la figure 2, chacune des sources primaires 6A-6C est un dipôle accordé sur une fréquence centrale de la bande de fréquence associée à cette source. Chaque dipôle est relié de manière classique à son feeder (non représenté sur la figure 2) qui l'alimente de façon indépendante des autres dipôles.
Les trois dipôles 6A-6C de l'antenne de la figure 2 sont alignés sur un axe X, et entourés par une structure de focalisation présentant une symétrie de révolution autour de l'axe X.
Cette structure de focalisation comporte un milieu central présentant, vis-à-vis des ondes radio, une impédance caractéristique Zc1 relativement élevée. Lorsqu'on n'utilise pas de matériaux magnétiques (μ-, = 1 ), ce milieu central sera simplement choisi pour présenter une permittivité diélectrique ε-j proche de 1 , de sorte que Zc1 ≈ Zc0 = 120π.
Ce milieu à forte impédance occupe autour de chaque dipôle 6A, 6B, 6C une région cylindrique 7A, 7B, 7C alignée et centrée sur ce dipôle. La hauteur axiale de chacune de ces régions 7A-7C est de l'ordre de la longueur d'onde rayonnee par le dipôle correspondant 6A-6C. Son rayon d-, (indiqué seulement pour la région 7A sur la figure 2) est de la forme λ1.(2p1-1 )/4, où p-, est un nombre entier positif de préférence égal à 1 , et λ-, désigne la longueur d'onde rayonnee par le dipôle 6A, 6B, 6C dans le milieu d'impédance Zc1. La longueur d'onde λ1 est donnée par λ- = λQ. jε^.μ^ , la longueur d'onde λ0 étant celle rayonnee dans le vide par la source 6A, 6B, 6C.
Le milieu central à forte impédance 7A, 7B, 7C est entouré par une couche de focalisation 8A, 8B, 8C formée par un milieu présentant une impédance caractéristique Zc2 relativement basse. Lorsqu'on n'utilise pas de matériaux magnétiques (μ2 = 1 ), on choisit pour la couche de focalisation 8A,
8B, 8C un matériau diélectrique avec ε2 » 1.
Au droit de chaque source 6A, 6B, 6C, l'épaisseur e2 de la couche de focalisation 8A, 8B, 8C est prise égale à λ2.(2p2-1 )/4, où p2 est un entier positif de préférence égal à 1 , et λ = λ0- ε2 V-2 est 'a longueur d'onde rayonnee par la source correspondante 6A, 6B, 6C dans le milieu à faible impédance.
Le milieu à forte impédance Zc1 utilisé dans l'antenne 1 peut être l'air. II peut aussi être constitué à l'aide d'un matériau en nid d'abeille ou en mousse, dont la permittivité diélectrique décroît avec la densité (voir « Radome Engineering Handbook, Design and Principles », J.D. WALTON Jr., Editions Marcel Dekker Inc., New York, 1970). Un tel matériau peut être réalisé à partir de résines ou de polymères, par exemple de type polyester, époxy, polyimide phénolique ou polyuréthane.
Pour les couches de focalisation à basse impédance Zc2, on peut notamment utiliser des matériaux organiques tels qu'un polyester (εr de 4 à 5), un époxy (εr ≈ 4) ou un polyimide (εr = 3,5).
Si le coût de l'antenne n'est pas le facteur le plus critique, on peut encore utiliser des matériaux présentant une permittivité très élevée, notamment des composés inorganiques tel qu'utilisés dans les radômes destinés aux hautes vitesses et hautes températures, par exemple AI2O3
r ≈ 9) ou TiO2r ≈ 100). De tels matériaux peuvent être diffusés dans une matrice céramique de support, par exemple en silice, permettant d'ajuster la valeur de εr
Pour des raisons de coût et/ou de commodité de réalisation, il peut être judicieux d'utiliser des diélectriques composites à la place de diélectriques naturels pour obtenir des valeurs souhaitées pour les paramètres εr et μr.
On entend ici par « diélectrique naturel » un composé diélectrique pur ou un mélange à l'échelle microscopique de composés diélectriques purs. Par exemple, le polystyrène (εr = 2,5) ou le verre au plomb (εr = 7).
Un diélectrique composite est un assemblage macroscopique de particules discrètes métalliques ou diélectriques, régulièrement disposées suivant les trois dimensions de l'espace et sous diverses formes : sphères, disques, bandes, tiges ou fils. L'assemblage est tenu par un support : les particules sont par exemple enrobées dans un milieu diélectrique homogène, ou disposées sur des plaques diélectriques. L'indice du support est, dans chaque cas peu différent de 1. Si les dimensions des particules et la distance inter-particules sont faibles devant la longueur d'onde, le comportement de ces assemblages est identique à celui d'un diélectrique naturel. En revanche le poids peut être très réduit et la valeur de la constante diélectrique peut être ajustée assez finement. La valeur de εr pour un tel diélectrique artificiel est déterminée sur un échantillon ou par des formules approchées. Par exemple, un arrangement constitué de N sphères métalliques de rayon a par unité de volume conduit à un constante diélectrique de valeur : εr = 1 + 4πNa3. Il est possible ainsi d'obtenir un εr allant de 1 à 9. Pour les milieux à forte impédance Zc1 , il est possible d'ajuster de façon semblable le paramètre μr et d'obtenir des matériaux composites bon marché faiblement magnétiques et à faibles pertes avec une concentration appropriée de particules de fer dans un support en matière plastique ou résine.
L'assemblage de la structure de focalisation est par exemple réalisé par moulage, après avoir positionné les sources 6A-6C et leurs feeders. Si la tenue mécanique de l'un ou l'autre des milieux diélectriques l'exige, on peut le renforcer, par exemple avec des fibres de verre. On peut également utiliser des éléments de support, de conditionnement ou de protection qui ne perturbent pas le comportement électromagnétique de l'ensemble. La structure de focalisation peut également être réalisée de manière modulaire.
La plus grande dimension de l'antenne 1 de la figure 2 est sa hauteur axiale qui, dans l'exemple considéré, peut rester de l'ordre de 50 cm. L'antenne multifréquence atteint donc l'objectif d'une grande compacité. Chacun des dipôles 6A, 6B, 6C a un diagramme de rayonnement omnidirectionnel, avec un ensemble de directions de focalisation A, B, C contenues dans le plan équatorial du dipôle. Le phénomène de résonance précité accroît la focalisation des ondes émises par les dipôles 6A-6C selon ces directions A-C (focalisation en site). Le gain en amplitude procuré par la structure composite de focalisation est donné par 2.Zc1/Zc2. Le gain en puissance g, exprimé en dB, est donné par g = 20.log10(2.Zc1/Zc2). On voit qu'on obtient aisément des gains de focalisation de plusieurs décibels.
Ce gain peut être augmenté en ajoutant des couches de focalisation, alternativement de haute et de basse impédance. L'antenne 11 représentée sur la figure 3 a une configuration générale plane. Le milieu 17A, 17B, 17C à forte impédance contenant les dipôles (ou autres sources primaires) 16A, 16B, 16C est déposé sur un plan de masse conducteur 15. Ce milieu 17A, 17B, 17C forme au niveau de chaque source 16A, 16B, 16C une couche d'épaisseur λ-, .(2q-1 )/2, λ-, étant la longueur d'onde rayonnee dans le milieu par la source en question, et q un entier positif avantageusement égal à 1. La distance d-, entre la source 16A, 16B, 16C et l'interface avec la première couche de focalisation à basse impédance 18A, 18B, 18C est de la forme λ1.(2p1-1 )/4. L'épaisseur e de la (i-l )-ième couche de focalisation (i > 2) est de la forme λj.(2pr1 )/4. Les couches de focalisation successives (18A, 19A, 20A), (18B, 19B, 20B), (18C, 19C, 20C) sont alternativement à basse impédance et à haute impédance, c'est-à-dire que pour chaque entier impair i, la i-ième couche de focalisation est formée par un milieu dont l'impédance caractéristique Zc2 est plus basse que celle Zc1 des milieu situés de part et d'autre de cette i-ième couche.
L'antenne 11 selon la figure 3 peut être installée par exemple sur une paroi afin de rayonner de façon directive (directions A-C) vers une zone à couvrir par la station de base.
La figure 4 illustre schématiquement une antenne multisectorielle réalisée selon l'invention. La géométrie de la structure de focalisation est à symétrie de révolution autour de l'axe X, suivant lequel sont alignés trois sources primaires 26A, 26B, 26C. Chacune de ces sources primaires est par exemple constituée d'un motif conducteur carré (« patch ») formé sur un substrat diélectrique (technologie microstrip). Ce type de source présente une directivité en azimut et en site, selon une direction A, B, C perpendiculaire au substrat. La structure de focalisation à géométrie cylindrique permet d'accroître la focalisation en site et donc le gain de l'antenne 21. Pour limiter l'encombrement des sources 26A-26C au cœur de la structure de focalisation, on peut les réaliser sur un substrat à fort εr. Dans l'exemple de la figure 4, les trois sources primaires directives
26A-26C sont accordées sur la même fréquence, et elles sont disposées sur l'axe X de façon que leurs directions de focalisation A-C soient des directions radiales orientées à 120° les unes des autres. L'antenne est donc trisectorielle.
Le milieu central à forte impédance 27 et la couche de focalisation 28 (et éventuellement les couches suivantes non représentées) ont des dimensions fixées comme indiqué précédemment compte tenu de la longueur d'onde rayonnee par les sources 26A-26C.
On notera qu'il est possible d'adjoindre aux sources primaires 26A-26C formant une antenne multisectorielle selon la figure 4 une source omnidirectionnelle telle qu'un dipôle, pour former une antenne mixte.
L'antenne 31 représentée sur la figure 5 a une configuration générale similaire à celle de la figure 3, avec une seule couche de focalisation à basse impédance 38A, 38B, 38C au-delà des milieux 37A, 37B, 37C à forte impédance contenant les dipôles 36A, 36B, 36C. Les différents milieux 37A-C, 38A-C respectent les conditions spatiales de résonance précédemment considérées. L'interface entre les milieux successifs est inclinée par rapport au plan de masse 35 et aux sources primaires 36A-C, de telle sorte que le phénomène de réfraction des ondes incline les directions de focalisation A-C, vers le bas dans l'exemple dessiné. Ceci permet d'adapter le diagramme de rayonnement de l'antenne selon les besoins.
Dans une variante de réalisation fondée sur le même principe, les interfaces entre couches de diélectrique sont parallèles au plan de masse, et ce sont les dipôles qui sont inclinés. Naturellement, on peut aussi incliner de façon semblable les directions de focalisation dans le cas d'une antenne à symétrie de révolution du genre de la figure 2 ou 4, qui prend alors une forme conique plutôt que cylindrique.
Une antenne selon l'invention peut être réalisé avec divers types de sources primaires (dipôles simples ou croisés, fentes, motifs microstrip), disposées chacune en dehors des lobes d'émission des autres afin d'assurer leur découplage électromagnétique.
Dans le cas d'une antenne multisectorielle, les sources primaires peuvent être placées ou conformées sur une surface métallique non plane, par exemple une surface cylindrique ou conique, qui améliore le rapport avant- arrière de l'antenne. Le cylindre ou cône délimité par cette surface présente une symétrie par rapport à l'axe de l'antenne. Il a par exemple une section circulaire, triangulaire ou polygonale.

Claims

R E V E N D I C A T I O N S
1. Antenne de station de base de radiocommunication, comprenant plusieurs sources primaires (6A-6C, 16A-16C, 26A-26C, 36A-36C) alimentées de manière indépendante et agencées de façon à présenter des caractéristiques de rayonnement différentes, les sources primaires étant placées dans un premier milieu (7A-7C, 17A-17C, 27, 37A-37C) de façon à être spatialement découplées, caractérisée en ce qu'elle comprend en outre au moins un second milieu (8A-8C, 18A-18C, 28, 38A-38C) recouvrant le premier milieu et ayant une impédance caractéristique sensiblement plus basse que le premier milieu, et en ce que chaque source primaire a au moins une direction de focalisation (A-C) perpendiculaire à l'interface entre les premier et second milieux, suivant laquelle la distance (d.,) entre ladite source primaire et ladite interface est sensiblement égale à λ1.(2p1-1 )/4 et le second milieu a une épaisseur (e2) sensiblement égale à λ2.(2p2-1 )/4, où λ-, et λ2 désignent les longueurs d'onde rayonnees par ladite source primaire dans les premier et second milieux, respectivement, et p-, et p2 sont des entiers.
2. Antenne selon la revendication 1 , dans laquelle le second milieu (8A-8C, 18A-18C, 28, 38A-38C) a une permittivité diélectrique sensiblement plus élevée que le premier milieu (7A-7C, 17A-17C, 27, 38A-38C).
3. Antenne selon la revendication 2, dans laquelle le second milieu
(8A-8C, 18A-18C, 28, 38A-38C) comporte un matériau diélectrique composite.
4. Antenne selon l'une quelconque des revendications précédentes, dans laquelle le premier milieu (17A-17C) est recouvert par une superposition de couches de focalisation (18A-18C, 19A-19C, 20A-20C), la première couche de focalisation (18A-18C), adjacente au premier milieu, étant formée par ledit second milieu, dans laquelle chaque couche de focalisation est formée par un milieu d'épaisseur sensiblement égale à λj.(2pj-1 )/4 suivant la direction de focalisation (A-C) de chacune des sources primaires (16A-16C), où λj désigne la longueur d'onde rayonnee par ladite source primaire dans le milieu formant ladite couche de focalisation et ps est un entier, et dans laquelle la i-ième couche de focalisation est formée, pour chaque entier impair i, par un milieu ayant une impédance caractéristique sensiblement plus basse que les milieux situés de part et d'autre de ladite i-ième couche de focalisation.
5. Antenne selon la revendication 4, dans laquelle la i-ième couche de focalisation est formée, pour chaque entier impair i, par un milieu ayant une permittivité diélectrique sensiblement plus élevée que les milieux situés de part et d'autre de ladite i-ième couche de focalisation.
6. Antenne selon la revendication 5, dans laquelle la i-ième couche de focalisation est formée, pour chaque entier impair i, par un milieu comportant un matériau diélectrique composite.
7. Antenne selon l'une quelconque des revendications 4 à 6, dans laquelle la i-ième couche de focalisation est formée, pour chaque entier pair i, par un milieu comportant des particules de fer dans un support en matière plastique ou résine.
8. Antenne selon l'une quelconque des revendications précédentes, dans laquelle les sources primaires (6A-6C, 16A-16C, 26A-26C, 36A-36C) comprennent des dipôles, des fentes rayonnantes et/ou des motifs microstrip.
9. Antenne selon l'une quelconque des revendications précédentes, dans laquelle les sources primaires (6A-6C, 16A-16C, 36A-36C) sont alimentées et agencées de façon à rayonner selon des longueurs d'onde différentes.
10. Antenne selon l'une quelconque des revendications précédentes, dans laquelle les sources primaires (6A-6C, 26A-26C) sont placées le long d'un axe (X) autour duquel lesdits milieux présentent une symétrie de révolution.
11. Antenne selon la revendication 10, dans laquelle les sources primaires comprennent des dipôles (6A-6C) alignés sur ledit axe (X).
12. Antenne selon la revendication 10, dans laquelle plusieurs des sources primaires (26A-26C) sont alimentées et agencées de façon à rayonner selon sensiblement la même longueur d'onde, et ont des directions de focalisation en site et en azimut (A-C) orientées selon des directions radiales distinctes par rapport audit axe. 13 Antenne selon la revendication 12, dans laquelle les sources primaires sont conformées sur une surface métallique non plane
14 Antenne selon la revendication 13, dans laquelle ladite surface métallique non plane est cylindrique ou conique, avec une symétrie par rapport audit axe (X)
15 Antenne selon l'une quelconque des revendications précédentes, dans laquelle le premier milieu (37A-37C)et le second milieu (38A-38C)ont une interface inclinée par rapport à la source primaire (36A-36C)
EP00949539A 1999-06-18 2000-06-14 Antenne de station de base de radiocommunication Withdrawn EP1114488A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9907744A FR2795240B1 (fr) 1999-06-18 1999-06-18 Antenne de station de base de radiocommunication
FR9907744 1999-06-18
PCT/FR2000/001646 WO2000079643A1 (fr) 1999-06-18 2000-06-14 Antenne de station de base de radiocommunication

Publications (1)

Publication Number Publication Date
EP1114488A1 true EP1114488A1 (fr) 2001-07-11

Family

ID=9546975

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00949539A Withdrawn EP1114488A1 (fr) 1999-06-18 2000-06-14 Antenne de station de base de radiocommunication

Country Status (8)

Country Link
US (1) US6369774B1 (fr)
EP (1) EP1114488A1 (fr)
JP (1) JP2003502975A (fr)
CN (1) CN1314013A (fr)
BR (1) BR0006874A (fr)
CA (1) CA2339875A1 (fr)
FR (1) FR2795240B1 (fr)
WO (1) WO2000079643A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489926B2 (en) * 2001-02-13 2002-12-03 Gary A Jarvis Antenna for hand-held communications devices to reduce exposure to electromagnetic radiation
CA2464883A1 (fr) * 2001-11-14 2003-05-22 Louis David Thomas Systeme d'antenne
US6999042B2 (en) * 2003-03-03 2006-02-14 Andrew Corporation Low visual impact monopole tower for wireless communications
DE10336415B3 (de) * 2003-08-08 2005-04-21 Eads Deutschland Gmbh Integriertes Antennenmast-System an Bord eines Kriegsschiffes
FR2870642B1 (fr) * 2004-05-19 2008-11-14 Centre Nat Rech Scient Cnrse Antenne a materiau bip (bande interdite photonique) a paroi laterale entourant un axe
KR100807321B1 (ko) * 2005-12-13 2008-02-28 주식회사 케이엠더블유 이동통신 기지국용 가변 빔 제어 안테나
JP4563328B2 (ja) * 2006-03-07 2010-10-13 日本電信電話株式会社 無線通信装置
WO2009026718A1 (fr) * 2007-08-31 2009-03-05 Allen-Vanguard Technologies Inc. Ensemble antenne radio
PL218547B1 (pl) * 2007-11-14 2014-12-31 Fert Przemysław Elboxrf Mikropaskowa antena sektorowa o szerokim kącie promieniowania
FR2946806B1 (fr) * 2009-06-11 2012-03-30 Alcatel Lucent Element rayonnant d'antenne multi-bande
US20110217925A1 (en) * 2010-03-08 2011-09-08 Mark Rhodes Noise reducing near-field receiver antenna and system
DE102011084592A1 (de) * 2011-10-17 2013-04-18 Rohde & Schwarz Gmbh & Co. Kg Kombination eines Radar- und Antennenkopfes
DE102012023938A1 (de) * 2012-12-06 2014-06-12 Kathrein-Werke Kg Dualpolarisierte, omnidirektionale Antenne
US9373884B2 (en) 2012-12-07 2016-06-21 Kathrein-Werke Kg Dual-polarised, omnidirectional antenna
GB2512083B (en) * 2013-03-19 2016-10-26 Mettalinovich Tishin Alexandr Antenna, array or system with a material structure surrounding at least part of an antenna element
RU2562401C2 (ru) * 2013-03-20 2015-09-10 Александр Метталинович Тишин Низкочастотная антенна
EP3622582B1 (fr) * 2017-06-30 2021-10-20 Huawei Technologies Co., Ltd. Ensemble d'alimentation d'antenne multibande et antenne multibande

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1074193A (en) 1964-03-23 1967-06-28 Marconi Co Ltd Improvements in or relating to aerial reflector surfaces
GB1555756A (en) * 1975-03-18 1979-11-14 Aerialite Aerials Ltd Aerials
US4008477A (en) * 1975-06-25 1977-02-15 The United States Of America As Represented By The Secretary Of Commerce Antenna with inherent filtering action
US5038151A (en) * 1989-07-31 1991-08-06 Loral Aerospace Corp. Simultaneous transmit and receive antenna
US5155493A (en) 1990-08-28 1992-10-13 The United States Of America As Represented By The Secretary Of The Air Force Tape type microstrip patch antenna
US5453754A (en) * 1992-07-02 1995-09-26 The Secretary Of State For Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Dielectric resonator antenna with wide bandwidth
US5528254A (en) * 1994-05-31 1996-06-18 Motorola, Inc. Antenna and method for forming same
JPH11510662A (ja) * 1995-08-10 1999-09-14 イー・システィムズ、インコーパレイティド 移動無線通信システム用のアンテナ
US6177911B1 (en) * 1996-02-20 2001-01-23 Matsushita Electric Industrial Co., Ltd. Mobile radio antenna
JP3456507B2 (ja) * 1996-04-15 2003-10-14 日本電信電話株式会社 セクタアンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0079643A1 *

Also Published As

Publication number Publication date
CN1314013A (zh) 2001-09-19
FR2795240B1 (fr) 2003-06-13
FR2795240A1 (fr) 2000-12-22
BR0006874A (pt) 2001-08-07
JP2003502975A (ja) 2003-01-21
WO2000079643A1 (fr) 2000-12-28
CA2339875A1 (fr) 2000-12-28
US6369774B1 (en) 2002-04-09

Similar Documents

Publication Publication Date Title
EP1114488A1 (fr) Antenne de station de base de radiocommunication
EP0805512B1 (fr) Antenne imprimée compacte pour rayonnement à faible élévation
EP0886889B1 (fr) Antenne reseau imprimee large bande
US8493273B2 (en) Antenna array with metamaterial lens
EP1407512B1 (fr) Antenne
FR2625616A1 (fr) Antenne plane
EP2571098A1 (fr) Cellule déphaseuse rayonnante reconfigurable basée sur des résonances fentes et microrubans complémentaires
EP1554777B1 (fr) Antenne a materiau bip multi-faisceaux
EP1900064A1 (fr) Lentille inhomogene a gradient d'indice de type oeil de poisson de maxwell, systeme d'antenne et applications correspondants
EP0520908B1 (fr) Antenne réseau linéaire
EP2637254B1 (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aéroporté et système de télécommunication par satellite comportant au moins une telle antenne
EP3692598A1 (fr) Antenne à substrat ferromagnétique dispersif partiellement saturé
EP4046241A1 (fr) Antenne-reseau
EP2622678A1 (fr) Antenne compacte a fort gain
EP0352160B1 (fr) Antenne omnidirectionnelle, notamment pour l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d'un groupement de ces antennes
EP2449629B1 (fr) Systeme antennaire compacte omnidirectionnel et large bande comportant deux acces emission et reception separes fortement decouples
Javor et al. Design and performance of a microstrip flat reflect‐array antenna
EP3900113A1 (fr) Antenne microruban élémentaire et antenne réseau
EP0075375B1 (fr) Antenne plane hyperfréquence à réseau d'éléments rayonnants ou récepteurs de signaux hyperfréquences à polarisation circulaire gauche ou droite
EP0831550B1 (fr) Antenne-réseau polyvalente
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
WO2023078736A1 (fr) Plateforme satellite et procédé de reconfiguration du faisceau électromagnétique d'une telle plateforme satellite
FR2522888A1 (fr) Antenne a double reflecteur a transformateur de polarisation incorpore
Sievenpiper et al. Low-Profile, Switched-Beam Diversity Antennas Using High-Impedance Ground Planes
EP1475860A1 (fr) Dispositif formant antenne, capteur ou sonde électromagnétique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NORTEL NETWORKS SA

RBV Designated contracting states (corrected)

Designated state(s): DE ES FI GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050606