EP1114280B1 - Method and device for determining the soot charge in a combustion chamber - Google Patents

Method and device for determining the soot charge in a combustion chamber Download PDF

Info

Publication number
EP1114280B1
EP1114280B1 EP99955673A EP99955673A EP1114280B1 EP 1114280 B1 EP1114280 B1 EP 1114280B1 EP 99955673 A EP99955673 A EP 99955673A EP 99955673 A EP99955673 A EP 99955673A EP 1114280 B1 EP1114280 B1 EP 1114280B1
Authority
EP
European Patent Office
Prior art keywords
soot
formation rate
determined
combustion
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99955673A
Other languages
German (de)
French (fr)
Other versions
EP1114280A1 (en
Inventor
Felix Fastnacht
Thomas Merklein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1114280A1 publication Critical patent/EP1114280A1/en
Application granted granted Critical
Publication of EP1114280B1 publication Critical patent/EP1114280B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • F23M11/045Means for supervising combustion, e.g. windows by observing the flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Definitions

  • the present invention relates to a method and a Device for determining the soot load in a combustion chamber in operation.
  • a known procedure consists of a selective one Extraction of exhaust gases with soot content using a suction probe. The extraction can either be in the combustion chamber or take place in a downstream exhaust system. Subsequently the extracted air volume is checked and thereby the soot load is determined. A complete record soot loading is not possible with this procedure, since only a selective suction takes place. Local fluctuations the soot load in the combustion chamber or in the exhaust system therefore lead to a distortion. In addition, the at the soot load resulting from the combustion only with a certain Delay time recorded. The intended firing regulation thus always works with a comparatively large one Dead time, which is up to a few for larger power plants Minutes.
  • the object of the present invention is to provide a method the at least one parameter characteristic of the combustion, which allows conclusions to be drawn about the soot load, measured by monitoring a flame of a combustion chamber and determines the soot loading based on the measurement is, as well as a device for performing the method provide a quick and easy investigation the soot loading of a combustion chamber while it is running Enable operation.
  • this object is achieved in a method of type mentioned solved in that the spatial distribution the temperature and / or the content of carbon monoxide measured as parameters characteristic of the combustion a soot formation rate by comparison with predetermined ones Conversion curves are determined and the soot load determined by means of an integration via the soot formation rate becomes.
  • Such conversion curves are for different fuels for example in the “VDI Heat Atlas” and in “Technical Combustion “, Warnatz, Springer Verlag, printed. Alternatively or additional can use these conversion curves Trials for different fuels or fuel compositions determined and stored in the form of a map become.
  • the spatial distribution of the temperature can be determined by a or detect several suitable sensors.
  • the measurement is accurate non-contact, requires no moving parts and takes place without delay.
  • Measuring the level of carbon monoxide takes place, for example, by detecting the radiation in the radiation range characteristic of carbon monoxide. This radiation area is e.g. through a Beam splitter isolated from the entire spectrum of the flame and then recorded; a suitable evaluation unit for the spatial distribution of carbon monoxide is e.g. a CCD camera.
  • the invention proposes the previously known direct methods to determine the soot loading by an indirect Procedure to replace. Extraction of soot-laden exhaust gases or a complex direct determination of the soot load in the flame can be avoided. It is rather through simple measurement a characteristic of the combustion Parameters recorded and then the soot loading based on this measurement and comparison with given conversion curves determined. Elaborate suction and analysis devices are not required. The determination continues the soot loading according to the invention without time delay, so that optimal firing control can be achieved.
  • an allowable for the measured values Area with a lower limit and / or upper limit be specified. If a measured value lies outside the specified one Range, this can be used when determining the soot load to be disregarded. For example, in the Measuring the temperature a lower limit of e.g. 800 ° C become. Areas where the temperature is below this Limit is then considered to be out of flame are considered and not taken into account when determining the soot load stay.
  • the measured spatial Distribution of temperature and / or carbon monoxide content the local soot formation rate is determined. This means, that the to one or more discrete locations within local education rate associated with the spatial measurement range from the discrete measured values associated with the discrete location the temperature and / or the carbon monoxide content is determined, the discrete associated with the discrete location Measured values of the temperature and / or the content of carbon monoxide taken from the spatial distribution of the measured values become. This improves the measurement accuracy.
  • the local soot formation rate according to physical is advantageous and / or chemical relationships. hereby can by specifying the fuel or the fuel mixture the local one without previous tests and experience Soot formation rate can be determined.
  • the determined soot formation rate over the measuring range is advantageous summed up. As a result, the amount of data to be processed reduced. At the same time there is a total value the soot formation rate, which is already used for control and regulation purposes can be used.
  • the determined Soot formation rate summed up over a predefinable period Fluctuations in the flame, particularly due to turbulence Combustion, can be reliably detected. simultaneously peak or minimum values are smoothed. By the A control of the flame can also add up respectively. If the flame goes out, the soot formation rate drops drastically over a longer period of time: brief flickering is added up over the predefinable period smoothed while extinguishing the flame to one leads to a permanent drop in the soot formation rate caused by the The inventive method is recognizable. It is next to it the determination of the soot load also a monitoring of Flame possible.
  • the predefinable period is an advantageous further development mutable.
  • this period can be dependent be changed from previous measurements.
  • Further can be the predefinable when starting off or in the event of load fluctuations Period selected differently than in constant continuous operation become.
  • the determined soot formation rate after the addition is advantageous averaged. This averaging allows a representation the soot formation rate based on the size of the measuring range, so that multiple flames or combustion chambers are different Size can be compared.
  • the determined Soot loading rate before or after adding up with a Calibration factor linked to determine the soot load enables the conclusion of the soot formation rate the soot load and is determined on a plant-specific basis.
  • the calibration factor can advantageously be changed, in particular in Dependence on the measured value supplied to the flame Combustion air and / or other parameters. This will an adaptation to different boundary conditions achieved.
  • Both the temperature and the carbon monoxide content are advantageous measured and linked together. This procedure enables determination of the soot load on the ground two different measured values and thus a control. At the same time, the accuracy is increased.
  • a device for carrying out the method has according to the invention at least one sensor for measuring the spatial Distribution of temperature and / or carbon monoxide content a data processing system for determining the soot formation rate and an integrator for determining the soot load from the soot formation rate.
  • the data processing system includes in particular suitable assemblies or modules for adding up and averaging the soot formation rate and for linking with the calibration factor.
  • At least one sensor is advantageously designed as a CCD camera. Allow such "charged-coupled-device” cameras a spatial resolution of the measuring range and thus the detection of at least one characteristic of the combustion Parameters in spatial distribution.
  • the determined soot formation rate can then be determined using a suitable control processed and sent to the burner Flame.
  • FIG. 1 shows a schematic representation of the process of inventive method.
  • a flame 10 in a combustion chamber 23 is monitored by a detection device I.
  • the detection device I measures the spatial distribution at least one characteristic of the combustion Parameters that allow conclusions about the soot loading. Either the temperature or the carbon monoxide content or temperature and carbon monoxide content recorded together. This is followed by a calculation or a Comparison II a determination of the local soot formation rate, which provides a soot formation field III.
  • the soot formation area III is summed up by an integration IV and if necessary averaged.
  • the soot loading of the combustion chamber determined that displayed through a suitable edition VI is printed out or saved.
  • the soot loading can be given to a regulation VII based on the flame 10 and thus acts on the combustion. hereby a firing control is achieved.
  • Process steps I to VI are shown in more detail in FIG. First, a temperature field 11 of the flame 10 detected. Based on the determination of the local soot load on the temperature field 11, a conversion curve 12 is used either determined by experiment or by physical and / or chemical relationships have been calculated. such Conversion curves 12 are also in the VDI heat atlas and printed in "Technical Combustion", Warnatz, Springer-Verlag.
  • the temperature field 11 and the conversion curve 12 are linked in a comparison module 13 and deliver Field 14 of the soot formation rate.
  • This field 14 of the soot formation rate is transmitted to an integrator 15, which has a spatial and / or time totaling. Possibly can also be averaged after the integration.
  • the total soot formation rate is calculated by the integration, which then with a calibration factor 16 from a Memory element C linked in a link module 17 becomes. This calculates the soot load, which is then is passed on to an output module 18.
  • FIG. 3 shows schematically a device for implementation of the method according to the invention.
  • the flame 10 in the combustion chamber 23 is fed by a burner 21.
  • to Monitoring is provided by one or more sensors 22, which are at least a parameter characteristic of the combustion measure up.
  • This can be a CCD camera.
  • Advantageous the spatial distribution of is measured Temperature and / or carbon monoxide content.
  • the measured value is on the comparison module 13 passed on, in which the field 14 of the Soot formation rate is determined.
  • the comparison module 13 transmits the field 14 of the soot formation rate to the integrator 15, in which the summation and possibly averaging takes place.
  • the Calibration factor 16 determines the soot load. This soot load is delivered to the output module 18.
  • the output module 18 transmits the soot load to a printer or memory 20.
  • a printer or memory 20 there is a feedback to the Burner 21 of the flame 10 with direct, immediate monitoring of the flame 10 and therefore achieved very short dead times.
  • the comparison module 13, the integrator 15, the link module 17 and the Output module 18 are combined in a data processing system 19.

Abstract

A method for determining a soot charge in a combustion chamber includes measuring a spatial distribution of at least one parameter characteristic of a combustion by monitoring a flame in the combustion chamber. The at least one parameter allows a conclusion concerning a soot charge in the combustion chamber during operation and the at least one parameter is a temperature and/or a carbon monoxide content. The soot charge is determined based on the measuring step and by using a comparison with given conversion curves. A device for determining a soot charge in a combustion chamber is also provided.

Description

Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Ermittlung der Rußbeladung eines Verbrennungsraums in laufendem Betrieb.The present invention relates to a method and a Device for determining the soot load in a combustion chamber in operation.

Bei der Verbrennung eines fossilen Brennstoffs in einem Verbrennungsraum steht die ständige Verbesserung des Verbrennungsprozesses im Vordergrund der Bemühungen. Dies gilt nicht nur für gasförmige Schadstoffe, wie Kohlenmonoxid und Stickoxide, sondern auch für die Beladung des Abgases mit Feststoffen, wie Ruß. Zum Erreichen eines möglichst guten Verbrennungsprozesses muß die Feuerung mittels einer geeigneten Feuerungsregelung optimiert werden. Bei der Verwendung von fossilem Brennstoff oder Müll treten nämlich auf Grund der unterschiedlichen Herkunft des Brennstoffs oder der heterogenen Zusammensetzung des Mülls Schwankungen des Heizwertes des Brennstoffs oder der Müllmischung auf. Bei Brennstoffmischungen kann darüber hinaus das Verhältnis der einzelnen Brennstoffe zueinander schwanken.When burning a fossil fuel in a combustion chamber stands the constant improvement of the combustion process in the forefront of efforts. This is not the case only for gaseous pollutants such as carbon monoxide and Nitrogen oxides, but also for loading the exhaust gas with Solids, such as carbon black. To achieve the best possible The combustion process must be carried out using a suitable furnace Firing control can be optimized. When using of fossil fuel or garbage come to shame the different origins of the fuel or the heterogeneous Composition of the garbage fluctuations in the calorific value of fuel or garbage mix. For fuel mixtures can also change the relationship of each Fuels fluctuate with each other.

Eine Möglichkeit der Optimierung stellt die Ermittlung der Rußbeladung im laufenden Betrieb dar, wobei die ermittelte Rußbeladung anschließend für die Regelung der Flamme verwendet wird. Ein bekanntes Vorgehen besteht in einer punktuellen Absaugung von Abgasen mit Rußanteilen mit Hilfe einer Absaugsonde. Die Absaugung kann entweder im Verbrennungsraum oder in einem nachgeschalteten Abgassystem erfolgen. Anschließend wird die abgesaugte Luftmenge überprüft und hierdurch die Rußbeladung ermittelt. Eine vollständige Erfassung der Rußbeladung ist mit diesem Vorgehen nicht möglich, da lediglich ein punktuelles Absaugen erfolgt. Lokale Schwankungen der Rußbeladung in dem Verbrennungsraum oder im Abgassystem führen daher zu einer Verzerrung. Darüber hinaus wird die bei der Verbrennung entstehende Rußbeladung erst mit einer gewissen Verzögerungszeit erfaßt. Die vorgesehene Feuerungsregelung arbeitet somit stets mit einer vergleichsweise großen Totzeit, die bei größeren Kraftwerksanlagen bis zu einigen Minuten betragen kann.One way of optimization is to determine the Soot loading during operation, the determined Soot loading then used to control the flame becomes. A known procedure consists of a selective one Extraction of exhaust gases with soot content using a suction probe. The extraction can either be in the combustion chamber or take place in a downstream exhaust system. Subsequently the extracted air volume is checked and thereby the soot load is determined. A complete record soot loading is not possible with this procedure, since only a selective suction takes place. Local fluctuations the soot load in the combustion chamber or in the exhaust system therefore lead to a distortion. In addition, the at the soot load resulting from the combustion only with a certain Delay time recorded. The intended firing regulation thus always works with a comparatively large one Dead time, which is up to a few for larger power plants Minutes.

Ein anderer Ansatz sieht die Ermittlung der Rußbeladung von Flammen mit Hilfe von Laserabsorptionsmessungen über die Mie-Theorie vor. Dieses Meßverfahren ist allerdings nur zu Forschungszwecken im Labor geeignet, da die Messung der Rußbeladung einer Flamme sehr aufwendig ist. Ein Einsatz im täglichen Dauerbetrieb ist derzeit nicht möglich.Another approach involves determining the soot load of Flames using laser absorption measurements using Mie theory in front. However, this measurement method is only for research purposes Suitable in the laboratory because the measurement of the soot load a flame is very expensive. A daily use Continuous operation is currently not possible.

In der US 5,797,736 ist ein Verfahren und eine Vorrichtung beschrieben, mittels derer eine Flammenbildung in einem Verbrennungsprozeß geregelt wird. Dabei werden Sensoren eingesetzt, welche in und nahe der Flamme charakteristische Parameter der Verbrennung, wie z.B. die Temperatur, die Verteilung von Partikeln usw., detektieren.In US 5,797,736 is a method and an apparatus described by means of which flame formation in a Combustion process is regulated. Here sensors are used, which are characteristic parameters in and near the flame combustion, e.g. the temperature, the distribution of particles, etc., detect.

Es wird in oben genannter Schrift jedoch nicht näher ausgeführt, wie z.B. quantitativ eine Rußbeladung eines Verbrennungsraums ermittelt wird. Es geht hauptsächlich darum, qualitative Unregelmäßigkeiten - wie z.B. Fluktuationen in der Temperaturverteilung der Flamme ("cooler spots"), welche u.a. von einer unregelmäßigen Verteilung von Verbrennungspartikeln verursacht sein können - in der Flamme zu detektieren, um eine Anordnung aus Strahlreflektoren so auszurichten, daß Strahlungsenergie der Flamme gezielt auf "cooler spots" innerhalb der Flamme reflektiert wird. Dadurch wird die Verbrennung gleichmäßiger.However, it is not detailed in the above-mentioned document, such as. quantitatively a soot load in a combustion chamber is determined. It's mainly about qualitative Irregularities - such as Fluctuations in the Temperature distribution of the flame ("cooler spots"), which among other things of an irregular distribution of combustion particles can be caused - to detect in the flame to a Align the array of beam reflectors so that Radiant energy of the flame targeted at "cool spots" within the flame is reflected. This will make the Burn more evenly.

Eine quantitative Ermittlung der Rußbeladung eines Verbrennungsraumes ist mit letztgenanntem Verfahren und Vorrichtung nicht möglich. A quantitative determination of the soot load in a combustion chamber is with the latter method and device not possible.

Aus der DE 2 950 690 A1 ist die Messung einer Rußbeladung zur Regelung eines Verbrennungsvorgangs bekannt.DE 2 950 690 A1 describes the measurement of a soot load Regulation of a combustion process known.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren, bei dem mindestens ein für die Verbrennung charakteristischer Parameter, der einen Rückschluß auf die Rußbeladung erlaubt, durch Überwachung einer Flamme eines Verbrennungsraumes gemessen und die Rußbeladung basierend auf der Messung ermittelt wird, sowie eine Vorrichtung zur Durchführung des Verfahrens bereitzustellen, welche eine rasche und einfache Ermittlung der Rußbeladung eines Verbrennungsraums im laufenden Betrieb ermöglichen.The object of the present invention is to provide a method the at least one parameter characteristic of the combustion, which allows conclusions to be drawn about the soot load, measured by monitoring a flame of a combustion chamber and determines the soot loading based on the measurement is, as well as a device for performing the method provide a quick and easy investigation the soot loading of a combustion chamber while it is running Enable operation.

Erfindungsgemäß wird diese Aufgabe bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß die räumliche Verteilung der Temperatur und/oder der Gehalt an Kohlenmonoxid als für die Verbrennung charakteristischer Parameter gemessen werden, eine Rußbildungsrate durch einen Vergleich mit vorgegebenen Umrechnungskurven ermittelt wird und die Rußbeladung mittels einer Integration über die Rußbildungsrate ermittelt wird.According to the invention, this object is achieved in a method of type mentioned solved in that the spatial distribution the temperature and / or the content of carbon monoxide measured as parameters characteristic of the combustion a soot formation rate by comparison with predetermined ones Conversion curves are determined and the soot load determined by means of an integration via the soot formation rate becomes.

Derartige Umrechnungskurven sind für verschiedene Brennstoffe beispielsweise in dem "VDI-Wärmeatlas" und in "Technische Verbrennung", Warnatz, Springer Verlag, abgedruckt. Alternativ oder zusätzliche können diese Umrechnungskurven durch Versuche für verschiedene Brennstoffe oder Brennstoffzusammensetzungen ermittelt und in Form eines Kennfelds abgelegt werden.Such conversion curves are for different fuels for example in the "VDI Heat Atlas" and in "Technical Combustion ", Warnatz, Springer Verlag, printed. Alternatively or additional can use these conversion curves Trials for different fuels or fuel compositions determined and stored in the form of a map become.

Die räumliche Verteilung der Temperatur läßt sich durch einen oder mehrere geeignete Sensoren erfassen. Die Messung ist genau, berührungsfrei, erfordert keine beweglichen Bauteile und erfolgt ohne Verzögerung. Die Messung des Gehalts an Kohlenmonoxid erfolgt beispielsweise über eine Erfassung der Strahlung in dem für Kohlenmonoxid charakteristischen Strahlungsbereich. Dieser Strahlungsbereich wird z.B. durch einen Strahlteiler aus dem Gesamtspektrum der Flamme isoliert und anschließend erfaßt; eine geeignete Auswerteeinheit für die räumliche Verteilung des Kohlenmonoxids ist z.B. eine CCD-Kamera. The spatial distribution of the temperature can be determined by a or detect several suitable sensors. The measurement is accurate non-contact, requires no moving parts and takes place without delay. Measuring the level of carbon monoxide takes place, for example, by detecting the radiation in the radiation range characteristic of carbon monoxide. This radiation area is e.g. through a Beam splitter isolated from the entire spectrum of the flame and then recorded; a suitable evaluation unit for the spatial distribution of carbon monoxide is e.g. a CCD camera.

Die Erfindung schlägt vor, die bisher bekannten direkten Verfahren zur Ermittlung der Rußbeladung durch ein indirektes Verfahren zu ersetzen. Ein Absaugen von rußbeladenen Abgasen oder eine aufwendige direkte Bestimmung der Rußbeladung in der Flamme können vermieden werden. Es wird vielmehr durch einfache Messung ein für die Verbrennung charakteristischer Parameter erfaßt und anschließend die Rußbeladung basierend auf dieser Messung und Vergleich mit vorgegebenen Umrechnungskurven ermittelt. Aufwendige Absaug- und Analyseeinrichtungen sind nicht erforderlich. Weiter erfolgt die Ermittlung der Rußbeladung erfindungsgemäß ohne Zeitverzögerung, so daß eine optimale Feuerungsregelung erreicht werden kann.The invention proposes the previously known direct methods to determine the soot loading by an indirect Procedure to replace. Extraction of soot-laden exhaust gases or a complex direct determination of the soot load in the flame can be avoided. It is rather through simple measurement a characteristic of the combustion Parameters recorded and then the soot loading based on this measurement and comparison with given conversion curves determined. Elaborate suction and analysis devices are not required. The determination continues the soot loading according to the invention without time delay, so that optimal firing control can be achieved.

Durch die Messung der räumlichen Verteilung der Temperatur und/oder des Gehalts an Kohlenmonoxid ist eine im Vergleich zu einer eindimensionalen Messung genauere Ermittlung der Rußbeladung möglich, da beide Größen im Regelfall im Bereich der Flamme nicht konstant sind.By measuring the spatial distribution of temperature and / or the carbon monoxide content is one in comparison for a one-dimensional measurement more precise determination of the Soot loading possible, since both sizes are usually in the range the flame are not constant.

Weiter ändert sich bei turbulenter Verbrennung, wie sie im Verbrennungsraum von Kraftwerken immer vorliegt, die Position der Flamme während der Verbrennung. Eine stationäre Messung an einzelnen ausgewählten Punkten könnte dazu führen, daß die Flamme bei Veränderung ihrer Position nicht durch die Meßeinrichtung erfaßt wird. Bei der Erfassung der räumlichen Verteilung kann dies durch die Vorgabe eines räumlichen Meßbereichs verhindert werden.Further changes in turbulent combustion, as in Combustion chamber of power plants is always present, the position the flame during combustion. A stationary measurement at selected points, the Do not flame through the measuring device when changing their position is detected. When capturing the spatial distribution can do this by specifying a spatial measuring range be prevented.

Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Advantageous refinements and developments of the invention emerge from the subclaims.

In vorteilhafter Ausgestaltung kann für die Meßwerte ein zulässiger Bereich mit einer Untergrenze und/oder Obergrenze vorgegeben werden. Liegt ein Meßwert außerhalb des vorgegebenen Bereichs, so kann dieser bei der Ermittlung der Rußbeladung unberücksichtigt bleiben. Beispielsweise kann bei der Messung der Temperatur eine Untergrenze von z.B. 800 °C festgelegt werden. Bereiche, in denen die Temperatur unter dieser Grenze liegt, können dann als außerhalb der Flamme liegend angesehen werden und bei der Ermittlung der Rußbeladung unberücksichtigt bleiben.In an advantageous embodiment, an allowable for the measured values Area with a lower limit and / or upper limit be specified. If a measured value lies outside the specified one Range, this can be used when determining the soot load to be disregarded. For example, in the Measuring the temperature a lower limit of e.g. 800 ° C become. Areas where the temperature is below this Limit is then considered to be out of flame are considered and not taken into account when determining the soot load stay.

In vorteilhafter Weiterbildung wird aus der gemessenen räumlichen Verteilung der Temperatur und/oder des Gehalts an Kohlenmonoxid die örtliche Rußbildungsrate ermittelt. Dies bedeutet, daß die zu einem oder mehreren diskreten Orten innerhalb des räumlichen Meßbereichs zugehörige örtliche Bildungsrate aus den zu dem diskreten Ort zugehörigen diskreten Meßwerten der Temperatur und/oder des Gehalts an Kohlenmonoxid ermittelt wird, wobei die zum diskreten Ort zugehörigen diskreten Meßwerte der Temperatur und/oder des Gehalts an Kohlenmonoxid aus der räumlichen Verteilung der Meßwerte entnommen werden. Hierdurch wird die Meßgenauigkeit verbessert.In an advantageous development, the measured spatial Distribution of temperature and / or carbon monoxide content the local soot formation rate is determined. This means, that the to one or more discrete locations within local education rate associated with the spatial measurement range from the discrete measured values associated with the discrete location the temperature and / or the carbon monoxide content is determined, the discrete associated with the discrete location Measured values of the temperature and / or the content of carbon monoxide taken from the spatial distribution of the measured values become. This improves the measurement accuracy.

Vorteilhaft wird die örtliche Rußbildungsrate nach physikalischen und/oder chemischen Zusammenhängen errechnet. Hierdurch kann durch Vorgabe des Brennstoffs oder der Brennstoffmischung ohne vorherige Tests und Erfahrungswerte die örtliche Rußbildungsrate bestimmt werden.The local soot formation rate according to physical is advantageous and / or chemical relationships. hereby can by specifying the fuel or the fuel mixture the local one without previous tests and experience Soot formation rate can be determined.

Vorteilhaft wird die ermittelte Rußbildungsrate über den Meßbereich aufsummiert. Hierdurch wird die zu bearbeitende Datenmenge verringert. Gleichzeitig ergibt sich ein Gesamtwert der Rußbildungsrate, der bereits für Kontroll- und Regelungszwecke verwendet werden kann.The determined soot formation rate over the measuring range is advantageous summed up. As a result, the amount of data to be processed reduced. At the same time there is a total value the soot formation rate, which is already used for control and regulation purposes can be used.

Gemäß einer vorteilhaften Weiterbildung wird die ermittelte Rußbildungsrate über einen vorgebbaren Zeitraum aufsummiert. Schwankungen der Flamme, insbesondere auf Grund turbulenter Verbrennung, können zuverlässig erfaßt werden. Gleichzeitig werden Spitzenwerte oder Minimalwerte geglättet. Durch das Aufsummieren kann darüber hinaus eine Kontrolle der Flamme erfolgen. Erlischt die Flamme, so fällt die Rußbildungsrate über einen längeren Zeitraum drastisch ab: Kurzzeitiges Flackern wird durch das Aufsummieren über den vorgebbaren Zeitraum geglättet, während ein Erlöschen der Flamme zu einem dauerhaften Abfall der Rußbildungsrate führt, der durch das erfindungsgemäße Verfahren erkennbar ist. Es ist somit neben der Ermittlung der Rußbeladung auch eine Überwachung der Flamme möglich.According to an advantageous development, the determined Soot formation rate summed up over a predefinable period. Fluctuations in the flame, particularly due to turbulence Combustion, can be reliably detected. simultaneously peak or minimum values are smoothed. By the A control of the flame can also add up respectively. If the flame goes out, the soot formation rate drops drastically over a longer period of time: brief flickering is added up over the predefinable period smoothed while extinguishing the flame to one leads to a permanent drop in the soot formation rate caused by the The inventive method is recognizable. It is next to it the determination of the soot load also a monitoring of Flame possible.

In vorteilhafter Weiterbildung ist der vorgebbare Zeitraum veränderlich. Insbesondere kann dieser Zeitraum in Abhängigkeit von vorangegangenen Messungen verändert werden. Weiter kann beim Anfahren oder bei Lastschwankungen der vorgebbare Zeitraum anders als im gleichbleibenden Dauerbetrieb gewählt werden.The predefinable period is an advantageous further development mutable. In particular, this period can be dependent be changed from previous measurements. Further can be the predefinable when starting off or in the event of load fluctuations Period selected differently than in constant continuous operation become.

Vorteilhaft wird die ermittelte Rußbildungsrate nach dem Aufsummieren gemittelt. Diese Mittelung erlaubt eine Darstellung der Rußbildungsrate bezogen auf die Größe des Meßbereichs, so daß mehrere Flammen oder Verbrennungsräume unterschiedlicher Größe miteinander verglichen werden können.The determined soot formation rate after the addition is advantageous averaged. This averaging allows a representation the soot formation rate based on the size of the measuring range, so that multiple flames or combustion chambers are different Size can be compared.

Gemäß einer vorteilhaften Ausgestaltung wird die ermittelte Rußbeladungsrate vor oder nach dem Aufsummieren mit einem Eichfaktor zur Ermittlung der Rußbeladung verknüpft. Dieser Eichfaktor ermöglicht den Schluß von der Rußbildungsrate auf die Rußbeladung und wird anlagenspezifisch ermittelt.According to an advantageous embodiment, the determined Soot loading rate before or after adding up with a Calibration factor linked to determine the soot load. This Calibration factor enables the conclusion of the soot formation rate the soot load and is determined on a plant-specific basis.

Vorteilhaft ist der Eichfaktor veränderbar, insbesondere in Abhängigkeit von dem Meßwert, der der Flamme zugeführten Verbrennungsluft und/oder weiteren Parametern. Hierdurch wird eine Anpassung an unterschiedliche Randbedingungen erreicht.The calibration factor can advantageously be changed, in particular in Dependence on the measured value supplied to the flame Combustion air and / or other parameters. This will an adaptation to different boundary conditions achieved.

Vorteilhaft werden sowohl die Temperatur als auch der Kohlenmonoxidgehalt gemessen und miteinander verknüpft. Dieses Vorgehen ermöglicht eine Ermittlung der Rußbeladung auf Grund zweier unterschiedlicher Meßwerte und somit eine Kontrolle. Gleichzeitig wird die Genauigkeit erhöht. Both the temperature and the carbon monoxide content are advantageous measured and linked together. This procedure enables determination of the soot load on the ground two different measured values and thus a control. At the same time, the accuracy is increased.

Eine Vorrichtung zur Durchführung des Verfahrens weist erfindungsgemäß mindestens einen Sensor zur Messung der räumlichen Verteilung der Temperatur und/oder des Gehalts an Kohlenmonoxid eine Datenverarbeitungsanlage zur Ermittlung der Rußbildungsrate und einen Integrator zur Ermittlung der Rußbeladung aus der Rußbildungsrate auf. Die Datenverarbeitungsanlage umfaßt insbesondere geeignete Baugruppen oder Module zum Aufsummieren und Mitteln der Rußbildungsrate sowie zur Verknüpfung mit dem Eichfaktor.A device for carrying out the method has according to the invention at least one sensor for measuring the spatial Distribution of temperature and / or carbon monoxide content a data processing system for determining the soot formation rate and an integrator for determining the soot load from the soot formation rate. The data processing system includes in particular suitable assemblies or modules for adding up and averaging the soot formation rate and for linking with the calibration factor.

Vorteilhaft ist mindestens ein Sensor als CCD-Kamera ausgebildet. Derartige "charged-coupled-device"-Kameras erlauben eine Ortsauflösung des Meßbereichs und damit die Erfassung des mindestens einen für die Verbrennung charakteristischen Parameters in räumlicher Verteilung. At least one sensor is advantageously designed as a CCD camera. Allow such "charged-coupled-device" cameras a spatial resolution of the measuring range and thus the detection of at least one characteristic of the combustion Parameters in spatial distribution.

Die ermittelte Rußbildungsrate kann anschließend über eine geeignete Regelung weiterverarbeitet und an den Brenner der Flamme geführt werden.The determined soot formation rate can then be determined using a suitable control processed and sent to the burner Flame.

Nachstehend wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben, die in schematischer Weise in der Zeichnung dargestellt sind. Dabei zeigen:

  • Figuren 1 und 2 eine schematische Darstellung des Ablaufs des erfindungsgemäßen Verfahrens; und
  • Figur 3 eine schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens.
  • The invention is described in more detail below with the aid of exemplary embodiments which are shown in a schematic manner in the drawing. Show:
  • Figures 1 and 2 is a schematic representation of the sequence of the method according to the invention; and
  • Figure 3 is a schematic representation of an apparatus for performing the method according to the invention.
  • Figur 1 zeigt eine schematische Darstellung des Ablaufs des erfindungsgemäßen Verfahrens. Eine Flamme 10 in einem Verbrennungsraum 23 wird über eine Erfassungseinrichtung I überwacht. Die Erfassungseinrichtung I mißt die räumliche Verteilung mindestens eines für die Verbrennung charakteristischen Parameters, der einen Rückschluß auf die Rußbeladung erlaubt. Es werden entweder die Temperatur oder der Gehalt an Kohlenmonoxid oder Temperatur und Kohlenmonoxidgehalt gemeinsam erfaßt. Anschließend erfolgt durch eine Berechnung oder einen Abgleich II eine Ermittlung der örtlichen Rußbildungsrate, die ein Rußbildungsfeld III liefert. Das Rußbildungsfeld III wird durch eine Integration IV aufsummiert und gegebenenfalls gemittelt. Anschließend erfolgt eine Verknüpfung V mit einem Eichfaktor. Hierdurch wird die Rußbeladung des Verbrennungsraums ermittelt, die über eine geeignete Ausgabe VI angezeigt, ausgedruckt oder abgespeichert wird. Zusätzlich kann die Rußbeladung auf eine Regelung VII gegeben werden, die auf die Flamme 10 und damit auf die Verbrennung einwirkt. Hierdurch wird eine Feuerungsregelung erreicht.Figure 1 shows a schematic representation of the process of inventive method. A flame 10 in a combustion chamber 23 is monitored by a detection device I. The detection device I measures the spatial distribution at least one characteristic of the combustion Parameters that allow conclusions about the soot loading. Either the temperature or the carbon monoxide content or temperature and carbon monoxide content recorded together. This is followed by a calculation or a Comparison II a determination of the local soot formation rate, which provides a soot formation field III. The soot formation area III is summed up by an integration IV and if necessary averaged. Then there is a link V with a Calibration factor. As a result, the soot loading of the combustion chamber determined that displayed through a suitable edition VI is printed out or saved. In addition can the soot loading can be given to a regulation VII based on the flame 10 and thus acts on the combustion. hereby a firing control is achieved.

    In Figur 2 sind die Verfahrensschritte I bis VI genauer dargestellt. Zunächst wird ein Temperaturfeld 11 der Flamme 10 erfaßt. Zur Ermittlung der örtlichen Rußbeladung basierend auf dem Temperaturfeld 11 dient eine Umrechnungskurve 12, die entweder durch Versuche ermittelt oder nach physikalischen und/oder chemischen Zusammenhängen errechnet worden ist. Derartige Umrechnungskurven 12 sind auch in dem VDI-Wärmeatlas und in "Technische Verbrennung", Warnatz, Springer-Verlag abgedruckt. Das Temperaturfeld 11 und die Umrechnungskurve 12 werden in einem Vergleichsmodul 13 verknüpft und liefern ein Feld 14 der Rußbildungsrate. Dieses Feld 14 der Rußbildungsrate wird an einen Integrator 15 übermittelt, der eine räumliche und/oder zeitliche Aufsummierung vornimmt. Gegebenenfalls kann nach der Integration auch eine Mittelung erfolgen. Durch die Integration wird die gesamte Rußbildungsrate errechnet, die anschließend mit einem Eichfaktor 16 aus einem Speicherelement C in einem Verknüpfungsmodul 17 verknüpft wird. Hierdurch wird die Rußbeladung errechnet, die anschließend an ein Ausgabemodul 18 weitergegeben wird.Process steps I to VI are shown in more detail in FIG. First, a temperature field 11 of the flame 10 detected. Based on the determination of the local soot load on the temperature field 11, a conversion curve 12 is used either determined by experiment or by physical and / or chemical relationships have been calculated. such Conversion curves 12 are also in the VDI heat atlas and printed in "Technical Combustion", Warnatz, Springer-Verlag. The temperature field 11 and the conversion curve 12 are linked in a comparison module 13 and deliver Field 14 of the soot formation rate. This field 14 of the soot formation rate is transmitted to an integrator 15, which has a spatial and / or time totaling. Possibly can also be averaged after the integration. The total soot formation rate is calculated by the integration, which then with a calibration factor 16 from a Memory element C linked in a link module 17 becomes. This calculates the soot load, which is then is passed on to an output module 18.

    Alternativ kann aus einem anderen Speicherelement C' ein anderer Eichfaktor 16' verwendet werden, der nach der Ermittlung des Felds 14 der Rußbildungsrate mit diesem Feld 14 verknüpft wird. Dies ist gestrichelt gezeigt.Alternatively, another memory element C 'can be used Calibration factor 16 'can be used after the determination of field 14 of the soot formation rate linked to this field 14 becomes. This is shown in dashed lines.

    Figur 3 zeigt schematisch eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens. Die Flamme 10 in dem Verbrennungsraum 23 wird von einem Brenner 21 gespeist. Zur Überwachung dienen ein oder mehrere Sensoren 22, die mindestens einen für die Verbrennung charakteristischen Parameter messen. Hierbei kann es sich um eine CCD-Kamera handeln. Vorteilhaft erfolgt eine Messung der räumlichen Verteilung von Temperatur und/oder Kohlenmonoxidgehalt. Der Meßwert wird an das Vergleichsmodul 13 weitergegeben, in dem das Feld 14 der Rußbildungsrate ermittelt wird. Das Vergleichsmodul 13 übermittelt das Feld 14 der Rußbildungsrate an den Integrator 15, in dem die Aufsummierung und gegebenenfalls Mittelung erfolgt. In dem Verknüpfungsmodul 17 wird anschließend über den Eichfaktor 16 die Rußbeladung ermittelt. Diese Rußbeladung wird an das Ausgabemodul 18 abgegeben. Das Ausgabemodul 18 übermittelt die Rußbeladung an einen Drucker oder Speicher 20. Vorteilhaft erfolgt gleichzeitig eine Rückkopplung zu dem Brenner 21 der Flamme 10. Hierdurch wird eine Feuerungsregelung mit direkter, unmittelbarer Überwachung der Flamme 10 und daher sehr geringen Totzeiten erreicht. Das Vergleichsmodul 13, der Integrator 15, das Verknüpfungsmodul 17 sowie das Ausgabemodul 18 sind in einer Datenverarbeitungsanlage 19 zusammengefaßt.Figure 3 shows schematically a device for implementation of the method according to the invention. The flame 10 in the combustion chamber 23 is fed by a burner 21. to Monitoring is provided by one or more sensors 22, which are at least a parameter characteristic of the combustion measure up. This can be a CCD camera. Advantageous the spatial distribution of is measured Temperature and / or carbon monoxide content. The measured value is on the comparison module 13 passed on, in which the field 14 of the Soot formation rate is determined. The comparison module 13 transmits the field 14 of the soot formation rate to the integrator 15, in which the summation and possibly averaging takes place. In the link module 17 is then the Calibration factor 16 determines the soot load. This soot load is delivered to the output module 18. The output module 18 transmits the soot load to a printer or memory 20. Advantageously, there is a feedback to the Burner 21 of the flame 10 with direct, immediate monitoring of the flame 10 and therefore achieved very short dead times. The comparison module 13, the integrator 15, the link module 17 and the Output module 18 are combined in a data processing system 19.

    Insgesamt ermöglichen das erfindungsgemäße Verfahren und die zugehörige Vorrichtung eine rasche, einfache und hochgenaue Ermittlung der Rußbeladung.Overall, the inventive method and the associated device a quick, simple and highly accurate Determination of the soot load.

    Claims (13)

    1. Method for determining the soot charge in a combustion chamber (23) during operation, in which at least one parameter which is characteristic of combustion and permits a conclusion concerning the soot charge is measured by monitoring a flame (10) in the combustion chamber (23), and the soot charge is determined on the basis of the measurement, characterized in that the spatial distribution of the temperature and/or the content of carbon monoxide is measured as parameter characteristic of combustion, a soot formation rate is determined by comparison with prescribed conversion curves and the soot charge is determined by integration via the soot formation rate.
    2. Method according to Claim 1, characterized in that a permissible range with a lower bound and/or upper bound is prescribed for the measured values of the at least one parameter characteristic of combustion, and measured values lying outside the prescribed range are not taken into account when determining the soot charge.
    3. Method according to Claim 1 or 2, characterized in that the local soot formation rate is determined from the measured spatial distribution of the temperature and/or the content of carbon monoxide.
    4. Method according to Claim 3, characterized in that the local soot formation rate is calculated using physical and/or chemical relationships.
    5. Method according to either of Claims 3 and 4, characterized in that the determined soot formation rate is summed over the measuring zone.
    6. Method according to one of Claims 3 to 5, characterized in that the determined soot formation rate is summed over a prescribeable time interval.
    7. Method according to Claim 6, characterized in that the prescribeable time interval is variable.
    8. Method according to one of Claims 5 to 7, characterized in that the determined soot formation rate is averaged after the summing.
    9. Method according to one of Claims 5 to 8, characterized in that the determined soot formation rate before or after the summing is linked to a calibration factor determining the soot charge.
    10. Method according to Claim 9, characterized in that the calibration factor is variable, in particular as a function of the measured value, the combustion air fed to the flame (10) and/or other parameters.
    11. Method according to one of Claims 1 to 10, characterized in that the temperature and the carbon monoxide content are measured and linked to one another.
    12. Device for determining the soot charge in a combustion chamber (23) during operation, in which at least one parameter which is characteristic of combustion and permits a conclusion concerning the soot charge is measured by monitoring a flame (10) in the combustion chamber (23), and the soot charge is determined on the basis of the measurement, characterized by at least one sensor (22) for measuring the spatial distribution of the temperature and/or the content of carbon monoxide, by a computer (19) for determining the soot formation rate and by an integrator (15) for determining the soot charge from the soot formation rate.
    13. Device according to Claim 12, characterized in that at least one sensor (22) is designed as a CCD camera.
    EP99955673A 1998-09-11 1999-09-08 Method and device for determining the soot charge in a combustion chamber Expired - Lifetime EP1114280B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19841877 1998-09-11
    DE19841877A DE19841877A1 (en) 1998-09-11 1998-09-11 Method and device for determining the soot loading of a combustion chamber
    PCT/DE1999/002839 WO2000016010A1 (en) 1998-09-11 1999-09-08 Method and device for determining the soot charge in a combustion chamber

    Publications (2)

    Publication Number Publication Date
    EP1114280A1 EP1114280A1 (en) 2001-07-11
    EP1114280B1 true EP1114280B1 (en) 2003-12-17

    Family

    ID=7880809

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99955673A Expired - Lifetime EP1114280B1 (en) 1998-09-11 1999-09-08 Method and device for determining the soot charge in a combustion chamber

    Country Status (8)

    Country Link
    US (1) US6551094B2 (en)
    EP (1) EP1114280B1 (en)
    JP (1) JP4365036B2 (en)
    AT (1) ATE256843T1 (en)
    DE (2) DE19841877A1 (en)
    DK (1) DK1114280T3 (en)
    ES (1) ES2213396T3 (en)
    WO (1) WO2000016010A1 (en)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10243307B4 (en) * 2002-09-13 2006-06-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Apparatus and method for the controlled production of nano soot particles
    WO2007022442A1 (en) * 2005-08-17 2007-02-22 Nuvo Ventures, Llc Method and system for monitoring plant operating capacity
    DE102006044114A1 (en) 2006-09-20 2008-03-27 Forschungszentrum Karlsruhe Gmbh Method for characterizing the exhaust gas burnout quality in incinerators
    DE102006060869A1 (en) * 2006-12-22 2008-06-26 Khd Humboldt Wedag Gmbh Method for controlling the operation of a rotary kiln burner
    US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices
    US8018590B2 (en) * 2008-10-23 2011-09-13 General Electric Company Three-dimensional optical sensor and system for combustion sensing and control
    DE102008056674A1 (en) * 2008-11-11 2010-05-12 Siemens Aktiengesellschaft A method and apparatus for monitoring the combustion of a power plant based on a real concentration distribution of a substance
    US20100324989A1 (en) * 2009-06-23 2010-12-23 Craig Stephen Etchegoyen System and Method for Monitoring Efficacy of Online Advertising
    DE102009030322A1 (en) * 2009-06-24 2010-12-30 Siemens Aktiengesellschaft Concept for controlling and optimizing the combustion of a steam generator on the basis of spatially resolved measurement information from the combustion chamber

    Family Cites Families (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2950690A1 (en) * 1979-12-17 1981-06-25 Servo-Instrument, in Deutschland Alleinvertrieb der BEAB-Regulatoren GmbH u. Co KG, 4050 Mönchengladbach Regulation of gas burner operation - has exhaust gas sampling to control setting of butterfly valves controlling through flow
    DE2950689A1 (en) * 1979-12-17 1981-06-25 Servo-Instrument, in Deutschland Alleinvertrieb der BEAB-Regulatoren GmbH u. Co KG, 4050 Mönchengladbach CONTROL DEVICE FOR THE COMBUSTION AIR AMOUNT OF A FIREPLACE
    JPS60196517A (en) * 1984-03-16 1985-10-05 Toyota Motor Corp Control mechanism for soot of burner
    US4620491A (en) * 1984-04-27 1986-11-04 Hitachi, Ltd. Method and apparatus for supervising combustion state
    JPH0227571B2 (en) * 1984-12-06 1990-06-18 Tokyo Denryoku Kk NENSHOJOTAISHINDANHOHO
    JPS62276326A (en) * 1986-05-26 1987-12-01 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion
    US4926356A (en) * 1988-02-29 1990-05-15 The Boeing Company Test apparatus for measuring heat release of certain materials
    CH680238A5 (en) * 1989-12-04 1992-07-15 Matter & Siegmann Ag
    JPH03207912A (en) * 1990-01-08 1991-09-11 Hitachi Ltd Flame spectroscopic image display for gas turbine combustion device
    US5249954A (en) * 1992-07-07 1993-10-05 Electric Power Research Institute, Inc. Integrated imaging sensor/neural network controller for combustion systems
    DE4305645C2 (en) * 1993-02-24 1996-10-02 Rwe Entsorgung Ag Method for determining characteristic properties of processes forming free radicals, use of the method and device for carrying out the method
    JPH06273322A (en) * 1993-03-17 1994-09-30 Hitachi Ltd Camera, spectroscopic system and combustion evaluating system employing them
    US5575637A (en) * 1994-11-04 1996-11-19 Air Products And Chemicals, Inc. Method and device for low-NOx high efficiency heating in high temperature furnaces
    DE19532539A1 (en) * 1995-09-04 1997-03-20 Heinz Prof Dr Ing Spliethoff Process for monitoring power plant output firing
    US5794549A (en) * 1996-01-25 1998-08-18 Applied Synergistics, Inc. Combustion optimization system
    DE19605287C2 (en) * 1996-02-13 2000-11-02 Orfeus Combustion Eng Gmbh Method and device for controlling the travel time of a boiler
    US5829962A (en) * 1996-05-29 1998-11-03 L'air Liquide, Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges Method and apparatus for optical flame control of combustion burners
    US5993194A (en) * 1996-06-21 1999-11-30 Lemelson; Jerome H. Automatically optimized combustion control
    US5797736A (en) * 1996-12-03 1998-08-25 University Of Kentucky Research Foundation Radiation modulator system
    DE19931111A1 (en) * 1999-07-06 2001-01-11 Electrowatt Tech Innovat Corp Flame monitoring device e.g. for refuse burning plant comprises array of semiconductor photodetectors connected to evaluation circuitry

    Also Published As

    Publication number Publication date
    EP1114280A1 (en) 2001-07-11
    JP2002525544A (en) 2002-08-13
    WO2000016010A1 (en) 2000-03-23
    ATE256843T1 (en) 2004-01-15
    DE19841877A1 (en) 2000-04-20
    US20010019814A1 (en) 2001-09-06
    JP4365036B2 (en) 2009-11-18
    US6551094B2 (en) 2003-04-22
    ES2213396T3 (en) 2004-08-16
    DE59908129D1 (en) 2004-01-29
    DK1114280T3 (en) 2004-04-13

    Similar Documents

    Publication Publication Date Title
    EP0612961B1 (en) Method for determining characteristic properties of processes producing radicals
    DE60106509T2 (en) Control method of a burner
    EP0156200B1 (en) Method of and device for determining the mixing ratio of a mixture containing an oxygen carrier and a fuel
    DE69923357T2 (en) Feed / loss method for determining fuel flow, chemical composition, calorific value, and performance of a fossil fuel thermal system
    DE2656840C2 (en) Method and device for regulating the energy supply to a heating device for the combustion chamber of an incineration unit
    EP1114280B1 (en) Method and device for determining the soot charge in a combustion chamber
    DE102005006007A1 (en) Method and system for real-time evaluation of the boiler setting using an emission sensor data map
    DE4118781C2 (en) Wobbe counter
    DE102007041871A1 (en) Compensation of varying fuel and air properties with an ion signal
    DE19850338C2 (en) Method and device for checking and monitoring the aging of a catalytic converter in the exhaust gas of internal combustion engines and the emission of pollutants
    EP0156958B1 (en) Regulation method for the combustion air quantity of a burner apparatus
    EP2347178B1 (en) Method and device for monitoring the combustion of fuel in a power station
    EP1890207A1 (en) Method of generating a process model
    EP1697687B1 (en) Method for determining fluctuating fuel properties during the operation of a power plant
    EP4043793A1 (en) Method and arrangement for detecting flashback in a premix burner
    EP1051585B1 (en) Method and device for operating an incinerator plant
    DE4042025C2 (en) Device and method for evaluating the combustion state in an internal combustion engine
    EP3995817A1 (en) Method and assembly for detecting hydrogen in a heater operable with hydrogen or hydrogen-containing fuel gas
    WO2005038345A2 (en) Device and method for optimizing the exhaust gas burn-out rate in incinerating plants
    EP0655583B1 (en) Method for controlling and monitoring combustion
    DE102009057121A1 (en) Method for qualitative monitoring of combustion status of boiler system in e.g. industrial combustion, involves determining exhaust gas value of combustion of fuel-air-mixture by boiler-isothermal current and/or voltage characteristic curve
    DE19637726A1 (en) Fuel combustion monitoring apparatus from formation of exhaust gas esp. for gas turbine
    DE4315969A1 (en) Method and equipment for optimising combustion plants
    DE10153643A1 (en) Process for monitoring of a combustion system having a burner supplied with fuel comprises simultaneous monitoring of the flame, the oxidizable components of the exhaust gas, and its temperature using a sensor
    DE2510718C2 (en) Compound controller for a gas, oil and coal dust burner

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20001201

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20020124

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031217

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031217

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59908129

    Country of ref document: DE

    Date of ref document: 20040129

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040317

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040319

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2213396

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040908

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040930

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040920

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040517

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20110926

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20111213

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FI

    Payment date: 20120912

    Year of fee payment: 14

    Ref country code: SE

    Payment date: 20120911

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20121010

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20120810

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120930

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120930

    BERE Be: lapsed

    Owner name: *SIEMENS A.G.

    Effective date: 20130930

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130908

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130909

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20130930

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 256843

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20130908

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130908

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130930

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20140904

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140908

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20140927

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20140917

    Year of fee payment: 16

    Ref country code: ES

    Payment date: 20141027

    Year of fee payment: 16

    Ref country code: DE

    Payment date: 20141120

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59908129

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150908

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150908

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20151001

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20160531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150908

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150930

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151001

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20170306

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150909