EP1114280A1 - Method and device for determining the soot charge in a combustion chamber - Google Patents

Method and device for determining the soot charge in a combustion chamber

Info

Publication number
EP1114280A1
EP1114280A1 EP99955673A EP99955673A EP1114280A1 EP 1114280 A1 EP1114280 A1 EP 1114280A1 EP 99955673 A EP99955673 A EP 99955673A EP 99955673 A EP99955673 A EP 99955673A EP 1114280 A1 EP1114280 A1 EP 1114280A1
Authority
EP
European Patent Office
Prior art keywords
soot
combustion
formation rate
measured
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99955673A
Other languages
German (de)
French (fr)
Other versions
EP1114280B1 (en
Inventor
Felix Fastnacht
Thomas Merklein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1114280A1 publication Critical patent/EP1114280A1/en
Application granted granted Critical
Publication of EP1114280B1 publication Critical patent/EP1114280B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • F23M11/045Means for supervising combustion, e.g. windows by observing the flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Definitions

  • the present invention relates to a method and a device for determining the soot loading of a combustion chamber during operation.
  • the firing must be optimized using a suitable firing control.
  • fluctuations in the calorific value of the fuel or the multi-blend occur because of the different origin of the fuel or the heterogeneous composition of the gauze.
  • the ratio of the individual fuels to one another can also fluctuate.
  • a known procedure consists in the selective extraction of exhaust gases with soot contents with the aid of an extraction probe. The extraction can take place either in the combustion chamber or in a downstream x-exhaust system. Then the extracted air quantity is checked and the soot load is determined. A complete recording of the soot load is not possible with this procedure, since only a selective extraction takes place. Local fluctuations in the soot load in the combustion chamber or in the exhaust system therefore lead to distortion. In addition, the at the soot oil charge resulting from the combustion is only detected with a certain delay. The intended firing control therefore always works with a comparatively long dead time, which can be up to several 5 minutes in larger power plants.
  • Another approach provides for the determination of the soot loading of flames with the help of laser absorption measurements using the Mie theory.
  • this measuring method is only suitable for research purposes in the laboratory, since the measurement of the soot loading of a flame is very complex. Use in continuous daily operation is currently not possible.
  • this object is achieved in a method of
  • At least one parameter characteristic of the combustion which allows a conclusion about the soot loading, is measured by monitoring a flame in the combustion chamber and the soot loading is determined based on the measurement.
  • the invention proposes to replace the previously known direct methods for determining the soot loading by an indirect method.
  • a spatial distribution of the at least one parameter characteristic of the combustion is measured. This increases the accuracy of the method according to the invention, since the at least one parameter in the area of the flame is generally not constant. By determining the spatial distribution, it is therefore possible to determine the soot loading much more precisely than with a one-dimensional measurement of the at least one parameter characteristic of the combustion.
  • Combustion chamber of power plants is always present, the position of the flame during combustion.
  • a stationary measurement at individual selected points thus harbors the risk that the flame will not be detected by the measuring device when its position changes.
  • this can be prevented by specifying a spatial measuring range.
  • a permissible range with a lower limit and / or upper limit can advantageously be specified for the measured values. If a measured value lies outside the specified range, this can be disregarded when determining the soot load.
  • the local soot formation rate is determined from the measured spatial distribution of the at least one parameter characteristic of the combustion. This further improves the measuring accuracy.
  • the local soot formation rate is based on physical and / or chemical Connections calculated.
  • the local soot formation rate can be determined by preliminary fuel or the fuel mixture without previous tests and empirical values.
  • the local soot formation rate can be determined by comparing it with predetermined conversion curves. This offense is advisable if conversion curves already exist and / or no physical and / or chemical relationships are known for the fuel or fuel mixture used. If both investigative procedures are used, the double determination gives control. At the same time, the measuring accuracy is increased.
  • the determined soot formation rate is advantageously summed up over the measuring range. This reduces the amount of data to be processed. At the same time, there is a total value of the soot formation rate, which can already be used for control and regulation purposes.
  • the determined soot formation rate is summed up over a predefinable period. Fluctuations in the flame, particularly due to turbulent combustion, can be reliably detected. At the same time, peak values or minimum values are smoothed. The flame can also be checked by totalizing. If the flame goes out, the soot formation rate drops drastically over a longer period of time. Short-term flak core is smoothed by adding up over the predefinable period, while the flame goes out to one leads to a permanent drop in the soot formation rate, which can be recognized by the method according to the invention. In addition to determining the soot load, it is also possible to monitor the flame.
  • the predefinable period is variable.
  • this period can be changed as a function of previous measurements.
  • the predeterminable period of time can be selected differently than in constant continuous operation.
  • the determined soot formation rate is advantageously averaged after the addition. This averaging allows the soot formation rate to be represented in relation to the size of the measuring range, so that several flames or combustion chambers of different sizes can be compared with one another.
  • the soot loading rate determined before or after the addition is increased by a
  • Calibration factor linked to determine the soot load This calibration factor enables the conclusion of the soot formation rate to the soot loading and is determined on a plant-specific basis.
  • the calibration factor can advantageously be changed, in particular
  • the temperature is measured as a characteristic parameter for the combustion.
  • the temperature can also be detected in a spatial distribution by one or more suitable sensors. The measurement is accurate, non-contact, requires no moving parts and is carried out without delay. Based on the measured spatial temperature distribution, the local soot formation rate is then determined according to the procedure described above. hen determined.
  • the carbon monoxide content is measured as a characteristic parameter for the combustion. The carbon monoxide content is measured by detecting the radiation in the radiation range characteristic of carbon monoxide. This radiation area is isolated from the entire spectrum of the flame, for example by a beam plate, and then detected. The spatial distribution of the carbon monoxide in the flame can be measured using a suitable evaluation unit, such as a CCD camera.
  • a lower limit of e.g. 800 ° C can be set. Areas where the temperature is below this limit can then be regarded as lying outside the flame and are not taken into account when determining the soot load.
  • Both the temperature and the carbon monoxide content are advantageously measured and linked to one another. This procedure enables the soot load to be determined on the basis of two different measured values and thus a check. At the same time, the accuracy is increased.
  • a device for carrying out the method has at least one sensor for measuring the at least one parameter characteristic of the combustion and a data processing system for determining the soot formation rate.
  • the data processing system comprises, in particular, suitable assemblies or modules for adding up and averaging the soot formation rate and for linking to the calibration factor.
  • At least one sensor is advantageously designed as a CCD camera.
  • Such “charged-coupéed-dev ⁇ ce” cameras allow a spatial resolution of the measuring range and thus the detection of the at least one parameter of spatial distribution that is characteristic of the combustion.
  • the determined soot formation rate can then be processed further by means of a suitable regulation and passed to the burner of the flame.
  • Figures 1 and 2 is a schematic representation of the sequence of the inventive method.
  • Figure 3 is a schematic representation of a device for performing the inventive method.
  • FIG. 1 shows a schematic representation of the sequence of the inventive method.
  • a flame 10 m in a combustion chamber 23 is monitored via a detection device I.
  • the acquisition device I measures the spatial distribution of at least one parameter which is characteristic of the combustion and which allows a conclusion to be drawn about the soot loading. Either the temperature or the carbon monoxide content or the temperature and carbon monoxide content are recorded together.
  • the local soot formation rate, which a soot formation field III provides, is then determined by a calculation or a comparison II.
  • the soot formation field III is summed up by an integration IV and, if necessary, averaged. Then there is a link V with a calibration factor.
  • the soot loading of the combustion chamber is determined, which is displayed, printed out or saved via a suitable output VI.
  • the soot loading can be given to a regulation VII, which acts on the flame 10 and thus on the combustion. In this way a firing control is achieved.
  • a temperature field 11 of the flame 10 is detected. Based on local soot loading On the temperature field 11, a conversion curve 12 is used, which has either been determined by experiments or has been calculated on the basis of physical and / or chemical relationships. Such conversion curves 12 are also printed in the VCI warm atlas and m "Technical Combustion", Warnatz, Springer-Verlag.
  • the temperature field 11 and the conversion curve 12 are linked in a comparison module 13 and provide a field 14 of the soot formation rate.
  • This field 14 of the soot formation rate is transmitted to an integrator 15, which carries out a spatial and / or temporal summation .. If necessary, averaging can also be carried out after the integration Linking module 17.
  • the soot loading is calculated, which is then passed on to an output module 18.
  • Figure 3 shows schematically a device for performing the inventive method.
  • the flame 10 m in the combustion chamber 23 is fed by a burner 21.
  • Monitoring is provided by one or more sensors 22 which measure at least one parameter characteristic of the combustion.
  • This can be a CCD camera.
  • the spatial distribution of temperature and / or carbon monoxide content is advantageously measured.
  • the measured value is passed on to the comparison module 13, in which the field 14 of the soot formation rate is determined.
  • the comparison module 13 transmits the field 14 of the soot formation rate to the integrator 15, where the summation and optionally averaging takes place.
  • the soot loading is then determined in the linking module 17 using the calibration factor 16.
  • This soot load is delivered to the output module 18.
  • the output module 18 transmits the soot loading to a printer or memory 20.
  • the comparison module 13, the integrator 15, the linking module 17 and the output module 18 are combined in a data processing system 19.
  • the method according to the invention and the associated device enable the soot loading to be determined quickly, easily and with high precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Incineration Of Waste (AREA)
  • Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

A method for determining a soot charge in a combustion chamber includes measuring a spatial distribution of at least one parameter characteristic of a combustion by monitoring a flame in the combustion chamber. The at least one parameter allows a conclusion concerning a soot charge in the combustion chamber during operation and the at least one parameter is a temperature and/or a carbon monoxide content. The soot charge is determined based on the measuring step and by using a comparison with given conversion curves. A device for determining a soot charge in a combustion chamber is also provided.

Description

Beschreibungdescription
Verfahren und Vorrichtung zur Ermittlung der Rußbeladung eines VerbrennungsraumsMethod and device for determining the soot loading of a combustion chamber
Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Ermittlung der Rußbeladung eines Verbrennungsraums m laufendem Betrieb.The present invention relates to a method and a device for determining the soot loading of a combustion chamber during operation.
Bei der Verbrennung eines fossilen Brennstoffs m einem Verbrennungsraum steht die standige Verbesserung des Verbrennungsprozesses im Vordergrund der Bemühungen. Dies gilt nicht nur für gasformige Schadstoffe, wie Kohlenmonoxid und Stickoxide, sondern auch für die Beladung des Abgases mit Feststoffen, wie Ruß. Zum Erreichen eines möglichst gutenWhen burning a fossil fuel in a combustion chamber, the constant improvement of the combustion process is the focus of the efforts. This applies not only to gaseous pollutants such as carbon monoxide and nitrogen oxides, but also to the loading of the exhaust gas with solids such as soot. To achieve the best possible
Verbrennungsprozesses muß die Feuerung mittels einer geeigneten Feuerungsregelung optimiert werden. Bei der Verwendung von fossilem Brennstoff oder Mull treten nämlich auf Grund der unterschiedlichen Herkunft des Brennstoffs oder der hete- rogenen Zusammensetzung des Mulls Schwankungen des Heizwertes des Brennstoffs oder der Mulimischung auf. Bei Brennstoffmischungen kann darüber hinaus das Verhältnis der einzelnen Brennstoffe zueinander schwanken.Combustion process, the firing must be optimized using a suitable firing control. When using fossil fuel or gauze, fluctuations in the calorific value of the fuel or the multi-blend occur because of the different origin of the fuel or the heterogeneous composition of the gauze. In the case of fuel mixtures, the ratio of the individual fuels to one another can also fluctuate.
Eine Möglichkeit der Optimierung stellt die Ermittlung der Rußbeladung im laufenden Betrieb dar, wobei die ermittelte Rußbeladung anschließend für die Regelung der Flamme verwendet wird. Ein bekanntes Vorgehen besteht m einer punktuellen Absaugung von Abgasen mit Rußanteilen mit Hilfe einer Ab- saugsonde. Die Absaugung kann entweder im Verbrennungsraum oder m einem nachgeschalteten xAbgassystem erfolgen. Anschließend wird die abgesaugte Luftmenge uoerpruft und hierdurch die Rußbeladung ermittelt. Eine vollständige Erfassung der Rußbeladung ist mit diesem Vorgehen nicht möglich, da le- diglich ein punktuelles Absaugen erfolgt. Lokale Schwankungen der Rußbeladung m dem Verbrennungsraum oder im Abgassystem fuhren daher zu einer Verzerrung. Darüber hinaus wird die bei der Verbrennung entstehende Rußoeladung erst mit einer gewissen Verzogerungszeit erfaßt. Die vorgesehene Feuerungsrege- iung arbeitet somit stets mit einer vergleichsweise großen Totzeit, die bei größeren Kraftwerksanlagen bis zu einigen 5 Minuten betragen kann.One possibility for optimization is the determination of the soot load during operation, the soot load determined subsequently being used to control the flame. A known procedure consists in the selective extraction of exhaust gases with soot contents with the aid of an extraction probe. The extraction can take place either in the combustion chamber or in a downstream x-exhaust system. Then the extracted air quantity is checked and the soot load is determined. A complete recording of the soot load is not possible with this procedure, since only a selective extraction takes place. Local fluctuations in the soot load in the combustion chamber or in the exhaust system therefore lead to distortion. In addition, the at the soot oil charge resulting from the combustion is only detected with a certain delay. The intended firing control therefore always works with a comparatively long dead time, which can be up to several 5 minutes in larger power plants.
Ein anderer Ansatz sieht die Ermittlung der Rußbeladung von Flammen mit Hilfe von Laserabsorptionsmessungen über die Mie- Theorie vor. Dieses Meßverfahren ist allerdings nur zu For- 10 schungszwecken im Labor geeignet, da die Messung der Rußbeladung einer Flamme sehr aufwendig ist. Ein Einsatz im täglichen Dauerbetrieb ist derzeit nicht möglich.Another approach provides for the determination of the soot loading of flames with the help of laser absorption measurements using the Mie theory. However, this measuring method is only suitable for research purposes in the laboratory, since the measurement of the soot loading of a flame is very complex. Use in continuous daily operation is currently not possible.
A.ufgabe der vorliegenden Erfindung ist es daher, ein Verfah- 15 ren sowie eine Vorrichtung zur raschen und einfachen Ermittlung der Rußbeladung eines Verbrennungsraums im laufenden Betrieb bereitzustellen.It is therefore an object of the present invention to provide a method and a device for quickly and easily determining the soot loading of a combustion chamber during operation.
Erfmdungsgemaß wird diese Aufgabe bei einem Verfahren derAccording to the invention, this object is achieved in a method of
20 eingangs genannten Art dadurch gelost, daß mindestens ein für die Verbrennung charakteristischer Parameter, der einen Ruckschluß auf die Rußbeladung erlaubt, durch Überwachung einer Flamme des Verbrennungsraumes gemessen wird und die Rußbeladung basierend auf der Messung ermittelt wird.20 type mentioned at the outset in that at least one parameter characteristic of the combustion, which allows a conclusion about the soot loading, is measured by monitoring a flame in the combustion chamber and the soot loading is determined based on the measurement.
<_. o<_. O
Die Erfindung schlagt vor, die bisher bekannten direkten Verfahren zur Ermittlung der Rußbeladung durch ein indirektes Verfahren zu ersetzen. Ein Absaugen von rußbeladenen Abgasen oder eine aufwendige direkte Bestimmung der Rußbeladung mThe invention proposes to replace the previously known direct methods for determining the soot loading by an indirect method. A suction of soot-laden exhaust gases or an elaborate direct determination of the soot loading m
30 der Flamme können vermieden werden. Es wird vielmehr durch einfache Messung ein für die Verbrennung charakteristischer Parameter erfaßt und anschließend die Rußbeladung basierend auf dieser Messung ermittelt. Aufwendige Absaug- und Analyseeinrichtungen sind nicht erforderlich. Weiter erfolgt die Er-30 of the flame can be avoided. Instead, a parameter that is characteristic of the combustion is detected by simple measurement and the soot load is then determined on the basis of this measurement. Elaborate suction and analysis devices are not required. Furthermore, the
35 mittlung der Rußbeladung erfmdungsgemaß ohne Zeitverzoge- rung, so daß eine optimale Feuerungsregelung erreicht werden kann . Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den Unteranspruchen nervor.35 averaging the soot loading according to the invention without delay, so that an optimal combustion control can be achieved. Advantageous refinements and developments of the invention go nervously from the subclaims.
In vorteilhafter Ausgestaltung wird eine räumliche Verteilung des mindestens einen für die Verbrennung charakteristischen Parameters gemessen. Hierdurch wird die Genauιg eιt des er- fmdungsgemaßen Verfahrens erhöht, da der mindestens eine Parameter im Bereich der Flamme im Regelfall nicht konstant ist. Durch die Erfassung der räumlichen Verteilung ist daher eine wesentlich genauere Ermittlung der Rußbeladung möglich als bei einer eindimensionalen Messung des mindestens einen für die Verbrennung charakteristischen Parameters.In an advantageous embodiment, a spatial distribution of the at least one parameter characteristic of the combustion is measured. This increases the accuracy of the method according to the invention, since the at least one parameter in the area of the flame is generally not constant. By determining the spatial distribution, it is therefore possible to determine the soot loading much more precisely than with a one-dimensional measurement of the at least one parameter characteristic of the combustion.
Weiter ändert sich bei turbulenter Verbrennung, wie sie imFurther changes in turbulent combustion, as in
Verbrennungsraum von Kraftwerken immer vorliegt, die Position der Flamme wahrend der Verbrennung. Eine stationäre Messung an einzelnen ausgewählten Punkten birgt somit die Gefahr, daß die Flamme bei Veränderung ihrer Position nicht durch die Meßeinrichtung erfaßt wird. Bei der Erfassung der räumlichen Verteilung kann dies durch die Vorgabe eines räumlichen Meßbereichs verhindert werden.Combustion chamber of power plants is always present, the position of the flame during combustion. A stationary measurement at individual selected points thus harbors the risk that the flame will not be detected by the measuring device when its position changes. When recording the spatial distribution, this can be prevented by specifying a spatial measuring range.
Weiter kann vorteilhaft für die Meßwerte ein zulässiger Be- reich mit einer Untergrenze und/oder Obergrenze vorgegeben werden. Liegt ein Meßwert außerhalb des vorgegebenen Bereichs, so kann dieser bei der Ermittlung der Rußbeladung unberücksichtigt bleiben.Furthermore, a permissible range with a lower limit and / or upper limit can advantageously be specified for the measured values. If a measured value lies outside the specified range, this can be disregarded when determining the soot load.
In vorteilhafter Weiterbildung wird aus der gemessenen räumlichen Verteilung des mindestens einen für die Verbrennung charakteristischen Parameters die örtliche Rußbildungsrate ermittelt. Hierdurch wird die Meßgenauigkeit nochmals verbessert .In an advantageous further development, the local soot formation rate is determined from the measured spatial distribution of the at least one parameter characteristic of the combustion. This further improves the measuring accuracy.
Bei einer weiteren vorteilhaften Ausgestaltung wird die örtliche Rußbildungsrate nach physikalischen und/oder chemischen Zusammenhangen errechnet. Hierdurch kann durch Vorgaoe des Brennstoffs oder der Brennstoffmiscnung ohne vorherige Tests und Erfahrungswerte die örtliche Rußbildungsrate bestimmt werden. Alternativ oder zusätzlich kann die örtliche Rußbil- αungsrate durch einen Vergleich mit vorgegebenen Umrechnungskurven ermittelt werden. Dieses Vergehen bietet sich an, wenn bereits Umrechnungskαrven vorliegen und/oder zu dem verwendeten Brennstoff oder der Brennstoffmischung keine physikalischen und/oder chemischen Zusammenhange bekannt sind. Falls beide Ermittlungsverfahren angewendet werden, ist durch die doppelte Ermittlung eine Kontrolle gegeben. Gleichzeitig wird die Meßgenauigkeit erhöht.In a further advantageous embodiment, the local soot formation rate is based on physical and / or chemical Connections calculated. In this way, the local soot formation rate can be determined by preliminary fuel or the fuel mixture without previous tests and empirical values. As an alternative or in addition, the local soot formation rate can be determined by comparing it with predetermined conversion curves. This offense is advisable if conversion curves already exist and / or no physical and / or chemical relationships are known for the fuel or fuel mixture used. If both investigative procedures are used, the double determination gives control. At the same time, the measuring accuracy is increased.
Derartige Umrechnungskurven sind für verschiedene Brennstoffe beispielsweise in dem "VDI-Warmeatlas" und m „TechnischeSuch conversion curves are for different fuels, for example in the "VDI Warm Atlas" and m "Technical
Verbrennung", Warnatz, Springer Verlag, abgedruckt. Alternativ oder zusätzliche können diese Umrechnungskurven durch Versuche für verschiedene Brennstoffe oder BrennstoffZusammensetzungen ermittelt und m Form eines Kennfelds abgelegt werden.Combustion ", Warnatz, Springer Verlag, printed. Alternatively or additionally, these conversion curves can be determined by tests for different fuels or fuel compositions and stored in the form of a map.
Vorteilhaft wird die ermittelte Rußbildungsrate über den Meßbereich aufsummiert. Hierdurch wird die zu bearbeitende Datenmenge verringert. Gleichzeitig ergibt sich ein Gesamtwert der Rußbildungsrate, der bereits für Kontroll- und Regelungszwecke verwendet werden kann.The determined soot formation rate is advantageously summed up over the measuring range. This reduces the amount of data to be processed. At the same time, there is a total value of the soot formation rate, which can already be used for control and regulation purposes.
Gemäß einer vorteilhaf en Weiterbildung wird die ermittelte Rußbildungsrate über einen vorgebbaren Zeitraum aufsummiert. Schwankungen der Flamme, insbesondere auf Grund turbulenter Verbrennung, können zuverl ssig erfaßt werden. Gleichzeitig werden Spitzenwerte oder Minimalwerte geglättet. Durch das Aufsummieren kann darüber hinaus eine Kontrolle der Flamme erfolgen. Erlischt die Flamme, so fallt die Rußbildungsrate über einen längeren Zeitraum drastisch ab. Kurzzeitiges Flakkern wird durch das Aufsummieren über den vorgebbaren Zeitraum geglättet, wahrend ein Erloscnen der Flamme zu einem dauerhaften Abfall der Rußbildungsrate fuhrt, der durch das erfmdungsgemaße Verfahren erkennbar ist. Es ist somit neben der Ermittlung der Rußbeladung auch eine Überwachung der Flamme möglich.According to an advantageous further development, the determined soot formation rate is summed up over a predefinable period. Fluctuations in the flame, particularly due to turbulent combustion, can be reliably detected. At the same time, peak values or minimum values are smoothed. The flame can also be checked by totalizing. If the flame goes out, the soot formation rate drops drastically over a longer period of time. Short-term flak core is smoothed by adding up over the predefinable period, while the flame goes out to one leads to a permanent drop in the soot formation rate, which can be recognized by the method according to the invention. In addition to determining the soot load, it is also possible to monitor the flame.
In vorteilhafter Weiterbildung ist der vorgebbare Zeitraum veränderlich. Insbesondere kann dieser Zeitraum m Abhängigkeit von vorangegangenen Messungen verändert werden. Weiter kann beim Anfahren oder bei Lastschwankungen der vorgebbare Zeitraum anders als im gleichbleibenden Dauerbetrieb gewählt werden.In an advantageous further development, the predefinable period is variable. In particular, this period can be changed as a function of previous measurements. Furthermore, when starting up or in the event of load fluctuations, the predeterminable period of time can be selected differently than in constant continuous operation.
Vorteilhaft wird die ermittelte Rußbildungsrate nach dem Aufsummieren gemittelt. Diese Mittelung erlaubt eine Darstellung der Rußbildungsrate bezogen auf die Große des Meßbereichs, so daß mehrere Flammen oder Verbrennungsraume unterschiedlicher Große miteinander verglichen werden können.The determined soot formation rate is advantageously averaged after the addition. This averaging allows the soot formation rate to be represented in relation to the size of the measuring range, so that several flames or combustion chambers of different sizes can be compared with one another.
Gemäß einer vorteilhaften Ausgestaltung wird die ermittelte Rußbeladungsrate vor oder nach dem Aufsummieren mit einemAccording to an advantageous embodiment, the soot loading rate determined before or after the addition is increased by a
Eichfaktor zur Ermittlung der Rußbeladung verknüpft. Dieser Eichfaktor ermöglicht den Schluß von der Rußbildungsrate auf die Rußbeladung und wird anlagenspezifisch ermittelt.Calibration factor linked to determine the soot load. This calibration factor enables the conclusion of the soot formation rate to the soot loading and is determined on a plant-specific basis.
Vorteilhaft ist der Eichfaktor veränderbar, insbesondereThe calibration factor can advantageously be changed, in particular
Abhängigkeit von dem Meßwert, der der Flamme zugefuhrten Verbrennungsluft und/oder weiteren Parametern. Hierdurch wird eine Anpassung an unterschiedliche Randbedingungen erreicht.Dependence on the measured value, the combustion air supplied to the flame and / or other parameters. As a result, an adaptation to different boundary conditions is achieved.
In vorteilhafter Ausgestaltung wird die Temperatur als für die Verbrennung charakteristischer Parameter gemessen. Die Temperatur laßt sich auch in raumlicher Verteilung gut durch einen oder mehrere geeignete Sensoren erfassen. Die Messung ist genau, beruhrungsfre , erfordert keine beweglichen Bau- teile und erfolgt ohne Verzögerung. Ausgehend von der gemessenen räumlichen Temperaturverteilung wird anschließend die ortliche Rußbildungsrate gemäß dem oben beschriebenen Vorge- hen ermittelt. In anderer vorteilhafter Ausgestaltung wird der Gehalt an Kohlenmonoxid als für die Verbrennung charakteristischer Parameter gemessen. Die Messung des Gehalts an Kohlenmonoxid erfolgt über eine Erfassung der Strahlung in dem für Kohlenmonoxid charakteristischen Strahlungsbereich. Dieser Strahlungsbereich wird beispielsweise durch einen Strahlteller aus dem Gesamtspektrum der Flamme isoliert und anschließend erfaßt. Durch eine geeignete Auswerteeinheit, wie beispielsweise eine CCD-Kamera, kann die raumliche Ver- teilung des Kohlenmonoxids der Flamme gemessen werden.In an advantageous embodiment, the temperature is measured as a characteristic parameter for the combustion. The temperature can also be detected in a spatial distribution by one or more suitable sensors. The measurement is accurate, non-contact, requires no moving parts and is carried out without delay. Based on the measured spatial temperature distribution, the local soot formation rate is then determined according to the procedure described above. hen determined. In another advantageous embodiment, the carbon monoxide content is measured as a characteristic parameter for the combustion. The carbon monoxide content is measured by detecting the radiation in the radiation range characteristic of carbon monoxide. This radiation area is isolated from the entire spectrum of the flame, for example by a beam plate, and then detected. The spatial distribution of the carbon monoxide in the flame can be measured using a suitable evaluation unit, such as a CCD camera.
Bei der Messung der Temperatur kann eine Untergrenze von z.B. 800 °C festgelegt werden. Bereiche, denen die Temperatur unter dieser Grenze liegt, können dann als außerhalb der Flamme liegend angesehen werden und bei der Ermittlung der Rußbeladung unberücksichtigt bleiben.When measuring the temperature, a lower limit of e.g. 800 ° C can be set. Areas where the temperature is below this limit can then be regarded as lying outside the flame and are not taken into account when determining the soot load.
Vorteilhaft werden sowohl die Temperatur als auch der Kohlen- monoxidgehalt gemessen und miteinander verknüpft. Dieses Vor- gehen ermöglicht eine Ermittlung der Rußbeladung auf Grund zweier unterschiedlicher Meßwerte und somit eine Kontrolle. Gleichzeitig wird die Genauigkeit erhöht.Both the temperature and the carbon monoxide content are advantageously measured and linked to one another. This procedure enables the soot load to be determined on the basis of two different measured values and thus a check. At the same time, the accuracy is increased.
Eine Vorrichtung zur Durchfuhrung des Verfahrens weist erfm- dungsgemaß mindestens einen Sensor zur Messung des mindestens einen für die Verbrennung charakteristischen Parameters und eine Datenverarbeitungsanlage zur Ermittlung der Rußbildungsrate auf. Die Datenverarbeitungsanlage umfaßt insbesondere geeignete Baugruppen oder Module zum Aufsummieren und Mitteln der Rußbildungsrate sowie zur Verknüpfung mit dem Eichfaktor.According to the invention, a device for carrying out the method has at least one sensor for measuring the at least one parameter characteristic of the combustion and a data processing system for determining the soot formation rate. The data processing system comprises, in particular, suitable assemblies or modules for adding up and averaging the soot formation rate and for linking to the calibration factor.
Vorteilhaft ist mindestens ein Sensor als CCD-Kamera ausgebildet. Derartige „charged-coupIed-devιce"-Kameras erlauben eine Ortsauflosung des Meßbereichs und damit die Erfassung des mindestens einen für die Verbrennung charakteristischen Parameters räumlicher Verteilung. Die ermittelte Rußbildungsrate kann anschließend über eine geeignete Regelung weiterverarbeitet unα an den Brenner der Flamme gefuhrt werden.At least one sensor is advantageously designed as a CCD camera. Such “charged-coupéed-devιce” cameras allow a spatial resolution of the measuring range and thus the detection of the at least one parameter of spatial distribution that is characteristic of the combustion. The determined soot formation rate can then be processed further by means of a suitable regulation and passed to the burner of the flame.
Nachstehend wird die Erfindung anhand von Ausfuhrungsbeispie- len naher beschrieben, die schematischer Weise m der Zeichnung dargestellt sind. Dabei zeigen:The invention is described in more detail below with reference to exemplary embodiments, which are shown schematically in the drawing. Show:
Figuren 1 und 2 eine schematische Darstellung des Abiaufs des erfmdungsgemaßen Verfahrens; undFigures 1 and 2 is a schematic representation of the sequence of the inventive method; and
Figur 3 eine schematische Darstellung einer Vorrichtung zur Durchfuhrung des erfmdungsgemaßen Verfahrens.Figure 3 is a schematic representation of a device for performing the inventive method.
Figur 1 zeigt eine schematische Darstellung des Ablaufs des erfmdungsgemaßen Verfahrens. Eine Flamme 10 m einem Verbrennungsraum 23 wird über eine Erfassungseinrichtung I überwacht. Die Erfassungsemrichtung I mißt die raumliche Verteilung mindestens eines für die Verbrennung charakteristischen Parameters, der einen Rückschluß auf die Rußbeladung erlaubt. Es werden entweder die Temperatur oder der Gehalt an Kohlenmonoxid oder Temperatur und Kohlenmonoxidgehalt gemeinsam erfaßt. Anschließend erfolgt αurch eine Berechnung oder einen Abgleich II eine Ermittlung der örtlichen Rußbildungsrate, die ein Rußbildungsfeld III liefert. Das Rußbildungsfeld III wird durch eine Integration IV aufsummiert und gegebenenfalls gemittelt. Anschließend erfolgt eine Verknüpfung V mit einem Eichfaktor. Hierdurch wird die Rußbeladung des Verbrennungsraums ermittelt, die über eine geeignete Ausgabe VI ange- zeigt, ausgedruckt oder abgespeichert wird. Zusätzlich kann die Rußbeladung auf eine Regelung VII gegeben werden, die auf die Flamme 10 und damit auf die Verbrennung einwirkt. Hierdurch wird eine Feuerungsregelung erreicht.Figure 1 shows a schematic representation of the sequence of the inventive method. A flame 10 m in a combustion chamber 23 is monitored via a detection device I. The acquisition device I measures the spatial distribution of at least one parameter which is characteristic of the combustion and which allows a conclusion to be drawn about the soot loading. Either the temperature or the carbon monoxide content or the temperature and carbon monoxide content are recorded together. The local soot formation rate, which a soot formation field III provides, is then determined by a calculation or a comparison II. The soot formation field III is summed up by an integration IV and, if necessary, averaged. Then there is a link V with a calibration factor. In this way, the soot loading of the combustion chamber is determined, which is displayed, printed out or saved via a suitable output VI. In addition, the soot loading can be given to a regulation VII, which acts on the flame 10 and thus on the combustion. In this way a firing control is achieved.
In Figur 2 sind die Verfahrensschritte I bis VI genauer dargestellt. Zunächst wird ein Temperaturfeld 11 der Flamme 10 erfaßt. Zur Ermittlung der ortlichen Rußbeladung basierend auf dem Temperaturfeld 11 dient eine Umrechnungskurve 12, die entweder durch Versuche ermittelt oder nach physikalischen und/oder chemischen Zusammenhangen errechnet worden ist. Derartige Umrechnungskurven 12 sind auch in dem VCI-Warmeatlas und m „Technische Verbrennung", Warnatz, Springer-Verlag abgedruckt. Das Temperaturfeld 11 und die Umrechnungskurve 12 werden m einem Vergleichsmodul 13 verknüpft und liefern ein Feld 14 der Rußbildungsrate. Dieses Feld 14 der Rußbildungsrate wird an einen Integrator 15 übermittelt, der eine raum- liehe und/oder zeitliche Aufsummierung vornimmt. Gegebenenfalls kann nach der Integration auch eine Mittelung erfolgen. Durch die Integration wird die gesamte Rußbildungsrate errechnet, die anschließend mit einem Eichfaktor 16 aus einem Speicherelement C in einem Verknupfungsmodul 17 verknüpft wird. Hierdurch wird die Rußbeladung errechnet, die anschließend an ein Ausgabemodul 18 weitergegeben wird.Process steps I to VI are shown in more detail in FIG. First, a temperature field 11 of the flame 10 is detected. Based on local soot loading On the temperature field 11, a conversion curve 12 is used, which has either been determined by experiments or has been calculated on the basis of physical and / or chemical relationships. Such conversion curves 12 are also printed in the VCI warm atlas and m "Technical Combustion", Warnatz, Springer-Verlag. The temperature field 11 and the conversion curve 12 are linked in a comparison module 13 and provide a field 14 of the soot formation rate. This field 14 of the soot formation rate is transmitted to an integrator 15, which carries out a spatial and / or temporal summation .. If necessary, averaging can also be carried out after the integration Linking module 17. The soot loading is calculated, which is then passed on to an output module 18.
Alternativ kann aus einem anderen Speicherelement C ein anderer Eichfaktor 16' verwendet werden, der nach der Ermitt- lung des Felds 14 der Rußbildungsrate mit diesem Feld 14 verknüpft wird. Dies ist gestrichelt gezeigt.Alternatively, another calibration factor 16 'can be used from another storage element C, which is linked to this field 14 after the field 14 of the soot formation rate has been determined. This is shown in dashed lines.
Figur 3 zeigt schematisch eine Vorrichtung zur Durchfuhrung des erf dungsgemaßen Verfahrens. Die Flamme 10 m dem Ver- brennungsraum 23 wird von einem Brenner 21 gespeist. ZurFigure 3 shows schematically a device for performing the inventive method. The flame 10 m in the combustion chamber 23 is fed by a burner 21. to
Überwachung dienen ein oder mehrere Sensoren 22, die mindestens einen für die Verbrennung charakteristischen Parameter messen. Hierbei kann es sich um eine CCD-Kamera handeln. Vorteilhaft erfolgt eine Messung der räumlichen Verteilung von Temperatur und/oαer Kohlenmonoxidgehalt. Der Meßwert wird an das Vergleichsmodul 13 weitergegeben, m dem das Feld 14 der Rußbildungsrate ermittelt wird. Das Vergleichsmodul 13 übermittelt das Feld 14 der Rußbildungsrate an den Integrator 15, m dem die Aufsummierung und gegebenenfalls Mittelung er- folgt. In dem Verknupfungsmodul 17 wird anscnließend über den Eichfaktor 16 die Rußbeladung ermittelt. Diese Rußbeladung wird an das Ausgabemodul 18 abgegeben. Das Aαsgabemodul 18 übermittelt die Rußbeladung an einen Drucker oder Speicher 20. Vorteilhaft erfolgt gleichzeitig eine Ruckkopplung zu dem Brenner 21 der Flamme 10. Hierdurch wird eine Feuerungsregelung mit direkter, unmittelbarer Überwachung der Flamme 10 und daher sehr geringen Totzeiten erreicht. Das Vergleichsmodul 13, der Integrator 15, das Verknupfungsmodul 17 sowie das Ausgabemodul 18 sind m einer Datenverarbeitungsanlage 19 zusammengefaßt .Monitoring is provided by one or more sensors 22 which measure at least one parameter characteristic of the combustion. This can be a CCD camera. The spatial distribution of temperature and / or carbon monoxide content is advantageously measured. The measured value is passed on to the comparison module 13, in which the field 14 of the soot formation rate is determined. The comparison module 13 transmits the field 14 of the soot formation rate to the integrator 15, where the summation and optionally averaging takes place. The soot loading is then determined in the linking module 17 using the calibration factor 16. This soot load is delivered to the output module 18. The output module 18 transmits the soot loading to a printer or memory 20. Advantageously, there is feedback at the same time to the burner 21 of the flame 10. This results in a firing control with direct, direct monitoring of the flame 10 and therefore very short dead times. The comparison module 13, the integrator 15, the linking module 17 and the output module 18 are combined in a data processing system 19.
Insgesamt ermöglichen das erfmdungsgemaße Verfahren und die zugehörige Vorrichtung eine rasche, einfache und hochgenaue Ermittlung der Rußbeladung. Overall, the method according to the invention and the associated device enable the soot loading to be determined quickly, easily and with high precision.

Claims

Patentansprüche claims
1. Verfahren zur Ermittlung der Rußbeladung eines Verbrennungsraums (23) im laufenden Betrieb, d a d u r c h g e k e n n z e i c h n e t , daß mindestens em für die Verbrennung charakteristischer Parameter, der einen Ruckschluß auf die Rußbeladung erlaubt, durch Überwachung einer Flamme (10) des Verbrennungsraumes (23) gemessen wird und die Rußbeladung basierend auf der Messung ermittelt wird.1. A method for determining the soot loading of a combustion chamber (23) during operation, characterized in that at least em characteristic parameters for the combustion, which allows a conclusion on the soot loading, is measured by monitoring a flame (10) of the combustion chamber (23) and the soot load is determined based on the measurement.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß eine räumliche Verteilung des mindestens einen für die Verbrennung charakteristischen Parameters gemessen wird.2. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t that a spatial distribution of the at least one parameter characteristic of the combustion is measured.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß für die Meßwerte des mindestens einen für de Verbrennung charakteristischen Parameters em zulassiger Bereich mit einer Unter- grenze und/oder einer Obergrenze vorgegeben wird und außerhalb des vorgegebenen Bereichs liegende Meßwerte bei der Ermittlung der Rußbeladung unberücksichtigt bleiben.3. The method according to claim 1 or 2, characterized in that for the measured values of the at least one characteristic characteristic for de combustion em permissible range is specified with a lower limit and / or an upper limit and measured values lying outside the specified range when determining the soot load to be disregarded.
4. Verfahren nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß aus der gemessenen räumlichen Verteilung des mindestens einen für die Verbrennung charakteristischen Parameters die örtliche Rußbildungsrate ermittelt wird.4. The method according to claim 2 or 3, so that the local soot formation rate is determined from the measured spatial distribution of the at least one parameter characteristic of the combustion.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß die ortliche Rußbildungsrate nach physikaliscnen und/oder chemischen Zusammenhangen errechnet wird.5. The method of claim 4, d a d u r c h g e k e n n z e i c h n e t that the local soot formation rate is calculated according to physical and / or chemical relationships.
6. Verfahren nach Anspruch 4 oder 5, d a d u r c h g e k e n n z e i c h n e t , daß die ortliche Rußbildungsrate durcn einen Vergleich mit vorgegebenen Umrechnungs urven ermittelt wird.6. The method according to claim 4 or 5, characterized in that the local soot formation rate is determined by a comparison with predetermined conversion curves.
7. Verfahren nach einem der Ansprüche 4 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß die ermittelte Rußbildungsrate über den Meßbereich aufsummiert wird.7. The method according to any one of claims 4 to 6, that the soot formation rate is summed up over the measuring range.
8. Verfahren nach einem der Ansprüche 4 bis 7, d a d u r c h g e k e n n z e i c h n e t , daß die ermittelte Rußbildungsrate über einen vorgebbaren Zeitraum aufsummiert wird.8. The method according to any one of claims 4 to 7, so that the determined soot formation rate is summed up over a predeterminable period of time.
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , daß der vorgebbare Zeitraum veränderlich ist.9. The method according to claim 8, d a d u r c h g e k e n n z e i c h n e t that the predetermined period is variable.
10. Verfahren nach einem der Ansprüche 7 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß die ermit- telte Rußbildungsrate nach dem Aufsummieren gemittelt wird.10. The method according to any one of claims 7 to 9, so that the determined soot formation rate is averaged after summing up.
11. Verfahren nach einem der Ansprüche 7 bis 10, d a d u r c h g e k e z e i c h n e t , daß die ermittelte Rußbildungsrate vor oder nach dem Aufsummieren mit ei- nem Eichfaktor zur Ermittlung der Rußbeladung verknüpft wird.11. The method according to any one of claims 7 to 10, so that the determined soot formation rate is linked before or after adding up with a calibration factor for determining the soot loading.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , daß der Eichfaktor veränderbar ist, insbesondere m Abhängigkeit von dem Meßwert, der der Flamme (10) zugefuhrten Verbrennungsluft und/oder weiteren Parametern.12. The method of claim 11, d a d u r c h g e k e n n z e i c h n e t that the calibration factor is variable, in particular depending on the measured value, the combustion air supplied to the flame (10) and / or other parameters.
13. Verfahren nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß die Tempe- ratur als für die Verbrennung charakteristischer Parameter gemessen wird. 13. The method according to any one of claims 1 to 12, characterized in that the temperature is measured as a characteristic parameter for the combustion.
14. Verfahren nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß der Gehalt an Kohlenmonoxid als für die Verbrennung charakteristischer Parameter gemessen wird.14. The method according to any one of claims 1 to 12, so that the content of carbon monoxide is measured as a characteristic parameter for the combustion.
15. Verfahren nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß die Temperatur und der Kohlenmonoxidgehalt gemessen und miteinander verknüpft werden.15. The method according to any one of claims 1 to 12, that the temperature and the carbon monoxide content are measured and linked to one another.
16. Vorrichtung zur Durchfuhrung des Verfahrens nach einem der vorhergehenden Ansprüche, g e k e n n z e i c h n e t d u r c h mindestens einen Sensor (22) zur Messung des mindestens einen für die Verbren- nung charakteristischen Parameters und eine Datenverarbeitungsanlage (19) zur Ermittlung der Rußbildungsrate.16. Device for performing the method according to one of the preceding claims, at least one sensor (22) for measuring the at least one parameter characteristic of the combustion and a data processing system (19) for determining the soot formation rate.
17. Vorrichtung nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t, daß mindestens em Sensor (22) als CCD-Kamera ausσebildet ist. 17. The apparatus as claimed in claim 16, so that at least one sensor (22) is designed as a CCD camera.
EP99955673A 1998-09-11 1999-09-08 Method and device for determining the soot charge in a combustion chamber Expired - Lifetime EP1114280B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19841877A DE19841877A1 (en) 1998-09-11 1998-09-11 Method and device for determining the soot loading of a combustion chamber
DE19841877 1998-09-11
PCT/DE1999/002839 WO2000016010A1 (en) 1998-09-11 1999-09-08 Method and device for determining the soot charge in a combustion chamber

Publications (2)

Publication Number Publication Date
EP1114280A1 true EP1114280A1 (en) 2001-07-11
EP1114280B1 EP1114280B1 (en) 2003-12-17

Family

ID=7880809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99955673A Expired - Lifetime EP1114280B1 (en) 1998-09-11 1999-09-08 Method and device for determining the soot charge in a combustion chamber

Country Status (8)

Country Link
US (1) US6551094B2 (en)
EP (1) EP1114280B1 (en)
JP (1) JP4365036B2 (en)
AT (1) ATE256843T1 (en)
DE (2) DE19841877A1 (en)
DK (1) DK1114280T3 (en)
ES (1) ES2213396T3 (en)
WO (1) WO2000016010A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243307B4 (en) * 2002-09-13 2006-06-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Apparatus and method for the controlled production of nano soot particles
EP1922540B1 (en) * 2005-08-17 2015-06-10 Nuvo Ventures, LLC Method and system for monitoring plant operating capacity
DE102006044114A1 (en) 2006-09-20 2008-03-27 Forschungszentrum Karlsruhe Gmbh Method for characterizing the exhaust gas burnout quality in incinerators
DE102006060869A1 (en) * 2006-12-22 2008-06-26 Khd Humboldt Wedag Gmbh Method for controlling the operation of a rotary kiln burner
US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices
US8018590B2 (en) * 2008-10-23 2011-09-13 General Electric Company Three-dimensional optical sensor and system for combustion sensing and control
DE102008056674A1 (en) * 2008-11-11 2010-05-12 Siemens Aktiengesellschaft A method and apparatus for monitoring the combustion of a power plant based on a real concentration distribution of a substance
US20100324989A1 (en) * 2009-06-23 2010-12-23 Craig Stephen Etchegoyen System and Method for Monitoring Efficacy of Online Advertising
DE102009030322A1 (en) 2009-06-24 2010-12-30 Siemens Aktiengesellschaft Concept for controlling and optimizing the combustion of a steam generator on the basis of spatially resolved measurement information from the combustion chamber

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2950690A1 (en) * 1979-12-17 1981-06-25 Servo-Instrument, in Deutschland Alleinvertrieb der BEAB-Regulatoren GmbH u. Co KG, 4050 Mönchengladbach Regulation of gas burner operation - has exhaust gas sampling to control setting of butterfly valves controlling through flow
DE2950689A1 (en) * 1979-12-17 1981-06-25 Servo-Instrument, in Deutschland Alleinvertrieb der BEAB-Regulatoren GmbH u. Co KG, 4050 Mönchengladbach CONTROL DEVICE FOR THE COMBUSTION AIR AMOUNT OF A FIREPLACE
JPS60196517A (en) * 1984-03-16 1985-10-05 Toyota Motor Corp Control mechanism for soot of burner
US4620491A (en) * 1984-04-27 1986-11-04 Hitachi, Ltd. Method and apparatus for supervising combustion state
JPH0227571B2 (en) * 1984-12-06 1990-06-18 Tokyo Denryoku Kk NENSHOJOTAISHINDANHOHO
JPS62276326A (en) * 1986-05-26 1987-12-01 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion
US4926356A (en) * 1988-02-29 1990-05-15 The Boeing Company Test apparatus for measuring heat release of certain materials
CH680238A5 (en) * 1989-12-04 1992-07-15 Matter & Siegmann Ag
JPH03207912A (en) * 1990-01-08 1991-09-11 Hitachi Ltd Flame spectroscopic image display for gas turbine combustion device
US5249954A (en) * 1992-07-07 1993-10-05 Electric Power Research Institute, Inc. Integrated imaging sensor/neural network controller for combustion systems
DE4305645C2 (en) * 1993-02-24 1996-10-02 Rwe Entsorgung Ag Method for determining characteristic properties of processes forming free radicals, use of the method and device for carrying out the method
JPH06273322A (en) * 1993-03-17 1994-09-30 Hitachi Ltd Camera, spectroscopic system and combustion evaluating system employing them
US5575637A (en) * 1994-11-04 1996-11-19 Air Products And Chemicals, Inc. Method and device for low-NOx high efficiency heating in high temperature furnaces
DE19532539A1 (en) * 1995-09-04 1997-03-20 Heinz Prof Dr Ing Spliethoff Process for monitoring power plant output firing
US5794549A (en) * 1996-01-25 1998-08-18 Applied Synergistics, Inc. Combustion optimization system
DE19605287C2 (en) * 1996-02-13 2000-11-02 Orfeus Combustion Eng Gmbh Method and device for controlling the travel time of a boiler
US5829962A (en) * 1996-05-29 1998-11-03 L'air Liquide, Societe Anonyme Pour L'etude Et, L'exploitation Des Procedes Georges Method and apparatus for optical flame control of combustion burners
US5993194A (en) * 1996-06-21 1999-11-30 Lemelson; Jerome H. Automatically optimized combustion control
US5797736A (en) * 1996-12-03 1998-08-25 University Of Kentucky Research Foundation Radiation modulator system
DE19931111A1 (en) * 1999-07-06 2001-01-11 Electrowatt Tech Innovat Corp Flame monitoring device e.g. for refuse burning plant comprises array of semiconductor photodetectors connected to evaluation circuitry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0016010A1 *

Also Published As

Publication number Publication date
DK1114280T3 (en) 2004-04-13
DE59908129D1 (en) 2004-01-29
JP4365036B2 (en) 2009-11-18
WO2000016010A1 (en) 2000-03-23
US20010019814A1 (en) 2001-09-06
DE19841877A1 (en) 2000-04-20
JP2002525544A (en) 2002-08-13
US6551094B2 (en) 2003-04-22
ES2213396T3 (en) 2004-08-16
ATE256843T1 (en) 2004-01-15
EP1114280B1 (en) 2003-12-17

Similar Documents

Publication Publication Date Title
DE60106509T2 (en) Control method of a burner
EP0343143B1 (en) Process and apparatus for measuring the lambda and/or the air/fuel ratio
EP1193488B1 (en) Method and device for determining the gaseous quality of natural gas
EP0612961B1 (en) Method for determining characteristic properties of processes producing radicals
DE2803876A1 (en) PROCESS AND EQUIPMENT FOR DETERMINING THE COMPOSITION OF A GAS FLOW DUCTED TO A NITROGEN OXIDE SEPARATION UNIT
DE3408397A1 (en) METHOD AND ARRANGEMENT FOR DETERMINING THE MIXING RATIO OF A MIXTURE CONTAINING OXYGEN CARRIER GAS AND A FUEL
EP0815397B2 (en) Process and device for regulating the combustion in a steam generation facility
DE102006048730A1 (en) Measuring device e.g. engine test stand, measuring accuracy determining device for e.g. passenger car, has module implementing measurement during operation of measuring device for online determination of plausibility of measuring data
EP1114280A1 (en) Method and device for determining the soot charge in a combustion chamber
DE19729696C2 (en) Method and device for monitoring the function of a gas probe
DE19912317A1 (en) Automobile engine exhaust gas feedback regulation method uses temperature sensors for detecting temperature of fresh air, exhaust gas and combustion gas mixture for calculating exhaust gas component in gas mixture
EP1890207A1 (en) Method of generating a process model
EP1075657A1 (en) METHOD FOR DETERMINING NO x? CONCENTRATION
EP1697687B1 (en) Method for determining fluctuating fuel properties during the operation of a power plant
EP0530655A2 (en) Method and apparatus for controlling an internal combustion engine and testing its catalytic converter
EP1051585B1 (en) Method and device for operating an incinerator plant
EP4143486B1 (en) Device and method for combustion control for a fuel gas with a proportion of additive gas
EP1693558A1 (en) Method of forecasting of pollutant emissions of combustion processes
DE4428952C2 (en) Method and device for regulating and monitoring the combustion of a furnace
WO2004053307A1 (en) Method and device for the diagnosis of catalytic units
DE4340534A1 (en) Control and monitoring procedures
EP3851656B1 (en) Method and device for evaluating measured values determined during the actual operation of a vehicle
DE19821136C2 (en) Device for analyzing the exhaust gas from motor vehicles
EP1084399A2 (en) Method for determining nox concentration
DE3840248A1 (en) Device for determining the air/fuel ratio of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020124

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59908129

Country of ref document: DE

Date of ref document: 20040129

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040319

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2213396

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040517

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110926

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111213

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20120912

Year of fee payment: 14

Ref country code: SE

Payment date: 20120911

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20121010

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120810

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20130930

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130908

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130909

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20130930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 256843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140904

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140908

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140927

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140917

Year of fee payment: 16

Ref country code: ES

Payment date: 20141027

Year of fee payment: 16

Ref country code: DE

Payment date: 20141120

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59908129

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150908

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150908

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150908

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150909