JPS60196517A - Control mechanism for soot of burner - Google Patents

Control mechanism for soot of burner

Info

Publication number
JPS60196517A
JPS60196517A JP59051333A JP5133384A JPS60196517A JP S60196517 A JPS60196517 A JP S60196517A JP 59051333 A JP59051333 A JP 59051333A JP 5133384 A JP5133384 A JP 5133384A JP S60196517 A JPS60196517 A JP S60196517A
Authority
JP
Japan
Prior art keywords
soot
combustion
burner
nozzle
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59051333A
Other languages
Japanese (ja)
Inventor
Akihiko Kishida
岸田 晃彦
Shuji Iida
修司 飯田
Mitsunobu Matsunaga
松永 三信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP59051333A priority Critical patent/JPS60196517A/en
Publication of JPS60196517A publication Critical patent/JPS60196517A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/26Fuel nozzles
    • F23N2235/28Spray fuel nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To maintain combustion oil at an optimum pulverizing condition and to improve combustion efficiency, by a method wherein, through continuous measurement of soot concentration in the flame of a burner, the area of a nozzle is varied, and the flow rate of the air for combustion is controlled. CONSTITUTION:An injection nozzle 11 at the forward end of a burner 2 is structured so that the area of the injection nozzle is varied. Namely, through longitudinal movement in the direction an axis of a fuel oil passage 13 by means of a step motor 31, a shield plate 10, attached to the forward end of an oil nozzle 4, is moved longitudinally. A soot sensor 38 emits laser rays, and from a decrease in an amount of light entering a collecting part 39, soot concentration in a flame 30 is measured. An output signal from the soot sensor 38 is received by a regulator 40, and a signal, correcting displacement of soot concentration from a previously set value, is inputted from the regulator 40 to a regulator 34 and a flow rate regulator 20. This operates the step motor 31, causes the optimum atomizing condition of combustion oil to be maintained through variation of the area of the injection nozzle 11 at the forward end, and also controls a flow rate of the air for combustion in response thereto.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、バーナーノズルの先端噴射口より燃料油をア
トマイズ媒体により微粒化して噴射すると共に、該先端
噴射口を囲うエアー噴出口より燃焼用エアーを噴出させ
るバーナーにおける燃焼油の最適微粒化状態を維持する
だめの煤抑制機構に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention involves atomizing fuel oil using an atomizing medium and injecting it from the tip injection port of a burner nozzle, and injecting combustion air from the air injection port surrounding the tip injection port. This invention relates to a soot suppression mechanism that maintains the optimal atomization state of combustion oil in a burner that spews out soot.

〔発明の背景〕[Background of the invention]

先ず第1図及び第2図に基いて従来例の構成及び動作を
説明する。アトマイズ媒体として空気が流入管1を通っ
てバーナーノズル2内に送給され、この送給されたアト
マイズ媒体の一部が穴3を通ってオイルノズル4の燃料
噴き出し口5から出る燃料油をエアーノズル6の内面7
に何者させるように旋回光として供給される。残りのア
トマイズ媒体は、穴8を通り、バーナーノズル20本体
9の先端と遮蔽板10との隙間として形成された先端噴
射口11を通り外へ吹き出る。
First, the configuration and operation of the conventional example will be explained based on FIGS. 1 and 2. Air is fed as an atomizing medium into the burner nozzle 2 through the inflow pipe 1, and a part of the fed atomizing medium passes through the hole 3 and the fuel oil coming out from the fuel spout 5 of the oil nozzle 4 is aerated. Inner surface 7 of nozzle 6
It is supplied as a rotating light to make it look like something. The remaining atomized medium passes through the hole 8, passes through the tip injection port 11 formed as a gap between the tip of the burner nozzle 20 main body 9 and the shielding plate 10, and is blown out.

燃料油は、流入管12を通って燃料油路13に供給され
、前記燃料噴き出し口5に導かれ、エアーノズル6の内
側に出′る。エアーノズル6の内側に出た燃料油は、前
述したように、エアーノズル6の内面7に付着しながら
流れ、遮蔽板l−Oと衝当し、アトマイズ媒体により微
粒化されて前記先端噴射口11よシ外方に噴射される。
The fuel oil is supplied to the fuel oil passage 13 through the inflow pipe 12, guided to the fuel outlet 5, and exits inside the air nozzle 6. As described above, the fuel oil discharged to the inside of the air nozzle 6 flows while adhering to the inner surface 7 of the air nozzle 6, collides with the shielding plate l-O, is atomized by the atomizing medium, and passes through the tip injection port. 11 is injected outward.

流入管12のバーナーノズル2の本体9を貫通する部分
にはエアーシール14が装備され、該エアーシール14
はエアーシールどめ15により固定されている。
An air seal 14 is installed at a portion of the inflow pipe 12 that penetrates the main body 9 of the burner nozzle 2.
is fixed by an air seal stopper 15.

燃焼用エアーは、流入管16を通って前記バーナーノズ
ル2を囲うエアー噴出口17より噴出され、前記微粒化
された燃焼油と混合される。
The combustion air passes through the inlet pipe 16 and is ejected from the air outlet 17 surrounding the burner nozzle 2, and is mixed with the atomized combustion oil.

前記アトマイズ媒体、燃焼油及び燃焼用エアーの各流量
は、各流入管1.12.16に設けた流量調節計18.
19.20により炉24内の温度が設定温度になるよう
調節される。この各流量調節計18.19.20は、各
流入管1.12.16に設けた流量計21.22.23
からのフィードバック信号と、炉24内に設置した温度
検出器25からの検出信号を受けた調節計26によって
演算された出力信号とにより各流入管1.12.16内
に設けたパルプ27.28.29を開閉するととにより
各流量を調節する。
The respective flow rates of the atomizing medium, combustion oil, and combustion air are determined by a flow rate controller 18. installed in each inlet pipe 1.12.16.
19 and 20, the temperature inside the furnace 24 is adjusted to the set temperature. Each flow rate regulator 18.19.20 is connected to a flow meter 21.22.23 provided in each inflow pipe 1.12.16.
Pulp 27, 28 provided in each inlet pipe 1, 12, 16 by the feedback signal from Each flow rate is adjusted by opening and closing .29.

ところが、上記従来例では先端噴出口11の面積がβ1
変ではないため、バーナー負荷が中低負荷時にはアトマ
イズ媒体の吹き出し速度が低下する。
However, in the conventional example described above, the area of the tip jet port 11 is β1.
Since this is not unusual, the blowing speed of the atomizing medium decreases when the burner load is medium to low.

この状態において、燃焼油の微粒化を高め、炉24内の
温度が設定温度になるようにするにはアトマイズ媒体の
流電を増加させて、これによりアトマイズ媒体(空気)
の吹き出し速度を増加する必要があり、その結果排ガス
損失を増大させるという欠点があった。そこで、従来、
排ガス中の酸素娘要を測定し、これにより前記微粒化状
態すなわち燃焼状!甜を間接的に監視し制御する機構が
提供されているが、この機構は発煙限界の空気破に少し
安全率を見込んで多めの空気を供給するというものであ
るため、バーナー負荷やその他の要因の変化にかかわら
ず燃焼油を最適微粒化状態に維持するには十分なものと
は言えなかった。
In this state, in order to increase the atomization of the combustion oil and bring the temperature inside the furnace 24 to the set temperature, the current flow of the atomizing medium is increased, which causes the atomizing medium (air) to become atomized.
It is necessary to increase the blowing speed, which has the disadvantage of increasing exhaust gas loss. Therefore, conventionally,
The amount of oxygen in the exhaust gas is measured, and this shows the atomization state, that is, the combustion state! A mechanism is provided to indirectly monitor and control the sugar content, but this mechanism supplies more air with a small safety factor in mind when the air breaks at the smoking limit, so it depends on the burner load and other factors. It could not be said that it was sufficient to maintain the combustion oil in an optimal atomization state regardless of the changes in the amount.

燃焼泊め微粒化が低いと火炎中の残留物として煤滅度が
増加する。逆に微粒化が高いと煤瓢度は減少する。従っ
て、予め最適微粒化状態のときの煤濃度を測定しておけ
ば、火炎中の煤濃度を直接かつ連続的に計測することに
より燃焼油を常時最適微粒化状態に維持しておくことが
可能となる。
If the combustion atomization is low, the degree of soot sterilization will increase as residue in the flame. Conversely, if the atomization is high, the degree of sootness decreases. Therefore, by measuring the soot concentration in the optimal atomization state in advance, it is possible to maintain the combustion oil in the optimal atomization state at all times by directly and continuously measuring the soot concentration in the flame. becomes.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みなされたもので、バーナー負荷
やその他の要因の変化にかかわらず、燃焼油を最適微粒
化状態に維持し、燃焼効率を向上させると共に排ガス損
失が増大することのないバーナーの煤制御機構を提供す
るのが目的である。
The present invention was developed in view of the above circumstances, and is a burner that maintains combustion oil in an optimal atomized state regardless of changes in burner load and other factors, improves combustion efficiency, and does not increase exhaust gas loss. The purpose is to provide a soot control mechanism.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、先端噴射口の面積
を可変構造にすると共に、バーナーの火炎中の煤嫉度を
煤センザーにより検出し、該煤センサーからの出力信号
により前記先端噴射口の面積及び燃焼用エアーの流量の
変更を制御して、予め設定した煤濃度になるようにして
燃焼油の最適微粒化状態を維持するようにした点を特徴
とする。
In order to achieve the above object, the present invention has a structure in which the area of the tip nozzle is variable, and a soot sensor detects the degree of soot in the flame of the burner, and an output signal from the soot sensor is used to detect the soot nozzle. The combustion oil is characterized in that the optimal atomization state of the combustion oil is maintained by controlling changes in the area of the combustion air and the flow rate of the combustion air to achieve a preset soot concentration.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面の実施例に基いて詳細に説明する。 Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第3図は本発明に係る制御機構の原理図を示し、第4図
は要部拡大断面図を示す。先端噴射口11の面積は可変
構造に形成されている。該可変構造は、燃料油路13を
軸芯方向に前後動可能に形成することによシ、オイルノ
ズル4の先端に取り付けられた遮蔽板10を前後動させ
ることにより構成されている。燃料油路13を前後動さ
せる機構はステップモーター31より成る。すなわち、
燃料油路13の後端に連結された軸棒32の基端を回転
可能に螺着33し、調節計34からの出力信号によりマ
グネット35と36間に発生する磁力により軸棒32を
回転させることにより当該燃料油路13を前後動させる
。燃料油路13は前後動するため、フレキシブルチュー
ブ37により流入管12と連通されている。
FIG. 3 shows a principle diagram of the control mechanism according to the present invention, and FIG. 4 shows an enlarged sectional view of the main parts. The area of the tip injection port 11 is formed in a variable structure. The variable structure is constructed by forming the fuel oil passage 13 so as to be movable back and forth in the axial direction, and by moving the shielding plate 10 attached to the tip of the oil nozzle 4 back and forth. A mechanism for moving the fuel oil passage 13 back and forth includes a step motor 31. That is,
The base end of a shaft 32 connected to the rear end of the fuel oil passage 13 is rotatably screwed 33, and the shaft 32 is rotated by the magnetic force generated between magnets 35 and 36 in response to an output signal from a controller 34. This moves the fuel oil passage 13 back and forth. Since the fuel oil passage 13 moves back and forth, it is communicated with the inflow pipe 12 through a flexible tube 37.

38は煤センサーで、核煤センサー38は火炎30中の
煤裏度を検出するもので、39は受光部を示す。該煤セ
ンサー38はレーザー光を射光し、火炎30中の煤によ
り吸収されて受光部39に入光する。該受光部39に入
光する光量の減少分から火炎30中の煤濃度が測定され
る。煤センサー38からの出力信号を調節計40で受け
、該調節計40で予め設定した煤磯度とのズレを検出し
、該ズレが修正される出力信号を調節計34に入力する
と共に、燃焼用エアーの流を胸節計20にも入力する。
38 is a soot sensor, the nuclear soot sensor 38 detects the degree of soot in the flame 30, and 39 is a light receiving part. The soot sensor 38 emits a laser beam, which is absorbed by the soot in the flame 30 and enters the light receiving section 39 . The soot concentration in the flame 30 is measured from the decrease in the amount of light incident on the light receiving section 39. A controller 40 receives the output signal from the soot sensor 38, detects a deviation from a preset soot level, inputs an output signal for correcting the deviation to the controller 34, and controls the combustion The flow of air is also input to the thoracometer 20.

調節計34は前記調節計40からの出力信号と、更に炉
内の温度検出器25からの検出信号を受けた調節計26
からの出力信号とを受けて作動する。その他の構成は上
記従来例と同様なので同一部分に同一符号を付して説明
は省略す右。
The controller 34 receives an output signal from the controller 40 and a controller 26 which receives a detection signal from the temperature detector 25 in the furnace.
It operates in response to the output signal from. The rest of the configuration is the same as that of the conventional example, so the same parts are given the same reference numerals and the explanation will be omitted.

次に本発明の詳細な説明する。バーナー負荷が変化して
燃焼油の微粒化状態が変わると火炎30中の煤濃度が変
わり、それが煤センサー38により検出される。すると
、調節計40から前記煤濃度の予め定めた設定値からの
ズレを修正する信号が調節計34及び流量調節計20に
入力される。
Next, the present invention will be explained in detail. When the burner load changes and the atomization state of the combustion oil changes, the soot concentration in the flame 30 changes, which is detected by the soot sensor 38. Then, a signal for correcting the deviation of the soot concentration from a predetermined set value is inputted from the controller 40 to the controller 34 and the flow rate controller 20.

、これによりステップモーター31が作動し、先端噴出
口11の面積を変えて燃焼油の最適微粒化状態を維持す
ると共に、それに対応して燃焼用エアーの流量も制御す
る。
As a result, the step motor 31 is actuated to change the area of the tip jet port 11 to maintain the optimal atomization state of the combustion oil, and to control the flow rate of the combustion air accordingly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、バーナーの火炎中の煤娘度を煤センサ
ーにより直接かつ連続的に測定することにより、該煤セ
ンサーからの出力信号により先端噴出口の面積を変更す
ると共に燃焼用エアー〇流量を制御するようにしたので
、バーナーの負荷やその他の要因の変化にかかわらず燃
焼油を最適微粒化状態に維持することができ、これによ
り燃焼効率を向上させることができると共に、排ガス損
失も増大することがない。
According to the present invention, by directly and continuously measuring the degree of soot in the flame of a burner using a soot sensor, the area of the tip nozzle is changed based on the output signal from the soot sensor, and the flow rate of combustion air is changed. As a result, the combustion oil can be maintained in an optimal atomized state regardless of changes in burner load or other factors, which improves combustion efficiency and also increases exhaust gas loss. There's nothing to do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の制御機構の原理図、第2図は同要部鉱犬
断面図、第3図は本発明に係る制御P&構の原理図、第
4図は要部拡大断面図を示す。 2・・・バーナーノズル、11・・・先端噴射口、17
・・・エアー噴出口、30・・・火炎、38・・・煤セ
ンサー。 代理人 鵜 沼 辰 之 (ほか1名)
Fig. 1 is a principle diagram of a conventional control mechanism, Fig. 2 is a sectional view of the main parts thereof, Fig. 3 is a principle diagram of the control P & structure according to the present invention, and Fig. 4 is an enlarged sectional view of the main parts. . 2... Burner nozzle, 11... Tip injection port, 17
...Air outlet, 30...Flame, 38...Soot sensor. Agent Tatsuyuki Unuma (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] バーナーノズルの先端噴射口より燃料油をアトマイズ媒
体により微粒化して噴射すると共に、゛該先端噴射口を
囲うエアー噴出口より燃焼用エアーを噴出させる構成の
バーナーにおいて、前記先端噴射口の面積を可変構造に
すると共に、該ノ(−ナーの火炎中の煤敲度を検出する
煤センサーを装備し、該煤センサーからの出力信号によ
り前記先端噴射口の面積及び前記燃焼用エアーの流量の
変更を制御することを特徴とするバーナーの煤制御機構
In a burner configured to atomize fuel oil using an atomizing medium and inject it from the tip injection port of a burner nozzle, and to blow out combustion air from an air injection port surrounding the tip injection port, the area of the tip injection port is variable. It is equipped with a soot sensor that detects the soot content in the flame of the fuel, and changes the area of the tip injection port and the flow rate of the combustion air based on the output signal from the soot sensor. A burner soot control mechanism characterized by controlling.
JP59051333A 1984-03-16 1984-03-16 Control mechanism for soot of burner Pending JPS60196517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051333A JPS60196517A (en) 1984-03-16 1984-03-16 Control mechanism for soot of burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051333A JPS60196517A (en) 1984-03-16 1984-03-16 Control mechanism for soot of burner

Publications (1)

Publication Number Publication Date
JPS60196517A true JPS60196517A (en) 1985-10-05

Family

ID=12883990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051333A Pending JPS60196517A (en) 1984-03-16 1984-03-16 Control mechanism for soot of burner

Country Status (1)

Country Link
JP (1) JPS60196517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551094B2 (en) * 1998-09-11 2003-04-22 Siemens Aktiengesellschaft Method and device for determining a soot charge in a combustion chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551094B2 (en) * 1998-09-11 2003-04-22 Siemens Aktiengesellschaft Method and device for determining a soot charge in a combustion chamber

Similar Documents

Publication Publication Date Title
CA1093319A (en) Air-ejector assisted fuel nozzle
US5782626A (en) Airblast atomizer nozzle
JPH0621544B2 (en) Diesel engine exhaust purification system
JP2004522129A (en) Method and apparatus for setting air ratio
KR950001176A (en) Controlled flame fuel injection combustion
JPH0531049B2 (en)
US4334854A (en) Method of controlling the combustion of liquid fuel
JPS6055721B2 (en) Device that supplies a mixture of air and circulating combustion gas to the burner
FR2680416A1 (en) FLUIDIZED POWDER FLOW RATE MEASUREMENT METHOD AND FLOW MEASURING DEVICE IMPLEMENTING SUCH A METHOD.
JPS5843567B2 (en) I can't get enough of this.
CA2026857A1 (en) Process for exploiting a burner and burners for a rotary tubular furnace
CS203180B2 (en) Burner,especially for liquid fuels
US5384164A (en) Flame sprayed coatings of material from solid wire or rods
JPS60196517A (en) Control mechanism for soot of burner
JP3769207B2 (en) Position detection device
US5727938A (en) Premix burner
JPS60196518A (en) Mechanism of reducing production of nox in burner
WO1991006804A1 (en) BURNER AND METHOD FOR REDUCING NOx FORMATION
JPS60196507A (en) Control mechanism for blow-off velocity of atomized medium at burner nozzle
JP3079794B2 (en) Electromagnetic fuel injection valve, fuel swivel member for electromagnetic fuel injection valve, and fuel injection device using this valve
JPS62138607A (en) Burning equipment
JPH01167514A (en) After-air supplying device
US3062273A (en) Method and apparatus for atomizing liquids
JP2976826B2 (en) Pilot burner mechanism
JP2001116214A (en) Three-positional control burner