EP1104335B1 - Powder spray coating device - Google Patents

Powder spray coating device Download PDF

Info

Publication number
EP1104335B1
EP1104335B1 EP99931045A EP99931045A EP1104335B1 EP 1104335 B1 EP1104335 B1 EP 1104335B1 EP 99931045 A EP99931045 A EP 99931045A EP 99931045 A EP99931045 A EP 99931045A EP 1104335 B1 EP1104335 B1 EP 1104335B1
Authority
EP
European Patent Office
Prior art keywords
flow
air
compressed air
flow restrictor
diagram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99931045A
Other languages
German (de)
French (fr)
Other versions
EP1104335A1 (en
Inventor
Gerald Haas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gema Switzerland GmbH
Original Assignee
Gema Switzerland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gema Switzerland GmbH filed Critical Gema Switzerland GmbH
Publication of EP1104335A1 publication Critical patent/EP1104335A1/en
Application granted granted Critical
Publication of EP1104335B1 publication Critical patent/EP1104335B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1472Powder extracted from a powder container in a direction substantially opposite to gravity by a suction device dipped into the powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • B05B5/1683Arrangements for supplying liquids or other fluent material specially adapted for particulate materials

Definitions

  • the invention relates to a powder spray coating device according to the preamble of claims 1 and 2.
  • Such a powder spray coating apparatus is known from US-A-5,131,350.
  • a powder spray coating device which in each case contains a pressure regulator in a conveying air line and in an additional air line.
  • powder flow rates (m) are plotted as a first graph axis and feed rates (FV) as a second plot axis.
  • the diagram contains a curve which, for this embodiment, the optimum total air rate (GV) consisting of the conveying air and optionally added Represents additional air.
  • GV optimum total air rate
  • m-setpoint can be set.
  • the computer starts from this powder feed rate setpoint on the powder feed rate graph axis and calculates the associated feed rate value (FV) over the total air rate graph. Furthermore, the computer calculates the optionally required additional air rate (ZV target) from the difference between the total air rate and the delivery air rate.
  • the calculated by the computer in this way spellluftraten setpoints (FV target) and possibly required additional air rate setpoints (ZV target) uses the computer to control the conveying air pressure regulator and the additional air pressure regulator.
  • Such a powder spray coating device works relatively accurately only if the delivery air actual values and the additional air actual values are also included in the control process.
  • the regulators keep the air pressure in their air line constant.
  • the powder is conveyed at a certain constant flow rate. If the conveying speed is too low, there is a risk of powder deposits in the powder hose. If the conveying speed is too high, powder particles will bounce off the object to be coated. Suitable conveying speeds for the powder are in the range between about 10 m / s and 20 m / s. For keeping constant the powder flow rate on a given Setpoint or within a certain setpoint range, however, it is necessary to keep the required for the promotion of the powder air flow rate constant.
  • air dividers which include a throttle valve in a conveying air line and a throttle valve in a supplementary air line.
  • the two throttle valves are mechanically coupled with each other. As much as one is opened further, the other is closed further.
  • Throttle valves have the advantage over pressure regulators that they do not keep a constant pressure according to their set opening cross section and thus their set flow resistance, but the per unit time through them flowing air. To adjust the throttles a simple control device is sufficient. A control loop with actual value measurement is not required. Throttle valves can thus be referred to as volume flow controller.
  • the volume flow per unit time is largely independent of changes in the flow resistance in the flow path downstream of the flow restrictor, as long as this flow resistance remains relatively small relative to the resistance of the flow restrictor.
  • the flow resistances in the injector and in the powder hose, which connects the injector with a spray device are already so great that a disadvantage of the Flow chokes noticeable.
  • the disadvantage is that an adjusting movement on the throttle does not result in a proportional or linear adjustment of the air volume flowing through the throttle opening per unit of time. This results in using the bekannnten tandem throttles only theoretically, but not actually the required per unit time funded total air flow, flow rate and additional air flow.
  • throttle valves are not mechanically, but by a computer, in particular a computer, coupled together.
  • a computer in particular a computer, coupled together.
  • the typical values of at least one embodiment of a spray coating device are stored in the simplest manner on the basis of simple tests.
  • the typical values of a plurality of such devices can be stored and easily retrieved for the coating operation by programs.
  • Fig. 1 shows an axial section of an injector 2 as a pneumatic powder feed pump.
  • a conveying air line 4 with a throttle 8 which can be adjusted by a servomotor 6 is connected to an injector nozzle 10.
  • An air-powder channel 12 is arranged axially opposite the injector nozzle 10.
  • the conveying air generated on its way from the injector nozzle 10 to the air-powder channel 12 in a region 14 a negative pressure, through which powder 15 is sucked from a powder container 16 through a suction pipe 18 in the conveying air.
  • the conveying air conveys the powder through the air-powder channel 12, a powder hose 20 and then through a manual or automatic spray gun 22 on an object to be coated 24.
  • the spray gun 22 may comprise one or more high voltage electrodes 26 in a known manner for electrostatic charging of the coating powder.
  • the powder hose 20 can open into a further powder container 30 and optionally be replaced by a rigid tube.
  • An additional air line 32 also includes a throttle 34, the opening cross-section of a further servomotor 36 is adjustable.
  • the compressed air of the additional air line 32 arrives at a point located downstream of the injector nozzle 10 into the air-powder channel 12. According to an embodiment not shown, the additional air line 32 could open into the vacuum region 14.
  • the amount of powder delivered by the injector 2 is approximately directly proportional to the amount of conveying air delivered per unit time and also approximately proportional to the size of the negative pressure in the vacuum region 14.
  • the less powder to be conveyed per unit time the smaller the quantity of conveying air per unit time.
  • additional air must be added to the additional air line 32, so that no powder is deposited in the powder hose 20.
  • the total amount of air consisting of conveying air and additional air is preferably constant for the known powder spray coating equipment so large that the flow velocity in the powder hose 20 in the area between 10-15 m / s. For this reason, it is important that the total amount of air is kept constant.
  • a compressed air supply line 40 which is supplied via a pressure regulator 42 from a compressed air source 44, for example the compressed air system of a company, with compressed air.
  • a compressed air source 44 for example the compressed air system of a company
  • an adjustable throttle 46 may be arranged, which is adjustable by a servo motor 48 so that the total amount of air per unit time is kept constant.
  • the servomotors 6, 36 and 48 are controlled by an electronic control device 50 connected to them as a function of desired values. Actual values of the various compressed air streams do not need to be measured and taken into account for the adjustment of the throttles 6, 36 and 48, since the throttles can be set precisely in the manner described below to obtain desired compressed air flow rates per unit of time without a control device having actual value. Feedback is required.
  • the electronic control device 50 contains at least one computer or computer. It also includes a manual setpoint adjuster 52.
  • the setpoint adjuster 52 has a manual adjustment element 54 in the form of a pushbutton, slider or a rotary knob, wherein in the present Case is assumed that it is a knob.
  • the manual adjustment member 54 is adjustable relative to a linearly divided scale 56 over a rotation angle of for example 180 °. These 180 ° are linearly divided on the horizontal diagram axis of FIG. 3 or linearly divided in FIG. 4 on the horizontal diagram axis in 0% to 100%.
  • the scale 56 may be labeled with angular degrees or percentages or compressed air flow rates per unit time or amounts of powder per unit time or their percentages.
  • a total air setpoint for the per unit time funded total amount of air consisting of conveying air of the conveying air line 4 and additional air of the additional air line 32 is stored.
  • the control device 50 needs only a set value for the per unit time promoted conveying air quantity of the conveying air line 4 to be input to the setpoint adjuster 52.
  • the control device 50 then calculates the difference value from the total air setpoint value minus the conveying air setpoint value and uses this as setpoint value for setting the additional air throttle 34.
  • the control device 50 can according to the embodiment shown here for all three throttles 8, 34 and 46 or even for only one or two of these throttles be used. Each of these chokes 8, 34 and 46 can be controlled by the control device 50 according to the diagram of Fig. 3 or the diagram of Fig. 4, without an actual value measurement and an actual value feedback for a control is required. Representative of all throttles, the control of the conveying air throttle 8 will be described below.
  • a diagram according to FIG. 3 is stored in the control device 50 of FIG. 1 for each throttle 8, 34 and 46.
  • the setting rotational angle of the respective throttle 8 or 34 and 46 are linearly plotted.
  • the vertical graph axis plots linearly in percent percentages from zero percent to 100 percent of the compressed air flow rates per unit time that can be conveyed through the restrictor at a given constant input air pressure.
  • projection lines 60, 61, 62 and 63 are entered for the curve A, for example for the volume percentages 20, 30, 80 and 90 of the vertical diagram axis, through which the corresponding setting angles ⁇ for the relevant throttle 8, 34 or 46 result.
  • the type and size of the curvature of the curve A is dependent on the flow resistance of the flow path, which downstream of the respective throttle 8 or 34 and 46, respectively. This means that for each flow path, the downstream of the respective throttle 8 or 34 or 46 has a different resistance, a corresponding curve in the control device 50 must be stored.
  • the two further differently curved curves B and C are shown in FIG.
  • the setpoint adjuster 52 For the adjustment of the conveying air of the conveying air line 4 through the throttle 8 is applied to the setpoint adjuster 52 in linear distribution either also in percent or in a specific unit linearly the relevant conveying air flow rate per unit time. Since these values are directly proportional to the amount of powder delivered per unit of time, the percentages can also be regarded as a corresponding quantity of powder or the scale can be labeled with powder delivery rates per unit time.
  • the set point for the throttle 34 of the additional air line 32, the controller 50 is calculated by calculating the difference value from the total air flow rate per unit time minus the delivery air flow rate per unit time.
  • 3 corresponding diagram of the additional air throttle 34 are also curved diagram lines similar to the curves A, B and C used, the curvature of the flow resistance of the flow path downstream of the additional air throttle 34 is dependent. Since the additional air has much less influence on the coating quality than the conveying air, the additional air of the additional air line 32 could be controlled instead of by a throttle 34 by a pressure regulator, which but would be more expensive.
  • the throttle 46 can be controlled in the same manner according to a diagram of FIG. 3, this throttle 46 could be omitted, since the controller 50 from the sum of conveying air and additional air calculate the total amount of air and thereby through the throttles 8 and 34 of the conveying air line 4 and the additional air line 32 can keep the total air rate constant.
  • the throttle adjustment change values ⁇ are not proportional to the compressed air amount change values. For example, for 10% change in the amount of compressed air in the range of 20% to 30%, a much smaller change in the setting angle ⁇ of the throttle is required than in the upper percentage range, for example between 80% and 90%, which is marked by hatched boxes 64 and 65.
  • a straight diagram line D is entered, which as well as the curved diagram characteristics A, B and C were determined by tests and in the control device 50 is stored in hardware or in software.
  • the straight graph line D in effect represents a "linearization" of the non-linear dependence of the air flow rate per unit time on the setting of the throttle.
  • the adjustment range of the manual Set point adjustment element 54 linearly plotted from 0% to 100% of adjustment angles ⁇ . This division also applies to the adjustment range of the respective throttle.
  • dashed projection lines 66, 67 and 68 for the curved diagram line A, at the setpoint adjuster 52 a linear value can be set manually or electrically, which is proportional to a value of the vertical diagram axis.
  • the control device 50 corresponding to the projection line 66 vertically upwards to the straight line D, then according to the projection line 67 horizontally to the curved diagram line A, and then according to the projection line 68 back down again vertically to the horizontal diagram axis to the there specified value, which is the value at which the throttle 8 must be adjusted by its servo motor 6 from the controller 50 so as to give a conveying air amount per unit time, which is set at the setpoint adjuster 52.

Abstract

A spray powder-coating system comprising at least one flow throttle (8, 34) in a compressed-air line of an injector (2). An electronic control unit (50) non-linearly controls the throttle as a function of setpoints.

Description

Die Erfindung betrifft eine Pulver-Sprühbeschichtungsvorrichtung gemäß dem Oberbegriff der Patentansprüche 1 und 2.The invention relates to a powder spray coating device according to the preamble of claims 1 and 2.

Eine solche Pulver-Sprühbeschichtungsvorrichtung ist aus der US-A-5 131 350 bekannt.Such a powder spray coating apparatus is known from US-A-5,131,350.

Ferner ist aus der EP 0 636 420 A3 eine Pulver-Sprühbeschichtungsvorrichtung bekannt, welche in einer Förderluftleitung und in einer Zusatzluftleitung je einen Druckregler enthält. In einem Computer sind als Diagramm Pulverförderraten (m) als eine erste Diagrammachse und Förderluftraten (FV) als eine zweite Diagrammachse aufgetragen. Ferner enthält das Diagramm mindestens für eine bestimmte Ausführungsform der Pulver-Sprühbeschichtungsvorrichtung eine Kurve, welche für diese Ausführungsform die optimale Gesamtluftrate (GV) bestehend aus der Förderluft und gegebenenfalls hinzugefügter Zusatzluft darstellt. An einem Eingang (52) des Computers kann ein Pulverförderraten-Sollwert (m-Soll) eingestellt werden. Der Computer geht von diesem Pulverförderraten-Sollwert auf der Pulverförderraten-Diagrammachse aus und errechnet sich über die Gesamtluftraten-Kurve den zugehörigen Förderluftraten-Wert (FV). Ferner errechnet der Computer aus der Differenz zwischen der Gesamtluftrate und der Förderluftrate die gegebenenfalls erforderliche Zusatzluftrate (ZV-Soll). Die vom Computer auf diese Weise errechneten Förderluftraten-Sollwerte (FV-Soll) und gegebenfalls erforderliche Zusatzluftrate-Sollwerte (ZV-Soll) verwendet der Computer zur Ansteuerung des Förderluft-Druckreglers und des Zusatzluft-Druckreglers. Eine solche Pulver-Sprühbeschichtungsvorrichtung arbeitet nur dann relativ genau, wenn auch die Förderluft-Istwerte und die Zusatzluft-Istwerte in den Regelvorgang miteinbezogen werden. Die Regler halten in ihrer Luftleitung den Luftdruck konstant. Dies ergibt jedoch nur dann eine konstante Förderluftrate, d.h. pro Zeiteinheit geförderte Luftmenge, wenn der Strömungswiderstand stromabwärts des betreffenden Reglers konstant bleibt. Bei Änderungen dieses Strömungswiderstandes verändert sich auch die pro Zeiteinheit geförderte Luftmenge. Die Werte und Kurven im Diagramm entsprechen Erfahrungswerten oder durch Versuche ermittelten Werten für eine bestimmte Pulverfördervorrichtung. Durch Abbiegen eines Luftschlauches, welcher den Injektor mit einem Steuergerät verbindet, oder durch Verwendung verschiedener Längen solcher Luftschläuche, oder auch durch den Austausch des Injektors gegen andere Injektoren mit anderen Strömungswiderständen, ändert sich aus den genannten Gründen automatisch auch die pro Zeiteinheit geförderte Förderluftmenge, Zusatzluftmenge und/oder Gesamtluftmenge.Furthermore, from EP 0 636 420 A3 a powder spray coating device is known, which in each case contains a pressure regulator in a conveying air line and in an additional air line. In a computer, powder flow rates (m) are plotted as a first graph axis and feed rates (FV) as a second plot axis. Furthermore, for at least one particular embodiment of the powder spray coating device, the diagram contains a curve which, for this embodiment, the optimum total air rate (GV) consisting of the conveying air and optionally added Represents additional air. At an input (52) of the computer, a powder feed rate setpoint (m-setpoint) can be set. The computer starts from this powder feed rate setpoint on the powder feed rate graph axis and calculates the associated feed rate value (FV) over the total air rate graph. Furthermore, the computer calculates the optionally required additional air rate (ZV target) from the difference between the total air rate and the delivery air rate. The calculated by the computer in this way Förderluftraten setpoints (FV target) and possibly required additional air rate setpoints (ZV target) uses the computer to control the conveying air pressure regulator and the additional air pressure regulator. Such a powder spray coating device works relatively accurately only if the delivery air actual values and the additional air actual values are also included in the control process. The regulators keep the air pressure in their air line constant. However, this only results in a constant delivery air rate, that is, per unit of time conveyed air quantity, when the flow resistance downstream of the controller in question remains constant. As the flow resistance changes, so does the amount of air delivered per unit of time. The values and curves in the diagram correspond to empirical values or values determined by tests for a specific powder conveying device. By bending an air hose, which connects the injector with a control unit, or by using different lengths of such air hoses, or by replacing the injector with other flow resistors to other injectors, changes automatically for these reasons also per unit time promoted conveying air, additional air and / or total amount of air.

Diese Schwankungen der pro Zeiteinheit geförderten Luftmengen treten selbst dann auf, wenn in dem Computer Diagramme für mehrere verschiedene Pulver-Sprühbeschichtungsvorrichtungen gespeichert sind, weil auch dann nicht vermieden werden kann, daß im täglichen Betrieb Luftschläuche gebogen oder ausgetauscht werden und/oder Injektoren ausgetauscht werden, welche verschiedene Strömungwiderstände haben.These variations in the amounts of air delivered per unit time occur even if diagrams are stored in the computer for several different powder spray coating devices, because it can not be avoided that air hoses are bent or exchanged in daily operation and / or injectors are replaced, which have different flow resistances.

Für einen guten Wirkungsgrad bei der Pulversprühbeschichtung und für eine funktionell und optisch gute Pulverbeschichtungsfläche ist es jedoch erforderlich, daß das Pulver mit einer bestimmten konstanten Strömungsgeschwindigkeit gefördert wird. Bei zu geringer Fördergeschwindigkeit besteht die Gefahr von Pulverablagerungen im Pulverschlauch. Bei zu hoher Fördergeschwindigkeit prallen Pulverpartikel von dem zu beschichtenden Objekt ab. Geeignete Fördergeschwindigkeiten für das Pulver liegen im Bereich zwischen etwa 10 m/s und 20 m/s. Für die Konstanthaltung der Pulverströmungsgeschwindigkeit auf einem bestimmten Sollwert oder innerhalb eines bestimmten Sollwertbereiches ist es jedoch erforderlich, die zur Förderung des Pulvers erforderliche Luftströmungsrate entsprechend konstant zu halten.For a good efficiency in the powder spray coating and for a functionally and optically good powder coating surface, however, it is necessary that the powder is conveyed at a certain constant flow rate. If the conveying speed is too low, there is a risk of powder deposits in the powder hose. If the conveying speed is too high, powder particles will bounce off the object to be coated. Suitable conveying speeds for the powder are in the range between about 10 m / s and 20 m / s. For keeping constant the powder flow rate on a given Setpoint or within a certain setpoint range, however, it is necessary to keep the required for the promotion of the powder air flow rate constant.

Aus der US-A-3 625 404 und der DE-A-44 09 493 sind Luft-Teiler bekannt, welche ein Drosselventil in einer Förderluftleitung und ein Drosselventil in einer Zusatzluftleitung enthalten. Die beiden Drosselventile sind mechanisch miteinander gekuppelt. In gleichem Maße wie das eine weiter geöffnet wird, wird das andere weiter geschlossen. Drosselventile haben gegenüber Druckreglern den Vorteil, daß sie entsprechend ihrem eingestellten Öffnungsquerschnitt und damit ihrem eingestellten Durchflußwiderstand nicht einen Druck konstant halten, sondern die pro Zeiteinheit durch sie hindurchströmende Luftmenge. Zur Einstellung der Drosseln genügt eine einfache Steuervorrichtung. Ein Regelkreis mit Istwert-Messung ist nicht erforderlich. Drosselventile können somit als Volumenstromregler bezeichnet werden. Der Volumenstrom pro Zeiteinheit ist weitgehend unabhängig von Änderungen des Strömungswiderstandes im Strömungsweg stromabwärts der Strömungsdrossel, solange dieser Strömungswiderstand relativ zum Widerstand der Strömungsdrossel relativ klein bleibt. Bei Pulver-Sprühbeschichtungsvorrichtungen sind jedoch die Strömungswiderstände im Injektor und im PulverSchlauch, welcher den Injektor mit einer Sprühvorrichtung verbindet, bereits so groß, daß sich ein Nachteil der Strömungsdrosseln bemerkbar macht. Der Nachteil besteht darin, daß eine Verstellbewegung an der Drossel keine dazu proportionale oder lineare Verstellung des durch die Drosselöffnung pro Zeiteinheit hindurchströmenden Luftvolumens zur Folge hat. Dadurch ergeben sich bei Verwendung der bekannnten Tandem-Drosseln nur theoretisch, jedoch nicht tatsächlich die erforderliche, pro Zeiteinheit geförderte Gesamtluftmenge, Förderluftmenge und Zusatzluftmenge. Um genaue Werte zu erreichen, müßten durch sehr komplizierte und zeitaufwendige Versuche gekrümmte Flächen experimentell ermittelt werden, mit welchen die Wände der Drosselöffnung geformt werden müßten, um eine Linearität zwischen der Verstellung des Drosselquerschnitts und den daraus resultierenden Veränderungen der Luftfördermengen pro Zeiteinheit herzustellen. Solche Formen der Drossel-Öffnungsquerschnitte müßten für jede Variante der Pulver-Sprühbeschichtungsvorrichtungen, die unterschiedliche Strömungswiderstände haben, anhand von Versuchen ermittelt werden, und für jede Variante müßten andere, entsprechend ausgebildete Drosseln verwendet werden.From US-A-3 625 404 and DE-A-44 09 493 air dividers are known, which include a throttle valve in a conveying air line and a throttle valve in a supplementary air line. The two throttle valves are mechanically coupled with each other. As much as one is opened further, the other is closed further. Throttle valves have the advantage over pressure regulators that they do not keep a constant pressure according to their set opening cross section and thus their set flow resistance, but the per unit time through them flowing air. To adjust the throttles a simple control device is sufficient. A control loop with actual value measurement is not required. Throttle valves can thus be referred to as volume flow controller. The volume flow per unit time is largely independent of changes in the flow resistance in the flow path downstream of the flow restrictor, as long as this flow resistance remains relatively small relative to the resistance of the flow restrictor. In powder spray coating apparatuses, however, the flow resistances in the injector and in the powder hose, which connects the injector with a spray device, are already so great that a disadvantage of the Flow chokes noticeable. The disadvantage is that an adjusting movement on the throttle does not result in a proportional or linear adjustment of the air volume flowing through the throttle opening per unit of time. This results in using the bekannnten tandem throttles only theoretically, but not actually the required per unit time funded total air flow, flow rate and additional air flow. In order to obtain accurate values, curved surfaces would have to be experimentally determined by very complicated and time-consuming experiments, with which the walls of the throttle opening would have to be formed in order to establish a linearity between the adjustment of the throttle cross-section and the resulting changes in the air flow rates per unit time. Such forms of throttle opening cross-sections would have to be determined experimentally for each variant of the powder spray coating apparatuses having different flow resistances, and for each variant, other appropriately designed throttles would have to be used.

Durch die Erfindung soll die Aufgabe gelöst werden, eine genau arbeitende, jedoch preisgünstige Vorrichtung zu schaffen, durch welche eine aufwendige und teure Vorrichtung nach der Art der EP -A-0 636 420 und aber auch die Ungenauigkeiten durch Drosseln nach der in der US-A-5 131 350, US-A-3 625 404 und der DE-A-44 09 493 beschriebenen Art vermieden werden.By the invention, the object to be achieved to provide a precisely working, but inexpensive device through which a complex and expensive device according to the type of EP -A-0 636 420 and also the inaccuracies by throttling after in the US A-5 131 350, US Pat. No. 3,625,404 and DE-A-44 09 493 are avoided.

Diese Aufgabe wird gemäß der Erfindung durch die kennzeichnenden Merkmale von Anspruch 1 gelöst.This object is achieved according to the invention by the characterizing features of claim 1.

Durch die Erfindung werden Drosselventile nicht mechanisch, sondern durch einen Rechner, insbesondere einen Computer, miteinander gekoppelt. In ihm werden auf einfachste Weise die typischen Werte von mindestens einer Ausführungsform einer Sprühbeschichtungsvorrichtung anhand von einfachen Versuchen gespeichert. In dem Rechner oder Computer können die typischen Werte von einer Vielzahl von solchen Vorrichtungen gespeichert werden und auf einfache Weise für den Beschichtungsbetrieb durch Programme abgerufen werden.By the invention, throttle valves are not mechanically, but by a computer, in particular a computer, coupled together. In it, the typical values of at least one embodiment of a spray coating device are stored in the simplest manner on the basis of simple tests. In the computer or computer, the typical values of a plurality of such devices can be stored and easily retrieved for the coating operation by programs.

Die Erfindung wird im folgenden mit Bezug auf die Zeichnungen anhand einer bevorzugten Ausführungsform als Beispiel beschrieben. In den Zeichnungen zeigen

Fig. 1
schematisch eine Pulver-Sprühbeschichtungsvorrichtung nach der Erfindung,
Fig. 2
ein Detail der Sprühbeschichtungsvorrichtung von Fig. 1,
Fig. 3
ein Diagramm für eine Drossel mit einstellbarer Öffnungsgröße in einer Druckluftleitung, wobei auf der horizontalen Achse der Einstellbereich der Drossel als Drehwinkelgrade α und auf der vertikalen Diagrammachse die Druckluftströmungsmengen (Volumen) pro Zeiteinheit von 0 Prozent bis 100 Prozent (maximale Menge bei einem konstanten Eingangs-Luftdruck) je linear unterteilt aufgetragen sind, und in diesem Diagramm mehrere, z.B. drei, verschiedene gekrümmte Kurven A, B und C eingezeichnet sind, über welche sich für eine gewünschte Druckluft-Strömungsmenge der dazu erforderliche Einstellwert α der Drossel ergibt, wobei jede der gekrümmten Kurven A, B und C dem Strömungswiderstand einer anderen Ausführungsform eines sich stromabwärts an die Drossel anschließenden Strömungsweges entspricht und durch Versuche ermittelt wurde, und
Fig. 4
ein Diagramm, in welchem auf einer horizontalen Diagrammachse der Drehwinkel-Einstellbereich der Drossel in 0% bis 100% der Winkelgrade α linear unterteilt aufgetragen ist, wobei diese Unterteilung der horizontalen Diagrammachse gleichzeitig einem linear unterteilten Einstellbereich eines manuellen Sollwert-Eingabeelements oder linearen elektrischen Einstellwerten eines elektrischen Sollwerteinstellers entspricht, ferner auf einer vertikalen Diagrammachse Druckluft-Strömungsmengen (Volumen) pro Zeiteinheit in Form eines Prozentbereiches von 0 Prozent bis 100 Prozent aufgetragen sind, und die drei gekrümmten Kurven A, B und C für die drei Strömungswege,
von welchen jeder einen anderen Strömungswiderstand hat, eingetragen sind, und außerdem eine gerade Diagrammlinie eingezeichnet ist, so daß ein Rechner oder Computer von einem Sollwert auf der horizontalen Diagrammachse vertikal nach oben zur geraden Diagrammlinie, dann horizontal zu der betreffenden gekrümmten Kurve A, B oder C, und dann wieder vertikal nach unten zur horizontalen Diagrammachse "gehen" kann und damit dort den Winkel α in Prozent findet, auf welchen er die Drossel einstellen soll, damit sich eine Druckluft-Strömungsmenge (V) pro Zeiteinheit ergibt, welche auf der vertikalen Diagrammachse auf der Höhe liegt, auf welcher die vertikale Projektionslinie des Sollwertes die gerade Diagrammlinie kreuzt.The invention will now be described by way of example with reference to the drawings of a preferred embodiment. In the drawings show
Fig. 1
schematically a powder spray coating device according to the invention,
Fig. 2
a detail of the spray coating apparatus of Fig. 1,
Fig. 3
a diagram for a throttle with adjustable opening size in a compressed air line, wherein on the horizontal axis of the adjustment of the throttle as rotation angle degrees α and on the vertical diagram axis, the compressed air flow rates (volume) per unit time of 0 Percent up to 100 percent (maximum amount at a constant inlet air pressure) are plotted per linearly divided, and in this diagram a plurality, for example three, different curved curves A, B and C are shown, over which for a desired compressed air flow rate of required adjustment value α of the throttle results, each of the curved curves A, B and C, the flow resistance of another embodiment of a downstream of the throttle adjoining the flow path and was determined by experiments, and
Fig. 4
a diagram in which is plotted on a horizontal axis diagram, the rotation angle adjustment range of the throttle in 0% to 100% of the angular degrees α linearly divided, this subdivision of the horizontal diagram axis simultaneously a linearly divided adjustment range of a manual setpoint input element or linear electrical set values of electrical setpoint adjuster, further plotted on a vertical graph axis compressed air flow rate (volume) per unit time in the form of a percentage range from 0 percent to 100 percent, and the three curved curves A, B and C for the three flow paths,
of which each has a different flow resistance, are registered, and also a straight graph line is drawn, so that a computer or computer from a target value on the horizontal graph axis vertically up to the straight graph line, then horizontally to the respective curved curve A, B or C, and then again vertically down to the horizontal diagram axis "go" and thus there is the angle α in percent, on which he should adjust the throttle, so that there is a compressed air flow rate (V) per unit time, which on the vertical Chart axis is at the height at which the vertical projection line of the setpoint crosses the straight chart line.

Fig. 1 zeigt im Axialschnitt einen Injektor 2 als pneumatische Pulverförderpumpe. Eine Förderluftleitung 4 mit einer durch einen Stellmotor 6 einstellbaren Drossel 8 ist an eine Injektordüse 10 angeschlossen. Ein Luft-Pulver-Kanal 12 ist der Injektordüse 10 axial gegenüberliegend angeordnet. Die Förderluft erzeugt auf ihrem Weg von der Injektordüse 10 zum Luft-Pulver-Kanal 12 in einem Bereich 14 einen Unterdruck, durch welchen Pulver 15 aus einem Pulverbehälter 16 durch ein Saugrohr 18 in die Förderluft gesaugt wird. Die Förderluft fördert das Pulver durch den Luft-Pulver-Kanal 12, einen Pulverschlauch 20 und dann durch eine manuelle oder automatische Sprühpistole 22 auf ein zu beschichtendes Objekt 24. Die Sprühpistole 22 kann in bekannter Weise zur elektrostatischen Aufladung des Beschichtungspulvers eine oder mehrere Hochspannungselektroden 26 aufweisen. Gemäß einer anderen Ausführungsform kann der Pulverschlauch 20 in einen weiteren Pulverbehälter 30 münden und gegebenenfalls duch ein steifes Rohr ersetzt werden.Fig. 1 shows an axial section of an injector 2 as a pneumatic powder feed pump. A conveying air line 4 with a throttle 8 which can be adjusted by a servomotor 6 is connected to an injector nozzle 10. An air-powder channel 12 is arranged axially opposite the injector nozzle 10. The conveying air generated on its way from the injector nozzle 10 to the air-powder channel 12 in a region 14 a negative pressure, through which powder 15 is sucked from a powder container 16 through a suction pipe 18 in the conveying air. The conveying air conveys the powder through the air-powder channel 12, a powder hose 20 and then through a manual or automatic spray gun 22 on an object to be coated 24. The spray gun 22 may comprise one or more high voltage electrodes 26 in a known manner for electrostatic charging of the coating powder. According to another embodiment, the powder hose 20 can open into a further powder container 30 and optionally be replaced by a rigid tube.

Eine Zusatzluftleitung 32 enthält ebenfalls eine Drossel 34, deren Öffnungsquerschnitt von einem weiteren Stellmotor 36 einstellbar ist. Die Druckluft der Zusatzluftleitung 32 gelangt an einer stromabwärts der Injektordüse 10 gelegenen Stelle in den Luft-Pulver-Kanal 12. Gemäß einer nicht gezeigten Ausführungsform könnte die Zusatzluftleitung 32 in den Unterdruckbereich 14 münden.An additional air line 32 also includes a throttle 34, the opening cross-section of a further servomotor 36 is adjustable. The compressed air of the additional air line 32 arrives at a point located downstream of the injector nozzle 10 into the air-powder channel 12. According to an embodiment not shown, the additional air line 32 could open into the vacuum region 14.

Die vom Injektor 2 geförderte Pulvermenge ist ungefähr direkt proportional zu der pro Zeiteinheit geförderten Förderluftmenge und auch ungefähr proportional zu der Größe des Unterdruckes im Unterdruckbereich 14. Je weniger Pulver pro Zeiteinheit gefördert werden soll, desto kleiner ist die Förderluftmenge pro Zeiteinheit. Bei kleinen Pulvermengen und entsprechend kleinen Förderluftmengen muß Zusatzluft der Zusatzluftleitung 32 hinzugefügt werden, damit sich im Pulverschlauch 20 kein Pulver absetzt. Die Gesamtluftmenge bestehend aus Förderluft und Zusatzluft ist für die bekannten Pulver-Sprühbeschichtungsanlagen vorzugsweise konstant so groß, daß die Strömungsgeschwindigkeit im Pulverschlauch 20 im Bereich zwischen 10-15 m/s liegt. Aus diesem Grunde ist es wichtig, daß die Gesamtluftmenge konstant gehalten wird.The amount of powder delivered by the injector 2 is approximately directly proportional to the amount of conveying air delivered per unit time and also approximately proportional to the size of the negative pressure in the vacuum region 14. The less powder to be conveyed per unit time, the smaller the quantity of conveying air per unit time. For small quantities of powder and correspondingly small quantities of conveying air, additional air must be added to the additional air line 32, so that no powder is deposited in the powder hose 20. The total amount of air consisting of conveying air and additional air is preferably constant for the known powder spray coating equipment so large that the flow velocity in the powder hose 20 in the area between 10-15 m / s. For this reason, it is important that the total amount of air is kept constant.

Die stromabwärtigen Enden der Förderluftleitung 4 und der Zusatzluftleitung 32 sind an eine Druckluft-Zufuhrleitung 40 angeschlossen, welche über einen Druckregler 42 von einer Druckluftquelle 44, beispielsweise dem Drucklufnetz einer Firma, mit Druckluft versorgt wird. In der Druckluft-Zufuhrleitung kann stromabwärts des Druckreglers 42 eine einstellbare Drossel 46 angeordnet sein, welche von einem Stellmotor 48 so einstellbar ist, daß die Gesamtluftmenge pro Zeiteinheit konstant gehalten wird.The downstream ends of the conveying air line 4 and the additional air line 32 are connected to a compressed air supply line 40, which is supplied via a pressure regulator 42 from a compressed air source 44, for example the compressed air system of a company, with compressed air. In the compressed air supply line downstream of the pressure regulator 42, an adjustable throttle 46 may be arranged, which is adjustable by a servo motor 48 so that the total amount of air per unit time is kept constant.

Die Stellmotoren 6, 36 und 48 werden von einer an sie angeschlossenen elektronischen Steuereinrichtung 50 in Abhängigkeit von Sollwerten gesteuert. Istwerte der verschiedenen Druckluftströme brauchen für die Einstellung der Drosseln 6, 36 und 48 nicht gemessen und nicht berücksichtigt zu werden, da die Drosseln in der nachfolgend beschriebenen Weise zur Erzielung von gewünschten Druckluftströmungsmengen pro Zeiteinheit genau eingestellt werden können, ohne daß eine Regeleinrichtung mit Istwert-Rückkopplung erforderlich ist.The servomotors 6, 36 and 48 are controlled by an electronic control device 50 connected to them as a function of desired values. Actual values of the various compressed air streams do not need to be measured and taken into account for the adjustment of the throttles 6, 36 and 48, since the throttles can be set precisely in the manner described below to obtain desired compressed air flow rates per unit of time without a control device having actual value. Feedback is required.

Die elektronische Steuereinrichtung 50 enthält mindestens einen Rechner oder Computer. Ferner enthält sie einen manuellen Sollwerteinsteller 52. Der Sollwerteinsteller 52 hat ein manuelles Einstellelement 54 in Form eines Tasters, Schiebers oder eines Drehknopfes, wobei im vorliegenden Fall angenommen wird, daß es sich um einen Drehknopf handelt. Das manuelle Einstellelement 54 ist relativ zu einer linear aufgeteilten Skala 56 über einen Drehwinkel von beispielsweise 180° einstellbar. Diese 180° sind auf der horizontalen Diagrammachse von Fig. 3 linear aufgeteilt oder in Fig. 4 auf der horizontalen Diagrammachse in 0% bis 100% linear aufgeteilt.The electronic control device 50 contains at least one computer or computer. It also includes a manual setpoint adjuster 52. The setpoint adjuster 52 has a manual adjustment element 54 in the form of a pushbutton, slider or a rotary knob, wherein in the present Case is assumed that it is a knob. The manual adjustment member 54 is adjustable relative to a linearly divided scale 56 over a rotation angle of for example 180 °. These 180 ° are linearly divided on the horizontal diagram axis of FIG. 3 or linearly divided in FIG. 4 on the horizontal diagram axis in 0% to 100%.

Die Skala 56 kann mit Winkelgraden oder Prozentwerten oder Druckluftströmungsmengen pro Zeiteinheit oder Pulvermengen pro Zeiteinheit oder deren Prozentwerte beschriftet sein.The scale 56 may be labeled with angular degrees or percentages or compressed air flow rates per unit time or amounts of powder per unit time or their percentages.

In der elektrischen Steuereinrichtung 50 ist ein Gesamtluft-Sollwert für die pro Zeiteinheit geförderte Gesamtluftmenge bestehend aus Förderluft der Förderluftleitung 4 und Zusatzluft der Zusatzluftleitung 32 gespeichert. Zur Steuerung der Drossel 34 der Zusatzluftleitung 32 braucht der Steuereinrichtung 50 lediglich ein Sollwert für die pro Zeiteinheit geförderte Förderluftmenge der Förderluftleitung 4 an dem Sollwerteinsteller 52 eingegeben zu werden. Die Steuereinrichtung 50 errechnet dann aus dem Gesamtluft-Sollwert minus dem Förderluft-Sollwert den Differenzwert und verwendet diesen als Sollwert für die Einstellung der Zusatzluft-Drossel 34.In the electrical control device 50, a total air setpoint for the per unit time funded total amount of air consisting of conveying air of the conveying air line 4 and additional air of the additional air line 32 is stored. To control the throttle 34 of the additional air line 32, the control device 50 needs only a set value for the per unit time promoted conveying air quantity of the conveying air line 4 to be input to the setpoint adjuster 52. The control device 50 then calculates the difference value from the total air setpoint value minus the conveying air setpoint value and uses this as setpoint value for setting the additional air throttle 34.

Die Steuereinrichtung 50 kann entsprechend der hier dargestellten Ausführungsform für alle drei Drosseln 8, 34 und 46 oder auch nur für eine oder zwei dieser Drosseln verwendet werden. Jede dieser Drosseln 8, 34 und 46 kann von der Steuereinrichtung 50 gemäß dem Diagramm von Fig. 3 oder dem Diagramm von Fig. 4 gesteuert werden, ohne daß eine Istwert-Messung und eine Istwert-Rückkopplung für eine Regelung erforderlich ist. Stellvertretend für alle Drosseln wird im folgenden die Steuerung der Förderluft-Drossel 8 beschrieben.The control device 50 can according to the embodiment shown here for all three throttles 8, 34 and 46 or even for only one or two of these throttles be used. Each of these chokes 8, 34 and 46 can be controlled by the control device 50 according to the diagram of Fig. 3 or the diagram of Fig. 4, without an actual value measurement and an actual value feedback for a control is required. Representative of all throttles, the control of the conveying air throttle 8 will be described below.

Gemäß einer Ausführungsform der Erfindung ist für jede Drossel 8, 34 und 46 ein Diagramm gemäß Fig. 3 in der Steuereinrichtung 50 von Fig. 1 gespeichert. Auf der horizontalen Diagrammachse sind linear die Einstell-Drehwinkel der betreffenden Drossel 8 bzw. 34 bzw. 46 aufgetragen. Auf der vertikalen Diagrammachse sind linear in Form von Prozentsätzen von Null Prozent bis 100 Prozent die Druckluft-Strömungsmengen pro Zeiteinheit aufgetragen, welche durch die Drossel hindurch bei einem bestimmten konstanten Eingangs-Luftdruck förderbar sind. Im Diagramm von Fig. 3 sind zu der Kurve A beispielsweise für die Volumen-Prozente 20, 30, 80 und 90 der vertikalen Diagrammachse Projektionslinien 60, 61, 62 und 63 eingetragen, durch welche sich die entsprechenden Einstellwinkel α für die betreffende Drossel 8, 34 oder 46 ergeben. Die Art und Größe der Krümmung der Kurve A ist vom Strömungswiderstand des Strömungsweges abhängig, welcher sich stromabwärts an die betreffende Drossel 8 bzw. 34 bzw. 46 anschließt. Dies bedeutet, daß für jeden Strömungweg, der stromabwärts der betreffenden Drossel 8 bzw. 34 bzw. 46 einen anderen Widerstand hat, eine entsprechende Kurve in der Steuereinrichtung 50 gespeichert werden muß. Als Beispiel für zwei weitere Ausführungsformen sind in Fig. 3 die beiden weiteren anders gekrümmten Kurven B und C dargestellt.According to one embodiment of the invention, a diagram according to FIG. 3 is stored in the control device 50 of FIG. 1 for each throttle 8, 34 and 46. On the horizontal diagram axis, the setting rotational angle of the respective throttle 8 or 34 and 46 are linearly plotted. The vertical graph axis plots linearly in percent percentages from zero percent to 100 percent of the compressed air flow rates per unit time that can be conveyed through the restrictor at a given constant input air pressure. In the diagram of FIG. 3 projection lines 60, 61, 62 and 63 are entered for the curve A, for example for the volume percentages 20, 30, 80 and 90 of the vertical diagram axis, through which the corresponding setting angles α for the relevant throttle 8, 34 or 46 result. The type and size of the curvature of the curve A is dependent on the flow resistance of the flow path, which downstream of the respective throttle 8 or 34 and 46, respectively. This means that for each flow path, the downstream of the respective throttle 8 or 34 or 46 has a different resistance, a corresponding curve in the control device 50 must be stored. As an example of two further embodiments, the two further differently curved curves B and C are shown in FIG.

Für die Einstellung der Förderluft der Förderluftleitung 4 durch die Drossel 8 ist am Sollwerteinsteller 52 in linearer Aufteilung entweder ebenfalls in Prozent oder in einer bestimmten Maßeinheit linear die betreffende Förderluft-Strömungsmenge pro Zeiteinheit aufgetragen. Da diese Werte direkt proportional zu der geförderten Pulvermenge pro Zeiteinheit sind, können die Prozentwerte auch als eine entsprechende Pulvermenge angesehen werden oder die Skala mit Pulverfördermengen pro Zeiteinheit beschriftet werden.For the adjustment of the conveying air of the conveying air line 4 through the throttle 8 is applied to the setpoint adjuster 52 in linear distribution either also in percent or in a specific unit linearly the relevant conveying air flow rate per unit time. Since these values are directly proportional to the amount of powder delivered per unit of time, the percentages can also be regarded as a corresponding quantity of powder or the scale can be labeled with powder delivery rates per unit time.

Den Sollwert für die Drossel 34 der Zusatzluftleitung 32 errechnet sich die Steuereinrichtung 50, indem sie den Differenzwert aus der Gesamtluft-Fördermenge pro Zeiteinheit minus der Förderluft-Fördermenge pro Zeiteinheit berechnet. Für das Fig. 3 entsprechende Diagramm der Zusatzluft-Drossel 34 werden ebenfalls gekrümmte Diagrammlinien ähnlich den Kurven A, B und C verwendet, deren Krümmung von dem Strömungswiderstand des Strömungsweges stromabwärts der Zusatzluft-Drossel 34 abhängig ist. Da die Zusatzluft viel weniger Einfluß auf die Beschichtungsqualität hat als die Förderluft, könnte die Zusatzluft der Zusatzluftleitung 32 statt durch eine Drossel 34 durch einen Druckregler geregelt werden, was aber teurer wäre. Auch in der Zufuhrleitung 40, deren Drossel 46 in der gleichen Weise gemäß einem Diagramm nach Fig. 3 gesteuert werden kann, könnte diese Drossel 46 weggelassen werden, da die Steuereinrichtung 50 aus der Summe von Förderluft und Zusatzluft die Gesamtluftmenge errechnen und dadurch durch die Drosseln 8 und 34 der Förderluftleitung 4 und der Zusatzluftleitung 32 die Gesamtluftrate konstant halten kann.The set point for the throttle 34 of the additional air line 32, the controller 50 is calculated by calculating the difference value from the total air flow rate per unit time minus the delivery air flow rate per unit time. 3 corresponding diagram of the additional air throttle 34 are also curved diagram lines similar to the curves A, B and C used, the curvature of the flow resistance of the flow path downstream of the additional air throttle 34 is dependent. Since the additional air has much less influence on the coating quality than the conveying air, the additional air of the additional air line 32 could be controlled instead of by a throttle 34 by a pressure regulator, which but would be more expensive. Also in the supply line 40, the throttle 46 can be controlled in the same manner according to a diagram of FIG. 3, this throttle 46 could be omitted, since the controller 50 from the sum of conveying air and additional air calculate the total amount of air and thereby through the throttles 8 and 34 of the conveying air line 4 and the additional air line 32 can keep the total air rate constant.

Wie die Projektionslinien 60, 61, 62 und 63 von Fig. 3 zeigen, sind die Drosseleinstell-Änderungswerte α nicht proportional zu den Druckluftmengen-Änderungswerten. Beispielsweise ist für 10% Änderung der Druckluftmenge im Bereich von 20% auf 30% eine viel kleinere Änderung des Einstellwinkels α der Drossel erforderlich als im oberen Prozentbereich beispielsweise zwischen 80% und 90%, was durch schraffierte Felder 64 und 65 markiert ist.As the projection lines 60, 61, 62 and 63 of Fig. 3 show, the throttle adjustment change values α are not proportional to the compressed air amount change values. For example, for 10% change in the amount of compressed air in the range of 20% to 30%, a much smaller change in the setting angle α of the throttle is required than in the upper percentage range, for example between 80% and 90%, which is marked by hatched boxes 64 and 65.

Bei der weiteren Ausführungsform nach der Erfindung gemäß dem Diagramm von Fig. 4 ist zusätzlich zu den gekrümmten Diagrammlinien A, B und C eine gerade Diagrammlinie D eingetragen, welche ebenso wie die gekrümmten Diagrammkennlinien A, B und C durch Versuche ermittelt wurde und in der Steuereinrichtung 50 in der Hardware oder in Software gespeichert ist. Die gerade Diagrammlinie D stellt praktisch eine "Linearisierung" der nicht-linearen Abhängigkeit der Luftströmungsmenge pro Zeiteinheit von der Einstellung der Drossel dar. Auf der horizontalen Diagrammachse ist der Einstellbereich des manuellen Sollwert-Einstellelements 54 linear unterteilt aufgetragen von 0% bis 100% von Einstell-Winkelgraden α. Diese Aufteilung gilt auch für den Einstellbereich der betreffenden Drossel. Wenn anstelle eines manuellen Einstellelementes 54 elektrische Einstellwerte von einer übergeordneten Steuereinrichtung verwendet werden, dann ergibt sich für die horizontale Diagrammachse eine gleiche Aufteilung, beispielsweise für Taktsignale oder für andere elektrische Strom- und/oder Spannungsformen. Bei Verwendung von elektrischen Schrittmotoren als Stellmotoren 6 bzw. 36 bzw 48 ist es zweckmäßig, Taktpulse zu verwenden. Diese elektrischen Varianten sind auch bei einem Diagramm gemäß Fig. 3 anwendbar. Auf der vertikalen Diagrammachse von Fig. 4 ist für die betreffende Luftart die Luftströmungsmenge pro Zeiteinheit in 0% bis 100% oder in tatsächlichen Werteinheiten aufgetragen. Das Diagramm von Fig. 4 wird hier als Beispiel für die Förderluft-Drossel 8 beschrieben, jedoch sind ähnliche Diagramme auch für die gegebenenfalls vorhandene Zusatzluft-Drossel 34 und gegebenenfalls vorhandene Zufuhrluft-Drossel 46 in der Steuereinrichtung 50 gespeichert. Ihre auf der horizontalen Diagrammachse angeordneten Sollwerte ergeben sich in gleicher Weise wie vorstehend beschrieben wurde.In the further embodiment according to the invention according to the diagram of FIG. 4, in addition to the curved diagram lines A, B and C, a straight diagram line D is entered, which as well as the curved diagram characteristics A, B and C were determined by tests and in the control device 50 is stored in hardware or in software. The straight graph line D in effect represents a "linearization" of the non-linear dependence of the air flow rate per unit time on the setting of the throttle. On the horizontal graph axis, the adjustment range of the manual Set point adjustment element 54 linearly plotted from 0% to 100% of adjustment angles α. This division also applies to the adjustment range of the respective throttle. If electric adjustment values are used by a higher-level control device instead of a manual adjustment element 54, then the same applies to the horizontal diagram axis, for example for clock signals or for other types of electrical current and / or voltage. When using electric stepper motors as servomotors 6 or 36 or 48, it is expedient to use clock pulses. These electrical variants are also applicable to a diagram according to FIG. 3. On the vertical diagram axis of FIG. 4, the air flow rate per unit time is plotted in 0% to 100% or in actual units of value for the relevant type of air. The diagram of Fig. 4 is described here as an example of the conveying air throttle 8, however, similar diagrams are also stored for the optional additional air throttle 34 and possibly existing supply air throttle 46 in the control device 50. Their set values arranged on the horizontal diagram axis are obtained in the same way as described above.

Wie in Fig. 4 gestrichelte Projektionslinien 66, 67 und 68 für die gekrümmte Diagrammlinie A zeigen, kann am Sollwerteinsteller 52 manuell oder elektrisch ein linearer Wert eingestellt werden, welcher zu einem Wert der vertikalen Diagrammachse proportional ist. Von diesem Wert der horizontalen Diagrammachse gelangt die Steuereinrichtung 50 entsprechend der Projektionslinie 66 vertikal nach oben zu der geraden Diagrammlinie D, dann entsprechend der Projektionslinie 67 horizontal zu der gekrümmten Diagrammlinie A, und dann entsprechend der Projektionslinie 68 wieder vertikal nach unten zurück auf die horizontale Diagrammachse zu dem dort angegebenen Wert, welches der Wert ist, auf welchen die Drossel 8 durch ihren Stellmotor 6 von der Steuereinrichtung 50 eingestellt werden muß, damit sich eine Förderluftmenge pro Zeiteinheit ergibt, die am Sollwerteinsteller 52 eingestellt ist.As shown in FIG. 4, dashed projection lines 66, 67 and 68 for the curved diagram line A, at the setpoint adjuster 52, a linear value can be set manually or electrically, which is proportional to a value of the vertical diagram axis. Of this value the horizontal axis of the diagram, the control device 50 corresponding to the projection line 66 vertically upwards to the straight line D, then according to the projection line 67 horizontally to the curved diagram line A, and then according to the projection line 68 back down again vertically to the horizontal diagram axis to the there specified value, which is the value at which the throttle 8 must be adjusted by its servo motor 6 from the controller 50 so as to give a conveying air amount per unit time, which is set at the setpoint adjuster 52.

Claims (10)

  1. Powder spray-coating device comprising an injector (2) in the form of a pneumatic feed pump, at least one compressed air line for supplying compressed air to the injector, a flow restrictor (8, 34, 36) in at least one of the compressed air lines of which there is at least one, an electronic control installation (50) having a computer for adjusting the aperture cross-section of the flow restrictor (8, 34, 36) as a function of specified data, characterised in that in the control installation (50), at least for the flow resistance of one embodiment of the flow path adjoining downstream from the flow restrictor, the relationship between the setting of the flow restrictor aperture and desired values for the stream of compressed air controlled by this flow restrictor is stored in a diagram and the control installation (50) controls a servomotor (6, 36, 48) of the flow restrictor (8, 34, 46) as a function of this diagram and by this means, in the event of changes to the set desired value, brings about a change in the compressed air flow rate per unit time proportional thereto, that in the control installation (50) the compressed air flow rates per unit time are plotted on one axis of the diagram and the desired value settings of a desired value setter (52) required for this purpose are plotted on another axis of the diagram, and that in the diagram of the control installation, for each embodiment of the flow path adjoining downstream from the flow restrictor (8, 34, 46) a specific curved characteristic curve which is a function of the flow resistance of this flow path is stored, by means of which the control installation sets non-linearly the servomotor (6, 36, 48) of the flow restrictor (8, 34, 46) for each set desired value of the compressed air flow rate and in doing so generates an actual value of the flow rate per unit time which is proportionately dependent on the set desired value.
  2. Powder spray-coating device comprising an injector (2) in the form of a pneumatic feed pump, at least one compressed air line for supplying compressed air to the injector, a flow restrictor (8, 34, 36) in at least one of the compressed air lines of which there is at least one, an electronic control installation (50) having a computer for adjusting the aperture cross-section of the flow restrictor (8, 34, 36) as a function of specified data, characterised in that in the control installation (50), at least for the flow resistance of one embodiment of the flow path adjoining downstream from the flow restrictor, the relationship between the setting of the flow restrictor aperture and desired values for the stream of compressed air controlled by this flow restrictor is stored in a diagram and the control installation (50) controls a servomotor (6, 36, 48) of the flow restrictor (8, 34, 46) as a function of this diagram and by this means in the event of changes to the set desired value brings about a change in the compressed air flow rate per unit time proportional thereto, that in the diagram of the control installation (50) compressed air flow rates per unit time are plotted linearly on one axis of the diagram and diaphragm opening cross-sections are plotted linearly on another axis of the diagram; that for at least one embodiment of a flow path adjoining downstream from the flow restrictor (8, 34, 46) a curved characteristic curve (A, B, C) is plotted in the diagram, which curve reproduces the actual relationship between, the compressed air flow rate and the diaphragm opening cross-sections, wherein for each required throughput flow rate the setting of the diaphragm opening cross-section needed therefor is obtained from the curved characteristic curve; that a straight characteristic line (D) is plotted in the diagram, which line corresponds to a theoretical, in reality non-existent linear relationship between the compressed air flow rate per unit time and the settings of the diaphragm opening cross-section; that the control installation (50) has a desired value input (52) for the input of linearly variable desired values and is constructed to take in each case an opening cross-section on the axis of the diaphragm opening cross-section diagram corresponding to the desired value and to reflect it back onto the axis of the diaphragm opening cross-section diagram via the straight characteristic line (D) and the curved characteristic curve (A, B, C) and then to set the diaphragm cross-section by controlling the servomotor (6, 36, 48) in accordance with the new diaphragm opening cross-sectional value so determined.
  3. Powder spray-coating device according to claim 1 or 2, characterised in that in the control installation (50), for at least two embodiments of a flow path adjoining downstream from the flow restrictor, which each have a different flow resistance, the values for said relationship are stored in the diagram.
  4. Powder spray-coating device according to any of claims 1 to 3, characterised in that the at least single compressed air line (4) containing the flow restrictor (8) is connected to an injector nozzle (10) of the injector (2) and that the flow restrictor (8) is arranged in such a way that through it can flow only the compressed air conveyed as so-called transport air through the injector nozzle (10).
  5. Powder spray-coating device according to any of claims 1 to 4, characterised in that the at least single compressed air line (4) containing the flow restrictor (34) is connected to an air-powder channel (12) of the injector (2) extending downstream from the injector nozzle (10) and that the flow restrictor (34) is arranged in such a way that through it can flow only the compressed air conveyed as so-called secondary air into the air-powder channel (12) without flowing through the injector nozzle (10).
  6. Powder spray-coating device according to claim 4, characterised in that another (32) of the compressed air lines is connected as the secondary air line to an air-powder channel (12) of the injector (2) which extends downstream from the injector nozzle (10), that this secondary air line (32) has a flow restrictor (34), that in the control installation (50) at least one total air desired value for the sum of the transport air (8) and secondary air (32) is stored or is storable, and that the control installation (50) has means for arriving at the difference value of the total air desired value minus a transport air desired value and for setting the secondary air on the flow restrictor (34) of the secondary air line (32) in accordance with this difference value as the desired value for the secondary air.
  7. Powder spray-coating device according to claim 6, characterised in that in the control installation (50), for at least one embodiment of the flow path adjoining the flow restrictor (34) of the secondary line (32) and exhibiting a certain flow resistance, values,for the secondary air flow rates per unit time and experimentally determined settings of this flow restrictor (34) needed for this purpose are stored, and that the flow restrictor (34) is settable by the control installation (50) to the value whose associated secondary air flow rate corresponds to said difference value, wherein said difference value is the desired value for the secondary air flow rate.
  8. Powder spray-coating device according to any of claims 6 and 7, characterised in that the control installation (50) has a desired value transmitter input (52) on which transport air desired values are inputtable.
  9. Powder spray-coating device according to claim 8, characterised in that the desired value transmitter input has a manual setting element.
  10. Powder spray-coating device according to claim 8, characterised in that on the desired value transmitter input (52) the desired value is inputtable by means of electric signals.
EP99931045A 1998-08-22 1999-06-09 Powder spray coating device Expired - Lifetime EP1104335B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19838279 1998-08-22
DE19838279A DE19838279A1 (en) 1998-08-22 1998-08-22 Powder coating system has an injector stage with air supply controlled by restrictor valves that are coupled to a processor
PCT/EP1999/003964 WO2000010725A1 (en) 1998-08-22 1999-06-09 Powder spray coating device

Publications (2)

Publication Number Publication Date
EP1104335A1 EP1104335A1 (en) 2001-06-06
EP1104335B1 true EP1104335B1 (en) 2006-03-08

Family

ID=7878451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99931045A Expired - Lifetime EP1104335B1 (en) 1998-08-22 1999-06-09 Powder spray coating device

Country Status (8)

Country Link
US (1) US6382521B1 (en)
EP (1) EP1104335B1 (en)
JP (1) JP2002523215A (en)
AT (1) ATE319521T1 (en)
CA (1) CA2341187C (en)
DE (2) DE19838279A1 (en)
ES (1) ES2259474T3 (en)
WO (1) WO2000010725A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020132504A1 (en) 2020-12-07 2022-06-09 Ebm-Papst Landshut Gmbh throttle assembly

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838276A1 (en) * 1998-08-22 2000-02-24 Itw Gema Ag Powder spray coating arrangement has variable choke control element in delivery airline whose flow resistance can be varied by control motor activated by electronic regulator
FR2824283B1 (en) * 2001-05-03 2004-10-29 Eisenmann France Sarl METHOD FOR REGULATING THE FLOW OF POWDER TRANSPORTED BY AN AIR FLOW, AND DEVICE FOR IMPLEMENTING IT
BR0215688A (en) * 2002-05-10 2005-02-01 Eisenmann France Sarl Process of regulating dust flow in an airflow-fed powder delivery device and injection and dust conveying device
DE10357814A1 (en) * 2003-12-10 2005-07-14 Itw Gema Ag Gas line system, in particular in a powder spray coating device
DE102004052949A1 (en) * 2004-10-29 2006-05-04 Nordson Corp., Westlake Method and device for monitoring flow conditions in a wiring harness
US20060102075A1 (en) * 2004-11-18 2006-05-18 Saylor Austin A Fluid flow control
DE102005007242A1 (en) * 2005-02-17 2006-08-24 Itw Gema Ag Compressed air throttle device and powder spray coating device
US7731456B2 (en) 2005-10-07 2010-06-08 Nordson Corporation Dense phase pump with open loop control
DE102007046806A1 (en) * 2007-09-29 2009-04-02 Itw Gema Gmbh Powder spray coating device and powder conveying device therefor
DE102007049169A1 (en) * 2007-10-13 2009-04-16 Itw Gema Gmbh Powder spray coating controller and its combination with a powder feeder or with a powder spray coater
DE102014112640A1 (en) * 2014-09-02 2016-03-03 J. Wagner Gmbh Paint spraying system and air control device for a paint spraying system
KR102171884B1 (en) * 2019-02-18 2020-10-29 광운대학교 산학협력단 Formation method of silver films for advanced electrical properties by using aerosol deposition process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625404A (en) 1969-06-02 1971-12-07 Ransburg Electro Coating Corp Apparatus and method for dispensing particulate material
DE8915968U1 (en) 1989-08-11 1992-12-17 Gema Volstatic Ag, St. Gallen, Ch
FR2680416B1 (en) * 1991-08-12 1995-06-30 Sames Sa FLUIDIZED POWDER FLOW MEASURING METHOD AND FLOW MEASURING DEVICE USING SUCH A METHOD.
CH688989A5 (en) 1993-03-26 1998-07-15 Ribnitz Peter Apparatus for conveying powder
US5741558A (en) * 1993-04-07 1998-04-21 Nordson Corporation Method and apparatus for coating three dimensional articles
DE4325044C2 (en) 1993-07-26 2002-07-18 Itw Gema Ag Powder conveying device, in particular for coating powder
US5718767A (en) * 1994-10-05 1998-02-17 Nordson Corporation Distributed control system for powder coating system
DE19548607A1 (en) * 1995-12-23 1997-06-26 Gema Volstatic Ag Powder spray coater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020132504A1 (en) 2020-12-07 2022-06-09 Ebm-Papst Landshut Gmbh throttle assembly

Also Published As

Publication number Publication date
DE19838279A1 (en) 2000-02-24
ES2259474T3 (en) 2006-10-01
CA2341187A1 (en) 2000-03-02
JP2002523215A (en) 2002-07-30
EP1104335A1 (en) 2001-06-06
WO2000010725A1 (en) 2000-03-02
CA2341187C (en) 2005-05-10
US6382521B1 (en) 2002-05-07
DE59913207D1 (en) 2006-05-04
ATE319521T1 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
EP0412289B1 (en) Electrostatic spray device
EP1104335B1 (en) Powder spray coating device
DE4325044C2 (en) Powder conveying device, in particular for coating powder
EP1104334B1 (en) Powder spray coating device
EP1927404B1 (en) Method for determining spray parameters for controlling a paint gun using a spray agent
EP1929253A2 (en) Method for controlling a dosing apparatus for liquid or pasty media
EP0780160A1 (en) Powder spray coating device
EP1115499B1 (en) Powder coating device
EP1123163B1 (en) Method and device for dosing and mixing different components
EP1240947A1 (en) Powder spray device for coating powder
DE10357814A1 (en) Gas line system, in particular in a powder spray coating device
WO1992012471A1 (en) Method for the computer-assisted control of a machine or a process
DE60216655T2 (en) Apparatus and method for controlling and applying powder coating material
EP1481736A2 (en) Supply device for a painting installation
EP0750529A1 (en) Treatment cubicle and a method of ventilating a treatment cubicle
DE10034789A1 (en) Method for compensating for uneven charge flow to motor vehicle internal combustion engine involves determining non-linear correction values for flow regulator
DE10003295B4 (en) Method for the electrostatic coating of a workpiece and device for carrying out the method
EP0548023A1 (en) Flow control of a blow room line
DE10111383B4 (en) Process for conveying coating powder to a coating unit and associated powder conveying device
WO2000053334A1 (en) Powder coating device
DE102005042336A1 (en) Coating plant e.g. paint shop, for painting motor vehicle-body parts, has control unit provided for controlling color pressure controller and adjusting pressure difference at pump to constant value independent of discharge quantity of pump
DE102011121200A1 (en) Air flow control method of pneumatic compressed air delivering device of spray nozzle used in lacquer painting plant, involves inputting input value to pressure control device by pilot device, to adjust control values of pneumatic line

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060308

REF Corresponds to:

Ref document number: 59913207

Country of ref document: DE

Date of ref document: 20060504

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2259474

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061211

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ITW GEMA AG

Free format text: ITW GEMA AG#MOEVENSTRASSE 17#9015 ST. GALLEN (CH) -TRANSFER TO- ITW GEMA AG#MOEVENSTRASSE 17#9015 ST. GALLEN (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080521

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080624

Year of fee payment: 10

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ITW GEMA GMBH

Free format text: ITW GEMA AG#MOEVENSTRASSE 17#9015 ST. GALLEN (CH) -TRANSFER TO- ITW GEMA GMBH#MOEVENSTRASSE 17#9015 ST. GALLEN (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ITW GEMA GMBH

Effective date: 20120425

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ITW GEMA GMBH

Effective date: 20120529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59913207

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Effective date: 20121213

Ref country code: DE

Ref legal event code: R082

Ref document number: 59913207

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

Effective date: 20121213

Ref country code: DE

Ref legal event code: R081

Ref document number: 59913207

Country of ref document: DE

Owner name: GEMA SWITZERLAND GMBH, CH

Free format text: FORMER OWNER: ITW GEMA GMBH, ST. GALLEN, CH

Effective date: 20121213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GEMA SWITZERLAND GMBH, CH

Free format text: FORMER OWNER: ITW GEMA GMBH, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GEMA SWITZERLAND GMBH

Effective date: 20131223

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: GEMA SWITZERLAND GMBH

Effective date: 20140106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140626

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150610

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180627

Year of fee payment: 20

Ref country code: IT

Payment date: 20180621

Year of fee payment: 20

Ref country code: GB

Payment date: 20180627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180704

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59913207

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190608