EP1103937B1 - Fire detector - Google Patents

Fire detector Download PDF

Info

Publication number
EP1103937B1
EP1103937B1 EP99122975A EP99122975A EP1103937B1 EP 1103937 B1 EP1103937 B1 EP 1103937B1 EP 99122975 A EP99122975 A EP 99122975A EP 99122975 A EP99122975 A EP 99122975A EP 1103937 B1 EP1103937 B1 EP 1103937B1
Authority
EP
European Patent Office
Prior art keywords
fire detector
fire
detector according
light source
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99122975A
Other languages
German (de)
French (fr)
Other versions
EP1103937A1 (en
Inventor
Marc Dr. Thuillard
Erwin Suter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to EP99122975A priority Critical patent/EP1103937B1/en
Priority to AT99122975T priority patent/ATE295595T1/en
Priority to DE59912047T priority patent/DE59912047D1/en
Priority to PT99122975T priority patent/PT1103937E/en
Priority to ES99122975T priority patent/ES2243027T3/en
Priority to AU65464/00A priority patent/AU777015B2/en
Priority to JP2000344033A priority patent/JP4767404B2/en
Priority to KR1020000066616A priority patent/KR20010051578A/en
Priority to US09/711,818 priority patent/US6788197B1/en
Priority to NO20005717A priority patent/NO20005717L/en
Priority to HU0004474A priority patent/HU224676B1/en
Priority to CN00132370A priority patent/CN1297213A/en
Priority to CZ20004287A priority patent/CZ301163B6/en
Priority to PL00343954A priority patent/PL343954A1/en
Publication of EP1103937A1 publication Critical patent/EP1103937A1/en
Application granted granted Critical
Publication of EP1103937B1 publication Critical patent/EP1103937B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • G08B29/186Fuzzy logic; neural networks
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the present invention relates to a fire detector with a light source, a measuring chamber and a light receiver having optical module, a temperature sensor, a additional sensor for at least one fire gas and an evaluation of the linkage the signals of the individual sensors.
  • the optics module serves for the detection of smoke and the temperature sensor for detection the heat that occurs when a fire occurs.
  • the optics module can either be from Smoke particles scattered or measured by this attenuated light of the light source. In the first case, it is the optical module of a scattered light detector and in the second case that of a point extinction or transmitted light detector. In both cases, the optics module designed so that no disturbing extraneous light and smoke very easily in the measuring chamber can penetrate.
  • the temperature sensor serves both to increase the sensitivity as also to improve the false alarm safety of the scattered light detector.
  • a scattered light detector with A temperature sensor is known, for example, from EP-A-0 654 770.
  • the scattered and transmitted light detectors are extremely sensitive and can cause fires detect with high security.
  • the high sensitivity can in certain cases too False alarms lead, which is undesirable for several reasons. Otherwise, that false alarms at least tend to attract the attention of the security personnel concerned reduce, demands in most countries the fire department and / or the police for False alarms caused a compensation, which may be with the number the false alarms progressively increases. For this reason, enjoy the false alarm safety today with fire detectors very high priority.
  • the invention is now the false alarm safety of the detector with a simultaneous reduction its response time further improved and it should also a more homogeneous Response of the detector can be achieved.
  • Homogeneous response means that the detector should respond to different fires about the same and not on the one type from fire extremely fast and to another extremely slow to not at all.
  • a first preferred embodiment of the inventive fire alarm is characterized characterized in that the transmitter has a fuzzy controller for performing the has said link.
  • the optical module of the fire detector according to the invention can either be designed in such a way that that in the measuring chamber that of smoke particles scattered or weakened by these Light of the light source is measured.
  • it is the detection principle a stray light
  • the Detektioskos a transmitted light detector.
  • It can the scattered light detector as a forward or backward spreader or as a forward and backward spreader be educated.
  • the latter has the advantage that, based on the scatter at different Scattering angle determines which type of smoke is present; see WO-A-84 01,650th
  • the inventive multi-sensor Brandmeider contains and in which for Each kind of firing is provided with a special application specific algorithm Possibility, by linking the signals of the sensors in the fuzzy controller the respective Detect the type of fire and select the appropriate algorithm. This will on the one hand the false alarm (robustness) improves the detector, and on the other hand, by appropriate choice of application-specific algorithms a more balanced response be achieved by the detector.
  • the fuzzy controller monitors whether certain disturbances still lie below the respective alarm thresholds heaped occur.
  • the fuzzy controller can such disturbances to the control center or via a suitable Report communication interface to the operator and in this way indicate potential sources of interference, possibly caused by a wrong application of the detector concerned.
  • a second preferred embodiment of the inventive fire alarm is characterized characterized in that in the fuzzy controller, a connection between the smoke concentration, the Concentration of the flue gas to be detected and one of the gradient of the temperature and the gradient of the flue gas formed parameter takes place.
  • a third preferred embodiment of the inventive fire alarm is characterized characterized in that said parameter by the quotient of the temperature gradient and the flue gas gradient is formed.
  • a fourth preferred embodiment of the inventive fire alarm is characterized characterized in that the additional sensor for a fire gas is a CO sensor.
  • a fifth preferred embodiment of the inventive fire alarm is characterized characterized in that the light source of the optical module for emitting radiation in the wavelength range of visible light is formed.
  • the wavelength is that of the light source emitted radiation in the range of blue or red light and is preferably 460th nm or 660 nm.
  • a further preferred embodiment of the fire detector according to the invention is characterized characterized in that in the beam path between the light source and the light receiver at least a polarizing filter is provided.
  • a further preferred embodiment is characterized in that the at least a polarizing filter a so-called active polarizer with electrically adjustable polarization plane is.
  • the active polarizer is formed by a liquid crystal display whose polarization plane is adjustable by applying a voltage.
  • the fire detector 1 shown in an axial section in Fig. 1 is essentially an additional Sensors for fire characteristics of advanced optical smoke detectors, as shown a scattered light detector. Since such optical detectors are assumed to be known, are they are not described here. In this connection, reference is made to EP-A-0 616 305 and EP-A-0 821 330.
  • the optical smoke detector can also by a so-called NOTExtin Needless- or transmitted light detector may be formed, as described for example in EP-A-1 017 034 is described.
  • the fire detector 1 shown consists in a known manner from a detector insert 2, the in a preferably mounted on the ceiling of the space to be monitored socket (not shown) can be fastened, and from a placed over the detector insert 2 detector hood 3, in the area of their in the operating state of the detector directed against the space to be monitored Dome with smoke inlet openings 4 is provided.
  • the detector insert 2 comprises in essentially a box-like base body, facing to the detector tip Side of an optical module 5 and the detector base side facing an evaluation 6 is arranged.
  • the optical module 5 consists essentially of a light source in a scattered light detector 7 and a light receiver 8 containing measuring chamber 9, which by not shown Medium against external light is shielded from the outside.
  • the optical axes of an infrared or a red or blue light emitting diode (IRED or LED) formed light source 7 and the Light receiver 8 are kinked to each other, with this course and by blinding prevents light rays on the direct route from the light source 7 to the light receiver 8 can get.
  • the light source 7 sends short, intense light pulses in the central part the measuring chamber 9, wherein the light receiver 8, although this central part of the measuring chamber 9, but not the light source 7 "sees".
  • the light of the light source 7 is scattered by penetrating into the scattering room smoke, and a Part of this scattered light is incident on the light receiver 8.
  • the receiver signal generated thereby is processed by the transmitter 6.
  • the receiver signal becomes compared in a known manner with an alarm threshold and at least one pre-alarm threshold, and the transmitter 6 are at the alarm threshold exceeded by the receiver signal at an output 10 from an alarm signal. It is through intelligent signal processing Ensures that the delivery of the alarm signal at the lowest possible smoke values follows, but without unacceptable false alarms.
  • a so-called active polarizer 11 which is a polarizer with a rotatable plane of polarization, provided be able to measure the light scattering in the two polarization planes.
  • This active Polarizer is preferably by an electronic polarizing plate with a liquid crystal formed, which rotates their polarization plane by 90 ° when applying a voltage. The measurement the polarization degree, that is the polarized scattered light in the two polarization planes, can shorten the response time of the detector 1 to certain test fire and thereby to lead to a more homogeneous response.
  • the fire detector 1 in addition to the optical module 5 contains two more sensors for fire parameters, namely a CO sensor (in general: fire gas sensor) 12 and a temperature sensor 13.
  • a suitable CO sensor is in the EP -B-0 612 408 (see also EP-A-0 803 850), as temperature sensors have NTC thermistors proven (see the smoke detector PolyRex the fire detection system AlgoRex - PolyRex and AlgoRex are registered trademarks of Siemens Building Technologies AG, Cerberus Division, formerly Cerberus AG).
  • the table also shows that the parameters CO concentration, quotient Gradient CO is individually diagnosed by gradient T and smoke concentration all six types of fire can be. This means that with the help of these parameters the signature of a fire clearly is recognizable.
  • the parameters also allow CO concentration, degree of polarization and smoke concentration a determination of the type of fire, but with the exception of TF6, which can not be recognized by these parameters.
  • the measurement of the degree of polarization In addition has the advantage that even in cases where the temperature is not fast Enough is rising, the kind of fire can be detected. This case can be, for example, in high rooms enter.
  • the signals of the three sensors, optical module 5 for the smoke concentration and the degree of polarization, CO sensor 12 and temperature sensor 13, a component of the evaluation 6 forming diagnostic stage 14 is supplied, which in essentially contains a fuzzy controller.
  • the diagnostic stage 14 the signals of Sen-. sensors are linked and analyzed, and the type of fire is determined from this analysis. After all the appropriate algorithm for the respective type of fire is selected and for the evaluation the sensor signals used.
  • the fuzzy controller can also be used for Diagnostic purposes, used to display problems.
  • the optical module 5 of the inventive fire detector corresponds functionally one usual scattered light detectors with forward or backward scattering, or a scattered light detector with forward and backward sweep, or a point extinction or transmitted light detector.
  • One An essential component of the inventive fire detector is the sensor 12 for the at least a combustion gas, which is preferably a CO sensor.
  • Such fire detectors are, for example, the so-called linear smoke detectors or Beam detectors such as the DLO1191 type from Siemens Building Technologies AG, Cerberus Division, and the flame detectors, such as the DF1190 type from Siemens Building Technologies AG, Cerberus Division.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Fuzzy Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The fire alarm (1) comprises a light source (7), measuring chamber (9) and a light receiver (8), all housed within an optical module (5). A temperature sensor (13) and the light receiver (8) are both connected to an evaluation electronic module (6). A sensor (12) for combustion gas, e.g. CO, is additionally provided. The electronic module (6) comprises a fuzzy logic controller, which compares the output signals of individual sensors (5,12,13) and determines the type of fire. For each type of fire a different application specific algorithm is selected. The fuzzy logic associates smoke concentration with combustion gas concentration and with a parameter formed from the gradients of temperature and of smoke gas.

Description

Die vorliegende Erfindung betrifft einen Brandmelder mit einem eine Lichtquelle, eine Messkammer und einen Lichtempfänger aufweisenden Optikmodul, einem Temperatursensor, einem zusätzlichen Sensor für mindestens ein Brandgas und einer Auswerteelektronik für die Verknüpfung der Signale der einzelnen Sensoren.The present invention relates to a fire detector with a light source, a measuring chamber and a light receiver having optical module, a temperature sensor, a additional sensor for at least one fire gas and an evaluation of the linkage the signals of the individual sensors.

Bei Brandmeldern dieser Art, die als Mehrfach- oder Multisensor-Brandmelder bezeichnet werden, dient das Optikmodul zur Detektion von Rauch und der Temperatursensor zur Detektion der bei Entstehung eines Brandes auftretenden Hitze. Das Optikmodul kann entweder das von Rauchpartikeln gestreute oder das durch diese abgeschwächte Licht der Lichtquelle messen. Im ersten Fall handelt es sich um das Optikmodul eines Streulichtmelders und im zweiten Fall um dasjenige eines Punktextinktions- oder Durchlichtmelders. In beiden Fällen ist das Optikmodul so ausgebildet, dass störendes Fremdlicht nicht und Rauch sehr leicht in die Messkammer eindringen kann. Der Temperatursensor dient sowohl zur Erhöhung der Empfindlichkeit als auch zur Verbesserung der Fehlalarmsicherheit des Streulichtmelders. Ein Streulichtmelder mit einem Temperatursensor ist beispielsweise aus der EP-A-0 654 770 bekannt.For fire alarms of this type, which are referred to as multiple or multi-sensor fire detectors, the optics module serves for the detection of smoke and the temperature sensor for detection the heat that occurs when a fire occurs. The optics module can either be from Smoke particles scattered or measured by this attenuated light of the light source. In the first case, it is the optical module of a scattered light detector and in the second case that of a point extinction or transmitted light detector. In both cases, the optics module designed so that no disturbing extraneous light and smoke very easily in the measuring chamber can penetrate. The temperature sensor serves both to increase the sensitivity as also to improve the false alarm safety of the scattered light detector. A scattered light detector with A temperature sensor is known, for example, from EP-A-0 654 770.

Die Streulicht- und die Durchlichtmelder sind ausserordentlich empfindlich und können Brände mit hoher Sicherheit detektieren. Die hohe Empfindlichkeit kann aber in gewissen Fällen zu Fehlalarmen führen, was aus mehreren Gründen unerwünscht ist. Denn abgesehen davon, dass Fehlalarme die Aufmerksamkeit des betreffenden Sicherheitspersonals zumindest tendenziell reduzieren, verlangt in den meisten Ländern die Feuerwehr und/oder die Polizei für durch Fehlalarme verursachte Einsätze eine Entschädigung, welche unter Umständen mit der Zahl der Fehlalarme progressiv steigt. Aus diesem Grund geniesst heute bei Brandmeldern die Fehlalarmsicherheit sehr hohe Priorität.The scattered and transmitted light detectors are extremely sensitive and can cause fires detect with high security. However, the high sensitivity can in certain cases too False alarms lead, which is undesirable for several reasons. Otherwise, that false alarms at least tend to attract the attention of the security personnel concerned reduce, demands in most countries the fire department and / or the police for False alarms caused a compensation, which may be with the number the false alarms progressively increases. For this reason, enjoy the false alarm safety today with fire detectors very high priority.

Bei einem in der JP-A-06 301 870 beschriebenen Brandmelder der eingangs genannten Art wird die Fehlalarmsicherheit dadurch verbessert, dass die Auswertung der Sensorsignale in einer Fuzzylogik erfolgt.In a fire detector of the type mentioned in JP-A-06 301 870 described the false alarm safety is improved by the fact that the evaluation of the sensor signals in a fuzzy logic takes place.

Durch die Erfindung soll nun die Fehlalarmsicherheit des Melders bei einer gleichzeitigen Verkürzung von dessen Ansprechzeit weiter verbessert und es soll ausserdem ein homogeneres Ansprechverhalten des Melders erzielt werden. Homogenes Ansprechverhalten bedeutet, dass der Melder auf verschiedene Feuer etwa gleich ansprechen soll und nicht auf den einen Typ von Brand extrem rasch und auf einen anderen extrem langsam bis gar nicht.The invention is now the false alarm safety of the detector with a simultaneous reduction its response time further improved and it should also a more homogeneous Response of the detector can be achieved. Homogeneous response means that the detector should respond to different fires about the same and not on the one type from fire extremely fast and to another extremely slow to not at all.

Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Auswerteelektronik für die Diagnose der jeweiligen Brandart entsprechend einem der Testfeuer TF1 bis TF6 der europäischen Norm EN-54 ausgebildet ist, und dass aufgrund dieser Diagnose die Auswahl eines speziellen applikationsspezifischen Algorithmus für die Verarbeitung der Sensorsignale erfolgt.This object is achieved by the fact that the transmitter for the Diagnosis of the respective type of fire according to one of the test fires TF1 to TF6 of the European standard EN-54 is formed and that due to this diagnosis the selection a special application-specific algorithm for processing the sensor signals he follows.

Eine erste bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass die Auswerteelektronik einen Fuzzy-Regler für die Durchführung der genannten Verknüpfung aufweist.A first preferred embodiment of the inventive fire alarm is characterized characterized in that the transmitter has a fuzzy controller for performing the has said link.

Es gibt nach der europäischen Norm EN-54 die folgenden sechs verschiedenen Testfeuer (abgekürzt TF):

  • TF1: Holzbrand
  • TF2: Holzschwelbrand
  • TF2: Luntenschwelbrand
  • TF4: Schaumstoffbrand
  • TF5: Heptanbrand
  • TF6: Alkoholbrand.
There are the following six different test fires (abbreviated TF) according to the European standard EN-54:
  • TF1: wood fire
  • TF2: Wood smoldering fire
  • TF2: Lunchtschwelbrand
  • TF4: foam firing
  • TF5: heptane fire
  • TF6: Alcohol burn.

Das Optikmodul des erfindungsgemässen Brandmelders kann entweder so ausgebildet sein, dass in der Messkammer das von Rauchpartikeln gestreute oder das von diesen abgeschwächte Licht der Lichtquelle gemessen wird. Im ersten Fall handelt es sich um das Detektionsprinzip eines Streulicht-, im zweiten Fall um das Detektiosprinzip eines Durchlichtmelders. Dabei kann der Streulichtmelder als Vorwärts- oder Rückwärtsstreuer oder als Vorwärts- und Rückwärtsstreuer ausgebildet sein. Letzteres hat den Vorteil, dass sich anhand der Streuung bei verschiedenen Streuwinkeln feststellen lässt, welche Art von Rauch vorliegt; siehe dazu die WO-A-84 01650.The optical module of the fire detector according to the invention can either be designed in such a way that that in the measuring chamber that of smoke particles scattered or weakened by these Light of the light source is measured. In the first case, it is the detection principle a stray light, in the second case to the Detektiosprinzip a transmitted light detector. It can the scattered light detector as a forward or backward spreader or as a forward and backward spreader be educated. The latter has the advantage that, based on the scatter at different Scattering angle determines which type of smoke is present; see WO-A-84 01,650th

Der erfindungsgemässe Multisensor-Brandmeider, der einen optischen Rauchsensor, einen Temperatursensor, einen Brandgassensor und einen Fuzzy-Regler enthält und in welchem für jede Brandart ein spezieller applikationsspezifischer Algorithmus bereitgestellt ist, eröffnet die Möglichkeit, anhand einer Verknüpfung der Signale der Sensoren im Fuzzy-Regler die jeweilige Brandart zu detektieren und den geeigneten Algorithmus auszuwählen. Dadurch wird einerseits die Fehlalarmsicherheit (Robustheit) des Melders verbessert, und andererseits kann durch geeignete Wahl der applikationspezifischen Algorithmen ein ausgeglicheneres Ansprechverhalten des Melders erzielt werden.The inventive multi-sensor Brandmeider, the an optical smoke sensor, a Temperature sensor, a fire gas sensor and a fuzzy controller contains and in which for Each kind of firing is provided with a special application specific algorithm Possibility, by linking the signals of the sensors in the fuzzy controller the respective Detect the type of fire and select the appropriate algorithm. This will on the one hand the false alarm (robustness) improves the detector, and on the other hand, by appropriate choice of application-specific algorithms a more balanced response be achieved by the detector.

Ausserdem eröffnet sich die Möglichkeit einer Art von Problemdiagnose, indem der Fuzzy-Regler überwacht, ob gewisse noch unterhalb der jeweiligen Alarmschwellen liegende Störungen gehäuft auftreten. Der Fuzzy-Regler kann solche Störungen an die Zentrale oder über eine geeignete Kommunikationsschnittstelle an das Bedienungspersonal melden und auf diese Weise potentielle Störquellen anzeigen, deren Ursache möglicherweise in einer falschen Applikation des betreffenden Melders liegen kann. In addition, there is the possibility of a kind of problem diagnosis by the fuzzy controller monitors whether certain disturbances still lie below the respective alarm thresholds heaped occur. The fuzzy controller can such disturbances to the control center or via a suitable Report communication interface to the operator and in this way indicate potential sources of interference, possibly caused by a wrong application of the detector concerned.

Eine zweite bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass im Fuzzy-Regler eine Verbindung zwischen der Rauchkonzentration, der Konzentration des zu detektierenden Rauchgases und einem aus dem Gradienten der Temperatur und dem Gradienten des Rauchgases gebildeten Parameter erfolgt.A second preferred embodiment of the inventive fire alarm is characterized characterized in that in the fuzzy controller, a connection between the smoke concentration, the Concentration of the flue gas to be detected and one of the gradient of the temperature and the gradient of the flue gas formed parameter takes place.

Eine dritte bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass der genannte Parameter durch den Quotienten aus dem Temperaturgradienten und dem Rauchgasgradienten gebildet ist.A third preferred embodiment of the inventive fire alarm is characterized characterized in that said parameter by the quotient of the temperature gradient and the flue gas gradient is formed.

Eine vierte bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass der zusätzliche Sensor für ein Brandgas ein CO-Sensor ist.A fourth preferred embodiment of the inventive fire alarm is characterized characterized in that the additional sensor for a fire gas is a CO sensor.

Eine fünfte bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass die Lichtquelle des Optikmoduls zur Aussendung einer Strahlung im Wellenlängenbereich des sichtbaren Lichts ausgebildet ist.A fifth preferred embodiment of the inventive fire alarm is characterized characterized in that the light source of the optical module for emitting radiation in the wavelength range of visible light is formed.

Bei einer sechsten bevorzugten Ausführungsform liegt die Wellenlänge der von der Lichtquelle ausgesandten Strahlung im Bereich von blauem oder rotem Licht und beträgt vorzugsweise 460 nm beziehungsweise 660 nm.In a sixth preferred embodiment, the wavelength is that of the light source emitted radiation in the range of blue or red light and is preferably 460th nm or 660 nm.

Eine weitere bevorzugte Ausführungsform des erfindungsgemässen Brandmelders ist dadurch gekennzeichnet, dass im Strahlengang zwischen der Lichtquelle und dem Lichtempfänger mindestens ein Polarisationsfilter vorgesehen ist.A further preferred embodiment of the fire detector according to the invention is characterized characterized in that in the beam path between the light source and the light receiver at least a polarizing filter is provided.

Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass das mindestens eine Polarisationsfilter ein sogenannter aktiver Polarisator mit elektrisch verstellbarer Polarisationsebene ist.A further preferred embodiment is characterized in that the at least a polarizing filter a so-called active polarizer with electrically adjustable polarization plane is.

Vorzugsweise ist der aktive Polarisator durch eine Flüssigkristallanzeige gebildet, deren Polarisationsebene durch Anlegen einer Spannung verstellbar ist.Preferably, the active polarizer is formed by a liquid crystal display whose polarization plane is adjustable by applying a voltage.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; es zeigt:

  • Fig. 1 eine schematische Schnittdarstellung eines erfindungsgemässen Brandmelders; und
  • Fig. 2 ein vereinfachtes Blockschema der Signalverarbeitung.
  • In the following the invention with reference to an embodiment and the drawings will be explained in more detail; it shows:
  • Fig. 1 is a schematic sectional view of a fire detector according to the invention; and
  • Fig. 2 is a simplified block diagram of signal processing.
  • Der in Fig. 1 in einem Axialschnitt dargestellte Brandmelder 1 ist im wesentlichen ein um zusätzliche Sensoren für Brandkenngrössen erweiterter optischer Rauchmelder, darstellungsgemäss ein Streulichtmelder. Da solche optische Melder als bekannt vorausgesetzt werden, sind sie hier nicht näher beschrieben. Es wird in diesem Zusammenhang auf die EP-A-0 616 305 und die EP-A-0 821 330 verwiesen. Der optische Rauchmelder kann auch durch einen sogenannten Punktextinktions- oder Durchlichtmelder gebildet sein, wie er beispielsweise in der EP-A-1 017 034 beschrieben ist. The fire detector 1 shown in an axial section in Fig. 1 is essentially an additional Sensors for fire characteristics of advanced optical smoke detectors, as shown a scattered light detector. Since such optical detectors are assumed to be known, are they are not described here. In this connection, reference is made to EP-A-0 616 305 and EP-A-0 821 330. The optical smoke detector can also by a so-called Punktxtinktions- or transmitted light detector may be formed, as described for example in EP-A-1 017 034 is described.

    Der dargestellte Brandmelder 1 besteht in bekannter Weise aus einem Meldereinsatz 2, der in einem vorzugsweise an der Decke des zu überwachenden Raumes montierten Sockel (nicht dargestellt) befestigbar ist, und aus einer über den Meldereinsatz 2 gestülpten Melderhaube 3, die im Bereich ihrer im Betriebszustand des Melders gegen den zu überwachenden Raum gerichteten Kuppe mit Raucheintrittsöffnungen 4 versehen ist. Der Meldereinsatz 2 umfasst im wesentlichen einen schachtelartigen Basiskörper, an dessen der Melderkuppe zugewandter Seite ein Optikmodul 5 und dessen dem Meldersockel zugewandter Seite eine Auswerteelektronik 6 angeordnet ist.The fire detector 1 shown consists in a known manner from a detector insert 2, the in a preferably mounted on the ceiling of the space to be monitored socket (not shown) can be fastened, and from a placed over the detector insert 2 detector hood 3, in the area of their in the operating state of the detector directed against the space to be monitored Dome with smoke inlet openings 4 is provided. The detector insert 2 comprises in essentially a box-like base body, facing to the detector tip Side of an optical module 5 and the detector base side facing an evaluation 6 is arranged.

    Das Optikmodul 5 besteht bei einem Streulichtmelder im wesentlichen aus einer eine Lichtquelle 7 und einen Lichtempfänger 8 enthaltenden Messkammer 9, welche durch nicht dargestellte Mittel gegen Fremdlicht von aussen abgeschirmt ist. Die optischen Achsen der durch eine Infrarot- oder eine rote oder blaue Leuchtdiode (IRED bzw. LED) gebildeten Lichtquelle 7 und des Lichtempfängers 8 sind zueinander geknickt, wobei durch diesen Verlauf und durch Blenden verhindert wird, dass Lichtstrahlen auf direktem Weg von der Lichtquelle 7 zum Lichtempfänger 8 gelangen können. Die Lichtquelle 7 sendet kurze, intensive Lichtpulse in den zentralen Teil der Messkammer 9, wobei der Lichtempfänger 8 zwar diesen zentralen Teil der Messkammer 9, nicht aber die Lichtquelle 7 "sieht".The optical module 5 consists essentially of a light source in a scattered light detector 7 and a light receiver 8 containing measuring chamber 9, which by not shown Medium against external light is shielded from the outside. The optical axes of an infrared or a red or blue light emitting diode (IRED or LED) formed light source 7 and the Light receiver 8 are kinked to each other, with this course and by blinding prevents light rays on the direct route from the light source 7 to the light receiver 8 can get. The light source 7 sends short, intense light pulses in the central part the measuring chamber 9, wherein the light receiver 8, although this central part of the measuring chamber 9, but not the light source 7 "sees".

    Das Licht der Lichtquelle 7 wird durch in den Streuraum eindringenden Rauch gestreut, und ein Teil dieses Streulichts fällt auf den Lichtempfänger 8. Das dadurch erzeugte Empfänger-Signal wird von der Auswerteelektronik 6 verarbeitet. Bei der Verarbeitung wird das Empfängersignal in bekannter Weise mit einer Alarmschwelle und mindestens einer Voralarmschwelle verglichen, und die Auswerteelektronik 6 gibt bei Überschreiten der Alarmschwelle durch das Empfängersignal an einem Ausgang 10 ein Alarmsignal ab. Dabei ist durch intelligente Signalverarbeitung gewährleistet, dass die Abgabe des Alarmsignals bei möglichst tiefen Rauchwerten folgt, ohne dass es dabei jedoch zu unakzeptablen Fehlalarmen kommt.The light of the light source 7 is scattered by penetrating into the scattering room smoke, and a Part of this scattered light is incident on the light receiver 8. The receiver signal generated thereby is processed by the transmitter 6. During processing, the receiver signal becomes compared in a known manner with an alarm threshold and at least one pre-alarm threshold, and the transmitter 6 are at the alarm threshold exceeded by the receiver signal at an output 10 from an alarm signal. It is through intelligent signal processing Ensures that the delivery of the alarm signal at the lowest possible smoke values follows, but without unacceptable false alarms.

    Im Strahlengang zwischen der Lichtquelle 7 und dem Lichtempfänger 8 kann ein sogenannter aktiver Polarisator 11, das ist ein Polarisator mit drehbarer Polarisationsebene, vorgesehen sein, um die Lichtstreuung in den beiden Polarisationsebenen messen zu können. Dieser aktive Polarisator ist vorzugsweise durch eine elektronische Polarisierplatte mit einem Flüssigkristall gebildet, welche beim Anlegen einer Spannung ihre Polarisationsebene um 90° dreht. Die Messung des Polarisationsgrads, das ist das polarisierte Streulicht in den beiden Polarisationsebenen, kann die Ansprechzeit des Melders 1 auf bestimmte Testfeuer verkürzen und dadurch zu einem homogeneren Ansprechverhalten führen.In the beam path between the light source 7 and the light receiver 8, a so-called active polarizer 11, which is a polarizer with a rotatable plane of polarization, provided be able to measure the light scattering in the two polarization planes. This active Polarizer is preferably by an electronic polarizing plate with a liquid crystal formed, which rotates their polarization plane by 90 ° when applying a voltage. The measurement the polarization degree, that is the polarized scattered light in the two polarization planes, can shorten the response time of the detector 1 to certain test fire and thereby to lead to a more homogeneous response.

    Wie Fig. 1 weiter zu entnehmen ist, enthält der Brandmelder 1 zusätzlich zum Optikmodul 5 noch zwei weitere Sensoren für Brandkenngrössen, und zwar einen CO-Sensor (allgemein: Brandgassensor) 12 und einen Temperatursensor 13. Ein geeigneter CO-Sensor ist in der EP-B-0 612 408 beschrieben (siehe auch EP-A-0 803 850), als Temperatursensoren haben sich NTC-Thermistoren bewährt (siehe dazu den Rauchmelder PolyRex des Brandmeldesystems AlgoRex - PolyRex und AlgoRex sind eingetragene Warenzeichen der Siemens Building Technologies AG, Cerberus Division, früher Cerberus AG).1, the fire detector 1 in addition to the optical module 5 contains two more sensors for fire parameters, namely a CO sensor (in general: fire gas sensor) 12 and a temperature sensor 13. A suitable CO sensor is in the EP -B-0 612 408 (see also EP-A-0 803 850), as temperature sensors have NTC thermistors proven (see the smoke detector PolyRex the fire detection system AlgoRex - PolyRex and AlgoRex are registered trademarks of Siemens Building Technologies AG, Cerberus Division, formerly Cerberus AG).

    Theoretische Überlegungen und praktische Brandversuche haben die in der folgenden Tabelle zusammengestellten Korrelationen zwischen den mit den verschiedenen Sensoren Optikmodul 5, CO-Sensor 12 und Temperatursensor 13, gemessenen Brandparametem ergeben. Selbstverständlich wird als weiterer Brandparameter noch die Rauchmenge oder Rauchkonzentration gemessen; das ist die bekannte Funktion eines optischen Rauchmelders und damit des Optikmoduls 5. Brandparameter TF1 TF2 TF3 TF4 TF5 TF6 CO-Konzentration gross gering sehr gross gering gering gering Gradient CO/Gradient T mittel gering gering mittel gross gross Gradient T sehr gross gering gering gross sehr gross sehr gross Polarisationsgrad sehr gross gering gering gross sehr gross gering Theoretical considerations and practical fire tests have given the correlations between the different fire parameters measured with the different sensors optics module 5, CO sensor 12 and temperature sensor 13 in the following table. Of course, the amount of smoke or smoke concentration is measured as a further fire parameters; this is the known function of an optical smoke detector and thus of the optical module 5. brand parameters TF1 TF2 TF3 TF4 TF5 TF6 CO concentration large low very large low low low Gradient CO / gradient T medium low low medium large large Gradient T very large low low large very large very large degree of polarization very large low low large very large low

    Aus der Tabelle sind die folgenden Resultate ersichtlich:

    • Die CO-Konzentration eignet sich besser als alle anderen Parameter zur frühen Detektion von TF3 und korreliert hier mit der Rauchkonzentration.
    • Der Quotient Gradient CO durch Gradient Temperatur eignet sich sehr gut zur frühen Detektion von TF5 und TF6 und korreliert hier mit dem Temperaturanstieg.
    • Der Temperaturanstieg eignet sich sehr gut zur frühen Detektion von TF1, TF5 und TF6 und korreliert mit Ausnahme von TF6 (kein Rauch) mit dem Polarisationsgrad. Man kann dieses Ergebnis so interpretieren, dass Brände, die viel Hitze generieren, ziemlich kleine Aerosolteilchen erzeugen. Die Korrelation zwischen Temperaturanstieg und Polarisationsgrad kann als Alarmbestätigung und somit für die Erhöhung der Robustheit des Melders benutzt werden.
    The table shows the following results:
    • The CO concentration is better than any other parameter for the early detection of TF3 and correlates with the smoke concentration.
    • The gradient gradient CO gradient temperature is very suitable for the early detection of TF5 and TF6 and correlates with the temperature rise.
    • The temperature rise is very well suited for the early detection of TF1, TF5 and TF6 and correlates with the degree of polarization except TF6 (no smoke). One can interpret this result in such a way that fires that generate a lot of heat generate rather small aerosol particles. The correlation between temperature rise and degree of polarization can be used as alarm confirmation and thus for increasing the robustness of the detector.

    Die Tabelle zeigt ausserdem, dass anhand der Parameter CO-Konzentration, Quotient Gradient CO durch Gradient T sowie Rauchkonzentration alle sechs Brandarten einzeln diagnostiziert werden können. Das bedeutet, dass mit Hilfe dieser Parameter die Signatur eines Brandes eindeutig erkennbar ist. Andererseits erlauben auch die Parameter CO-Konzentration, Polarisationsgrad und Rauchkonzentration eine Bestimmung der Brandart, allerdings mit Ausnahme von TF6, welches anhand dieser Parameter nicht erkannt werden kann. Die Messung des Polarisationsgrades hat zusätzlich den Vorteil, dass auch in den Fällen, wo die Temperatur nicht rasch genug steigt, die Brandart erkannt werden kann. Dieser Fall kann beispielsweise in hohen Räumen eintreten.The table also shows that the parameters CO concentration, quotient Gradient CO is individually diagnosed by gradient T and smoke concentration all six types of fire can be. This means that with the help of these parameters the signature of a fire clearly is recognizable. On the other hand, the parameters also allow CO concentration, degree of polarization and smoke concentration a determination of the type of fire, but with the exception of TF6, which can not be recognized by these parameters. The measurement of the degree of polarization In addition has the advantage that even in cases where the temperature is not fast Enough is rising, the kind of fire can be detected. This case can be, for example, in high rooms enter.

    Wie in Fig. 2 schematisch dargestellt ist, sind die Signale der drei Sensoren, Optikmodul 5 für die Rauchkonzentration und den Polarisationsgrad, CO-Sensor 12 und Temperatursensor 13, einer Bestandteil der Auswerteelektronik 6 bildenden Diagnosestufe 14 zugeführt, welche im wesentlichen einen Fuzzy-Regler enthält. In der Diagnosestufe 14 werden die Signale der Sen- . soren verknüpft und analysiert und es wird aus dieser Analyse die Brandart bestimmt. Schliesslich wird der für die jeweilige Brandart geeignete Algorithmus ausgewählt und für die Auswertung der Sensorsignale verwendet. Wie schon erwähnt wurde, kann der Fuzzy-Regler auch für Diagnosezwecke, zur Anzeige von Problemen, verwendet werden.As shown schematically in FIG. 2, the signals of the three sensors, optical module 5 for the smoke concentration and the degree of polarization, CO sensor 12 and temperature sensor 13, a component of the evaluation 6 forming diagnostic stage 14 is supplied, which in essentially contains a fuzzy controller. In the diagnostic stage 14, the signals of Sen-. sensors are linked and analyzed, and the type of fire is determined from this analysis. After all the appropriate algorithm for the respective type of fire is selected and for the evaluation the sensor signals used. As already mentioned, the fuzzy controller can also be used for Diagnostic purposes, used to display problems.

    Das Optikmodul 5 des erfindungsgemässen Brandmelders entspricht funktionsmässig einem üblichen Streulichtmelder mit Vorwärts- oder Rückwärtsstreuung, oder einem Streulichtmelder mit Vorwärts- und Rückwärtsstreung, oder einem Punktextinktions- oder Durchlichtmelder. Ein wesentlicher Bestandteil des erfindungsgemässen Brandmelders ist der Sensor 12 für das mindestens eine Brandgas, welcher vorzugsweise ein CO-Sensor ist.The optical module 5 of the inventive fire detector corresponds functionally one usual scattered light detectors with forward or backward scattering, or a scattered light detector with forward and backward sweep, or a point extinction or transmitted light detector. One An essential component of the inventive fire detector is the sensor 12 for the at least a combustion gas, which is preferably a CO sensor.

    Es sei noch darauf hingewiesen, dass es durchaus vorteilhaft sein kann, andere Typen von Brandmeldem zusätzlich mit einem Brandgassensor, insbesondere einem CO-Sensor, auszurüsten. Derartige Brandmelder sind beispielsweise die sogenannten linearen Rauchmelder oder Beammelder wie der Typ DLO1191 der Siemens Building Technologies AG, Cerberus Division, und die Flammenmelder, wie der Typ DF1190 der Siemens Building Technologies AG, Cerberus Division.It should be noted that it can be quite advantageous to use other types of Brandmeldem additionally equipped with a fire gas sensor, in particular a CO sensor. Such fire detectors are, for example, the so-called linear smoke detectors or Beam detectors such as the DLO1191 type from Siemens Building Technologies AG, Cerberus Division, and the flame detectors, such as the DF1190 type from Siemens Building Technologies AG, Cerberus Division.

    Claims (11)

    1. Fire detector having an optical module (5) comprising a light source (7), a measuring chamber (9) and an opto-receiver (8), having a temperature sensor (13), an additional sensor (12) for at least one combustion gas and evaluation electronics (6) for logically combining the signals from the individual sensors (5, 12, 13), characterized in that the evaluation electronics (6) are designed to diagnose the respective fire type in line with one of the test fires TF1 to TF6 from the European standard EN-54, and in that this diagnosis is taken as a basis for selecting a special application-specific algorithm for processing the sensor signals.
    2. Fire detector according to Claim 1, characterized in that the evaluation electronics (6) have a fuzzy controller for performing said logic combination.
    3. Fire detector according to Claim 2, characterized in that the fuzzy controller logically combines the smoke concentration with the combustion gas concentration and with a parameter formed from the gradient of the temperature and from the gradient of the flue gas.
    4. Fire detector according to Claim 3, characterized in that said parameter is formed by the quotient of the temperature gradient and the flue-gas gradient.
    5. Fire detector according to one of Claims 1 to 4, characterized in that the additional sensor (12) for a combustion gas is a CO sensor.
    6. Fire detector according to one of Claims 1 to 5, characterized in that the light source (7) in the optical module (5) is designed to transmit radiation in the wavelength range of visible light.
    7. Fire detector according to Claim 6, characterized in that the wavelength of the radiation transmitted by the light source (7) is in the range of blue or red light and is preferably 460 nm or 660 nm.
    8. Fire detector according to Claim 6, characterized in that the beam path between the light source (7) and the opto-receiver (8) contains at least one polarization filter (11).
    9. Fire detector according to Claim 8, characterized in that the at least one polarization filter (11) is an "active polarizer" with an electrically adjustable polarization plane.
    10. Fire detector according to Claim 9, characterized in that the active polarizer is formed by a liquid crystal display whose polarization plane can be adjusted by applying a voltage.
    11. Fire detector according to Claims 3 and 10, characterized in that measuring the smoke concentration involves the optical module (5) determining the degree of polarization of the radiation scattered in the measuring chamber (9) from the light source (7).
    EP99122975A 1999-11-19 1999-11-19 Fire detector Expired - Lifetime EP1103937B1 (en)

    Priority Applications (14)

    Application Number Priority Date Filing Date Title
    EP99122975A EP1103937B1 (en) 1999-11-19 1999-11-19 Fire detector
    AT99122975T ATE295595T1 (en) 1999-11-19 1999-11-19 FIRE ALARM
    DE59912047T DE59912047D1 (en) 1999-11-19 1999-11-19 fire alarm
    PT99122975T PT1103937E (en) 1999-11-19 1999-11-19 FIRE DETECTOR
    ES99122975T ES2243027T3 (en) 1999-11-19 1999-11-19 FIRE DETECTOR.
    AU65464/00A AU777015B2 (en) 1999-11-19 2000-10-12 Fire alarm
    KR1020000066616A KR20010051578A (en) 1999-11-19 2000-11-10 Fire alarm
    JP2000344033A JP4767404B2 (en) 1999-11-19 2000-11-10 Fire alarm equipment
    US09/711,818 US6788197B1 (en) 1999-11-19 2000-11-13 Fire alarm
    NO20005717A NO20005717L (en) 1999-11-19 2000-11-13 fire alarms
    HU0004474A HU224676B1 (en) 1999-11-19 2000-11-13 Fire alarm
    CN00132370A CN1297213A (en) 1999-11-19 2000-11-13 Fire alarm device
    CZ20004287A CZ301163B6 (en) 1999-11-19 2000-11-16 Fire alarm system
    PL00343954A PL343954A1 (en) 1999-11-19 2000-11-17 Fire detector

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP99122975A EP1103937B1 (en) 1999-11-19 1999-11-19 Fire detector

    Publications (2)

    Publication Number Publication Date
    EP1103937A1 EP1103937A1 (en) 2001-05-30
    EP1103937B1 true EP1103937B1 (en) 2005-05-11

    Family

    ID=8239423

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99122975A Expired - Lifetime EP1103937B1 (en) 1999-11-19 1999-11-19 Fire detector

    Country Status (14)

    Country Link
    US (1) US6788197B1 (en)
    EP (1) EP1103937B1 (en)
    JP (1) JP4767404B2 (en)
    KR (1) KR20010051578A (en)
    CN (1) CN1297213A (en)
    AT (1) ATE295595T1 (en)
    AU (1) AU777015B2 (en)
    CZ (1) CZ301163B6 (en)
    DE (1) DE59912047D1 (en)
    ES (1) ES2243027T3 (en)
    HU (1) HU224676B1 (en)
    NO (1) NO20005717L (en)
    PL (1) PL343954A1 (en)
    PT (1) PT1103937E (en)

    Families Citing this family (55)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6958689B2 (en) 2001-09-21 2005-10-25 Rosemount Aerospace Inc. Multi-sensor fire detector with reduced false alarm performance
    US7333129B2 (en) 2001-09-21 2008-02-19 Rosemount Aerospace Inc. Fire detection system
    ATE318000T1 (en) 2002-06-20 2006-03-15 Siemens Schweiz Ag FIRE ALARM
    US7564365B2 (en) * 2002-08-23 2009-07-21 Ge Security, Inc. Smoke detector and method of detecting smoke
    US6975223B1 (en) * 2002-08-26 2005-12-13 Petar Mladen Premises protection safety system
    US6967582B2 (en) * 2002-09-19 2005-11-22 Honeywell International Inc. Detector with ambient photon sensor and other sensors
    US7068177B2 (en) * 2002-09-19 2006-06-27 Honeywell International, Inc. Multi-sensor device and methods for fire detection
    US7715482B2 (en) * 2003-08-14 2010-05-11 Broadcom Corporation System and method for generating pseudo MPEG information from digital video information
    KR100671045B1 (en) 2005-07-22 2007-01-17 주식회사 금륜방재산업 Flame detector to detect hydrocarbon fire and non hydrocarbon fire
    EP1783712B1 (en) * 2005-11-04 2008-05-07 Siemens Aktiengesellschaft Combined scattered light and extinction fire alarm
    US7642924B2 (en) * 2007-03-02 2010-01-05 Walter Kidde Portable Equipment, Inc. Alarm with CO and smoke sensors
    US7786880B2 (en) * 2007-06-01 2010-08-31 Honeywell International Inc. Smoke detector
    ATE493724T1 (en) * 2008-02-15 2011-01-15 Siemens Ag DANGER DETECTION INCLUDING A TEMPERATURE MEASUREMENT DEVICE INTEGRATED IN A MICROCONTROLLER
    EP2093734B1 (en) * 2008-02-19 2011-06-29 Siemens Aktiengesellschaft Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm
    CN102257385B (en) * 2008-12-19 2013-12-25 西门子公司 Gas sensor assembly containing GASFET sensor and filter element for degrading ozone
    US8232884B2 (en) * 2009-04-24 2012-07-31 Gentex Corporation Carbon monoxide and smoke detectors having distinct alarm indications and a test button that indicates improper operation
    US8836532B2 (en) 2009-07-16 2014-09-16 Gentex Corporation Notification appliance and method thereof
    US8659435B2 (en) * 2010-04-02 2014-02-25 George Anthony McKinney Waterproof optically-sensing fiberless-optically-communicating vitality monitoring and alarming system, particularly for swimmers and infants
    GB201006682D0 (en) 2010-04-21 2010-06-09 Fireangel Ltd Co-9x optical alarm
    JP5484219B2 (en) * 2010-06-30 2014-05-07 ニッタン株式会社 Combined thermal smoke sensor
    US9881491B2 (en) * 2011-11-10 2018-01-30 Honeywell International Inc. Fire detector comprising a MOS gas sensor and a photoelectric detector
    US8952821B2 (en) 2012-04-29 2015-02-10 Valor Fire Safety, Llc Smoke detector utilizing ambient-light sensor, external sampling volume, and internally reflected light
    US9140646B2 (en) 2012-04-29 2015-09-22 Valor Fire Safety, Llc Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction
    US8907802B2 (en) 2012-04-29 2014-12-09 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
    CN102938183A (en) * 2012-10-23 2013-02-20 向武 Distributed goaf beam tube fire monitoring system
    CN103077578B (en) * 2012-12-29 2015-01-28 浙江工业大学 Two-stage spontaneous combustion danger judging and early warning method in engine compartment of bus
    JP6407295B2 (en) 2013-10-30 2018-10-17 ヴァラー ファイヤー セーフティー, エルエルシー Smoke detector with external sampling volume and ambient light rejection
    DE102014108713B3 (en) * 2014-06-23 2015-07-16 Sick Ag Smoke and fire detectors
    AU2016225422A1 (en) * 2015-02-25 2017-09-14 Hochiki Corporation System
    DE102015206611A1 (en) * 2015-04-14 2016-10-20 Siemens Schweiz Ag Flame detector for monitoring an area adjacent to waters and taking into account a level of polarization present in the receiving light during fire alarm
    EP3128493A1 (en) * 2015-08-06 2017-02-08 Siemens Schweiz AG Scattered light smoke detector with optical measurement chamber in detector housing and with a mirror surface on the inside of a detector hood as part of the detector housing
    CN106781194A (en) * 2015-11-24 2017-05-31 衡阳市维达胜电气自动化设备有限公司 A kind of self-action smoke alarm
    EP3225977B1 (en) * 2016-03-31 2019-03-13 ams AG Method and sensor system for detecting particles
    US20180108234A1 (en) * 2016-10-19 2018-04-19 MindDust labs LLC Mobile smoke and fire detection system and method
    EP3319057B1 (en) 2016-11-02 2019-06-26 ams AG Integrated smoke detection device
    US10989368B2 (en) 2017-04-13 2021-04-27 Carrier Corporation Notification device for a surface of a building interior
    CN107449864B (en) * 2017-08-10 2023-04-07 国网安徽省电力公司电力科学研究院 Multi-scene cable fire smoke parameter evaluation platform and evaluation method
    JP7142235B2 (en) * 2018-03-26 2022-09-27 パナソニックIpマネジメント株式会社 Smoke detection system, smoke detection method, and program
    KR101911371B1 (en) 2018-04-20 2018-10-25 윈텍정보(주) Function Extension Type Fire Detector
    KR102237270B1 (en) 2019-05-28 2021-04-07 주식회사 씨엔 이지에스 Wireless Fire Detector System
    RU193876U1 (en) * 2019-07-01 2019-11-19 Общество с ограниченной ответственностью "РУБЕТЕК РУС" RADIO CHANNEL EXPANDER
    GB201917883D0 (en) * 2019-12-06 2020-01-22 Project Fire Global Holdings Ltd A detector for a fire alarm system
    CN111672043A (en) * 2020-04-29 2020-09-18 广东电网有限责任公司东莞供电局 Automatic identification fire extinguisher
    US11373490B2 (en) * 2020-07-02 2022-06-28 Cisco Technology, Inc. Temperature indicator for optical module
    US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
    US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
    US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
    US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
    US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
    US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
    US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
    US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
    EP4160564A1 (en) * 2021-09-29 2023-04-05 Carrier Corporation Device for detecting a combustible gas
    US20230230468A1 (en) * 2022-01-19 2023-07-20 Johnson Controls Tyco IP Holdings LLP Smoke detector self-test
    CN115019465B (en) * 2022-06-10 2023-08-25 北京南瑞怡和环保科技有限公司 Early warning system for energy storage of transformer substation

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPH05303690A (en) * 1991-04-17 1993-11-16 Shiyoubouchiyou Chokan Fire properties grasping system
    CH683464A5 (en) * 1991-09-06 1994-03-15 Cerberus Ag Optical smoke detector with active surveillance.
    JP3071902B2 (en) * 1991-10-31 2000-07-31 ホーチキ株式会社 Fire alarm
    GB2259763B (en) * 1991-09-20 1995-05-31 Hochiki Co Fire alarm system
    JP2608512B2 (en) * 1992-09-04 1997-05-07 株式会社ジャパンエナジー Fire detection method
    JP3151470B2 (en) * 1993-04-13 2001-04-03 消防庁長官 Fire property monitoring system
    JP3251763B2 (en) * 1993-04-30 2002-01-28 ホーチキ株式会社 Fire alarm device and fire detection method
    US5486811A (en) * 1994-02-09 1996-01-23 The United States Of America As Represented By The Secretary Of The Navy Fire detection and extinguishment system
    JPH07254096A (en) * 1994-03-15 1995-10-03 Matsushita Electric Works Ltd Disaster prevention system
    US5726633A (en) * 1995-09-29 1998-03-10 Pittway Corporation Apparatus and method for discrimination of fire types
    GB9721861D0 (en) * 1997-10-15 1997-12-17 Kidde Fire Protection Ltd High sensitivity particle detection
    PT926646E (en) * 1997-12-24 2004-10-29 Siemens Building Tech Ag OPTICAL SMOKE DETECTOR

    Also Published As

    Publication number Publication date
    JP4767404B2 (en) 2011-09-07
    JP2001175963A (en) 2001-06-29
    US6788197B1 (en) 2004-09-07
    CN1297213A (en) 2001-05-30
    AU6546400A (en) 2001-05-17
    CZ20004287A3 (en) 2001-07-11
    HUP0004474A3 (en) 2004-08-30
    ATE295595T1 (en) 2005-05-15
    ES2243027T3 (en) 2005-11-16
    AU777015B2 (en) 2004-09-30
    HU224676B1 (en) 2005-12-28
    HU0004474D0 (en) 2001-01-29
    KR20010051578A (en) 2001-06-25
    DE59912047D1 (en) 2005-06-16
    EP1103937A1 (en) 2001-05-30
    PT1103937E (en) 2005-09-30
    PL343954A1 (en) 2001-05-21
    NO20005717D0 (en) 2000-11-13
    NO20005717L (en) 2001-05-21
    HUP0004474A2 (en) 2001-06-28
    CZ301163B6 (en) 2009-11-25

    Similar Documents

    Publication Publication Date Title
    EP1103937B1 (en) Fire detector
    DE69737459T2 (en) FIRE AND SMOKE DETECTION AND CONTROL SYSTEM
    EP0530723A1 (en) Optical smoke detector with active monitoring
    DE10011411C2 (en) Imaging fire detector
    EP2407949B1 (en) Ring shaped auxiliary light source
    EP0345798B1 (en) Fire alarm system
    WO2005069242A1 (en) Fire detector with several analysis volumes
    EP1022700A2 (en) Light scattering fire detector
    EP1062647B1 (en) Fire alarm box
    DE4231088A1 (en) FIRE ALARM SYSTEM
    DE4200946A1 (en) FIRE DETECTING METHOD
    EP0338218B1 (en) Early fire detection method
    EP1389331A1 (en) Self-aspirating fire detection system
    DE3050124T1 (en) SELF-CHECKING PHOTOELECTRIC SMOKE DETECTOR
    EP3857207A1 (en) Scattered light smoke detector having a two-color led, a photosensor, and a wavelength-selective polarizer connected upstream of the photosensor or connected downstream of the two-color led, and suitable use of such a polarizer
    EP3113133B1 (en) Smoke detector with combined coverage and particle detection at the smoke inlet opening
    EP0660282B1 (en) System for the early detection of fires
    EP1087352A1 (en) Optical smoke detector
    EP3096130B1 (en) Device for identification of aerosols
    DE602004010421T2 (en) VEHICLE TEST DETECTOR AND METHOD FOR REDUCING FALLEN ALARMS
    DE2310127A1 (en) INTEGRATED HAZARD REPORTING SYSTEM
    EP0880118B1 (en) Optical smoke detector
    DE112020002849T5 (en) Optical particle sensor
    EP1124210B1 (en) Fire detection system and fire detector therefor
    WO2003102889A1 (en) Fire detector and fire detection system

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20011120

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20040225

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RBV Designated contracting states (corrected)

    Designated state(s): CH DE FR GB LI

    RBV Designated contracting states (corrected)

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050511

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 59912047

    Country of ref document: DE

    Date of ref document: 20050616

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050811

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050811

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050728

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Effective date: 20050809

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2243027

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051119

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051130

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051130

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    ET Fr: translation filed
    26N No opposition filed

    Effective date: 20060214

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

    Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: PC4A

    Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

    Effective date: 20080829

    Ref country code: PT

    Ref legal event code: PC4A

    Owner name: SIEMENS SCHWEIZ AG, CH

    Effective date: 20080829

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SIEMENS AKTIENGESELLSCHAFT

    Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG, INTELLECTUAL PROPERTY

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20090514 AND 20090520

    BECA Be: change of holder's address

    Owner name: SIEMENS A.G.WITTELSBACHERPLATZ 2, DE-80333 MUENCHE

    Effective date: 20100423

    BECH Be: change of holder

    Owner name: SIEMENS A.G.

    Effective date: 20100423

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: SD

    Effective date: 20110318

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20111229

    Year of fee payment: 13

    BERE Be: lapsed

    Owner name: SIEMENS A.G.

    Effective date: 20121130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20141226

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SIEMENS SCHWEIZ AG, CH

    Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20141103

    Year of fee payment: 16

    Ref country code: PT

    Payment date: 20141029

    Year of fee payment: 16

    Ref country code: AT

    Payment date: 20141009

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20150220 AND 20150225

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20150209

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59912047

    Country of ref document: DE

    Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

    Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

    Effective date: 20150407

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59912047

    Country of ref document: DE

    Owner name: SIEMENS SCHWEIZ AG, CH

    Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

    Effective date: 20150407

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: PC

    Ref document number: 295595

    Country of ref document: AT

    Kind code of ref document: T

    Owner name: SIEMENS SCHWEIZ AG, CH

    Effective date: 20150330

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: PC4A

    Owner name: SIEMENS SCHWEIZ AG, CH

    Effective date: 20151009

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: SIEMENS SCHWEIZ AG, CH

    Effective date: 20160202

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20160419

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59912047

    Country of ref document: DE

    Representative=s name: MAIER, DANIEL, DIPL.-ING. UNIV., DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59912047

    Country of ref document: DE

    Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

    Free format text: FORMER OWNER: SIEMENS SCHWEIZ AG, ZUERICH, CH

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20160519

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 295595

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20151119

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 20151120

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151130

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

    Effective date: 20160624

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20151201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151119

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160519

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20170907 AND 20170913

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20171120

    Year of fee payment: 19

    Ref country code: FI

    Payment date: 20171121

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20171113

    Year of fee payment: 19

    Ref country code: IT

    Payment date: 20171128

    Year of fee payment: 19

    Ref country code: SE

    Payment date: 20171113

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20180119

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59912047

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20181119

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181119

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181120

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190601

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181119

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181119