EP1101102A2 - Micro-systeme a multiples points d'analyse chimique ou biologique - Google Patents

Micro-systeme a multiples points d'analyse chimique ou biologique

Info

Publication number
EP1101102A2
EP1101102A2 EP99936658A EP99936658A EP1101102A2 EP 1101102 A2 EP1101102 A2 EP 1101102A2 EP 99936658 A EP99936658 A EP 99936658A EP 99936658 A EP99936658 A EP 99936658A EP 1101102 A2 EP1101102 A2 EP 1101102A2
Authority
EP
European Patent Office
Prior art keywords
micro
electrode
counter
layer
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99936658A
Other languages
German (de)
English (en)
Inventor
Patrice Caillat
Jean-Frédéric Clerc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1101102A2 publication Critical patent/EP1101102A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00653Making arrays on substantially continuous surfaces the compounds being bound to electrodes embedded in or on the solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00713Electrochemical synthesis
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the present invention relates to a microsystem with multiple points of chemical or biological analysis.
  • Conventional microelectronics is increasingly called upon to be a link in much more complex systems in which several functions are integrated. These systems or micro-systems range from physical sensor applications to the latest developments in so-called "biological" chips.
  • a sensitive cell capable of measuring a physical phenomenon is associated with an integrated circuit capable of ensuring the processing of information and its exploitation. This is the case with pneumatic safety cushions for the automotive industry (known as the "air bag” in English terminology).
  • an integrated circuit undergoes a finishing allowing it to be used in a biological medium. This is the case, for example, with an integrated glucose meter or blood pressure probes.
  • each cuvette is filled with a different DNA probe and the analyte whose genomic sequence is to be known is brought into contact at the time of analysis with all of the cuvettes.
  • analytical chemistry also the demand is strong towards the miniaturization of the chemical reaction cuvettes. From both the point of view of making the bowls, depositing the liquids in these bowls and the system for reading and acquiring results, research and development efforts are significant.
  • a first technique consists in activating sites where the reagents will then be deposited and fixed by various chemical molecules. It is a technique mainly used on glass substrates.
  • the reagents are deposited by micro-pipetting or by a technique of the inkjet type.
  • On the chemical side to ensure the interface between the substrate and the reagent, mention may be made of silanes, lysines, thioles when the substrate is previously coated with gold. This chemistry is complex, especially when it comes to controlling its reproducibility on a substrate that may have a few thousand different sites. Mention may be made, as representative of this technique, of US Pat. No. 5,474,796 which relates to surface structuring: the reagents are fixed to a substrate having hydrophilic zones and hydrophobic zones. The matrixing obtained is therefore very regular.
  • the reagent is a DNA probe, in particular an oligonucleotide of around twenty bases
  • the probe base after base on each site. It is known to use successive masks to make this synthesis in situ: each site is covered with a photoprotected base. The photomasking then makes it possible to remove the protection from the sites and to chemically attach an additional photoprotected base. The operation is repeated until the desired probe is obtained at each site. It is currently possible to build several tens of thousands of different probes on a substrate. This technique is excellent but it does not make it possible to obtain probes with a large number of bases (the limit is approximately 20).
  • a third technique relates to electrodeposition on site electrically polarized of a conductive polymer carrying the selected reactive species.
  • the substrate is electrically connected to the outside and soaked in a tank containing the chemical species to be deposited.
  • the site chosen is polarized and the copolymerization is carried out (in less than a minute at a voltage below IV).
  • each site is successively polarized and the substrate is completely covered or soaked in the solution carrying the reagent at each pass.
  • the processing time of each site support becomes prohibitive: as many times the time of copolymerization plus the time of rinsing and introduction of the new electrolyte.
  • the present invention proposes the use of a structure which makes it possible to fix, in a single step of electrocopolymerization, reagents coupled to conductive polymer monomers on sites electrically connected to the outside.
  • the subject of the invention is therefore a method for producing a micro-system with multiple points of chemical or biological analysis, comprising the steps consisting in: a) coupling a reagent to a conductive polymer monomer, b) depositing a solution electrolytic carrier containing a mixture of said reagent coupled to said conductive polymer monomer and conductive polymer monomer in at least one micro-cuvette among micro-cuvettes formed on a structure, each micro-cuvette having a receiving electrode and a counter electrode , the electrolytic solution being deposited in sufficient quantity to close an electrochemical circuit between the receiving electrode and the counter electrode, c) applying an electric field between the receiving electrode and the counter electrode in order to copolymerize and fix, in the microcuvette where the electrolytic solution has been deposited, said conductive polymer provided with the reagent 'receiving electrode, d) rinse the microcuvettes of the structure to remove the remaining carrier solution.
  • Steps a), b) and c) can be repeated as many times as necessary to deposit different reagents in different microcuvettes.
  • the subject of the invention is also a micro-system with multiple chemical or biological analysis points constituted by a structure provided with micro-cuvettes, each micro-cuvette being intended to receive a reagent coupled to a conductive polymer, each micro-cuvette having a receiving electrode to which the reagent is fixed by means of the conductive polymer to which it is coupled, each micro-cuvette having a counter-electrode arranged so as to be able to apply, in a volume of the micro- cuvette, an electric field between its counter-electrode and its receiving electrode, the structure having means make it possible to connect all the receiving electrodes simultaneously to a first electrical potential and means making it possible to connect all the counter-electrodes to a second simultaneously electric potential to be able to establish said electric field.
  • the structure may include a passive substrate, one face of which is covered with a first conductive layer, itself covered with a first layer of insulating material, the first layer of insulating material comprising said micro-cuvettes revealing the first conductive layer which forms said receiving electrodes, the first layer of insulating material supporting a second conductive layer constituting a common counter electrode.
  • the structure may include an active substrate, one face of which has said receiving electrodes and is covered with a first layer of insulating material comprising said micro-cuvettes whose bottom corresponds to the receiving electrodes, the first layer of material insulator supporting a conductive layer constituting a common counter-electrode, multiplexing means being provided for simultaneously connecting all the reception electrodes.
  • a second layer of insulating material can cover the conductive layer constituting the counter electrode to bury it.
  • the second insulating layer can support a conductive layer serving as a pseudo-reference electrode.
  • FIGS. 1A to 1H represent different steps of a method for producing a micro-system with multiple points of chemical or biological analysis according to the present invention
  • FIG. 2 represents a variant of a micro-system with multiple points of chemical or biological analysis according to the present invention
  • FIGS. 3A to 3C illustrate steps of another method for producing a micro-system with multiple points of chemical or biological analysis according to the present invention
  • FIG. 4 shows yet another variant of a micro-system with multiple points of chemical or biological analysis according to the present invention.
  • the structure may include a passive substrate, that is to say that it does not include integrated electronics.
  • the substrate can be coated with a conductive plane (for example metallic) itself covered with a layer of a material ensuring the function of electrical insulation and in which the micro-cavities are formed. These lead locally to the driver plane. The exposed areas of the conductive plane then constitute the reception electrodes.
  • the substrate can also be active, in which case the electronics integrated into it can serve various functions: localized heating of sites, local pH measurement, reading of a fluorescence signal, etc. In most cases, it is not possible to short-circuit the sites for the subsequent functions which must remain addressable on each site independently of the others. The multiplexing necessary for these functions can then be used during the process of producing the micro-system. It is indeed possible to address all the sites collectively to carry out the operation of fixing the reagents. Each site may subsequently be addressed individually.
  • Figures 1A to 1H are cross-sectional and partial views. They illustrate a first embodiment of a micro-system according to the invention for which the counter-electrode is located on the surface and for which the substrate is passive.
  • FIG. 1A represents a substrate 1 constituted by a parallelepiped plate which can be made of a material such as glass, silicon, plastic.
  • a metallic layer 3 for example in chromium, gold or platinum, with a thickness of between 0.1 and 10 ⁇ , has been deposited.
  • a polymer film is deposited on the metal layer 3 photosensitive 5, for example a polyimide film with a thickness of between 1 and 50 ⁇ m.
  • Micro-cuvettes 7 are then formed by exposure and development of the polyimide film (see FIG. 1C). They are advantageously formed with sloping sides. The micro-cuvettes formed locally reveal the metal layer 3. A new metal layer 9 is then uniformly deposited on the polyimide film including the interior of the micro-cuvettes 7.
  • the metal layer 9 can be made of chromium, gold or platinum and be 0.1 to 10 ⁇ m thick.
  • a layer of masking resin 11 is deposited on the metal layer 9 and areas to be etched in this metal layer 9 are defined.
  • Each micro-bowl 7 has at its bottom an electrode 9a, all the electrodes 9a being electrically connected by means of the metal layer 3.
  • a common electrode 9b covers the upper face of the polymer film 5.
  • micro-capillary pen tray, inkjet type print head, etc.
  • FIG. 7 a solution carrying a reagent.
  • FIG. IF shows a distribution system, represented diagrammatically under the reference 13, supplying in each microcuvette 7 a drop 14, 15, 16 of an electrolytic solution carrying a mixture of particular reagent coupled to a monomer and a monomer simple.
  • FIG. 1G shows the drops 14, 15, 16 of electrolytic solutions placed in the micro-cuvettes. The micro-bowls prevent the mixing of the different solutions. The quantities of electrolytic solutions are such that they close the electrochemical circuit between the electrodes 9a and the counter-electrode 9b.
  • microcuvettes 7 are rinsed to obtain, in each microcuvette, a reagent 14a, 15a, 16a fixed to an electrode 9a by a conductive polymer carrying the reagent.
  • the electrodes for receiving the reagent cannot generally be permanently connected to a common conductive layer.
  • the substrate 21 is originally equipped with receiving electrodes 22, 23, 24 generally electrically isolated from each other but which can be, thanks to a multiplexing system, connected collectively to one of the terminals of a voltage generator.
  • the rest of the structure is similar to the structure described above: photosensitive polymer film 25 in which micro-cuvettes 27 are formed and supporting a counter-electrode 29.
  • FIGS. 3A to 3C illustrate the production of another variant for which the counter electrode is buried. Contact between electrolytic solution and the reception electrode is done as above either with reception electrodes permanently connected to a common conductive layer, or with reception electrodes electrically isolated from each other but which can be addressed simultaneously by multiplexing.
  • FIGS. 3A to 3C illustrate the case where the reception electrodes are permanently connected to a common conductive layer. The first steps of the method are similar to those illustrated in FIGS. 1A and 1B and, for this reason, are not shown.
  • FIG. 3A shows the substrate 31 covered with the metallic layer 33 and the photosensitive polymer film 35 which has been photolithographed and etched, thus revealing the metallic layer 33 at the bottom of holes 36 made in the film 35.
  • a metallic layer for example chromium, gold or platinum, with a thickness of between 0.1 and 10 ⁇ m, is then deposited on the upper face of the structure. This layer is photolithographed and etched to leave zones 32 on the film 35, these zones 32 constituting the counter-electrode (see FIG. 3B).
  • Another layer of polymer 38 is then deposited and etched to complete the micro-cuvettes. The engraving forms holes 39 centered on holes 36 and of larger diameter. It lets the counter-electrode 32 overflow in the micro-cuvettes 37 (see FIG. 3C).
  • the metallized base 34 of a micro-bowl constitutes a receiving electrode for the micro-system.
  • the structure obtained can then be treated as above to receive the reagents planned. This structure provides better contact between the electrolyte and the counter electrode.
  • a variant of the structure which has just been described consists in introducing a third electrode on the surface to serve as a reference. It can be an absolute reference (with a gel) or a pseudo-reference (for example Ti / Ti0 2 ).
  • the built-up cell then includes a receiving electrode, a counter electrode and a reference electrode.
  • This solution is represented in FIG. 4 which shows: a substrate 41 (passive in this example), a conducting plane 42 locally supplying the reception electrodes, the counter-electrode 43 and the reference electrode 44. It is obviously possible to invert the metallic surfaces and leave the counter electrode on the surface and the reference electrode at the intermediate level.
  • the invention provides the advantage of the simplicity of depositing electrolytic solutions by a fluidics technique. It allows a particularly robust and chemically neutral fixing method thanks to the copolymerization of the monomers. A large number of reagents can be easily introduced since the copolymerization and fixing operation is collective.
  • the monomers can be coupled with many types of chemical and biological bodies (glucose oxidase, antigens, DNA probes, etc.).
  • the solution offered by the invention is compatible with the in situ synthesis of nucleic acid probes by chemical means described at the beginning of the description.
  • the first base is fixed by electrocopolymerization and the subsequent construction is carried out chemically.
  • Polypyrrole is then a good candidate because of its great stability chemical.
  • This fixing method is attractive because it is very robust compared to fixing by silanization for example.
  • This technique also has the advantage of being compatible with the use of active substrates by implementing the integrated electronic function for the step of collective electrocopolymerization and fixing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

L'invention concerne un micro-système à multiples points d'analyse chimique ou biologique constitué par une structure pourvue de micro-cuvettes (7), chaque micro-cuvette étant destinée à recevoir un réactif (14a, 15a, 16a) couplé à un polymère conducteur, chaque micro-cuvette possédant une électrode de réception (9a) sur laquelle est fixé le réactif par l'intermédiaire du polymère conducteur auquel il est couplé, chaque micro-cuvette possédant une contre-électrode (9b) disposée de façon à pouvoir appliquer, dans un volume de la micro-cuvette, un champ électrique entre sa contre-électrode et son électrode de réception, la structure possédant des moyens permettant de relier simultanément toutes les électrodes de réception à un premier potentiel électrique et des moyens permettant de relier simultanément toutes les contre-électrodes à un deuxième potentiel électrique pour pouvoir établir ledit champ électrique.

Description

MICRO-SYSTEME A MULTIPLE POINTS D'ANALYSE CHIMIQUE OU
BIOLOGIQUE
Domaine technique
La présente invention concerne un microsystème à multiple points d'analyse chimique ou biologique. La micro-électronique classique est de plus en plus appelée à être un maillon de systèmes beaucoup plus complexes dans lesquels plusieurs fonctions sont intégrées. Ces systèmes ou micro-systèmes vont des applications capteurs physiques aux derniers développements de puces dites "biologiques".
Dans le premier cas, une cellule sensible capable de mesurer un phénomène physique est associée à un circuit intégré capable d'assurer le traitement de l'information et son exploitation. C'est le cas des coussins pneumatiques de sécurité de l'industrie automobile (connus sous le nom de "air-bag" dans la terminologie anglo-saxonne) .
Dans le deuxième cas, un circuit intégré subit une finition lui permettant d'être utilisé dans un milieu biologique. C'est le cas par exemple d'un mesureur de glucose intégré ou des sondes de pression sanguine.
Dans tous les cas, l'interface entre le milieu de la micro-électronique classique et celui des capteurs ou des biologistes est l'élément clef de ces micro-systèmes .
L'analyse chimique ou biologique est en train de subir la révolution de la miniaturisation liée à l'utilisation des microtechnologies. Lorsque des tests multiples peuvent être regroupés sur un support de quelques mm2, les coûts sont réduits et une analyse naguère exceptionnelle peut être utilisée de façon courante .
La demande vers des systèmes permettant l'analyse chimique ou biologique à très grand nombre de points est en émergence à l'heure actuelle avec l'apparition du screnning en pharmacologie et des tests
ADN en biologie.
Dans le premier cas, il faut déterminer sur un support comportant un grand nombre de cuvettes remplies du même réactif, l'effet de différentes molécules que l'on dépose sélectivement dans chaque cuvette de façon séquentielle. Dans le deuxième cas chaque cuvette est remplie d'une sonde ADN différente et l'analyte dont on veut connaître la séquence génomique est mis en contact au moment de l'analyse avec l'ensemble des cuvettes. En chimie analytique également la demande est forte vers la miniaturisation des cuvettes de réactions chimiques. Tant d'un point de vue réalisation des cuvettes, dépôt des liquides dans ces cuvettes que système de lecture et d'acquisition des résultats, les efforts en Recherche et Développement sont importants.
Etat de la technique antérieure
Dans le domaine de l'analyse biologique ou plus généralement des tests en pharmacologie de nouvelles molécules, la réduction de la taille de l'outil de test est extrêmement séduisante d'un point de vue économique. Plus précisément, on peut assimiler un micro-système d'analyse à une structure associant un support sur lequel des réactifs différents sont tout d'abord fixés puis mis en présence de la solution à analyser, et une méthode permettant de mesurer la réactivité obtenue. Eventuellement, un traitement dans le micro-système lui-même de l'information obtenue peut être prévu.
Il existe différentes techniques pour fixer des réactifs différents sur un substrat.
Une première technique consiste à activer des sites où seront ensuite déposés et fixés les réactifs par des molécules chimiques diverses. C'est une technique principalement employée sur des substrats en verre. Les réactifs sont déposés par micro-pipettage ou par une technique du type jet d'encre. Côté chimie, pour assurer l'interface entre le substrat et le réactif, on peut citer les silanes, les lysines, les thioles lorsque le substrat est préalablement recouvert d'or. Cette chimie est complexe, surtout lorsqu'il s'agit de maîtriser sa reproductibilité sur un substrat pouvant comporter quelques milliers de sites différents. On peut citer, comme représentatif de cette technique, le brevet US 5 474 796 qui se rapporte à la structuration de surface : les réactifs sont fixés sur un substrat présentant des zones hydrophiles et des zones hydrophobes. Le matriçage obtenu est de ce fait très régulier.
Selon une deuxième technique appliquée au domaine des puces à ADN (le réactif est une sonde ADN, notamment un oligonucléotide d'une vingtaine de bases), il a été proposé de construire la sonde base après base sur chaque site. Il est connu d'utiliser des masquages successifs pour faire cette synthèse in situ : chaque site est recouvert d'une base photoprotégée. Le photomasquage permet ensuite d'ôter la protection des sites et de venir accrocher chimiquement une base supplémentaire photoprotégée. L'opération est répétée jusqu'à l'obtention, sur chaque site, de la sonde voulue. Il est actuellement possible de construire plusieurs dizaines de milliers de sondes différentes sur un substrat. Cette technique est excellente mais elle ne permet pas d'obtenir des sondes à grand nombre de bases (la limite est d'environ 20). Il est possible également de fixer au départ une base protégée non plus par un radical photosensible mais par un radical chimiquement sensible. Il faut alors, par pipettage ou par une technique du type jet d'encre, venir localement sur les sites choisis pour ôter la protection de la base existante et y accrocher une base supplémentaire.
Une troisième technique concerne 1 ' électrodéposition sur site polarisé électriquement d'un polymère conducteur porteur de l'espèce réactive choisie. On peut se reporter à ce sujet à l'article "Electropolymerization of pyrrole and immobilization of glucose oxidase in a flo system : influence of the operating conditions on analytical performance" de Juan-C. VIDAL et al., paru dans Biosensors & Bioelectronics, vol. 13, No 3-4, pages 371-382, 1998. Le substrat est relié électriquement vers l'extérieur et trempé dans une cuve contenant l'espèce chimique à déposer. Le site choisi est polarisé et la copolymérisation s'effectue (en moins d'une minute sous une tension inférieure à I V). On passe à une autre solution porteuse d'un autre réactif, un autre site est polarisé à la surface du substrat et ainsi de suite. Par ce moyen, des réactifs différents ont été fixés sur des zones différentes du substrat, permettant ainsi une analyse multipoint. Une amélioration intéressante de cette dernière technique consiste à intégrer l'électronique d'adressage des sites dans le substrat lui-même. Les polymères conducteurs utilisés pour ce procédé sont les polyanilines, les polypyrroles . On peut se reporter à ce sujet aux documents WO 94/22 889, FR-A-2 741 475 et FR-A-2 741 476. Cette façon de faire est intéressante car la fixation de la sonde sur son site est forte, reproductible et bien maîtrisée. C'est une technique séquentielle : chaque site est polarisé successivement et le substrat est recouvert totalement ou trempé dans la solution porteuse du réactif à chaque passe. Cependant, lorsque le nombre de sites devient important, le temps de traitement de chaque support de sites devient prohibitif : autant de fois le temps de copolymérisation plus le temps de rinçage et d'introduction du nouvel électrolyte.
L'utilisation de ces dispositifs à sondes biologiques peut faire appel à une palette très étendue de méthodes : mesure électrique par impédance-métrie, microbalance, mesure optique par changement d'indice de réfraction, marquage radioactif, fluorescence. Cette dernière méthode est de plus en plus utilisée car elle est relativement facile à mettre en oeuvre et elle présente une bonne sensibilité. Schematiquement, elle consiste à coupler l'analyte à tester avec un fluophore. L'analyte est mis en contact avec le réactif fixé localement sur le micro-système. S'il y a réaction/appariement de quelque nature que ce soit, il restera sur la zone de test l'analyte portant le fluophore. Après lavage, une lecture de la fluorescence permettra de déterminer s'il y a eu appariement sur le site porteur.
Exposé de l'invention
Pour remédier aux problèmes de l'art antérieur, la présente invention propose l'utilisation d'une structure qui permet de fixer, en une seule étape d' électrocopolymérisation, des réactifs couplés à des monomères de polymères conducteurs sur des sites électriquement connectés vers l'extérieur.
L'invention a donc pour objet un procédé de réalisation d'un micro-système à multiples points d'analyse chimique ou biologique, comprenant les étapes consistant à : a) coupler un réactif à un monomère de polymère conducteur, b) déposer une solution porteuse électrolytique contenant un mélange dudit réactif couplé audit monomère de polymère conducteur et de monomère de polymère conducteur dans au moins une micro-cuvette parmi des micro-cuvettes formées sur une structure, chaque micro-cuvette possédant une électrode de réception et une contre-électrode, la solution électrolytique étant déposée en quantité suffisante pour refermer un circuit électrochimique entre l'électrode de réception et la contre-électrode, c) appliquer un champ électrique entre l'électrode de réception et la contre-électrode afin de copolymériser et de fixer, dans la micro-cuvette où la solution électrolytique a été déposée, ledit polymère conducteur muni du réactif à l'électrode de réception, d) rincer les micro-cuvettes de la structure pour éliminer le restant de solution porteuse.
Les étapes a) , b) et c) peuvent être répétées autant de fois qu'il est nécessaire pour déposer des réactifs différents dans des micro-cuvettes différentes.
L'invention a aussi pour objet un micro-système à multiples points d'analyse chimique ou biologique constitué par une structure pourvue de micro-cuvettes, chaque micro-cuvette étant destinée à recevoir un réactif couplé à un polymère conducteur, chaque micro-cuvette possédant une électrode de réception sur laquelle est fixé le réactif par l'intermédiaire du polymère conducteur auquel il est couplé, chaque micro-cuvette possédant une contre- électrode disposée de façon à pouvoir appliquer, dans un volume de la micro-cuvette, un champ électrique entre sa contre-électrode et son électrode de réception, la structure possédant des moyens permettent de relier simultanément toutes les électrodes de réception à un premier potentiel électrique et des moyens permettant de relier simultanément toutes les contre-électrodes à un deuxième potentiel électrique pour pouvoir établir ledit champ électrique.
Selon une première variante, la structure peut comporter un substrat passif dont une face est recouverte d'une première couche conductrice elle-même recouverte d'une première couche de matériau isolant, la première couche de matériau isolant comportant lesdites micro-cuvettes révélant la première couche conductrice qui forme lesdites électrodes de réception, la première couche de matériau isolant supportant une deuxième couche conductrice constituant une contre-électrode commune.
Selon une deuxième variante, la structure peut comporter un substrat actif dont une face présente lesdites électrodes de réception et est recouverte d'une première couche de matériau isolant comportant lesdites micro-cuvettes dont le fond correspond aux électrodes de réception, la première couche de matériau isolant supportant une couche conductrice constituant une contre-électrode commune, des moyens de multiplexage étant prévus pour relier simultanément toutes les électrodes de réception.
Une deuxième couche de matériau isolant peut recouvrir la couche conductrice constituant la contre-électrode pour enterrer celle-ci. La deuxième couche isolante peut supporter une couche conductrice servant de pseudo-électrode de référence.
Brève description des dessins
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des figures annexées parmi lesquelles :
- les figures 1A à 1H représentent différentes étapes d'un procédé de réalisation d'un micro-système à multiple points d'analyse chimique ou biologique selon la présente invention,
- la figure 2 représente une variante d'un micro-système à multiple points d'analyse chimique ou biologique selon la présente invention,
- les figures 3A à 3C illustrent des étapes d'un autre procédé de réalisation d'un micro-système à multiple points d'analyse chimique ou biologique selon la présente invention,
- la figure 4 représente encore une autre variante d'un micro-système à multiple points d'analyse chimique ou biologique selon la présente invention.
Description détaillée de modes de réalisation de 1 'invention.
Pour la réalisation du micro-système selon l'invention deux cas sont à considérer. La structure peut comporter un substrat passif, c'est-à-dire qu'il ne comporte pas d'électronique intégrée. Dans ce cas, le substrat peut être revêtu d'un plan conducteur (par exemple métallique) lui-même recouvert d'une couche d'un matériau assurant la fonction d'isolation électrique et dans lequel sont formées les micro-cavités. Celles-ci débouchent localement sur le plan conducteur. Les zones découvertes du plan conducteur constituent alors les électrodes de réception.
Le substrat peut aussi être actif auquel cas l'électronique qui lui est intégrée peut servir à différentes fonctions : chauffage localisé des sites, mesure locale de pH, lecture d'un signal de fluorescence, etc. Dans la plupart des cas, il n'est pas possible de laisser en court-circuit les sites pour les fonctions ultérieures qui doivent rester adressables sur chaque site indépendamment des autres. Le multiplexage nécessaire à ces fonctions peut alors être utilisé au cours du procédé de réalisation du micro-système. Il est en effet possible d'adresser collectivement tous les sites pour effectuer l'opération de fixation des réactifs. Chaque site pourra ultérieurement être adressé de façon individuelle.
Les figures 1A à 1H sont des vues en coupe transversale et partielles. Elles illustrent un premier mode de réalisation d'un micro-système selon l'invention pour lequel la contre-électrode est située en surface et pour lequel le substrat est passif.
La figure 1A représente un substrat 1 constitué par une plaquette parallélépipédique qui peut être en un matériau tel que le verre, le silicium, le plastique. Sur une face principale de cette plaquette on a déposé une couche métallique 3, par exemple en chrome, en or ou en platine, d'une épaisseur comprise entre 0, 1 et 10 μ . Comme le montre la figure 1B, on dépose, sur la couche métallique 3, un film de polymère photosensible 5, par exemple un film de polyimide d'une épaisseur comprise entre 1 et 50 μm.
Des micro-cuvettes 7 sont ensuite formées par insolation et développement du film de polyimide (voir la figure 1C) . Elles sont avantageusement formées avec des flancs en pente. Les micro-cuvettes formées révèlent localement la couche métallique 3. Une nouvelle couche métallique 9 est alors uniformément déposée sur le film de polyimide y compris l'intérieur des micro-cuvettes 7. La couche métallique 9 peut être en chrome, en or ou en platine et avoir 0,1 à 10 μm d' épaisseur.
Comme le montre la figure 1D, une couche de résine de masquage 11 est déposée sur la couche métallique 9 et des zones à graver dans cette couche métallique 9 sont définies.
La couche métallique 9 est alors gravée aux endroits accessibles et la résine 11 est retirée. On obtient la structure représentée à la figure 1E. Chaque micro-cuvette 7 présente en son fond une électrode 9a, toutes les électrodes 9a étant connectées électriquement grâce à la couche métallique 3. Une électrode commune 9b recouvre la face supérieure du film de polymère 5. Par une technique de microfluidique
(micro-capillaire, plumier, tête d'impression du type à jet d'encre, etc.), on dépose dans chaque micro-cuvette
7 une solution porteuse d'un réactif. La figure IF montre un système de distribution, représenté schematiquement sous la référence 13, fournissant dans chaque micro-cuvette 7 une goutte 14, 15, 16 d'une solution électrolytique porteuse d'un mélange de réactif particulier couplé à un monomère et un monomère simple . La figure 1G montre les gouttes 14, 15, 16 de solutions électrolytiques disposées dans les micro-cuvettes. Les micro-cuvettes empêchent le mélange des différentes solutions. Les quantités de solutions électrolytiques sont telles qu'elles referment le circuit électrochimique entre les électrodes 9a et la contre-électrode 9b.
Par application d'un champ électrique approprié fourni par un générateur de tension 17 branché entre la couche métallique 3 et la contre-électrode 9b, on obtient la copolymérisation et la fixation des polymères conducteurs sur les électrodes 9a.
On procède ensuite à un rinçage des micro-cuvettes 7 pour obtenir, dans chaque micro-cuvette, un réactif 14a, 15a, 16a fixé à une électrode 9a par un polymère conducteur portant le réactif.
Dans le cas où le substrat est actif, les électrodes de réception du réactif ne peuvent généralement être reliées en permanence à une couche conductrice commune. Dans ce cas, comme cela est représenté à la figure 2, le substrat 21 est équipé à l'origine avec des électrodes de réception 22, 23, 24 isolées électriquement les unes des autres d'une manière générale mais pouvant être, grâce à un système de multiplexage, reliées collectivement à l'une des bornes d'un générateur de tension. Le reste de la structure est similaire à la structure décrite précédemment : film de polymère photosensible 25 dans lequel sont formées des micro-cuvettes 27 et supportant une contre-électrode 29.
Les figures 3A à 3C illustrent la réalisation d'une autre variante pour laquelle la contre-électrode est enterrée. Le contact entre la solution électrolytique et l'électrode de réception se fait comme précédemment soit avec des électrodes de réception connectées en permanence à une couche conductrice commune, soit avec des électrodes de réception isolées électriquement les unes des autres mais pouvant être adressées simultanément par multiplexage. A titre d'exemple, les figures 3A à 3C illustrent le cas où les électrodes de réception sont connectées en permanence à une couche conductrice commune. Les premières étapes du procédé sont similaires à celles illustrées par les figures 1A et 1B et, pour cette raison, ne sont pas représentées.
La figure 3A montre le substrat 31 recouvert de la couche métallique 33 et du film de polymère photosensible 35 qui a été photolithographié et gravé, révélant ainsi la couche métallique 33 au fond de trous 36 réalisés dans le film 35.
On dépose ensuite sur la face supérieure de la structure une couche métallique, par exemple en chrome, en or ou en platine, d'une épaisseur comprise entre 0,1 et 10 μm. cette couche est photolithographiée et gravée pour laisser des zones 32 sur le film 35, ces zones 32 constituant la contre-électrode (voir la figure 3B) . Une autre couche de polymère 38 est alors déposée et gravée pour achever les micro-cuvettes. La gravure forme des trous 39 centrés sur les trous 36 et de diamètre plus grand. Elle laisse déborder dans les micro-cuvettes 37 la contre-électrode 32 (voir la figure 3C) . Le fond métallisé 34 d'une micro-cuvette constitue une électrode de réception pour le micro-système .
La structure obtenue peut alors être traitée comme précédemment pour recevoir les réactifs prévus. Cette structure offre un meilleur contact entre 1 'électrolyte et la contre-électrode.
Une variante à la structure qui vient d'être décrite consiste à introduire une troisième électrode en surface pour servir de référence. Il peut s'agir d'une référence absolue (avec un gel) ou d'une pseudo-référence (par exemple Ti/Ti02) . La cellule constituée comporte alors une électrode de réception, une contre-électrode et une électrode de référence. Cette solution est représentée à la figure 4 qui montre : un substrat 41 (passif dans cet exemple), un plan conducteur 42 fournissant localement les électrodes de réception, la contre-électrode 43 et l'électrode de référence 44. On peut évidemment intervertir les plans métalliques et laisser en surface la contre-électrode et en niveau intermédiaire l'électrode de référence.
L'invention procure l'avantage de la simplicité du dépôt des solutions électrolytiques par une technique de fluidique. Elle permet un mode de fixation particulièrement robuste et neutre chimiquement grâce à la copolymérisation des monomères. Un grand nombre de réactifs peuvent être facilement introduits puisque l'opération de copolymérisation et de fixation est collective. Les monomères peuvent être couplés avec de nombreux types de corps chimiques et biologiques (glucose oxydase, antigènes, sondes ADN, etc. ) .
La solution offerte par l'invention est compatible avec la synthèse in situ de sondes nucléiques par voie chimique décrite en début de description. La première base est fixée par électrocopolymérisation et la construction ultérieure est menée par voie chimique. Le polypyrrole est alors un bon candidat à cause de sa grande stabilité chimique. Ce mode de fixation est attractif car très robuste par comparaison à des fixations par silanisation par exemple.
Cette technique présente en outre l'avantage d'être compatible avec l'utilisation de substrats actifs en mettant en - œuvre la fonction électronique intégrée pour l'étape d' électrocopolymérisation et de fixation collectives.

Claims

REVENDICATIONS
1. Procédé de réalisation d'un micro-système à multiples points d'analyse chimique ou biologique, comprenant les étapes consistant à : a) coupler un réactif à un monomère de polymère conducteur, b) déposer une solution porteuse électrolytique (14,15,16) contenant un mélange dudit réactif couplé audit monomère de polymère conducteur et de monomère de polymère conducteur dans au moins une micro-cuvette parmi des micro-cuvettes formées sur une structure, chaque micro-cuvette possédant une électrode de réception et une contre-électrode, la solution électrolytique étant déposée en quantité suffisante pour refermer un circuit électrochimique entre l'électrode de réception et la contre-électrode, c) appliquer un champ électrique entre l'électrode de réception et la contre-électrode afin de copolymériser et de fixer, dans la micro-cuvette où la solution électrolytique a été déposée, ledit polymère conducteur muni du réactif à l'électrode de réception, d) rincer les micro-cuvettes de la structure pour éliminer le restant de solution porteuse.
2. Procédé selon la revendication 1, caractérisé en ce que les étapes a) , b) et c) sont répétées autant de fois qu'il est nécessaire pour déposer des réactifs différents dans des micro-cuvettes différentes.
3. Micro-système à multiples points d'analyse chimique ou biologique constitué par une structure pourvue de micro-cuvettes (7 ; 37), chaque micro-cuvette étant destinée à recevoir un réactif (14a, 15a, 16a) couplé à un polymère conducteur, chaque micro-cuvette possédant une électrode de réception (9a ; 22, 23, 24 ; 34) sur laquelle est fixé le réactif par l'intermédiaire du polymère conducteur auquel il est couplé, chaque micro-cuvette possédant une contre- électrode disposée de façon à pouvoir appliquer, dans un volume de la micro-cuvette, un champ électrique entre sa contre-électrode et son électrode de réception, la structure possédant des moyens permettent de relier simultanément toutes les électrodes de réception à un premier potentiel électrique et des moyens permettant de relier simultanément toutes les contre-électrodes à un deuxième potentiel électrique pour pouvoir établir ledit champ électrique.
4. Micro-système selon la revendication 3, caractérisé en ce que la structure comporte un substrat passif (1) dont une face est recouverte d'une première couche conductrice (3) elle-même recouverte d'une première couche de matériau isolant (5), la première couche de matériau isolant comportant lesdites micro-cuvettes (7) révélant la première couche conductrice qui forme lesdites électrodes de réception, la première couche de matériau isolant supportant une deuxième couche conductrice (9) constituant une contre-électrode commune.
5. Micro-système selon la revendication 3, caractérisé en ce que la structure comporte un substrat actif (21) dont une face présente lesdites électrodes de réception (22, 23, 24) et est recouverte d'une première couche de matériau isolant (25) comportant lesdites micro-cuvettes (27) dont le fond correspond aux électrodes de réception, la première couche de matériau isolant supportant une couche conductrice constituant une contre-électrode (29) commune, des moyens de multiplexage étant prévus pour relier simultanément toutes les électrodes de réception.
6. Micro-système selon l'une des revendications 4 ou 5, caractérisé en ce qu'une deuxième couche de matériau isolant (38) recouvre la couche conductrice constituant la contre-électrode (32) pour enterrer celle-ci.
7. Micro-système selon la revendication 6, caractérisé en ce que la deuxième couche de matériau isolant (38) supporte une couche conductrice servant de pseudo-électrode de référence (44) .
EP99936658A 1998-07-31 1999-07-30 Micro-systeme a multiples points d'analyse chimique ou biologique Withdrawn EP1101102A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9809868 1998-07-31
FR9809868A FR2781886B1 (fr) 1998-07-31 1998-07-31 Micro-systeme a multiple points d'analyse chimique ou biologique
PCT/FR1999/001900 WO2000007728A2 (fr) 1998-07-31 1999-07-30 Micro-systeme a multiples points d'analyse chimique ou biologique

Publications (1)

Publication Number Publication Date
EP1101102A2 true EP1101102A2 (fr) 2001-05-23

Family

ID=9529280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99936658A Withdrawn EP1101102A2 (fr) 1998-07-31 1999-07-30 Micro-systeme a multiples points d'analyse chimique ou biologique

Country Status (5)

Country Link
US (1) US6630359B1 (fr)
EP (1) EP1101102A2 (fr)
JP (1) JP4562914B2 (fr)
FR (1) FR2781886B1 (fr)
WO (1) WO2000007728A2 (fr)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2789401B1 (fr) * 1999-02-08 2003-04-04 Cis Bio Int Procede de fabrication de matrices de ligands adresses sur un support
EP1218098A1 (fr) * 1999-09-09 2002-07-03 Ben-Gurion University Of The Negev Matrices de sondes et preparation de celles-ci
US6645359B1 (en) * 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
DE60034095T2 (de) * 1999-10-22 2007-12-13 Ngk Insulators, Ltd., Nagoya DNA-Chip und Verfahren zur Herstellung desselben
CA2411891A1 (fr) * 2000-06-08 2001-12-13 1428388 Ontario Limited Plate-forme d'electrolyse adressable spatialement et procedes d'utilisation
AU2001282785A1 (en) 2000-08-23 2002-03-04 Imego Ab A sample collecting arrangement and a method
US7998746B2 (en) 2000-08-24 2011-08-16 Robert Otillar Systems and methods for localizing and analyzing samples on a bio-sensor chip
US20020048821A1 (en) 2000-08-24 2002-04-25 David Storek Sample preparing arrangement and a method relating to such an arrangement
WO2002066969A1 (fr) * 2001-02-19 2002-08-29 Kyowa Medex Co., Ltd. Detecteur de composant charge, son procede d'utilisation et un panneau de detection
FR2824143B1 (fr) * 2001-04-27 2003-06-27 Commissariat Energie Atomique Utilisations d'un dispositif miniature de separation et d'isolement d'objets biologiques et procedes mis en oeuvre
FR2823999B1 (fr) * 2001-04-27 2003-06-27 Commissariat Energie Atomique Dispositif miniature de separation et d'isolement d'objets biologiques et utilisations
DK2420824T3 (en) * 2001-06-29 2019-03-25 Meso Scale Technologies Llc Multi-well plate with an array of wells and kit for use in performing an ECL assay
US7074519B2 (en) * 2001-10-26 2006-07-11 The Regents Of The University Of California Molehole embedded 3-D crossbar architecture used in electrochemical molecular memory device
FR2834299B1 (fr) * 2001-12-27 2004-05-21 Commissariat Energie Atomique Procede de fixation par electrodeposition de reactifs sur une face plane d'un substrat
DE10164358C2 (de) * 2001-12-28 2003-11-27 Advalytix Ag Charakterisierungsverfahren für funktionalisierte Oberflächen
ES2191553B2 (es) * 2002-01-22 2005-02-01 Universitat Rovira I Virgili Metodo para la fabricacion de chips para la deteccion de analitos.
FR2836071B1 (fr) * 2002-02-21 2005-02-04 Commissariat Energie Atomique Composant pour microsysteme d'analyse biologique ou biochimique
US20050100938A1 (en) * 2002-03-14 2005-05-12 Infineon Technologies Ag Vertical impedance sensor arrangement and method for producing a vertical impedance sensor arrangement
GB2386949A (en) * 2002-03-26 2003-10-01 Sensor Tech Ltd A multiwell plate for electrochemical detection
US8263375B2 (en) * 2002-12-20 2012-09-11 Acea Biosciences Dynamic monitoring of activation of G-protein coupled receptor (GPCR) and receptor tyrosine kinase (RTK) in living cells using real-time microelectronic cell sensing technology
US7560269B2 (en) 2002-12-20 2009-07-14 Acea Biosciences, Inc. Real time electronic cell sensing system and applications for cytotoxicity profiling and compound assays
US7470533B2 (en) * 2002-12-20 2008-12-30 Acea Biosciences Impedance based devices and methods for use in assays
US7732127B2 (en) 2002-12-20 2010-06-08 Acea Biosciences, Inc. Dynamic monitoring of cell adhesion and spreading using the RT-CES system
US7468255B2 (en) * 2002-12-20 2008-12-23 Acea Biosciences Method for assaying for natural killer, cytotoxic T-lymphocyte and neutrophil-mediated killing of target cells using real-time microelectronic cell sensing technology
JP2005537498A (ja) * 2002-07-20 2005-12-08 アセア バイオサイエンシーズ,インク. インピーダンスによる測定装置および方法
US8206903B2 (en) 2002-12-20 2012-06-26 Acea Biosciences Device and method for electroporation-based delivery of molecules into cells and dynamic monitoring of cell responses
US20040099531A1 (en) * 2002-08-15 2004-05-27 Rengaswamy Srinivasan Methods and apparatus for electrochemically testing samples for constituents
FR2843829A1 (fr) * 2002-08-26 2004-02-27 Commissariat Energie Atomique Support de garniture par voie electrochimique, systeme d'adressage d'un tel support, et procede pour un depot selectif
US10215748B2 (en) 2002-12-20 2019-02-26 Acea Biosciences, Inc. Using impedance-based cell response profiling to identify putative inhibitors for oncogene addicted targets or pathways
US10551371B2 (en) 2003-11-10 2020-02-04 Acea Biosciences, Inc. System and method for monitoring cardiomyocyte beating, viability and morphology and for screening for pharmacological agents which may induce cardiotoxicity or modulate cardiomyocyte function
US10539523B2 (en) 2002-12-20 2020-01-21 Acea Biosciences, Inc. System and method for monitoring cardiomyocyte beating, viability, morphology, and electrophysiological properties
US11346797B2 (en) 2002-12-20 2022-05-31 Agilent Technologies, Inc. System and method for monitoring cardiomyocyte beating, viability, morphology and electrophysiological properties
US9612234B2 (en) 2008-05-05 2017-04-04 Acea Biosciences, Inc. Data analysis of impedance-based cardiomyocyte-beating signals as detected on real-time cell analysis (RTCA) cardio instruments
FR2855269B1 (fr) * 2003-05-21 2007-06-08 Commissariat Energie Atomique Dispositif et procedes d'accrochage/decrochage d'une cible ou d'un objet present dans un echantillon
US20080070803A1 (en) * 2003-10-15 2008-03-20 Egeland Ryan D Electrochemical Treatment Of Substrates
EP1692258A4 (fr) 2003-11-12 2007-03-21 Xiao Xu Systemes de detection de cellules electroniques en temps reel pour des epreuves a base de cellules
DE102004024364A1 (de) * 2004-05-17 2005-12-15 Apibio Sas Verfahren zur Herstellung von Polymeren
US8053774B2 (en) 2005-06-06 2011-11-08 Intel Corporation Method and apparatus to fabricate polymer arrays on patterned wafers using electrochemical synthesis
US8940143B2 (en) 2007-06-29 2015-01-27 Intel Corporation Gel-based bio chip for electrochemical synthesis and electrical detection of polymers
MX338460B (es) 2005-12-21 2016-04-15 Meso Scale Technologies Llc Aparatos, metodos y reactivos de ensayo.
EP2005148B1 (fr) * 2006-03-16 2018-03-07 Universal Nanosensor Technologies Inc. Procédé et système de détection diélectrique
US20120284921A9 (en) * 2006-03-17 2012-11-15 Monica Blake Ross Sheet set for a sofa
FR2901884B1 (fr) 2006-05-31 2008-09-05 Commissariat Energie Atomique Procede, dispositif et systeme de microanalyse d'ions
US8041515B2 (en) * 2006-09-20 2011-10-18 Acea Biosciences, Inc. Use of impedance-based cytological profiling to classify cellular response profiles upon exposure to biologically active agents
FR2916367B1 (fr) * 2007-05-25 2009-07-31 Commissariat Energie Atomique Procede de fixation sur un microsysteme de composes a liaisons peptidiques, tels que des proteines, et microsysteme incorporant ces composes.
EP2291645B1 (fr) 2008-05-05 2015-09-09 Acea Biosciences, Inc. Surveillance sans marqueur d'un couplage excitation-contraction et cellules pouvant être excitées utilisant des systèmes fondés sur l'impédance avec une résolution dans le temps de l'ordre de la milliseconde
JP4914403B2 (ja) * 2008-05-29 2012-04-11 日本電信電話株式会社 細胞外マイクロ電極及びその製造方法
WO2015068813A1 (fr) * 2013-11-07 2015-05-14 コニカミノルタ株式会社 Puce et procédé de mesure de fluorescence améliorée par plasmons de surface
US12066428B2 (en) 2015-11-20 2024-08-20 Agilent Technologies, Inc. Cell-substrate impedance monitoring of cancer cells
WO2018161063A1 (fr) 2017-03-03 2018-09-07 Acea Biosciences, Inc. Procédés et systèmes pour la maturation fonctionnelle de cardiomyocytes dérivés de cspi et de cellule se
US10498001B2 (en) 2017-08-21 2019-12-03 Texas Instruments Incorporated Launch structures for a hermetically sealed cavity
US10775422B2 (en) 2017-09-05 2020-09-15 Texas Instruments Incorporated Molecular spectroscopy cell with resonant cavity
US10589986B2 (en) 2017-09-06 2020-03-17 Texas Instruments Incorporated Packaging a sealed cavity in an electronic device
US10551265B2 (en) 2017-09-07 2020-02-04 Texas Instruments Incorporated Pressure sensing using quantum molecular rotational state transitions
US10444102B2 (en) 2017-09-07 2019-10-15 Texas Instruments Incorporated Pressure measurement based on electromagnetic signal output of a cavity
US10549986B2 (en) 2017-09-07 2020-02-04 Texas Instruments Incorporated Hermetically sealed molecular spectroscopy cell
US10424523B2 (en) 2017-09-07 2019-09-24 Texas Instruments Incorporated Hermetically sealed molecular spectroscopy cell with buried ground plane
US10131115B1 (en) 2017-09-07 2018-11-20 Texas Instruments Incorporated Hermetically sealed molecular spectroscopy cell with dual wafer bonding
US10544039B2 (en) * 2017-09-08 2020-01-28 Texas Instruments Incorporated Methods for depositing a measured amount of a species in a sealed cavity
CN110743643B (zh) * 2019-11-27 2021-11-30 南京轩世琪源软件科技有限公司 一种培养基制备机的试管架
USD941488S1 (en) 2020-02-07 2022-01-18 Agilent Technologies, Inc. Instrument for analyzing biological cells
US20210301245A1 (en) 2020-03-29 2021-09-30 Agilent Technologies, Inc. Systems and methods for electronically and optically monitoring biological samples

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886625A (en) * 1987-10-29 1989-12-12 Miles Inc. Functionalized conducting polymers and their use in diagnostic devices
US5312762A (en) * 1989-03-13 1994-05-17 Guiseppi Elie Anthony Method of measuring an analyte by measuring electrical resistance of a polymer film reacting with the analyte
US5156810A (en) * 1989-06-15 1992-10-20 Biocircuits Corporation Biosensors employing electrical, optical and mechanical signals
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
GB9325946D0 (en) * 1993-12-18 1994-02-23 Japat Ltd Protein absorbed shapable electroconductive polymer film
BR9607193B1 (pt) * 1995-03-10 2009-01-13 teste de eletroquimioluscÊncia multi-especÍfico de méltiplos conjuntos.
FR2741476B1 (fr) * 1995-11-17 1998-01-02 Commissariat Energie Atomique Procede de realisation collective de puces avec des electrodes selectivement recouvertes par un depot
US6103552A (en) * 1998-08-10 2000-08-15 Lin; Mou-Shiung Wafer scale packaging scheme

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0007728A3 *

Also Published As

Publication number Publication date
WO2000007728A2 (fr) 2000-02-17
JP2002522749A (ja) 2002-07-23
US6630359B1 (en) 2003-10-07
FR2781886A1 (fr) 2000-02-04
JP4562914B2 (ja) 2010-10-13
FR2781886B1 (fr) 2001-02-16
WO2000007728A3 (fr) 2000-05-11

Similar Documents

Publication Publication Date Title
EP1101102A2 (fr) Micro-systeme a multiples points d'analyse chimique ou biologique
US6740214B1 (en) Microelectrode biosensor and method therefor
US20060105449A1 (en) Biochip having an electode array on a substrate
Suzuki et al. An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode
WO1998029739A1 (fr) Microsystemes pour analyses biologiques, leur utilisation pour la detection d'analytes et leur procede de realisation
EP0988531A1 (fr) Procede d'identification et/ou de dosage de substances biologiques, presentes dans un liquide conducteur, dispositif et capteur d'affinite utiles pour la mise en oeuvre de ce procede
EP1141391B1 (fr) Procede de fabrication d'une biopuce et biopuce
FR2722294A1 (fr) Procede d'analyse qualitative et/ou quantitative de substances biologiques presentes dans un milieu liquide conducteur et capteurs biochimiques d'affinite utilises pour la mise en oeuvre de ce procede
US8999127B2 (en) Biological sensor measuring electrochemical and/or electrical and diamond electrode and electronic integrated circuit
US6458600B1 (en) Method for producing laterally organized structures on supporting surfaces
EP1121588A1 (fr) Micro-systeme a multiple points d'analyse chimique ou biologique
WO1998029740A1 (fr) Microsysteme pour analyses biologiques et son procede de fabrication
Yu et al. An independently addressable microbiosensor array: What are the limits of sensing element density?
Yao et al. Two approaches for addressing electrochemical electrode arrays with reduced external connections
CN102109482B (zh) 光寻址电聚合装置及分子印迹电化学修饰方法和应用
Lal Integrated biosensors: promises and problems
JP3291838B2 (ja) バイオセンサ及びその製造方法
WO2003056072A2 (fr) Procede de fixation par electrodeposition de reactifs sur une face plane d'un substrat
WO2005036156A1 (fr) Detection d'interaction moleculaire au moyen d'une structure de diode semiconductrice isolante metallique
EP0882980A1 (fr) Traitement de surface d'un substrat limitant sa fluorescence naturelle
EP1869439A1 (fr) Procede d'analyse electrochimique par voltametrie et dispositif pour sa mise en oeuvre
Pruna Morales Transparent nanostructured metal oxides for chemical biosensors: towards point-of-care environments
Rao Preparation and characterization of macroporous electrodes for electrochemical bioassays
WO2009004142A2 (fr) Procede de fixation sur un microsysteme de composes a liaisons peptidiques, tels que des proteines, et microsysteme incorporant ces composes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001228

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 20071106

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120120