EP1095315A1 - Method for decontaminating microlithography projection lighting devices - Google Patents

Method for decontaminating microlithography projection lighting devices

Info

Publication number
EP1095315A1
EP1095315A1 EP99929261A EP99929261A EP1095315A1 EP 1095315 A1 EP1095315 A1 EP 1095315A1 EP 99929261 A EP99929261 A EP 99929261A EP 99929261 A EP99929261 A EP 99929261A EP 1095315 A1 EP1095315 A1 EP 1095315A1
Authority
EP
European Patent Office
Prior art keywords
light source
projection exposure
fluid
microlithography projection
exposure system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99929261A
Other languages
German (de)
French (fr)
Inventor
Michael Gerhard
Marcus Zehetbauer
Nils Dieckmann
Martin Schriever
Christine Sieler
Gerd Reisinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Publication of EP1095315A1 publication Critical patent/EP1095315A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0057Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Definitions

  • the invention relates to a method for decontamination of microlithography projection exposure systems with optical elements or parts thereof, in particular surfaces of optical elements, with UV light and fluid.
  • the invention also relates to a microlithography projection exposure system with a DUV (deep ultraviolet) excimer laser as the light source for the projection exposure. This covers the wavelength range from approx. 100-300 nm with vacuum UV.
  • DUV deep ultraviolet
  • quartz rods or CaF 2 rods are arranged in lighting devices for semiconductor lenses for thorough mixing of the radiation emitted by a light source. Good total mixing is achieved by multiple total reflection of the light coupled into the glass rod or CaF 2 rod. If the surface of the quartz rod or CaF 2 rod is contaminated, absorption losses occur there as well, resulting in a weakening of the resulting lighting intensity.
  • No. 5,024,968 describes a method for cleaning optical components, in particular for X-ray lithography and UV Excimer laser optics are described, high energy radiation with a laser being used as the energy source in connection with a flushing glass which is inert with respect to the surface.
  • the cleaning is provided on optical lenses and mirrors as individual components, as is possible, for example, in production.
  • the present invention therefore has for its object a process for the decontamination of microlithography projection tion exposure apparatus of the initially mentioned type with which the entire system can be decontaminated in operation or in operation breaks and without the risk of material injury ⁇ conditions of Coatings or materials.
  • the inventive use of a second UV light source ⁇ can easily create a decontaminating microlithography projection exposure systems perform.
  • the additional UV light source can namely be optimally adapted to the requirements for decontamination without the risk of damage, since it is independent of normal lighting.
  • the second light source can also contain the laser used for the exposure or parts thereof.
  • it can, for example, be designed to be relatively broadband and, for example, can also be operated with a correspondingly higher output, as is the case for normal lighting.
  • the larger bandwidth improves the cleaning effect, since additional narrow-band transitions are stimulated, such as oxygen excitations in the area of the Schumann-Runge band.
  • the wavelength can be selected so that problems of material destruction, such as compaction, are minimized. As a rule, the wavelength is close to the exposure wavelength.
  • Projection exposure systems have for homogenization of light emitted from the light source a bar-shaped light conductor, is coupled adiation in the radiation emitted by the light source S, which is carried by multiple total reflection at the surface of the light guide, a homogenization of the coupled radiation.
  • To absorption losses as a result of contamination of the surface of the light guide is to avoid hen for irradiation thereof vorgese ⁇ a UV light source.
  • the UV light source is arranged in a focal point of the ellipsoidal reflector and the radiation emitted by the UV light source is focused on the further focal point in which the light guide is arranged.
  • Fig. 1 projection exposure system
  • Fig. 2 section through an illumination device.
  • a plurality of lenses 2 are arranged in a housing 1.
  • the system is equipped with a DUV excimer laser 3 as the light source for the projection exposure.
  • a flushing gas supply in the form of a laminar flow is provided at the edge in normal operation, for which purpose a gas supply device 4 is used.
  • a further UV light source with a broadband laser 5 is provided.
  • the broadband laser 5 serves as a cleaning light source and is coupled into the beam path via a pivotable mirror 6, which is provided with an adjusting mechanism, so that the lenses 2 are illuminated as evenly as possible.
  • a partially transparent mirror polarization beam splitter, dichroic mirror
  • the arrangement of several light sources between the lenses of the objective for illuminating the surface to be decontaminated can also be provided.
  • a gas flow (12) for example gas containing ozone, is generated parallel to the individual surfaces of the lenses 2 or along the lenses 2. Since such a flow would interfere with normal lens operation, it must be able to be switched on and off, although the minimal, diffusion-based gas exchange in normal operation by the gas supply tion device 4 takes place.
  • a purge gas supply device 7 is provided, from which the purge gas supply takes place at least approximately perpendicular to the optical axis 10 via lines 8 and radial purge openings in the housing 1.
  • purge gas is removed together with contamination constituents via lines 9 in the peripheral wall of the housing 1 on the side opposite the purge openings.
  • the radial flushing openings achieve a uniform, directed flow (12) over the lens surfaces.
  • the gas supply device 4 can be used for normal operation for purging contamination.
  • the gas flow running parallel to the optical axis 10 is e.g. by swiveling mechanical shutters 11 (shown in dashed lines) directed over the lens surfaces. If necessary, the power of the gas supply device 4 must be increased accordingly to increase the flow rate.
  • Another possibility of using the purging gas supply in normal operation for contamination purging can also be that cross currents are generated by inhomogeneous magnetic or electrical fields. An alternating use of purge gases of different densities is also possible.
  • the gas flow When using the gas supply device 4 for normal operation, the gas flow will be increased so that the laminar flow becomes turbulent. In this case, changes to the lens geometry (frame) may also be necessary to achieve eddy currents.
  • the laser 5 intended for decontamination should be a DUV excimer laser that can operate with a bandwidth of 500 pm. It is also possible to use a UV excimer lamp, for example with a wavelength of 222 nm. For example, the exposure laser without injection locking can also be used as a cleaning laser. On the wafer side, a shutter can block the light from entering Prevent exposure breaks.
  • FIG. 2 shows an average of a light guide 25 connected downstream of the DUV excimer laser 3 as the light source of the projection exposure system for homogenizing the radiation emitted by the light source.
  • a quartz rod is provided as the light guide 25, which is arranged on a focal point 31 of an ellipsoidal reflector 21 surrounding it.
  • a CaF 2 rod can also be used as a light guide.
  • a UV light source 23 Arranged on the further focal point 29 of the reflector 21 is a UV light source 23 provided for irradiating the surface 27 of the light guide 25, the radiation of which is focused on the surface 27 of the light guide. It can be provided that fluid flows through the reflector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning In General (AREA)

Abstract

The invention relates to a method for decontaminating microlithography projection lighting devices with optical elements (2) or parts thereof, especially the surfaces of optical elements, wherein a UV-light and a fluid are used. A second UV-light source (5) is directed towards at least one part of the optical element (2) during exposure pauses for decontamination.

Description

Verfahren zur Dekontamination von Mikrolithographie- ProjektionsbelichtungsanlagenProcess for the decontamination of microlithography projection exposure systems
Die Erfindung betrifft ein Verfahren zur Dekontamination von Mikrolithographie-Projektionsbelichtungsanlagen mit optischen Elementen oder von Teilen davon, insbesondere von Oberflächen optischer Elemente, mit UV-Licht und Fluid. Die Erfindung betrifft auch eine Mikrolithographie-Projektionsbelichtungsanlage mit einem DUV (deep ultraviolet) -Excimer-Laser als Lichtquelle der Projektionsbelichtung. Damit ist der Wellenlängenbereich von ca. 100-300 nm mit Vakuum-UV umfaßt.The invention relates to a method for decontamination of microlithography projection exposure systems with optical elements or parts thereof, in particular surfaces of optical elements, with UV light and fluid. The invention also relates to a microlithography projection exposure system with a DUV (deep ultraviolet) excimer laser as the light source for the projection exposure. This covers the wavelength range from approx. 100-300 nm with vacuum UV.
Beim Betrieb von Mikrolithographie-Projektionsbelichtungsan- lagen im tiefen Ultraviolettbereich (193nm) machen sich Verunreinigungen von Substraten, wie z.B. Quarz und Calciumfluorid, an der Oberfläche sehr stark durch Absorption bemerkbar. Diese können pro optischem Element bis zu 5 % Absorptionsverluste verursachen. Insbesondere für Halbleiter-Objektive sind derartige Absorptionsverluste nicht akzeptierbar. Weiterhin sind in Beleuchtungseinrichtungen für Halbleiter-Objektive Quarzstäbe oder CaF2-Stäbe für eine gute Durchmischung der von einer Lichtquelle abgegebenen Strahlung angeordnet. Durch mehrfache Totalreflektion des in den Glasstab bzw. CaF2-Stab eingekoppelten Lichtes wird eine gute Durchmischung erreicht. Ist die Oberfläche des Quarzstabes bzw. CaF2-Stabes verschmutzt so treten auch dort bei der Totalreflektion Absorptionsverluste auf, die zu einer Schwächung der resultierenden Beleuchtungsintensität führen. Aus der US 4,028,135 ist es bekannt, kontaminierte Quarz Resonatoren und Wafer mit DUV-Licht und einem Gasstrom, insbesondere Ozon, zu reinigen. Die für die Reinigung eingesetzte Lichtquelle ist zusammen mit der zu reinigenden Oberfläche in einer Aluminiumbox angeordnet, deren Oberfläche ein guter Reflektor für UV-Licht ist.When operating microlithography projection exposure systems in the deep ultraviolet range (193 nm), contamination of substrates, such as quartz and calcium fluoride, becomes very noticeable by absorption on the surface. These can cause up to 5% absorption losses per optical element. Such absorption losses are not acceptable, particularly for semiconductor lenses. In addition, quartz rods or CaF 2 rods are arranged in lighting devices for semiconductor lenses for thorough mixing of the radiation emitted by a light source. Good total mixing is achieved by multiple total reflection of the light coupled into the glass rod or CaF 2 rod. If the surface of the quartz rod or CaF 2 rod is contaminated, absorption losses occur there as well, resulting in a weakening of the resulting lighting intensity. From US 4,028,135 it is known to clean contaminated quartz resonators and wafers with DUV light and a gas stream, in particular ozone. The light source used for cleaning is arranged together with the surface to be cleaned in an aluminum box, the surface of which is a good reflector for UV light.
In der US 5,024,968 ist ein Verfahren zur Reinigung optischer Komponenten, insbesondere für Röntgenlithographie und UV- Excimer-Laseroptik beschrieben, wobei hierzu als Energiequelle eine hochenergetische Strahlung mit einem Laser in Verbindung mit einem bezüglich der Oberfläche inerten Spülglas verwendet wird. Die Reinigung ist dabei an optischen Linsen und Spiegeln als Einzelkomponenten, wie sie z.B. in der Fertigung in Frage kommt, vorgesehen.No. 5,024,968 describes a method for cleaning optical components, in particular for X-ray lithography and UV Excimer laser optics are described, high energy radiation with a laser being used as the energy source in connection with a flushing glass which is inert with respect to the surface. The cleaning is provided on optical lenses and mirrors as individual components, as is possible, for example, in production.
Problematisch ist jedoch eine Dekontamination von Mikrolitho- graphie-Projektionsbelichtungsanlagen im späteren Betrieb. Mit der zur Belichtung genutzten DUV-Beleuchtung ist eine Reinigung nur ungenügend zu erreichen. Darüber hinaus hat man bisher eine Reinigung mit einer UV-Quelle als problematisch angesehen, da die Gefahr von Schädigungen von Coatings und Material gesehen wurde.However, decontamination of microlithography projection exposure systems in later operation is problematic. With the DUV lighting used for exposure, cleaning is inadequate. In addition, cleaning with a UV source has hitherto been regarded as problematic, since the risk of damage to the coatings and material was seen.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde ein Verfahren zur Dekontamination von Mikrolithographie-Projek- tionsbelichtungsanlagen der eingangs erwähnten Art zu schaffen, mit dem die gesamte Anlage im Betrieb bzw. in Betriebspausen dekontaminiert werden kann und zwar ohne die Gefahr von Schädi¬ gungen an Coatings oder Materialien.The present invention therefore has for its object a process for the decontamination of microlithography projection tion exposure apparatus of the initially mentioned type with which the entire system can be decontaminated in operation or in operation breaks and without the risk of material injury ¬ conditions of Coatings or materials.
Erfindungsgemäß wird diese Aufgabe durch das in Anspruch 1 ge¬ nannte Verfahren gelöst. In Anspruch 10 und 19 ist eine Mikro- lithographie-Projektionsbelichtungsanlage aufgezeigt, mit der konstruktiv die Aufgabe gelöst werden kann.According to the invention this object is achieved by the ge in claim 1 ¬ above method released. Claims 10 and 19 show a microlithography projection exposure system with which the object can be achieved in terms of construction.
Durch die erfindungsgemäße Verwendung einer zweiten UV-Licht¬ quelle läßt sich auf einfache Weise eine Dekontamination von Mikrolithographie-Projektionsbelichtungsanlagen durchführen. Die zusätzliche UV-Lichtquelle kann nämlich optimal an die für eine Dekontamination gestellten Anforderungen ohne die Gefahr von Schädigungen angepaßt werden, da sie unabhängig von der normalen Beleuchtung ist. Die zweite Lichtquelle kann dabei durchaus den der Belichtung dienenden Laser oder Teile davon mitenthalten. In einer sehr vorteilhaften Ausgestaltung der Erfindung kann sie z.B. relativ breitbandig ausgeführt sein und z.B. auch mit einer entsprechend höheren Leistung betrieben werden, wie es für eine normale Beleuchtung der Fall ist. Die größere Bandbreite verbessert den Reinigungseffekt, da zusätzliche schmal- bandige Übergänge angeregt werden, wie z.B. Sauerstoffanregun- gen im Bereich der Schumann-Runge-Bande. Außerdem kann die Wellenlänge so gewählt werden, daß Probleme der Materialzerstörung, wie z.B. Compaction, minimiert werden. In der Regel liegt die Wellenlänge in der Nähe der Belichtungswellenlänge.The inventive use of a second UV light source ¬ can easily create a decontaminating microlithography projection exposure systems perform. The additional UV light source can namely be optimally adapted to the requirements for decontamination without the risk of damage, since it is independent of normal lighting. The second light source can also contain the laser used for the exposure or parts thereof. In a very advantageous embodiment of the invention, it can, for example, be designed to be relatively broadband and, for example, can also be operated with a correspondingly higher output, as is the case for normal lighting. The larger bandwidth improves the cleaning effect, since additional narrow-band transitions are stimulated, such as oxygen excitations in the area of the Schumann-Runge band. In addition, the wavelength can be selected so that problems of material destruction, such as compaction, are minimized. As a rule, the wavelength is close to the exposure wavelength.
Projektionsbelichtungsanlagen weisen zur Homogenisierung des von der Lichtquelle abgegebenen Lichtes einen stabförmigen Lichtleiter auf, in den die von der Lichtquelle abgegebene Strahlung eingekoppelt wird, wobei durch mehrfache Totalreflektion an der Oberfläche des Lichtleiters eine Homogenisierung der eingekoppelten Strahlung erfolgt. Um Absorptionsverluste in Folge von Kontamination der Oberfläche des Lichtleiters zu vermeiden ist eine UV-Lichtquelle für dessen Bestrahlung vorgese¬ hen. Durch Anordnung des zu bestrahlenden Lichtleiters innerhalb eines ellipsoiden Reflektors zusammen mit der UV- Lichtquelle ist es möglich eine UV-Lichtquelle mit geringer Leistung für eine hohe resultierende Bestrahlungsintensität der Oberfläche des Lichtleiters einzusetzen.Projection exposure systems have for homogenization of light emitted from the light source a bar-shaped light conductor, is coupled adiation in the radiation emitted by the light source S, which is carried by multiple total reflection at the surface of the light guide, a homogenization of the coupled radiation. To absorption losses as a result of contamination of the surface of the light guide is to avoid hen for irradiation thereof vorgese ¬ a UV light source. By arranging the light guide to be irradiated within an ellipsoidal reflector together with the UV light source, it is possible to use a UV light source with low power for a high resulting radiation intensity of the surface of the light guide.
In einer vorteilhaften Ausführungsform ist vorgesehen, daß die UV-Lichtquelle in einem Brennpunkt des ellipsoiden Reflektors angeordnet ist und die von der UV-Lichtquelle abgegebene Strahlung auf den weiteren Brennpunkt fokussiert wird, in dem der Lichtleiter angeordnet ist.In an advantageous embodiment it is provided that the UV light source is arranged in a focal point of the ellipsoidal reflector and the radiation emitted by the UV light source is focused on the further focal point in which the light guide is arranged.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und aus dem nachfolgend anhand der Zeichnung prinzipmäßig beschriebenen Ausführungsbeispiel .Advantageous refinements and developments of the invention result from the subclaims and from the exemplary embodiment described in principle below with reference to the drawing.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher beschrieben. Es zeigt: Fig. 1: ProjektionsbelichtungsanlageThe invention is described in more detail below with the aid of an exemplary embodiment. It shows: Fig. 1: projection exposure system
Fig. 2: Schnitt durch eine Beleuchtungseinrichtung.Fig. 2: section through an illumination device.
Da eine Mikrolithographie-Projektionsbelichtungsanlage allgemein bekannt ist, werden nachfolgend nur drei Linsen als optische Elemente davon in Zusammenhang mit der Zeichnung beschrieben, um das Verfahren und die Vorrichtung zur Dekontamination zu erläutern.Since a microlithography projection exposure system is generally known, only three lenses as optical elements thereof are described below in connection with the drawing in order to explain the method and the device for decontamination.
In einem Gehäuse 1 sind mehrere Linsen 2 angeordnet. Für den Normalbetrieb ist die Anlage mit einem DUV-Excimer-Laser 3 als Lichtquelle der Projektionsbelichtung versehen. Weiterhin ist im Normalbetrieb eine Spülgaszuführung in Form einer laminaren Strömung am Rand vorgesehen, wozu eine Gaszuführeinrichtung 4 dient.A plurality of lenses 2 are arranged in a housing 1. For normal operation, the system is equipped with a DUV excimer laser 3 as the light source for the projection exposure. Furthermore, a flushing gas supply in the form of a laminar flow is provided at the edge in normal operation, for which purpose a gas supply device 4 is used.
Zusätzlich zu dem Laser 3 ist eine weitere UV-Lichtquelle mit einem breitbandigen Laser 5 vorgesehen. Der breitbandige Laser 5 dient als Reinigungslichtquelle und wird über einen einschwenkbaren Spiegel 6, der mit einer Stellmechanik versehen ist, in den Strahlengang eingekoppelt, so daß die Linsen 2 möglichst gleichmäßig ausgeleuchtet sind. Anstelle einer Einkoppe- lung des Lasers 5 mit dem schwenkbaren Spiegel 6 kann auch für den gleichen Zweck ein teildurchlässiger Spiegel (Polarisationsstrahlteiler, dichroitischer Spiegel) vorgesehen sein. Es kann auch die Anordnung von mehreren Lichtquellen zwischen den Linsen des Objektives zur Beleuchtung der zu dekontaminierenden Oberfläche vorgesehen sein.In addition to the laser 3, a further UV light source with a broadband laser 5 is provided. The broadband laser 5 serves as a cleaning light source and is coupled into the beam path via a pivotable mirror 6, which is provided with an adjusting mechanism, so that the lenses 2 are illuminated as evenly as possible. Instead of coupling the laser 5 with the pivotable mirror 6, a partially transparent mirror (polarization beam splitter, dichroic mirror) can also be provided for the same purpose. The arrangement of several light sources between the lenses of the objective for illuminating the surface to be decontaminated can also be provided.
Um die abgelösten Kontaminations-Bestandteile, wie z.B. C, CHX aus dem geschlossenen optischen System zu entfernen, wird ein Gasfluß (12), z.B. ozonhaltiges Gas, parallel zu den einzelnen Oberflächen der Linsen 2 bzw. entlang der Linsen 2 erzeugt. Da ein solcher Fluß den normalen Objektivbetrieb stören würde, muß er zu- und abschaltbar sein, wobei jedoch der minimale, diffu- sionsbasierte Gasaustausch im Normalbetrieb durch die Gaszufüh- rungseinrichtung 4 erfolgt. Für diese Gaszuführung ist eine Spülgaszuführeinrichtung 7 vorgesehen, von der aus über Leitungen 8 und radiale Spülöffnungen in dem Gehäuse 1 die Spülgaszuführung wenigstens annähernd senkrecht zur optischen Achse 10 erfolgt. In gleicher Weise erfolgt eine Abfuhr von Spülgas zusammen mit Kontaminations-Bestandteilen über Leitungen 9 in der Umfangswand des Gehäuses 1 auf der den Spülöffnungen gegenüberliegenden Seite. Durch die radialen Spülöffnungen wird ein gleichmäßiger gerichteter Fluß (12) über die Linsenoberflächen erzielt.In order to remove the detached contamination components, such as C, CH X, from the closed optical system, a gas flow (12), for example gas containing ozone, is generated parallel to the individual surfaces of the lenses 2 or along the lenses 2. Since such a flow would interfere with normal lens operation, it must be able to be switched on and off, although the minimal, diffusion-based gas exchange in normal operation by the gas supply tion device 4 takes place. For this gas supply, a purge gas supply device 7 is provided, from which the purge gas supply takes place at least approximately perpendicular to the optical axis 10 via lines 8 and radial purge openings in the housing 1. In the same way, purge gas is removed together with contamination constituents via lines 9 in the peripheral wall of the housing 1 on the side opposite the purge openings. The radial flushing openings achieve a uniform, directed flow (12) over the lens surfaces.
Alternativ kann man auch die Gaszuführungseinrichtung 4 für den Normalbetrieb zur Kontaminations-Spülung verwenden. Hierzu wird der parallel zur optischen Achse 10 verlaufende Gasfluß z.B. durch ein Einschwenken mechanischer Blenden 11 (gestrichelt dargestellt) gezielt über die Linsenoberflächen geleitet. Gegebenenfalls ist hierzu die Leistung der Gaszuführungseinrichtung 4 zur Erhöhung der Strömungsgeschwindigkeit entsprechend zu verstärken.Alternatively, the gas supply device 4 can be used for normal operation for purging contamination. For this purpose, the gas flow running parallel to the optical axis 10 is e.g. by swiveling mechanical shutters 11 (shown in dashed lines) directed over the lens surfaces. If necessary, the power of the gas supply device 4 must be increased accordingly to increase the flow rate.
Eine andere Möglichkeit die Spülgaszuführung im Normalbetrieb für Kontaminations-Spülungen zu verwenden kann auch darin bestehen, daß man Querströmungen durch inhomogene magnetische oder elektrische Felder erzeugt. Ebenso ist eine wechselweise Verwendung von Spülgasen unterschiedlicher Dichte möglich.Another possibility of using the purging gas supply in normal operation for contamination purging can also be that cross currents are generated by inhomogeneous magnetic or electrical fields. An alternating use of purge gases of different densities is also possible.
Bei Verwendung der Gaszuführungseinrichtung 4 für den Normalbetrieb wird man den Gasfluß so erhöhen, daß die laminare Strömung turbulent wird. Gegebenenfalls sind in diesem Falle auch Änderungen der Objektivgeometrie (Fassung) erforderlich, um Wirbelströmungen zu erzielen.When using the gas supply device 4 for normal operation, the gas flow will be increased so that the laminar flow becomes turbulent. In this case, changes to the lens geometry (frame) may also be necessary to achieve eddy currents.
Der für die Dekontamination vorgesehene Laser 5 sollte ein DUV- Excimer-Laser sein, der mit einer Bandbreite von 500 pm operieren kann. Möglich ist auch der Einsatz einer UV-Excimer-Lampe, z.B. mit 222 nm Wellenlänge. Es kann z.B. auch der Belichtungslaser ohne Injection-Locking als Reinigungslaser eingesetzt werden. Waferseitig kann ein Verschluß den Lichtaustritt in Belichtungspausen unterbinden.The laser 5 intended for decontamination should be a DUV excimer laser that can operate with a bandwidth of 500 pm. It is also possible to use a UV excimer lamp, for example with a wavelength of 222 nm. For example, the exposure laser without injection locking can also be used as a cleaning laser. On the wafer side, a shutter can block the light from entering Prevent exposure breaks.
In Figur 2 ist ein dem DUV-Excimer-Laser 3 als Lichtquelle der Projektionsbelichtungsanlage nachgeschalteter Lichtleiter 25 zur Homogenisierung der von der Lichtquelle abgegebenen Strahlung im Schnitt gezeigt. Als Lichtleiter 25 ist ein Quarzstab vorgesehen, der auf einen Brennpunkt 31 eines ihn umgebenden ellipsoiden Reflektors 21 angeordnet ist. Weiterhin kann auch ein CaF2-Stab als Lichtleiter eingesetzt werden. Auf dem weiteren Brennpunkt 29 des Reflektors 21 ist eine für die Bestrahlung der Oberfläche 27 des Lichtleiters 25 vorgesehene UV- Lichtquelle 23 angeordnet, deren Strahlung auf die Oberfläche 27 des Lichtleiters fokussiert wird. Es kann vorgesehen sein, daß der Reflektor mit Fluid durchströmt wird. FIG. 2 shows an average of a light guide 25 connected downstream of the DUV excimer laser 3 as the light source of the projection exposure system for homogenizing the radiation emitted by the light source. A quartz rod is provided as the light guide 25, which is arranged on a focal point 31 of an ellipsoidal reflector 21 surrounding it. A CaF 2 rod can also be used as a light guide. Arranged on the further focal point 29 of the reflector 21 is a UV light source 23 provided for irradiating the surface 27 of the light guide 25, the radiation of which is focused on the surface 27 of the light guide. It can be provided that fluid flows through the reflector.

Claims

Patentansprüche : Claims:
1. Verfahren zur Dekontamination von Mikrolithographie- Projektionsbelichtungsanlagen mit optischen Elementen (2) oder von Teilen davon, insbesondere von Oberflächen optischer Elemente, mit UV-Licht und Fluid, dadurch gekennzeichnet, daß in Belichtungspausen eine zweite UV- Lichtquelle (5) zumindest auf einen Teil der optischen Elemente (2) gerichtet wird.1. A method for the decontamination of microlithography projection exposure systems with optical elements (2) or parts thereof, in particular surfaces of optical elements, with UV light and fluid, characterized in that a second UV light source (5) at least on one during exposure breaks Part of the optical elements (2) is directed.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als zweite UV-Lichtquelle (5) eine relativ breitbandige Lichtquelle verwendet wird.2. The method according to claim 1, characterized in that a relatively broadband light source is used as the second UV light source (5).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Reinigung ein Strom (12) des Fluides erzeugt wird, der parallel zu den zu reinigenden Oberflächen der optischen Elemente (2) gerichtet wird.3. The method according to claim 1 or 2, characterized in that for cleaning a stream (12) of the fluid is generated, which is directed parallel to the surfaces to be cleaned of the optical elements (2).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Fluid zur Reinigung von einer Normalbetrieb-Spülgaszuführung (4) abgezweigt wird.4. The method according to claim 3, characterized in that the fluid for cleaning from a normal operating purge gas supply (4) is branched off.
5. Verfahren nach Anspruch 3 und 4, dadurch gekennzeichnet, daß das für die Reinigung vorgesehene Fluid von dem im Nor¬ malbetrieb parallel zur optischen Achse verlaufenden Fluid- fluß durch Ablenken der Fluidströmung eingeleitet wird.5. The method according to claim 3 and 4, characterized in that the fluid intended for cleaning is initiated by the fluid flow running in normal ¬ malbetrieb parallel to the optical axis by deflecting the fluid flow.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß das für die Reinigung vorgesehene Fluid von dem im Normalbetrieb parallel zur optischen Achse verlaufenden Fluid- fluß durch Erzeugen von Querströmungen durch inhomogene magnetische oder elektrische Felder erzeugt wird.6. The method according to claim 4 or 5, characterized in that the fluid provided for cleaning is generated by the fluid flow running parallel to the optical axis in normal operation by generating transverse flows through inhomogeneous magnetic or electrical fields.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß zur Spülung wechselweise Fluide mit verschiedener Dichte verwendet werden. 7. The method according to any one of claims 3 to 6, characterized in that alternately fluids with different densities are used for flushing.
. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Zuführung von Spülfluid aus der Normalbetrieb-Fluidzu- führung (4) durch Erhöhung des Zuflusses und Übergang von einer laminaren Strömung in eine turbulente Strömung erzeugt wird.. A method according to claim 4, characterized in that the supply of flushing fluid from the normal operating fluid supply (4) is generated by increasing the inflow and transition from a laminar flow to a turbulent flow.
9. Verfahren nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß das Fluid ein ozonhaltiges Gas ist.9. The method according to any one of claims 3 to 8, characterized in that the fluid is an ozone-containing gas.
10. Verfahren nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß das Fluid ein sauerstoffhaltiges Gas ist.10. The method according to any one of claims 3 to 9, characterized in that the fluid is an oxygen-containing gas.
11. Mikrolithographie-Projektionsbelichtungsanlage mit einem DUV-Excimer-Laser als Lichtquelle der Projektionsbelichtung, dadurch gekennzeichnet, daß mindestens eine weitere UV-Lichtquelle (5) vorgesehen ist, die alternativ zu dem DUV-Excimer-Laser (3) einschaltbar ist und durch die zumindest ein Teil der optischen Elemente (2) beleuchtbar ist.11. Microlithography projection exposure system with a DUV excimer laser as the light source of the projection exposure, characterized in that at least one further UV light source (5) is provided, which can be switched on as an alternative to the DUV excimer laser (3) and through which at least some of the optical elements (2) can be illuminated.
12. Mikrolithographie-Projektionsbelichtungsanlage nach Anspruch 11, dadurch gekennzeichnet, daß mindestens eine Gaszufuhreinrichtung (7) vorgesehen ist, die für die Zufuhr von Spülgas bei eingeschalteter weiterer UV-Lichtquelle (5) vorgesehen ist.12. Microlithography projection exposure system according to claim 11, characterized in that at least one gas supply device (7) is provided, which is provided for the supply of purge gas with another UV light source (5) switched on.
13. Mikrolithographie-Projektionsbelichtungsanlage nach Anspruch 12, dadurch gekennzeichnet, daß in der Anlage radiale Spülöffnungen zur Zufuhr von Spülgas vorgesehen sind, durch die ein gerichteter Fluß über die zu reinigenden Oberflächen der optischen Elemente (2) erzeugbar ist.13. Microlithography projection exposure system according to claim 12, characterized in that radial flushing openings are provided in the system for supplying flushing gas, through which a directed flow over the surfaces of the optical elements (2) to be cleaned can be generated.
14. Mikrolithographie-Projektionsbelichtungsanlage nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß als Gaszufuhreinrichtung eine für den Normalbetrieb vorgesehene Gaszufuhreinrichtung (4) vorgesehen ist, wobei ein parallel zur optischen Achse gerichteter Gasfluß in Richtung auf die Oberflächen der zu reinigenden optischen Elemente (2) abge- lenkt wird .14. Microlithography projection exposure system according to claim 12 or 13, characterized in that a gas supply device (4) provided for normal operation is provided as the gas supply device, a gas flow directed parallel to the optical axis in the direction of the surfaces of the optical elements (2) to be cleaned. dismissed is steered.
15. Mikrolithographie-Projektionsbelichtungsanlage nach Anspruch 14, dadurch gekennzeichnet, daß zur Ablenkung einschwenkbare oder einklappbare mechanische Blenden (11) zur Gasflußumleitung vorgesehen sind.15. microlithography projection exposure system according to claim 14, characterized in that for deflection pivotable or retractable mechanical screens (11) are provided for gas flow diversion.
16. Mikrolithographie-Projektionsbelichtungsanlage nach Anspruch 14, dadurch gekennzeichnet, daß zur Erzeugung von Querströmungen inhomogene magnetische oder elektrische Felder vorgesehen sind.16. Microlithography projection exposure system according to claim 14, characterized in that inhomogeneous magnetic or electric fields are provided for the generation of cross currents.
17. Mikrolithographie-Projektionsbelichtungsanlage nach Anspruch 14, dadurch gekennzeichnet, daß eine Einrichtung zur Erhöhung des Gasflusses für den Spülbetrieb vorgesehen ist.17. Microlithography projection exposure system according to claim 14, characterized in that a device for increasing the gas flow is provided for the purging operation.
18. Mikrolithographie-Projektionsbelichtungsanlage nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, daß die Gaszufuhreinrichtung (4 bzw. 7) eine Ozonquelle enthält.18. Microlithography projection exposure system according to one of claims 11 to 17, characterized in that the gas supply device (4 or 7) contains an ozone source.
19. Mikrolithographie-Projektionsbelichtungsanlage mit einer Lichtquelle der ein stabför iger Lichtleiter zur Homogenisierung des von der Lichtquelle abgestrahlten Lichtes nachgeschaltet ist, dadurch gekennzeichnet, daß dem Lichtleiter eine UV-Lichtquelle (23) zur Bestrahlung der Oberfläche (27) für deren Dekontaminierung zugeordnet ist, und daß der Lichtleiter (25) und die UV-Lichtquelle (23) innerhalb eines Reflektors (21) angeordnet sind.19. Microlithography projection exposure system with a light source which is followed by a rod-shaped light guide for homogenizing the light emitted by the light source, characterized in that the light guide is assigned a UV light source (23) for irradiating the surface (27) for its decontamination. and that the light guide (25) and the UV light source (23) are arranged within a reflector (21).
20. Mikrotlithographie-Projektionsbelichtungsanlage nach Anspruch 19, dadurch gekennzeichnet, daß die UV-Lichtquelle (23) in einem Brennpunkt (29) eines ellipsoiden Reflektors (21) angeordnet ist, wobei in dem anderen Brennpunkt (31) der Lichtleiter (25) angeordnet ist. 20. Microtlithography projection exposure system according to claim 19, characterized in that the UV light source (23) is arranged in a focal point (29) of an ellipsoidal reflector (21), the light guide (25) being arranged in the other focal point (31) .
EP99929261A 1998-07-08 1999-06-17 Method for decontaminating microlithography projection lighting devices Withdrawn EP1095315A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19830438 1998-07-08
DE19830438A DE19830438A1 (en) 1998-07-08 1998-07-08 Process for the decontamination of microlithography projection exposure systems
PCT/EP1999/004210 WO2000003304A1 (en) 1998-07-08 1999-06-17 Method for decontaminating microlithography projection lighting devices

Publications (1)

Publication Number Publication Date
EP1095315A1 true EP1095315A1 (en) 2001-05-02

Family

ID=7873297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99929261A Withdrawn EP1095315A1 (en) 1998-07-08 1999-06-17 Method for decontaminating microlithography projection lighting devices

Country Status (7)

Country Link
US (1) US6936825B2 (en)
EP (1) EP1095315A1 (en)
JP (1) JP2002520839A (en)
KR (1) KR100659698B1 (en)
DE (1) DE19830438A1 (en)
TW (1) TW425494B (en)
WO (1) WO2000003304A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830438A1 (en) 1998-07-08 2000-01-13 Zeiss Carl Fa Process for the decontamination of microlithography projection exposure systems
US20020085185A1 (en) * 2000-11-07 2002-07-04 Silicon Valley Group, Inc. Method and system of varying optical imaging performance in the presence of refractive index variations
DE10061248B4 (en) * 2000-12-09 2004-02-26 Carl Zeiss Method and device for in-situ decontamination of an EUV lithography device
JP3619157B2 (en) * 2001-02-13 2005-02-09 キヤノン株式会社 Optical element, exposure apparatus having the optical element, cleaning apparatus, and optical element cleaning method
DE10109031A1 (en) 2001-02-24 2002-09-05 Zeiss Carl Optical beam guidance system and method for preventing contamination of optical components thereof
DE10211611A1 (en) 2002-03-12 2003-09-25 Zeiss Carl Smt Ag Process and device for decontamination of optical surfaces
SG135934A1 (en) * 2002-12-20 2007-10-29 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2005190904A (en) * 2003-12-26 2005-07-14 Ushio Inc Extreme-ultraviolet light source
US7265366B2 (en) * 2004-03-31 2007-09-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7136142B2 (en) * 2004-05-25 2006-11-14 Asml Netherlands B.V. Lithographic apparatus having a gas flushing device
KR101252312B1 (en) * 2004-12-23 2013-04-08 칼 짜이스 에스엠테 게엠베하 Lens module comprising at least one replaceable optical element
DE102005031792A1 (en) * 2005-07-07 2007-01-11 Carl Zeiss Smt Ag Method for removing contamination of optical elements, in particular surfaces of optical elements, and an optical system or subsystem therefor
DE102006049924A1 (en) * 2006-10-19 2008-04-30 Carl Zeiss Smt Ag Contamination cleaning system for semiconductor lithography, has reflective unit arranged such that surfaces are irradiated with microwave radiation, where contaminations from surfaces are transported away and removed by gas flows
US8817226B2 (en) * 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
JP2008277585A (en) * 2007-04-27 2008-11-13 Canon Inc Cleaning device for exposure apparatus, and exposure apparatus
DE102008041628A1 (en) * 2007-09-14 2009-03-19 Carl Zeiss Smt Ag Method for cleaning vacuum chambers and vacuum chamber
DE102007051459A1 (en) * 2007-10-27 2009-05-14 Asml Netherlands B.V. Cleaning an optical system using radiant energy
DE102011079451A1 (en) 2011-07-20 2012-08-09 Carl Zeiss Smt Gmbh Optical arrangement, particularly projection exposure system for extreme ultraviolet lithography, has optical element with reflective coating, which has cover layer, on whose surface oxidic impurities are present
US8888295B2 (en) * 2012-07-02 2014-11-18 Disney Enterprises, Inc. Reflective surface tensioning and cleaning system for pepper's ghost illusion
CZ201474A3 (en) * 2014-01-30 2015-04-29 Masarykova Univerzita Method of reducing or removing organic and inorganic contamination of vacuum system of display and analytic devices and apparatus for making the same
KR101698022B1 (en) * 2015-03-13 2017-02-01 한국표준과학연구원 Achromatic rotating-element ellipsometer and method for measuring Mueller-matirx elements of the sample using the same
US9625732B1 (en) 2016-01-26 2017-04-18 Disney Enterprises, Inc. Reflective surface tensioning system for Pepper's ghost illusion
DE102016125695A1 (en) * 2016-12-23 2018-01-25 Asml Netherlands B.V. Method of operating an EUV lithography system to prevent chemical attack of components of the EUV lithography system by hydrogen
DE102019213914A1 (en) * 2019-09-12 2021-03-18 Carl Zeiss Smt Gmbh Device for cleaning a surface inside an optical system

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1550096A (en) * 1976-02-23 1979-08-08 Nath G Uv irradiation device
US4028135A (en) * 1976-04-22 1977-06-07 The United States Of America As Represented By The Secretary Of The Army Method of cleaning surfaces by irradiation with ultraviolet light
US4337437A (en) * 1979-03-26 1982-06-29 Hunter Robert O High energy laser
DE3145278C2 (en) * 1981-11-14 1985-02-14 Schott-Zwiesel-Glaswerke Ag, 8372 Zwiesel Method for the contactless removal of material from the surface of a glass object and device for carrying out the method
US4820899A (en) * 1987-03-03 1989-04-11 Nikon Corporation Laser beam working system
DE3721940A1 (en) * 1987-07-02 1989-01-12 Ibm Deutschland REMOVAL OF PARTICLES FROM SURFACES OF SOLID BODY BY LASER Bombardment
JPH01265513A (en) * 1988-04-15 1989-10-23 Nec Corp Reduction projection aligner
US5821175A (en) * 1988-07-08 1998-10-13 Cauldron Limited Partnership Removal of surface contaminants by irradiation using various methods to achieve desired inert gas flow over treated surface
US5024968A (en) 1988-07-08 1991-06-18 Engelsberg Audrey C Removal of surface contaminants by irradiation from a high-energy source
JP3278896B2 (en) * 1992-03-31 2002-04-30 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
US5430303A (en) * 1992-07-01 1995-07-04 Nikon Corporation Exposure apparatus
US6017397A (en) * 1993-03-05 2000-01-25 Hyundai Eletronics America Automated washing method
US5814156A (en) * 1993-09-08 1998-09-29 Uvtech Systems Inc. Photoreactive surface cleaning
DE69704998T2 (en) * 1996-03-15 2001-09-27 Asm Lithography B.V., Veldhoven ALIGNMENT DEVICE AND LITHOGRAPHIC APPARATUS WITH SUCH A DEVICE
US5955242A (en) * 1996-09-23 1999-09-21 International Business Machines Corporation High sensitivity, photo-active polymer and developers for high resolution resist applications
JPH10223512A (en) * 1997-02-10 1998-08-21 Nikon Corp Electron beam projection aligner
JPH11167004A (en) * 1997-12-04 1999-06-22 Nikon Corp Optical washing method for projection optical system for aligner, and aligner and method for aligning
US6268904B1 (en) * 1997-04-23 2001-07-31 Nikon Corporation Optical exposure apparatus and photo-cleaning method
US5938860A (en) * 1997-08-28 1999-08-17 Micron Technology, Inc. Reticle cleaning without damaging pellicle
DE19830438A1 (en) 1998-07-08 2000-01-13 Zeiss Carl Fa Process for the decontamination of microlithography projection exposure systems
JP2000091192A (en) * 1998-09-09 2000-03-31 Nikon Corp Projection aligner
US6762412B1 (en) * 1999-05-10 2004-07-13 Nikon Corporation Optical apparatus, exposure apparatus using the same, and gas introduction method
US6571057B2 (en) * 2000-03-27 2003-05-27 Nikon Corporation Optical instrument, gas replacement method and cleaning method of optical instrument, exposure apparatus, exposure method and manufacturing method for devices

Also Published As

Publication number Publication date
WO2000003304A1 (en) 2000-01-20
KR100659698B1 (en) 2006-12-21
KR20010053391A (en) 2001-06-25
TW425494B (en) 2001-03-11
US6936825B2 (en) 2005-08-30
US20010026402A1 (en) 2001-10-04
JP2002520839A (en) 2002-07-09
DE19830438A1 (en) 2000-01-13

Similar Documents

Publication Publication Date Title
EP1095315A1 (en) Method for decontaminating microlithography projection lighting devices
DE102005031792A1 (en) Method for removing contamination of optical elements, in particular surfaces of optical elements, and an optical system or subsystem therefor
DE602005004592T2 (en) Lithographic apparatus, lighting system and debris collection system
DE102006043776A1 (en) Filter system for a light source
EP1532488A1 (en) Optical subsystem, particularly for a projection exposure system comprising at least one optical element that can be brought into at least two positions
DE3001059A1 (en) X-RAY RAY LITHOGRAPHY SYSTEM WITH A COLLIMATION OPTICS
DE60127229T2 (en) Lithographic apparatus and method of making a device
DE102011113521A1 (en) Microlithographic extreme UV (EUV) projection exposure apparatus for imaging reflective mask on photosensitive layer, has drive element that is adapted to reflective switching elements to emit projection and heating light rays
DE102005032320A1 (en) Decontaminating optical element surface, especially in projection illumination plant for microlithography, using cleaning device applying activated reducing gas to the surface under atmospheric pressure
EP1483063B1 (en) Method and device for the decontamination of optical surfaces
DE102008041827A1 (en) Protection module for EUV lithography device and EUV lithography device
WO2006069755A2 (en) Lens module comprising at least one replaceable optical element
DE3215630A1 (en) SHADOW PROJECTION SYSTEM
DE102008014832A1 (en) Projection exposure machine for microlithography
DE60317302T2 (en) High flux X-ray source
DE10329141A1 (en) Extreme ultraviolet illumination system for microlithography, propagates chief ray between pupil and field facet mirrors, and between pupil facet mirror and reflective element, such that propagated ray are opposite and parallel
DE4131361C2 (en) Device for irradiating the cornea
DE102019124781B4 (en) METHOD FOR PRODUCING AND TREATING A PHOTOMASK
DE102011079450A1 (en) Optical arrangement with degradation suppression
EP3019789B1 (en) Optical hollow waveguide assembly
DE102011079451A1 (en) Optical arrangement, particularly projection exposure system for extreme ultraviolet lithography, has optical element with reflective coating, which has cover layer, on whose surface oxidic impurities are present
DE102008040720A1 (en) Cleaning module useful for cleaning components of extreme ultra violet lithography device e.g. mirror comprises supply for cleaning gas and device for exciting cleaning gas containing cold cathode, plasma generating unit, and hot cathode
DE102009029121A1 (en) Generator for atomic hydrogen, comprises container with gas inlet to introduce molecular hydrogen and gas outlet, UV-radiation source arranged outside of the container, so that UV-radiation penetrates into container interior, and mirror
DE102023110173B3 (en) Measuring device and method for inspecting photomasks intended for EUV microlithography
DE102023110174B3 (en) Measuring device and method for inspecting photomasks intended for EUV microlithography

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL-ZEISS-STIFTUNG TRADING AS CARL ZEISS

Owner name: CARL ZEISS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL ZEISS SMT AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL ZEISS SMT AG

17Q First examination report despatched

Effective date: 20050113

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL ZEISS SMT AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100105