EP1091120B1 - Méthode pour déterminer et contrôler le paramètre d'une pompe - Google Patents

Méthode pour déterminer et contrôler le paramètre d'une pompe Download PDF

Info

Publication number
EP1091120B1
EP1091120B1 EP00121761A EP00121761A EP1091120B1 EP 1091120 B1 EP1091120 B1 EP 1091120B1 EP 00121761 A EP00121761 A EP 00121761A EP 00121761 A EP00121761 A EP 00121761A EP 1091120 B1 EP1091120 B1 EP 1091120B1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure
fuel
angular position
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00121761A
Other languages
German (de)
English (en)
Other versions
EP1091120A3 (fr
EP1091120A2 (fr
Inventor
Hinrich Dr. Krüger
Eckbert Zander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1091120A2 publication Critical patent/EP1091120A2/fr
Publication of EP1091120A3 publication Critical patent/EP1091120A3/fr
Application granted granted Critical
Publication of EP1091120B1 publication Critical patent/EP1091120B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1208Angular position of the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/06Pressure in a (hydraulic) circuit
    • F04B2205/063Pressure in a (hydraulic) circuit in a reservoir linked to the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/13Pressure pulsations after the pump

Definitions

  • the invention relates to a method for operating a Fuel injection system and a pump according to the preamble of claims 1 and 4.
  • fuel is from a Pre-feed pump taken from a tank and a high-pressure pump fed.
  • the high pressure pump supplies a fuel storage, the so-called common rail, with fuel.
  • At fuel injectors are connected to the fuel reservoir, which are controlled by a controller and accordingly the controller inject fuel into an internal combustion engine.
  • a volume flow controlled high pressure pump is the Amount of fuel that enters the high-pressure accumulator from the High-pressure pump is pumped through a flow control valve set in the intake of the high pressure pump.
  • Unnecessary Fuel is from the fuel tank via a Pressure control valve returned to the tank. Heated while relaxing the fuel, so that the temperature of the Fuel in the fuel tank increases.
  • a power loss represents.
  • the object of the invention is a method for operating a Fuel injection system with a pump to provide the simplified control and monitoring of the Fuel injection system allows.
  • An advantage of the invention lies in the fact that the location of Druckextra during a compression process of the pump in the Volume is determined, in which the pump pumps medium and that based on the temporal position and / or angular position of Pressure extrema determines an operating parameter of the pump and / or the pump is controlled.
  • Fig. 1 shows a fuel tank 1, from which a prefeed pump 2 takes fuel and a flow control valve 3 and a supply line 19 of a high-pressure pump 4 feeds.
  • the high-pressure pump 4 compresses the supplied fuel and gives the compressed fuel via a drain 20 to a fuel tank 5 on.
  • injection valves 6 are connected, the controlled by a control unit 8 via a third control line 16 become.
  • the injectors 6 deliver fuel from the fuel accumulator 5 in the engine 17 from.
  • a pressure control valve 7 connected via an output line is in communication with the fuel tank 1.
  • the Pressure control valve 7 is connected via a second control line 12th with the control unit 8 in connection.
  • a pressure sensor 14 arranged on the fuel reservoir 5, which has a second data line 13 to the controller 8 in conjunction stands.
  • the internal combustion engine 17 are associated with sensors 15, which is connected via a fourth data line 18 to the control unit 8 are.
  • the control unit 8 also has a first one Data line 10 with a data memory 9 in conjunction. Furthermore, the control unit 8 via a first control line 11 connected to the flow control valve 3.
  • the prefeed pump 2 and the high pressure pump 4 are mechanical driven by the internal combustion engine 17.
  • the speed the prefeed pump 2 and the speed of the high pressure pump. 4 are proportional to the speed of the engine 17.
  • Die High-pressure pump 4 is for example a radial piston pump with three pistons 22, as shown in Fig. 2.
  • Fig. 2 shows schematically the piston assembly of a radial piston pump with three pistons.
  • Each piston 22 is above a first one Check valve 23 in the inlet and a second check valve 25 in the process with the supply line 19 or with the Derivative 20 connected.
  • the pistons 22 of the radial piston pump are star-shaped around a rotary shaft 21 of the high pressure pump. 4 arranged, driven by the internal combustion engine 17 becomes.
  • the rotary shaft 21 is surrounded by an eccentric ring 26, the eccentric rotational movement of the rotary shaft 21 in a radial lifting movement of the piston 22 is implemented.
  • the piston 22 is 360 ° during one complete revolution Rotary shaft 21 from its bottom dead center to top dead center moved and then from top dead center back to moved bottom dead center.
  • the piston 22 from the top Dead center moves to bottom dead center and over a first Check valve 23 fuel from the supply line 19 in the Cylinder chamber 24 sucked.
  • the piston 22 is forced, so that it is independent of the amount of fuel that exceeds the first check valve 23 is sucked, always from the bottom Dead center to top dead center and then to the bottom Dead center during one revolution of the rotary shaft 21 moves.
  • the first check valve 23 is biased by a spring 27.
  • the spring 27 ensures that a negative pressure always in the cylinder chamber 24 and not in the supply line 19 is formed. For example, negative pressure can occur when the volume flow control valve 3 less fuel supplied to the piston 22 is, as due to the size of the cylinder chamber 24 at a suction between the top dead center and the bottom Dead center could be sucked by the piston 22.
  • the degree of filling of the cylinder chamber 24 after a suction process, in which the piston 22 is at the bottom dead center is in the illustrated embodiment by the opening cross-section of the flow control valve 3 is set.
  • the piston 22 from the lower Dead center shifted to top dead center. It is the Fuel, which is located in a cylinder chamber 24, from Piston 22 via the second check valve 25 for discharge 20 and pumped into the fuel tank 5.
  • the degree of filling of the cylinder chamber 24 defines that of the piston 22nd during a compression process funded amount of fuel firmly.
  • the piston 22 pushes in a compression process each amount of fuel in the derivative 20, during of the suction process was sucked into the cylinder chamber 24.
  • In each compression operation of the three pistons 22 of the High pressure pump 4 is activated by pushing fuel in the fuel reservoir 5, a pressure wave in the fuel tank 5 generated.
  • the pressure waves generated by the three pistons 22 are due the phase shift of the movements of the three pistons 22 at the same flow rate of the three pistons by 120 ° added.
  • Fig. 3A and Fig. 3B show the delivery volume flow V of the piston 22 in dependence from the rotational angle ⁇ of the rotary shaft 21 for different Filling levels.
  • the piston 22 moves from the bottom Dead center UT to top dead center OT.
  • Pressure signal p for the piston 22 shown. in principle holds that, if more fuel from the fuel tank 5 drains as from the high pressure pump 4 in the Fuel storage is promoted, the pressure in the fuel tank falls, because the mass balance is negative.
  • the pressure in the fuel accumulator 5 increases a positive mass balance, i. if more fuel in the fuel storage is conveyed as it drains off, at.
  • the delivery volume flow is in each case V of the piston 22 shown in dashed lines, in which the middle Inflow into the fuel tank 5 whose average outflow equivalent.
  • N the areas of a negative mass balance and thus a pressure drop in the fuel tank or with the P Areas of a positive pressure balance and thus an increase in pressure characterized in fuel storage 5.
  • the flow rate of the piston 22 at a degree of filling F of the cylinder chamber 24 of 100%, that is the volume flow control valve 3 from the control unit 8 so far opened is that during the suction of the piston 22, the Cylinder chamber 24 is completely filled with fuel.
  • the delivery volume flow V of the piston increases 22 from bottom dead center UT to first, then to to drop back to top dead center OT. Because of this History of the flow rate is the mass balance in Fuel storage 5 negative first, then positive and to End negative again.
  • the measurement diagram shown in Fig. 3B corresponds to a Filling degree F of the cylinder chamber 24 of 25%.
  • V of the piston 22nd shows that the points of a balanced mass balance are Transition from the negative mass balance N to the positive mass balance P and from the positive mass balance P back to negative mass balance N via the pumping movement of the piston 22 from bottom dead center UT to top dead center OT in the direction moved to top dead center.
  • This results then how the course of the pressure signal p in the fuel tank 5 also shows a shift in the pressure extrema Direction to top dead center OT. From the shift of Printing extreme can thus be on the degree of filling of the cylinder chamber Close 24 in the high pressure pump 4.
  • FIG. 5 shows a method for operating a pump Figures 1 and 2 described.
  • the control unit 8 opens the Volume flow control valve 3 to a cross section for the Boot process is stored in the data memory 9.
  • the opening cross section of the flow control valve. 3 selected as large as possible when starting the internal combustion engine 17, so that the high pressure pump 4 as fast as possible for the operation of the internal combustion engine 17 required fuel pressure builds up in the fuel tank 5.
  • the feed pump 2 and the high pressure pump. 4 driven by the internal combustion engine 17.
  • the controller 8 the angular position of the pressure peak with respect to the rotational position the rotary shaft 21.
  • the lower and upper dead center UT, OT of the piston 22 are predetermined angular values of the rotary shaft 21 assigned.
  • Program point 42 determines the control unit 8, the angular difference to the top dead center of the piston 22 from which the pressure peak was generated.
  • the angular position of the pressure peak can So also directly from the evaluation of an amplitude and a Phase response of the pressure curve can be obtained.
  • At program point 43 calculates the control unit 8 from the angular position the pressure peak the volume of fuel delivered by the piston 22.
  • a table is stored in the data memory 9, in the for the piston 22 of the high pressure pump 4 values for the delivered fuel volume as a function of the angular position the pressure peak are stored.
  • the delivery volume of Pump 4 per revolution of the rotary shaft 21 as a function of the angular positions of the pressure peaks generated in the pressure accumulator 5 measured during one revolution of the rotary shaft 21 and as a function of the angular positions of the pressure peak in the data memory 9 filed.
  • These are the pressure peaks of the three Piston 22 of the pump 4 evaluated, during a revolution the rotary shaft 21 are generated. This will be after a Calculation method averages the angular positions of the pressure peaks, which generates during one revolution of the rotary shaft 21 become. Based on the average angular position is a mean Delivery rate from the table read from the data memory 9, multiplied by the number three of the pistons is and thus the flow rate of the high-pressure pump 4 per revolution the rotation shaft 21 is calculated.
  • the flow control valve. 3 opened according to predetermined values in such a way that specified Delivery volume can be generated.
  • the angle differences that the pressure peaks to the top dead center OT from the control unit 8 measured.
  • a table in the data memory 9 stored, which funded by the piston 22 Fuel volume as a function of the angular difference of the Pressure peak to top dead center OT sets.
  • Fig. 6 is a method for detecting a defect in the injection system shown.
  • program point 50 reads the control unit 8, the angular position of the pressure extrema from the Data storage 9 off, previously according to the procedure were determined according to FIG. 5. From the angular position becomes then in program item 51 corresponding to the data memory in the 9th table stored the funded by the pump 4 amount of fuel certainly.
  • the controller compares the over the Period from the high pressure pump 4 to the fuel tank. 5 delivered amount of fuel with the via the injectors 6 fuel delivered over the same period and checks whether the pressure in the fuel tank 5 accordingly the difference has increased or decreased. Is that true? Change of the fuel pressure in the fuel storage 5 not with the guided over the high pressure pump 4 and over Injectors 6 discharged fuel amount, so if a defect such as increased leakage in the injection system recognized.
  • Fig. 7 shows a method for controlling the flow control valve 3 depending on the angular position of the pressure peaks, generated by the piston 22 in the fuel tank 5 become.
  • the controller determines 8 shows the angular position of the pressure extremes of the piston 22. From the Table in the data memory 9, the controller 8 calculates the according to the high-pressure pump 4 in the fuel tank 5 amount of fuel delivered. The amount of fuel delivered compares the controller 8 at program point 61 with a predetermined delivery rate by a control program.
  • the controller 8 at program point 62 changes the controller 8 at program point 62 accordingly the opening cross-section of the volume flow control valve 3, so that the high-pressure pump and thus supplied by the High-pressure pump 4 delivered amount of fuel to the desired delivery is adapted. In this way, the flow control valve 3 depending on the angular position of Pressure peak controlled.
  • An embodiment of the method according to FIG. 7 is based on that the flow control valve based on one of a Control program predetermined target angular position for the pressure peak is controlled.
  • the control program is dependent on it of operating parameters of the internal combustion engine, a desired angular position for the pressure peak.
  • the control unit 8 measures via the pressure sensor 14, the position of the pressure peak and compares the measured position with the nominal position of the Pressure peak.
  • the opening cross section of Volume flow control valve 3 increased by a predetermined value.
  • the predetermined value is proportional to the difference angle between the desired angular position and the measured angular position of the pressure peak.
  • the opening cross section of the flow control valve reduced by a predetermined value.
  • the given value is proportional to the difference angle between the desired angular position and the measured Angular position of the pressure peak.
  • a preferred embodiment of the method according to FIG. 7 is based in that the control unit 8, the angular position of the Pressure peaks of at least two consecutively conveying piston 22 determined and the angular position of the pressure peaks to used to the volume flow control valve 3 in the way Control that the angular positions of successive promotional Piston 22 are identical, so that an equal promotion by the piston 22 is reached.
  • This will be an equal size
  • Flow rate through the piston 22 of the high pressure pump 4 thereby achieved that the flow control valve 3 is controlled in the manner is that the angular positions of the pressure peaks of the different pistons 22 are the same.
  • This procedure allows a simple method for controlling the equal promotion a plurality of pistons 22 of a high-pressure pump 4th
  • the method described is applicable to any type of pump and not limited to the described system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Claims (6)

  1. Procédé permettant de faire fonctionner un système d'injection de carburant avec une pompe (4), dans lequel,
       la pompe (4) est alimentée en fluide de pompage,
       au moins un élément déplaceur (22) est entraíné par un arbre rotatif (21) de la pompe (4), lequel pompe, pendant un processus de compression, du fluide de pompage dans un volume (5,20), et
       la position d'une valeur extrême de pression dans le volume (20,5) est déterminée pendant le processus de pompage,
       caractérisé en ce que
       l'amenée de fluide de pompage à la pompe (4) est commandée en fonction de la position temporelle et/ou de la position angulaire de la valeur extrême de pression.
  2. Procédé selon la revendication 1, caractérisé en ce que les positions temporelles et/ou les positions angulaires des valeurs extrêmes de pression de deux éléments déplaceurs (22) successifs quelconques de la pompe (4) sont déterminées, et
       la quantité de fluide de pompage amenée à la pompe (4) est réglée en fonction de la position angulaire des deux valeurs extrêmes de pression de telle manière que les deux éléments déplaceurs pompent dans le volume (20,5) une quantité de fluide sensiblement identique.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la quantité de fluide de pompage refoulée dans le volume (20,5) par au moins un élément déplaceur (22) est déterminée en fonction de la position temporelle et/ou de la position angulaire de la valeur extrême de pression.
  4. Procédé permettant de faire fonctionner un système d'injection de carburant avec une pompe (4), dans lequel,
       la pompe (4) est alimentée en fluide de pompage,
       au moins un élément déplaceur (22) est entraíné par un arbre rotatif (21) de la pompe (4), lequel pompe, pendant un processus de compression, du fluide de pompage dans un volume (5,20), et
       la position d'une valeur extrême de pression dans le volume (20,5) est déterminée pendant le processus de pompage,
       caractérisé en ce que
       une pompe de carburant est utilisée comme pompe (4), une soupape injectrice (6) étant connectée au volume réalisé sous forme de conduite (20) et d'accumulateur de carburant (5),
       la quantité de carburant délivrée par la soupape injectrice (6) pendant une période de référence est déterminée,
       la quantité de carburant délivrée est comparée au volume de refoulement, et
       suite à ladite comparaison, une appréciation peut être avancée quant au bon fonctionnement du système d'injection.
  5. Procédé selon la revendication 3 ou 4, caractérisé en ce qu'un tableau est utilisé, dans lequel est enregistré, en fonction de la position angulaire de la valeur extrême de pression, le débit respectif de l'élément déplaceur, et en ce que,
       au moyen des valeurs enregistrées dans le tableau, le débit de l'élément déplaceur (22) est déterminé.
  6. Procédé selon la revendication 3 ou 4, caractérisé en ce que le débit de la pompe (4) est calculé en fonction de la vitesse de rotation de la pompe (4), en fonction de la cylindrée de la pompe (4) par tour d'arbre rotatif (21) et en fonction de la position angulaire de la valeur extrême de pression, un tableau étant utilisé, dans lequel est enregistré le volume déplacé de la pompe (4) en fonction de la position angulaire de la valeur extrême de pression.
EP00121761A 1999-10-05 2000-10-05 Méthode pour déterminer et contrôler le paramètre d'une pompe Expired - Lifetime EP1091120B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19947890 1999-10-05
DE19947890A DE19947890B4 (de) 1999-10-05 1999-10-05 Verfahren zum Betreiben einer Pumpe in einer Kraftstoffeinspritzanlage

Publications (3)

Publication Number Publication Date
EP1091120A2 EP1091120A2 (fr) 2001-04-11
EP1091120A3 EP1091120A3 (fr) 2002-07-03
EP1091120B1 true EP1091120B1 (fr) 2005-02-16

Family

ID=7924524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00121761A Expired - Lifetime EP1091120B1 (fr) 1999-10-05 2000-10-05 Méthode pour déterminer et contrôler le paramètre d'une pompe

Country Status (2)

Country Link
EP (1) EP1091120B1 (fr)
DE (2) DE19947890B4 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015618A1 (de) * 2004-03-30 2005-10-20 Zexel Valeo Compressor Europe Hubraumvariabler Verdichter sowie Verfahren zur Regelung des Kolbenhubs in einem solchen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506043B1 (fr) * 1969-05-19 1975-03-10
GB2195474B (en) * 1986-09-17 1991-01-23 Philips Electronic Associated Liquid chromatograph
US5197438A (en) * 1987-09-16 1993-03-30 Nippondenso Co., Ltd. Variable discharge high pressure pump
DE3935325C1 (fr) * 1989-10-24 1991-05-23 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
JP3033214B2 (ja) * 1991-02-27 2000-04-17 株式会社デンソー 複数の燃料圧送手段による蓄圧式燃料供給方法及び装置と、複数の流体圧送手段を有する機器における異常判断装置
SE9600748D0 (sv) * 1996-02-27 1996-02-27 Pharmacia Biotech Ab Pump

Also Published As

Publication number Publication date
DE50009538D1 (de) 2005-03-24
EP1091120A3 (fr) 2002-07-03
DE19947890A1 (de) 2001-04-19
DE19947890B4 (de) 2005-10-27
EP1091120A2 (fr) 2001-04-11

Similar Documents

Publication Publication Date Title
DE102008042412B4 (de) Steuergerät für ein Druckspeicherkraftstoffeinspritzsystem
DE60226091T2 (de) Kraftstoffversorgungssystem
DE102004053124B4 (de) Ventilöffnungsgradsteuerungssystem und Common-Rail-Kraftstoffeinspritzsystem
DE102012105818B4 (de) Hochdruckpumpe und Verfahren zum Betrieb einer Hochdruckpumpe
EP1568874B1 (fr) Procédé et système de commande de débit volumétrique dans un système d'injection de carburant d' un moteur à combustion interne
DE19801355B4 (de) Hochdruckpumpe zur Kraftstoffversorgung bei Kraftstoffeinspritzsystemen von Brennkraftmaschinen
EP1556609B1 (fr) Procede pour faire fonctionner un systeme d'injection de carburant a rampe commune pour moteurs a combustion
DE102008000772B4 (de) Common-Rail-Kraftstoffeinspritzvorrichtung und Verfahren zum Kompensieren einer Pumpkennlinie einer Hochdruckpumpe
DE69817105T2 (de) Einspritzsteuervorrichtung für Verbrennungsmotoren
DE10030364A1 (de) Kraftstoffeinspritzsystem
DE102006000350A1 (de) Kraftstoffeinspritzsystem, das einen anormalen Druck am Einlass einer Kraftstoffpumpe überwacht
EP1283950B1 (fr) Procede pour determiner la position d'un piston sur une pompe haute pression monocylindrique d'un systeme doseur de carburant dans un moteur a combustion interne a injection directe
CN105317574A (zh) 调整直接喷射燃料泵的泵体积命令
EP1741912A2 (fr) Méthode et dispositif de commande d'un système d'injection de carburant pour un moteur à combustion interne d'un véhicule automobile
DE602004002105T2 (de) Hochdruckpumpe mit variabler Förderrate für ein Brennstoffeinspritzsystem
DE10034913A1 (de) Brennstoffzuführvorrichtung für variable Förderung
EP1273783B1 (fr) Procédé de fonctionnement d'un moteur à combustion interne
EP1357283B1 (fr) Dispositif d'injection de carburant pour un moteur à combustion interne
DE602004005356T2 (de) Speichereinspritzsystem für eine Brennkraftmaschine
DE102011004378B4 (de) Verfahren zur Funktionskontrolle eines Speichereinspritzsystems
DE19908678C5 (de) Steuerung einer Kraftstoff direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs insbesondere im Startbetrieb
DE102007000712B4 (de) Kraftstoffeinspritz-Steuervorrichtung
EP1091120B1 (fr) Méthode pour déterminer et contrôler le paramètre d'une pompe
DE102012223645B3 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems und Kraftstoffeinspritzsystem
EP1109999B1 (fr) Procede permettant la montee rapide de la pression de carburant dans un accumulateur de carburant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 04B 11/00 A, 7F 04B 49/06 B, 7F 04B 49/22 B

17P Request for examination filed

Effective date: 20020603

AKX Designation fees paid

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20040302

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009538

Country of ref document: DE

Date of ref document: 20050324

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051025

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051219

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071005