EP1088188A1 - Procede pour realiser un support de flammes - Google Patents

Procede pour realiser un support de flammes

Info

Publication number
EP1088188A1
EP1088188A1 EP00920801A EP00920801A EP1088188A1 EP 1088188 A1 EP1088188 A1 EP 1088188A1 EP 00920801 A EP00920801 A EP 00920801A EP 00920801 A EP00920801 A EP 00920801A EP 1088188 A1 EP1088188 A1 EP 1088188A1
Authority
EP
European Patent Office
Prior art keywords
fibers
mat
fibres
during step
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00920801A
Other languages
German (de)
English (en)
Other versions
EP1088188B1 (fr
Inventor
André Walder
William Guerin
Valérie Bosso
Daniel Confrere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Office National dEtudes et de Recherches Aerospatiales ONERA
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National dEtudes et de Recherches Aerospatiales ONERA, Gaz de France SA filed Critical Office National dEtudes et de Recherches Aerospatiales ONERA
Publication of EP1088188A1 publication Critical patent/EP1088188A1/fr
Application granted granted Critical
Publication of EP1088188B1 publication Critical patent/EP1088188B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/105Porous plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/20Burner material specifications metallic
    • F23D2212/201Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2213/00Burner manufacture specifications

Definitions

  • the field of the invention is that of flame supports for burners, in particular premix burners, operating on gas.
  • Such supports where we seek to stabilize the flames produced, so as to promote their development.
  • Other expressions also designate these supports, such as "flame attachment plates”, “combustion grates”, “flame attachment surfaces” or even “combustion head”. They are typically made of various materials, such as ceramic or metal, and are porous or pierced with orifices of suitable size and distribution to allow the passage of gases. In the burner, they are typically arranged between the distribution and combustion chambers which they separate.
  • the object of the invention is to propose a flame support optimized for gas burners and meeting the following requirements: - support which can operate both in "blue" flames (flames typically located outside the support) than in radiant mode (flames returned towards the inside of the support),
  • the solution proposed by the invention to tend towards these requirements consists in that: - during step a), with said metal alloy, having an aluminum content greater than about 4% (or even 5%), a tank which is heated to a temperature greater than or equal to the melting temperature of this alloy, the molten alloy is brought into contact with a surface of a moving extraction means so that a quantity of liquid metal adheres to its surface to be extracted from the reservoir and the quantity of extracted metal is allowed to cool and solidify on the surface of the extraction means, then in air or in a neutral gas, after it has left this surface under the effect of a separation force induced by the movement of said extraction means, - during step b), the disjoint (individualized) fibers obtained during step a) and they are compressed there substantially iformally to form said agglomerated mat, so that the porosity in the mat is substantially uniform, - and, during step c), without exerting any significant pressure greater than that exerted during step b),
  • the mat of agglomerated fibers is connected to electrodes and to a capacitor
  • the fibers are brought to their contact points at a temperature greater than or equal to their melting temperature, to cause the fibers to be welded exclusively to one another, under high voltage ( or at least about 1000 volts), so that the porosity in the mat of welded fibers is substantially uniform and substantially equal to that of step b).
  • step a efficient metallic fibers are obtained and this performance (in particular thermal and mechanical) is maintained until the final flame support is obtained, without the compression step or the step of intimate mechanical bonding of the fibers between them alters these performances,
  • welding relates specifically to welding exclusively between the fibers, at least at their melting temperature, which is entirely different from sintering ("sintering"), the welding concerned being in besides specifically welding "under capacitor discharge” quite different from welding obtained with a transformer welder with a much lower voltage (a few tens to a few hundred volts), inappropriate in this case given the mechanical and thermal resistance characteristics sought, as well as performance requirements during the operation of the burner .
  • the welding will be carried out in the invention at a voltage of at least 1000 V (or typically several thousand, or even ten (s) of thousands of volts), with an intensity of at least 1000 A (which may exceed 10,000 amps) and this for a period of the order of at 20 micro seconds.
  • the fibers obtained during step a) will advantageously be fibers elongated in one direction and having in section a shape of lunula (or lenticular, or "crescent "), with therefore internally (at the place of their concave face) a hollow channel.
  • the outer cord of these fibers will advantageously be between 300 and 3000 microns, with an average typically around 800 ⁇ m, and an average height of about 20 to 200 ⁇ m.
  • the length of the fibers will advantageously be between approximately 0.7 cm and 15 cm, and preferably greater than approximately 1 cm. In terms of porosity of the flame support, this will advantageously be between approximately 60% and 95%, preferably with a substantially isotropic distribution of the fibers in the support, which may be used both on an atmospheric burner and on a supply air.
  • the "obtaining means” will preferably comprise a wheel whose surface will be provided with regularly spaced grooves (or teeth) and each provided with a fine edge, the wheel will be rotated and the edge of each groove will be flush with the molten metal so that each groove will be able to extract a quantity of metallic alloy substantially equivalent to that necessary for the formation of a metallic fiber, once the metal has cooled and solidified.
  • the compression / welding conditions will be different: if the porosity is between approximately 60 and 80 to 85%, then compression will take place in the matrix of molding, but welding can be done outside the mold (the walls of the welding machine will be electrically insulating, only the electrodes being electrically conductive). The heating temperature at the points of contact between the fibers may reach or even exceed 1450 ° C.
  • both the compression and the welding will take place in the molding die, always with an electrically non-conductive wall and with a temperature comparable to that indicated above.
  • FIG. 1 schematically shows a principle for obtaining metallic fibers by "melt overflow” (overflow of the metal alloy bath),
  • FIG. 2 is an enlarged detail view of zone II of FIG. 1,
  • FIG. 3 is a very enlarged view in section of a "crescent" shape characteristic of a fiber obtained by the technique illustrated in FIG. 1,
  • FIG. 4 diagrammatically shows a fiber compression mold to obtain a mat
  • FIG. 5 schematically shows a system for welding this mat by capacitor discharge
  • FIG. 6 is a sectional view of a flame support plate with variable porosity
  • FIG. 7 and 8 are two alternative embodiments of the plate of Figure 6
  • FIG. 9 is a sectional view of a burner equipped with a flame support according to the invention.
  • a stainless steel with a high aluminum content about 7% of its constitution
  • the technique used to produce the fibers 10 generally uses a reservoir filled with a metal alloy (here a refractory aluminoforming stainless steel) which is brought to a temperature greater than or equal to its melting temperature so that 'it becomes liquid.
  • a moving moving extraction means is then brought into contact with this metal so that this movement, which can be a rotation or a translation, extracts a part of molten metal which adheres to a generally very fine peripheral surface. of the extraction means.
  • the metal cools on the element then is ejected from its surface by a force induced by its movement (centrifugal force in the case of a rotational movement) to solidify very quickly in the air (cooling of several tens of thousands of degrees per second) or in a neutral gas (argon for example) so as to form a filament of a certain length.
  • the extraction means is a wheel rotated along an axis and provided with a discontinuous contact surface, for example in the form of grooves or regularly spaced teeth.
  • melt overflow the technique known as "melt overflow" is preferred.
  • a reservoir 3 is filled with the metal alloy 5 which must constitute the fibers and it is heated to obtain a bath of molten metal.
  • This bath is slightly and constantly overflowed and a grooved wheel 7 is placed flush with its projecting wall so that by rotating the wheel at high speed, a certain quantity of liquid metallic material is extracted by adhesion of said material with one of several grooves distributed over the periphery of the wheel, such as 7a for one of them (see FIG. 2), when the latter comes into contact with the molten alloy.
  • melt extraction a wheel provided with grooves (or teeth) is rotated above the heated tank always containing the molten alloy bath.
  • the wheel is slightly soaked in this bath and it is rotated so that a certain quantity of material adheres to each groove (or tooth) and is extracted from the bath to form a meniscus on this groove, then begins to solidify by cooling on the wheel during its rotation before being ejected by centrifugation in air (or in a neutral gas such as argon) where it finishes cooling to form the final metallic fiber.
  • a mat is formed in a mold (or stamping press) 100 shown in FIG. 4.
  • the fibers are placed in the cavity 112 of this matrix and it is applied against these fibers a significant compressive force F using a movable punch 114 so as to produce a mat of compacted fibers 115 (see FIG. 5) of the desired shape.
  • This shape can be parallelepiped, circular, even conical or annular, ... and correspond to the final shape of the flame support.
  • the degree of porosity reached at the end of this compression will be that of the final support (60 to 95%).
  • the fibers 10 may have been ground or cut (especially if they are several centimeters to tens of centimeters in length) so that they are more easily distributed in the cavity 112.
  • the compressed mat 115 is less than about 85% (to within a few percent), then the step of consolidation of this mat by welding will be carried out outside the mold, as illustrated in FIG. 5 In this case, the mat 115 is placed in the interior space
  • This machine the internal space 116 of which is adapted to the shape and dimensions of the mat (on which no additional mechanical compression force must be applied), comprises side walls electrically insulating 118 and two electrodes 119a, 119b, between which the mat 115 is placed and which define the space 116 with the side walls 118.
  • the two electrodes 119a, 119b are connected to the terminals of a capacitor 120, with interposition on the circuit of a switch 121.
  • the reference 122 represents the ground.
  • the two electrodes are in electrical contact with the metallic fibers of the mat, so that the closing of the switch 121 causes the capacitor 120 to discharge, which, with the other elements in question, has been dimensioned so that a voltage of several thousands, or even tens of thousands of volts, and an intensity typically of a few thousand amps to a few tens of thousands of amps depending on the part to be produced, this for a period of the order of one to a few tens of micro-seconds without comparison with the durations typically greater than the second and the voltages ( of the order of a few tens of volts) of the welds by transformer, well known, but which are not suitable in this case taking into account the characteristics of the fibers and the structure to be obtained.
  • such welding by capacitor discharge makes it possible to be assured that the vast majority (preferably more than 90%) of the fibers is welded at at least two contact points, which guarantees reliability over time and a Safe intrinsic mechanical strength of the flame support.
  • the conditions of this welding (which is not sintering, since the melting temperature of the fibers between them is locally reached, although the general temperature of the mat is significantly lower than 100 °, such as 50 to 60 ° C) allows the use of a welding device 117 which does not need to withstand high temperatures, therefore of a lower cost (the walls 118 may be made of plastic).
  • the advantage of the mold 100 is that it makes it possible to directly obtain the final shape of the support (solid cylindrical, ring, annular cylinder, etc.), with a fixed porosity, or even its final mechanical cohesion if the interfiber welding is performs in the mold.
  • the process for producing the fibers makes it possible to produce fibers of variable composition, it is entirely possible to produce a plate made up of fibers having different compositions, either by mixing said fibers homogeneously, or on the contrary by having a certain type of fiber in one or more zones of the cavity, and another type of fiber in the other zone or zones of said cavity so as to obtain a plate having variable physical characteristics.
  • a plate made up of fibers having different compositions, either by mixing said fibers homogeneously, or on the contrary by having a certain type of fiber in one or more zones of the cavity, and another type of fiber in the other zone or zones of said cavity so as to obtain a plate having variable physical characteristics.
  • a plate it may be advantageous to arrange the fibers which resist at the highest temperatures in the center of the plate, where the flame will be strongest, and use less resistant fibers at the periphery.
  • FIG. 9 illustrates a possible configuration of the FeCrAIX metal alloy attachment plate produced with the method described above and comprising in particular approximately 7% of aluminum.
  • a flame support 1 mounted in a burner of known type, referenced as a whole at 80, such as for example a domestic burner with total premix and blue flame.
  • This burner 80 essentially comprises a distribution chamber 81, which has the general shape of a truncated cone box, of substantially circular section, connected at its narrowest rear face 81a to separate supply lines 83, 84 in combustion air and combustible gas respectively.
  • the acronyms AV and AR make it possible to locate the "front” and “rear” sides of the burner, respectively, with reference to the circulation of the fuel mixture in the burner, as shown schematically by the arrows 87, 87 'and 88.
  • This distribution chamber 81 is separated from a combustion chamber 82, on its front face, by the flame support 1. In this case, this support is in the form of a hollow (annular) cylinder of height H and of thickness E.
  • a solid plate 86 closes the free end of the support 1 frontally.
  • the fuel gas supply line 84 meets the air supply line 83 just upstream of the chamber distribution (in 85).
  • the ignition of the burner is ensured by an electrode 97 suitably insulated and supplied under high voltage by a power cable not shown. The flames develop outside this cylinder, the gas mixture passing through the center of it before leaving.
  • a ring with an inside diameter of 50 mm, an outside diameter of 70 mm and a height of 15 mm was tested.
  • a minimum power of 2 kW i.e. a surface power of 607 kW / m 2
  • a maximum blue flame power of 30 kW i.e. a surface power of 9099 kW / m 2
  • the modulation range is therefore from 2 to 30 kW, ie a ratio of 1 to 15.
  • Emissions of carbon monoxide (CO) are almost zero over the entire operating range.
  • NOx nitrogen oxides
  • they are less than 60 mg / kWh for aeration (factor n) of the order of 30%.
  • the flame support structure can be produced with several porous rings stacked coaxially and separated in pairs by a solid non-porous spacer, or even as a rounded domed or conical plate, or even other shapes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
  • Powder Metallurgy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Catalysts (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Control Of Combustion (AREA)

Description

PROCEDE POUR REALISER UN SUPPORT DE FLAMMES
Le domaine de l'invention est celui des supports de flammes pour brûleurs notamment à prémélange, fonctionnant au gaz. On connaît déjà de tels supports où l'on cherche à stabiliser les flammes produites, de manière à favoriser leur développement. D'autres expressions désignent encore ces supports, telles que "plaques d'accrochage de flammes", "grilles de combustion", "surfaces d'accrochage de flammes" ou encore "tête de combustion". Elles sont typiquement réalisées en matériaux divers, tels que la céramique ou le métal, et sont poreuses ou percées d'orifices de taille et de répartition convenables pour permettre le passage des gaz. Dans le brûleur, elles sont typiquement disposées entre les chambres de répartition et de combustion qu'elles séparent.
A partir de US-A-3 680 183, on connaît en particulier un procédé de fabrication d'un tel support de flammes pour un brûleur, dans lequel procédé : a) on réalise des fibres métalliques disjointes dans un alliage résistant à une température d'au moins 750°C environ et comprenant du fer, du chrome et de l'aluminium, b) on réunit entre elles sous pression ces fibres, en créant ainsi un mat de fibres agglomérées, et c) on porte le mat de fibres à une température suffisante pour assurer une liaison intime entre les fibres du mat, à leurs points de contact. Bien qu'il soit donc utilisable pour un brûleur, l'enseignement de ce brevet antérieur ne concerne pas spécifiquement un brûleur à gaz. Et divers inconvénients sont considérés dans l'invention comme devant être résolus, au vu de l'état de la technique.
Ainsi, le but de l'invention est de proposer un support de flammes optimisé pour les brûleurs à gaz et répondant aux exigences suivantes : - support qui puisse fonctionner tant en flammes "bleues" (flammes typiquement situées à l'extérieur du support) qu'en mode radiant (flammes rentrées vers l'intérieur du support),
- rapidité et simplicité de fabrication du support,
- support fiable dans le temps (en particulier, eu égard aux problèmes d'oxydation, de tenue mécanique, d'émission de polluants et de puissances variables : modulation pouvant atteindre 1 à 10, voire 1 à 30)
- qualité du support obtenu, eu égard en particulier aux caractéristiques mécaniques et d'élasticité, lors de la fabrication,
- prix de revient peu élevé, - souplesse de mise en oeuvre du support permettant l'obtention rapide, aisée et peu onéreuse de formes adaptées aux conditions pratiques d'utilisation.
La solution proposée par l'invention pour tendre vers ces exigences consiste en ce que : - lors de l'étape a), on alimente avec ledit alliage métallique, ayant une teneur en aluminium supérieure à environ 4 % (voire 5 % ), un réservoir que l'on chauffe à une température supérieure ou égale à la température de fusion de cet alliage, on met en contact l'alliage en fusion avec une surface d'un moyen d'extraction en mouvement de telle sorte qu'une quantité de métal liquide adhère à sa surface pour être extraite du réservoir et on laisse la quantité de métal extraite refroidir et se solidifier sur la surface du moyen d'extraction, puis dans l'air ou dans un gaz neutre, après qu'elle ait quitté cette surface sous l'effet d'une force de séparation induite par le mouvement dudit moyen d'extraction, - lors de l'étape b), on dispose (à sec) dans une matrice de moulage les fibres disjointes(individualisées)obtenues lors de l'étape a) et on les y comprime sensiblement uniformément pour former ledit mat aggloméré, de telle sorte que la porosité dans le mat soit sensiblement uniforme, - et, lors de l'étape c), sans exercer de pression notablement supérieure à celle exercée lors de l'étape b),
. on relie le mat de fibres agglomérées à des électrodes et à un condensateur,
. et, par l'intermédiaire de ces électrodes et par décharge du condensateur, on porte les fibres à leurs points de contact à une température supérieure ou égale à leur température de fusion, pour provoquer un soudage des fibres exclusivement entre elles, sous haute tension (soit au moins environ 1000 Volts) , de telle sorte que la porosité dans le mat de fibres soudées soit sensiblement uniforme et sensiblement égale à celle de l'étape b).
Avec un tel procédé :
- on limite les étapes de fabrication (en particulier, seule une étape "à sec" est nécessaire pour créer le mat de fibres comprimées, à partir des fibres métalliques disjointes), - on obtient un mat performant thermiquement et mécaniquement,
- on obtient, lors de l'étape a), des fibres métalliques performantes et on maintient cette performance (en particulier thermique et mécanique) jusqu'à l'obtention du support de flammes final, sans que l'étape de compression ou l'étape de liaison intime mécanique des fibres entre elles altère ces performances,
- on obtient un support de flammes à porosité homogène, favorable à un fonctionnement optimisé du brûleur,
- le support de flammes fabriqué présente une tenue mécanique intrinsèque.
On notera également que le terme déjà employé "soudage" concerne spécifiquement un soudage exclusivement entre les fibres, au minimum à leur température de fusion, ce qui est tout à fait différent d'un frittage ("sintering"), le soudage concerné étant en outre spécifiquement un soudage "sous décharge de condensateur" tout à fait différent d'un soudage obtenu avec une machine à souder à transformateur à beaucoup plus basse tension (quelques dizaines à quelques centaines de Volts), inapproprié en l'espèce compte tenu des caractéristiques de tenue mécanique et thermique recherchées, ainsi que des exigences de performance lors du fonctionnement du brûleur.
A cet égard, le soudage s'effectuera dans l'invention sous une tension d'au moins 1000 V (ou typiquement plusieurs milliers, voire dizaine(s) de milliers de volts), avec une intensité de 1000 A au moins (pouvant dépasser 10000 ampères) et ceci pendant une durée de l'ordre de à 20 micro secondes.
A noter également qu'une caractéristique complémentaire de l'invention conseille, lors de l'étape a), de réaliser des fibres métalliques contenant avantageusement entre 5,5 et 8 % d'aluminium, en poids.
Pour un effet favorable sur l'écoulement du fluide dans le support de flammes, les fibres obtenues lors de l'étape a) seront avantageusement des fibres allongées dans une direction et ayant en section une forme de lunule (ou lenticulaire, ou "en croissant"), avec donc intérieurement (à l'endroit de leur face concave) un canal en creux.
En section, la corde extérieure de ces fibres sera avantageusement comprise entre 300 et 3000 microns, avec une moyenne typiquement aux environs de 800 μm, et une hauteur moyenne d'environ 20 à 200 μm. La longueur des fibres sera avantageusement comprise entre environ 0,7 cm et 15 cm, et de préférence, supérieure à environ 1 cm. En termes de porosité du support de flammes, celle-ci sera avantageusement comprise entre environ 60 % et 95 %, de préférence avec une répartition sensiblement isotropique des fibres dans le support, lequel pourra être utilisé tant sur un brûleur atmosphérique qu'un brûleur à air soufflé.
Pour obtenir des fibres métalliques telles que présentées ci-avant, le "moyen d'obtention" comprendra de préférence une roue dont la surface sera pourvue de rainures (ou bien de dents) régulièrement espacées et chacune munie d'une fine arête, on fera tourner la roue et on fera affleurer l'arête de chaque rainure avec le métal en fusion de telle sorte que chaque rainure pourra extraire une quantité d'alliage métallique sensiblement équivalente à celle nécessaire à la formation d'une fibre métallique, une fois le métal refroidi et solidifié.
On notera également qu'en fonction de la porosité du support de flammes à obtenir, les conditions de compression/ soudage seront différentes : si la porosité est comprise entre environ 60 et 80 à 85 %, alors la compression s'effectuera dans la matrice de moulage, mais le soudage pourra s'effectuer hors moule (les parois de la machine à souder seront électriquement isolantes, seules les électrodes étant électriquement conductrices). La température de chauffage aux points de contact entre les fibres pourra atteindre, voire dépasser 1450°C.
Pour une porosité supérieure (environ 85 à 95 % ), tant la compression que le soudage s'effectueront dans la matrice de moulage, toujours à paroi non conductrice électriquement et avec une température comparable à celle indiquée ci-avant.
L'invention et sa mise en oeuvre apparaîtront encore plus clairement à l'aide de la description qui va suivre, faite en référence aux dessins dans lesquels :
- la figure 1 montre schématiquement un principe d'obtention des fibres métalliques par "melt overflow" (débordement du bain d'alliage métallique),
- la figure 2 est une vue de détail agrandie de la zone II de la figure 1,
- la figure 3 est une vue très agrandie en coupe d'une forme "en croissant" caractéristique d'une fibre obtenue par la technique illustrée sur la figure 1,
- la figure 4 présente schématiquement un moule de compression des fibres pour obtenir un mat, - la figure 5 présente schématiquement un système de soudage de ce mat par décharge de condensateur,
- la figure 6 est une vue en coupe d'une plaque support de flammes à porosité variable, - les figures 7 et 8 sont deux variantes de réalisation de la plaque de la figure 6,
- et la figure 9 est une vue en coupe d'un brûleur équipé d'un support de flammes conforme à l'invention.
Les figures 6 à 8 représentent une plaque d'accrochage 1 de forme parallélépipèdique constituée d'une pluralité de fines fibres 10 en alliage métallique FeCrAIX (avec X = Yttrium ou une terre rare ou un mélange de terres rares telles que cérium ou erbium, voire du "mischmetall"), par exemple un acier inoxydable à forte teneur en aluminium (environ 7% de sa constitution), les fibres étant comprimées de façon à donner à la plaque sa forme définitive.
La technique utilisée pour réaliser les fibres 10 fait appel de façon générale à un réservoir rempli d'un alliage métallique (ici un acier inoxydable réfractaire aluminoformeur) que l'on porte à une température supérieure ou égale à sa température de fusion de telle sorte qu'il devienne liquide. Un moyen d'extraction mobile en mouvement est alors mis en contact avec ce métal de telle sorte que ce mouvement, qui peut être une rotation ou une translation, extrait une partie de métal en fusion qui vient adhérer à une surface périphérique en général très fine du moyen d'extraction. Par la suite, le métal refroidit sur l'élément puis est éjecté de sa surface par une force induite par son mouvement (force centrifuge dans le cas d'un mouvement de rotation) pour se solidifier très rapidement dans l'air (refroidissement de plusieurs dizaines de milliers de degrés par seconde) ou dans un gaz neutre (argon par exemple) de façon à former un filament d'une certaine longueur. De préférence, et comme cela est décrit ci- après, le moyen d'extraction est une roue mise en rotation selon un axe et munie d'une surface de contact discontinue, par exemple sous la forme de rainures ou de dents régulièrement espacées.
Pour satisfaire au mieux les consignes énoncées en début de description, on privilégie la technique dite du "melt overflow". Selon cette technique (voir figure 1), on remplit un réservoir 3 de l'alliage métallique 5 devant constituer les fibres et on le chauffe pour obtenir un bain de métal en fusion. On fait déborder légèrement et constamment ce bain et on place une roue rainurée 7 au ras de sa paroi débordante de telle sorte qu'en faisant tourner la roue à vitesse élevée, on extrait une certaine quantité de matière métallique liquide par adhésion de ladite matière avec une parmi plusieurs rainures réparties sur la périphérie de la roue, telles que 7a pour l'une d'entre elles (voir figure 2), lorsque celle-ci entre en contact avec l'alliage en fusion. Cette quantité de matière se solidifie alors en refroidissant sur la roue pour former une fibre 10 à section en forme de croissant (ou lenticulaire, comme déjà indiqué), voir figure 3, avec en particulier une surface intérieure 10a concave, favorable à l'écoulement du fluide (gaz) dans le support de flammes. Ensuite, la "fibre" est éjectée par centrifugation dans l'air ou dans un gaz neutre de protection où elle finit de se refroidir pour constituer donc définitivement une fibre métallique à section "en croissant", de longueur correspondant à celle de la rainure dans laquelle elle s'est formée.
Bien qu'elle soit moins performante, on pourrait également utiliser la technique dite du "melt extraction". Selon cette technique, on fait tourner une roue munie de rainures (ou dents) au-dessus du réservoir chauffé contenant toujours le bain d'alliage en fusion. On fait tremper légèrement la roue dans ce bain et on la met en rotation de telle sorte qu'une certaine quantité de matière adhère à chaque rainure (ou dent) et soit extraite du bain pour former un ménisque sur cette rainure, puis commence à se solidifier en refroidissant sur la roue pendant sa rotation avant d'être éjectée par centrifugation dans l'air (ou dans un gaz neutre tel que de l'argon) où elle finit de refroidir pour former la fibre métallique définitive. Une fois les filaments, ou fibres, 10 obtenus, on forme un mat dans un moule (ou presse à emboutir) 100 représenté sur la figure 4. Pour cela, on place les fibres dans la cavité 112 de cette matrice et on vient appliquer contre ces fibres une force de compression F importante à l'aide d'un poinçon mobile 114 de façon à réaliser un mat de fibres compactées 115 (voir figure 5) de la forme voulue. Cette forme peut être parallélépipèdique, circulaire, voire conique ou annulaire, ... et correspondre à la forme définitive du support de flammes. A priori, le degré de porosité atteint à l'issue de cette compression sera celui du support définitif (60 à 95 %). Au préalable, on peut avoir broyé ou coupé les fibres 10 (surtout si elles mesurent plusieurs centimètres à dizaines de centimètres de longueur) de telle sorte qu'elles se répartissent plus facilement dans la cavité 112.
Typiquement, on les tamise avant de les placer dans cette cavité de façon à les calibrer en fonction du type de support que l'on veut obtenir. Si le degré de porosité du mat comprimé 115 est inférieur à environ 85 % (à quelques pour-cent près), alors l'étape de consolidation de ce mat par soudage va s'effectuer en dehors du moule, comme illustré sur la figure 5. Dans cette hypothèse, le mat 115 est placé dans l'espace intérieur
116 d'une machine à souder par décharge du condensateur 117. Cette machine dont l'espace intérieur 116 est adapté à la forme et aux dimensions du mat (sur lequel aucun effort supplémentaire de compression mécanique ne doit être appliqué), comprend des parois latérales électriquement isolantes 118 et deux électrodes 119a, 119b, entre lesquelles est placé le mat 115 et qui définissent l'espace 116 avec les parois latérales 118. Les deux électrodes 119a, 119b, sont reliées aux bornes d'un condensateur 120, avec interposition sur le circuit d'un interrupteur 121. Le repère 122 représente la masse. Les deux électrodes sont en contact électrique avec les fibres métalliques du mat, de telle sorte que la fermeture de l'interrupteur 121 provoque la décharge du condensateur 120 qui, avec les autres éléments en cause, a été dimensionnée pour que l'on puisse délivrer aux points de contact entre les fibres une tension de plusieurs milliers, voire dizaines de milliers de volts, et une intensité typiquement de quelques milliers d'ampères à quelques dizaines de milliers d'ampères selon la pièce à réaliser, ceci pendant une durée de l'ordre de une à quelques dizaines de micro-secondes sans comparaison avec les durées typiquement supérieures à la seconde et les tensions (de l'ordre de quelques dizaines de volts) des soudages par transformateur, bien connu, mais qui ne conviennent pas en l'espèce compte tenu des caractéristiques des fibres et de la structure à obtenir. En particulier, un tel soudage par décharge de condensateur permet d'être assuré que la grande majorité (de préférence de plus de 90 %) des fibres est soudée à au moins deux points de contact, ce qui garantit une fiabilité dans le temps et une tenue mécanique intrinsèque sécurisée du support de flammes. En outre, les conditions de ce soudage (qui n'est pas un frittage, puisque la température de fusion des fibres entre elles est localement atteinte, bien que la température générale du mat soit nettement inférieure à 100°, telle que 50 à 60°C) permet d'utiliser un appareil de soudage 117 qui n'a pas besoin de tenir aux hautes températures, donc d'un coût moindre (les parois 118 peuvent être en plastique).
Dans l'hypothèse d'une compression des fibres dans la cavité 112 telle que la porosité du mat obtenue soit supérieure à environ 85 %, alors le soudage des fibres entre elles devrait s'effectuer a priori à l'intérieur même du moule. Pour cela, le système à deux électrodes se faisant face de la figure 4 serait appliqué au moule 100 de la figure 4, et un circuit à condensateur 120 serait branché en conséquence.
En outre, avec ce procédé, on obtient des fibres dans des alliages comportant donc de fortes proportions d'aluminium sans que ces fibres cassent ou que leur transformation soit exagérément coûteuse. Avec la technique utilisée, il est encore possible d'obtenir des plaques à porosité variable. Pour cela, on peut augmenter la pression dans certaines zones de la cavité de l'outil de compression par rapport à d'autres zones ou bien augmenter la quantité de fibres dans ces même zones où l'on souhaite avoir une porosité plus faible. Une vue en coupe d'une plaque 1 obtenue à l'aide de cette méthode est représentée sur la figure 6.
On peut aussi réaliser des fibres 10 et 12 de diamètres différents et les disposer d'une certaine façon dans la matrice, par exemple avec les fibres les plus fines dans la (les) zone(s) ou l'on souhaite une porosité plus faible. Une vue en coupe d'une plaque 1 circulaire obtenue à l'aide de cette méthode est représentée sur la figure 7 sur laquelle les fibres les plus grosses en diamètre sont sensiblement au centre de la plaque.
L'avantage du moule 100 est qu'il permet d'obtenir directement la forme définitive du support (cylindrique plein, anneau, cylindre annulaire, ...), avec une porosité figée, voire sa cohésion mécanique définitive si le soudage interfibres s'effectue dans le moule.
Pour des supports plus grands, on peut toutefois relier entre eux bout à bout plusieurs supports la, lb et le ayant chacun une porosité différente de façon à former une grande plaque plane à porosité variable (figure 8).
Enfin, comme le procédé de réalisation des fibres permet de réaliser des fibres à composition variable, il est tout à fait possible de réaliser une plaque constituée de fibres ayant des compositions différentes, soit en mélangeant lesdites fibres de façon homogène, soit au contraire en disposant un certain type de fibres dans une ou plusieurs zones de la cavité, et un autre type de fibres dans la ou les autres zones de ladite cavité de façon à obtenir une plaque ayant des caractéristiques physiques variables. Ainsi, pour une plaque circulaire, il pourra être intéressant de disposer les fibres qui résistent aux plus hautes températures au centre de la plaque, là où la flamme sera la plus forte, et d'utiliser des fibres moins résistantes à la périphérie.
A titre d'exemple, la figure 9 illustre une configuration possible de la plaque d'accrochage en alliage métallique FeCrAIX réalisée avec le procédé décrit ci-avant et comportant en particulier environ 7% d'aluminium.
Sur cette figure 9, on voit représenté un support de flammes 1, monté dans un brûleur de type connu, référencé dans son ensemble en 80, comme par exemple un brûleur domestique à prémélange total et à flamme bleue.
Ce brûleur 80 comporte essentiellement une chambre de répartition 81, qui a la forme générale d'un caisson en tronc de cône, à section sensiblement circulaire, connecté au niveau de sa face arrière la plus étroite 81a aux conduites séparées 83, 84 d'alimentation respectivement en air comburant et en gaz combustible. Sur cette figure, les sigles AV et AR permettent de situer les côtés respectivement "avant" et "arrière" du brûleur, en référence à la circulation du mélange combustible dans le brûleur, tel que schématisé par les flèches 87, 87' et 88. Cette chambre de répartition 81 est séparée d'une chambre de combustion 82, sur sa face avant, par le support de flammes 1. En l'espèce, ce support se présente sous la forme d'un cylindre creux (annulaire) de hauteur H et d'épaisseur E. Une plaque pleine 86 ferme frontalement l'extrémité libre du support 1. Comme on peut le voir, la conduite 84 d'alimentation en gaz combustible rencontre le conduit 83 d'alimentation en air juste en amont de la chambre de répartition (en 85). Bien entendu, on prévoit ici d'installer un ventilateur en amont du conduit 83 (alimentation en air sous pression) ou de la chambre de combustion, mais il est possible de prévoir une alimentation "naturelle" en air (brûleur à "air atmosphérique"). Tel qu'illustré, l'allumage du brûleur est assuré par une électrode 97 convenablement isolée et alimentée sous haute tension par un câble d'alimentation non représenté. Les flammes se développent à l'extérieur de ce cylindre, le mélange de gaz passant au centre de celui-ci avant de sortir. A titre d'exemple, un anneau de diamètre intérieur 50 mm, de diamètre extérieur 70 mm et de hauteur 15 mm (surface de chauffe = 3297mm2) a été testé. Dans cette configuration, on obtient en mode radiant une puissance minimale de 2 kW (soit une puissance surfacique de 607 kW/m2) et une puissance maximale en flamme bleue de 30 kW (soit une puissance surfacique de 9099 kW/m2). La gamme de modulation est donc de 2 à 30 kW soit un rapport de 1 à 15. Les émissions de monoxyde de carbone (CO) sont quasiment nulles sur toute la plage de fonctionnement. Pour les oxydes d'azote (NOx), elles sont inférieures à 60 mg/kWh pour des aérations (facteur n) de l'ordre de 30 % .
En variante, la structure support de flammes peut être réalisée avec plusieurs anneaux poreux empilés coaxialement et séparés deux à deux par une entretoise pleine non poreuse, ou encore comme une plaque circulaire bombée ou conique pleine, voire d'autres formes.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un support de flammes, pour un brûleur fonctionnant au gaz, dans lequel procédé : a) on réalise des fibres (10) métalliques disjointes dans un alliage résistant à une température d'au moins 750°C environ et comprenant du fer, du chrome et de l'aluminium, b) on réunit entre elles sous pression ces fibres, en créant ainsi un mat (115) de fibres agglomérées, et c) on porte le mat de fibres à une température suffisante pour assurer une liaison intime entre les fibres du mat, à leurs points de contact, caractérisé en ce que :
- lors de l'étape a), on alimente avec ledit alliage métallique, ayant une teneur en aluminium supérieure à environ 4 %, un réservoir (3) que l'on chauffe à une température supérieure ou égale à la température de fusion de cet alliage, on met en contact l'alliage en fusion avec une surface d'un moyen d'extraction (7) en mouvement de telle sorte qu'une quantité de métal liquide (5) adhère à sa surface (7a) pour être extraite du réservoir et on laisse la quantité de métal extraite refroidir et se solidifier sur la surface du moyen d'extraction, puis dans l'air ou dans un gaz neutre, après qu'elle ait quitté cette surface sous l'effet d'une force de séparation induite par le mouvement dudit moyen d'extraction,
- lors de l'étape b), on dispose dans une matrice (100) de moulage les fibres (10) disjointes obtenues lors de l'étape a) et on les y comprime sensiblement uniformément pour former ledit mat aggloméré (115) , de telle sorte que la porosité dans le mat soit sensiblement uniforme,
- et, lors de l'étape c), sans exercer de pression notablement supérieure à celle exercée lors de l'étape b),
. on relie le mat de fibres agglomérées à des électrodes (119a, 119b) et à un condensateur (120),
. et, par l'intermédiaire de ces électrodes et par décharge du condensateur, on porte les fibres (10) à leurs points de contact à une température supérieure ou égale à leur température de fusion, pour provoquer un soudage des fibres exclusivement entre elles, sous haute tension, de telle sorte que la porosité dans le mat de fibres soudées (1) soit sensiblement uniforme et sensiblement égale à celle de l'étape b).
2. Procédé selon la revendication 1, caractérisé en ce que lors de l'étape a), on réalise des fibres (10) ayant une teneur en aluminium comprise entre 5,5 et 8 % .
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que lors de l'étape a), on réalise des fibres ayant en section une forme de croissant.
EP00920801A 1999-04-16 2000-04-14 Procede pour realiser un support de flammes Expired - Lifetime EP1088188B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9904804 1999-04-16
FR9904804A FR2792394B1 (fr) 1999-04-16 1999-04-16 Procede pour realiser une surface d'accrochage de flammes
PCT/FR2000/000973 WO2000063617A1 (fr) 1999-04-16 2000-04-14 Procede pour realiser un support de flammes

Publications (2)

Publication Number Publication Date
EP1088188A1 true EP1088188A1 (fr) 2001-04-04
EP1088188B1 EP1088188B1 (fr) 2003-08-20

Family

ID=9544498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00920801A Expired - Lifetime EP1088188B1 (fr) 1999-04-16 2000-04-14 Procede pour realiser un support de flammes

Country Status (7)

Country Link
US (1) US6410878B1 (fr)
EP (1) EP1088188B1 (fr)
AT (1) ATE247799T1 (fr)
CA (1) CA2334985C (fr)
DE (1) DE60004617T2 (fr)
FR (1) FR2792394B1 (fr)
WO (1) WO2000063617A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233340B4 (de) * 2002-07-23 2004-07-15 Rational Ag Porenbrenner sowie Gargerät, enthaltend mindestens einen Porenbrenner
DE10250716C1 (de) * 2002-10-31 2003-12-24 Ulrich Mueller Verfahren zur Herstellung eines porösen, plattenförmigen Metallverbundes
US7857616B2 (en) * 2004-04-06 2010-12-28 Tiax Llc Burner apparatus
FR2903278B1 (fr) * 2006-07-07 2008-09-26 Gen Biscuit Sa Four tunnel notamment pour biscuiterie.
US8186566B2 (en) * 2007-03-10 2012-05-29 Nexgeneering Technology Llc Method for cohesively bonding metal to a non-metallic substrate
DE102009003363B4 (de) * 2009-01-20 2013-01-10 Webasto Ag Heizgerät-Faserverdampfer
EP2510281B1 (fr) * 2009-12-11 2017-10-25 Bekaert Combustion Technology B.V. Brûleur pourvu d'une plateforme de brûleur à faible porosité
IT1402900B1 (it) * 2010-11-24 2013-09-27 Worgas Bruciatori Srl Bruciatore ad elevata stabilita'
WO2014067744A1 (fr) * 2012-10-31 2014-05-08 Bekaert Combustion Technology B.V. Brûleur à prémélange de gaz
EP2951338B1 (fr) * 2013-02-04 2016-09-28 NV Bekaert SA Tube de refroidissement pour extrusion de fibres polymères
EP3017099B1 (fr) 2013-07-02 2019-05-22 Bekaert Combustion Technology B.V. Brûleur de gaz pré-mélangé
JP2016145550A (ja) * 2015-02-09 2016-08-12 愛三工業株式会社 燃料供給装置及び燃料供給ユニット
DE102020117692B4 (de) 2020-07-06 2023-06-07 Viessmann Climate Solutions Se Gasbrennervorrichtung und Verfahren zum Betrieb einer Gasbrennervorrichtung
CN113245684A (zh) * 2021-05-28 2021-08-13 中国石油化工股份有限公司 金属微纤材料及其定型方法、制备方法和应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150711A (en) * 1960-12-23 1964-09-29 Acme Steel Co Gas burner
US3113202A (en) * 1961-08-30 1963-12-03 Armour Res Found Resistance welding method
US3340052A (en) * 1961-12-26 1967-09-05 Inoue Kiyoshi Method of electrically sintering discrete bodies
DE1225026B (de) * 1963-04-10 1966-09-15 Wmf Wuerttemberg Metallwaren Verfahren zum Verbinden von aus Metallfasern hergestellten Werkstuecken
US3437783A (en) * 1966-07-26 1969-04-08 Jerome H Lemelson Matte structure and method of producing same
US3680183A (en) * 1971-03-18 1972-08-01 David R Johnson Machines for making metal fibril compacts
US3861450A (en) * 1973-04-06 1975-01-21 Battelle Development Corp An improved method of formation of filament directly from molten material
US3896203A (en) 1973-04-23 1975-07-22 Battelle Development Corp Centrifugal method of forming filaments from an unconfined source of molten material
US4788406A (en) * 1987-01-23 1988-11-29 Battelle Memorial Institute Microattachment of optical fibers
EP0329863B1 (fr) * 1987-12-29 1992-07-15 N.V. Bekaert S.A. Compression d'un tissu métallique
ATE174681T1 (de) * 1992-03-03 1999-01-15 Bekaert Sa Nv Poröse metallfiber-platte
BE1006452A3 (nl) * 1992-12-18 1994-08-30 Bekaert Sa Nv Poreus gesinterd laminaat omvattende metaalvezels.
FR2708083B1 (fr) 1993-07-19 1995-09-01 Gaz De France Plaque d'accrochage de flamme pour brûleur à gaz, son procédé de fabrication et brûleur comprenant une telle plaque.
FR2716130B1 (fr) * 1994-02-14 1996-04-05 Unimetall Sa Procédé et dispositif de coulée continue de fils métalliques de très faible diamètre directement à partir de métal liquide.
BE1011478A3 (nl) * 1997-10-02 1999-10-05 Bekaert Sa Nv Brandermembraan omvattende een vernaald metaalvezelvlies.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0063617A1 *

Also Published As

Publication number Publication date
US6410878B1 (en) 2002-06-25
CA2334985A1 (fr) 2000-10-26
CA2334985C (fr) 2008-02-12
DE60004617T2 (de) 2004-06-17
FR2792394A1 (fr) 2000-10-20
DE60004617D1 (de) 2003-09-25
FR2792394B1 (fr) 2001-07-27
EP1088188B1 (fr) 2003-08-20
ATE247799T1 (de) 2003-09-15
WO2000063617A1 (fr) 2000-10-26

Similar Documents

Publication Publication Date Title
EP1088188B1 (fr) Procede pour realiser un support de flammes
WO1993013871A1 (fr) Buse coaxiale de traitement superficiel sous irradiation laser, avec apport de materiaux sous forme de poudre
EP0604279B1 (fr) Injecteur avec paroi poreuse pour chambre de combustion d'une fusée
EP1649949A1 (fr) Procédé de chauffage d'outillages d'engins de forge et élément de four amovible pour le chauffage de tels outillages
WO2018002166A1 (fr) Generateur de gaz
WO2001078470A1 (fr) Torche a plasma comportant des electrodes separees par un entrefer et allumeur incorporant une telle torche
FR2516597A1 (fr) Dispositif annulaire de joint d'usure et d'etancheite refroidi par l'air pour aubage de roue de turbine a gaz ou de compresseur
BE1013686A3 (fr) Nez de lance de soufflage.
FR2498012A1 (fr) Receptacle de decharge pour lames a vapeur de sodium a haute pression
EP1474636B1 (fr) Bruleur a combustion interne, notamment pour l'etirage de fibres minerales
WO2021160944A1 (fr) Prechambre d'allumage a clapet a sens de combustion inverse
EP3443131B1 (fr) Nez de lance de soufflage
FR2497286A1 (fr) Bruleur destine au rechauffage de l'air d'admission d'un moteur a combustion interne
FR2905918A1 (fr) "generateur pyrotechnique a deux chambres de combustion separees par une tuyere"
FR2729322A1 (fr) Procede de scellement par brasage d'elements a base de carbone et assemblages ainsi obtenus
EP0816036B1 (fr) Procédé et appareil pour ramollir et écraser les bouteilles en matériau thermoplastique
FR2472719A1 (fr) Bruleur a gazeification pour carburant liquide
WO2020240128A1 (fr) Procédé de fabrication additive d'une pièce comprenant une étape de fabrication d'un support mixte
EP3443132B1 (fr) Nez de lance de soufflage
CH631004A5 (fr) Appareil de combustion d'un melange d'air et de combustible.
FR2815808A1 (fr) Echangeur thermique comportant un bloc de fibres metalliques formant resistance electrique et procede pour la fabrication d'un tel echangeur
FR2815673A1 (fr) Systeme modulaire de moteurs-fusees permettant de realiser une famille de moteurs-fusees de poussees differentes
FR2658745A1 (fr) Procede et dispositif de moulage d'un alliage metallique.
FR2567198A1 (fr) Procede de fermeture d'un propulseur a poudre; installation industrielle pour la mise en oeuvre du procede, et propulseur a poudre ferme selon ce procede
FR2525737A1 (fr) Buse a allumage par etincelles pour chalumeau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60004617

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031201

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040120

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

NLS Nl: assignments of ep-patents

Owner name: GAZ DE FRANCE (GDF) SERVICE NATIONAL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: GDF SUEZ

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CJ

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60004617

Country of ref document: DE

Representative=s name: MERTEN & KOLLEGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60004617

Country of ref document: DE

Representative=s name: MERTEN & KOLLEGEN, DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 60004617

Country of ref document: DE

Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AERO, FR

Free format text: FORMER OWNER: GAZ DE FRANCE (G.D.F.) SERVICE , OFFICE NATIONAL D'ETUDES ET DE, , FR

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 60004617

Country of ref document: DE

Owner name: GDF SUEZ S.A., FR

Free format text: FORMER OWNER: GAZ DE FRANCE (G.D.F.) SERVICE , OFFICE NATIONAL D'ETUDES ET DE, , FR

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 60004617

Country of ref document: DE

Owner name: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AERO, FR

Free format text: FORMER OWNERS: GAZ DE FRANCE (G.D.F.) SERVICE NATIONAL, PARIS, FR; OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES, O.N.E.R.A., CHATILLON-SOUS-BAGNEUX, HAUTS-DE-SEINE, FR

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 60004617

Country of ref document: DE

Owner name: GDF SUEZ S.A., FR

Free format text: FORMER OWNERS: GAZ DE FRANCE (G.D.F.) SERVICE NATIONAL, PARIS, FR; OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES, O.N.E.R.A., CHATILLON-SOUS-BAGNEUX, HAUTS-DE-SEINE, FR

Effective date: 20111028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120328

Year of fee payment: 13

Ref country code: IT

Payment date: 20120321

Year of fee payment: 13

Ref country code: BE

Payment date: 20120329

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120326

Year of fee payment: 13

Ref country code: NL

Payment date: 20120402

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120522

Year of fee payment: 13

BERE Be: lapsed

Owner name: S.A.*GDF SUEZ

Effective date: 20130430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60004617

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130414

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101