EP1084000B1 - Multielement sound probe comprising a composite electrically conducting coating and method for making same - Google Patents

Multielement sound probe comprising a composite electrically conducting coating and method for making same Download PDF

Info

Publication number
EP1084000B1
EP1084000B1 EP99922247A EP99922247A EP1084000B1 EP 1084000 B1 EP1084000 B1 EP 1084000B1 EP 99922247 A EP99922247 A EP 99922247A EP 99922247 A EP99922247 A EP 99922247A EP 1084000 B1 EP1084000 B1 EP 1084000B1
Authority
EP
European Patent Office
Prior art keywords
film
acoustic
piezoelectric
elementary
probe according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99922247A
Other languages
German (de)
French (fr)
Other versions
EP1084000A1 (en
Inventor
Ngoc-Tuan Thomson-CSF NGUYEN
Nicolas Thomson-CSF SERES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1084000A1 publication Critical patent/EP1084000A1/en
Application granted granted Critical
Publication of EP1084000B1 publication Critical patent/EP1084000B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0629Square array

Definitions

  • the field of the invention is that of acoustic transducers can be used in particular in medical or underwater imaging, or in non-destructive testing.
  • an acoustic probe comprises a set of piezoelectric transducers connected to an electrode device control via an interconnection network.
  • These piezoelectric transducers emit waves acoustic which after reflection in a given environment, provide information concerning said environment.
  • probes are composed of many piezoelectric elements which can be excited independently.
  • the method of making such probes has been described by the plaintiff in several documents especially for one-dimensional probes in the European patent 0 190 948 or for two-dimensional probes in the French patent FR-A-2 702 309.
  • This method consists in cutting an assembly made up of acoustic adaptation blades, a piezoelectric ceramic blade, an electrical circuit comprising metal tracks generally located on the surface of an acoustic support known by the Anglo-Saxon term of "Backing”.
  • the cutting thus makes it possible to define transducers that can be excited independently. Indeed, each transducer is connected to an electrical circuit track (polyimide film with metallized tracks or tracks cut from a metal sheet) to allow electrical excitation.
  • the elementary transducers are subcut into several piezoelectric sub-elements, thus mechanically separated but connected at the same electrical point.
  • the sub-cuts are obtained by cutting beyond the metal tracks as illustrated in Figure 1 which shows a view in section of an example of a unidirectional phased array probe.
  • a backing 1 supports an electrical circuit 2 with conductive tracks pi1, elementary transducers ti1, comprising themselves ti1k sub-elements.
  • the width of the pi1 tracks is of the order of 100 ⁇ m, which limits the number of sub-elements Piezoelectric.
  • the cut tracks are fragile and support poor electrical and mechanical stress.
  • the piezoelectric elements also include acoustic adaptation elements with different impedance L1i1k and L2i1k, the L2i1k elements that can be metallized on the underside to allow a mass recovery.
  • Mass recovery can also be achieved by intercalating between the L2i1k blade and the ceramic a metallic thin film or using, in the case of one-dimensional probes, L1i1k and L2i1k slides smaller dimensions than ceramic making it accessible the ground electrode on the ends of the ceramic. In this last case, the mass is recovered by welding or sticking a metallic film on the "exposed" ends of the ceramic.
  • the present invention offers an acoustic probe comprising a film of composite material driver.
  • the invention relates to an acoustic probe comprising elementary piezoelectric transducers and a circuit electric with metal tracks, so as to connect to the at least one metal track to at least one elementary transducer, each elementary transducer consisting of piezoelectric sub-elements mechanically separated and connected to the same track, characterized in that it further comprises a film of conductive composite material located between the electrical circuit and the elementary transducers, the sub-elements piezoelectric of the same elementary transducer being mechanically separated by interstices extending into said movie.
  • the electrical circuit of the acoustic probe according to the invention is affixed to a backing of impedance adjusted to serve acoustic support.
  • the film of conductive composite material can include an organic material of epoxy resin type, which can in particular be charged with conductive metal particles of the type silver, copper, nickel.
  • the steps of cutting and sub-cutting can be done with a saw diamond in one step.
  • the acoustic probe according to the invention includes Tij piezoelectric elementary transducers, connected by means of a film of composite material conducting to tracks metal located on the surface of an electrical circuit located on a backing.
  • These adaptation blades can be of the polymer type loaded with mineral particles whose proportions are adjusted to obtain the desired acoustic properties.
  • these blades are put in shape by molding or machining then assembled by gluing on one of the faces of piezoelectric transducers.
  • each elementary piezoelectric transducer must be connected on one side to ground and on the other side to a positive contact (also called hot spot).
  • a positive contact also called hot spot.
  • the mass is located towards the medium of propagation, i.e. that it must be on the side of the acoustic adaptation elements.
  • the ground electrode can be a metallic layer, its position may depend on the nature of the probe, i.e. if it is a probe unidirectional or bidirectional.
  • the film of conductive composite material can be composed a mixture of epoxy resin and metallic particles (silver, copper, nickel ...) with a charge rate between 50% and 80%, by volume depending on the desired acoustic properties.
  • the film did not influence on the acoustic properties of the probe because its impedance is close to that of the backing and its thickness (of the order of 20 to 100 ⁇ m) remains weak compared to the ultrasonic wavelength generated by the material piezoelectric.
  • the acoustic adaptation blades are bonded to the surface of the layer of piezoelectric material using a epoxy type glue for example.
  • the lower acoustic adaptation blade can be metallized with level of its underside so as to ensure a recovery of mass in periphery of the probe.
  • the assembly of the backing comprising the electrical circuit, of the film conductive composite and the piezoelectric material layer can typically be identical to that previously cited in the case of a unidirectional probe.
  • a ground plan in this type of probe we can proceed as in the process described by the applicant in the French patent application published under No. 2,756,447, or in integrating a ground plane between the transducer elements and the blades acoustic adaptation.
  • the backing / conductive composite film / piezoelectric layer assembly after having carried out the backing / conductive composite film / piezoelectric layer assembly, cuts and sub-cuts to define the elements Tij and Tijk using a diamond saw along two perpendicular axes.
  • the assembly thus formed is covered by a ground electrode conductive M, affixed then glued, it can typically be a sheet metallic or metallized polymer film.
  • this cutting operation can be carried out by laser.
  • the laser used can be, for example, an infrared laser of the CO 2 type or a UV laser of the Excimer type or of the tripled or quadrupled YAG type.

Description

Le domaine de l'invention est celui des transducteurs acoustiques pouvant être utilisés notamment en imagerie médicale ou sous-marine, ou en contrôle non destructif.The field of the invention is that of acoustic transducers can be used in particular in medical or underwater imaging, or in non-destructive testing.

De manière générale, une sonde acoustique comprend un ensemble de transducteurs piézoélectriques reliés à un dispositif d'électrode de commande par l'intermédiaire d'un réseau d'interconnexion.Generally, an acoustic probe comprises a set of piezoelectric transducers connected to an electrode device control via an interconnection network.

Ces transducteurs piézoélectriques émettent des ondes acoustiques qui après réflexion dans un milieu donné, fournissent des informations concernant ledit milieu.These piezoelectric transducers emit waves acoustic which after reflection in a given environment, provide information concerning said environment.

Typiquement, dans le domaine de l'imagerie médicale, les sondes acoustiques sont composées de nombreux éléments piézoélectriques qui peuvent être excités indépendamment. La méthode de réalisation de telles sondes a été décrite par la demanderesse dans plusieurs documents notamment pour les sondes unidimensionnelles dans le brevet européen 0 190 948 ou pour les sondes bidimensionnelles dans le brevet français FR-A-2 702 309. Cette méthode consiste à découper un assemblage constitué de lames d'adaptation acoustique, d'une lame de céramique piézoélectrique, d'un circuit électrique comportant des pistes métalliques situé généralement à la surface d'un support acoustique connu sous le terme anglo-saxon de « backing ». La découpe permet ainsi de définir des transducteurs élémentaires qui peuvent être excités indépendamment. En effet, chaque transducteur est relié à une piste du circuit électrique (film polyimide avec des pistes métallisées ou pistes découpées dans une feuille métallique) pour permettre l'excitation électrique.Typically, in the field of medical imaging, probes are composed of many piezoelectric elements which can be excited independently. The method of making such probes has been described by the plaintiff in several documents especially for one-dimensional probes in the European patent 0 190 948 or for two-dimensional probes in the French patent FR-A-2 702 309. This method consists in cutting an assembly made up of acoustic adaptation blades, a piezoelectric ceramic blade, an electrical circuit comprising metal tracks generally located on the surface of an acoustic support known by the Anglo-Saxon term of "Backing". The cutting thus makes it possible to define transducers that can be excited independently. Indeed, each transducer is connected to an electrical circuit track (polyimide film with metallized tracks or tracks cut from a metal sheet) to allow electrical excitation.

Pour éviter les modes de vibration parasites, notamment le mode transverse, les transducteurs élémentaires sont sous-découpés en plusieurs sous-éléments piézoélectriques, ainsi séparés mécaniquement mais reliés au même point électrique. Les sous-découpes sont obtenues en découpant au-delà des pistes métalliques comme illustré en figure 1 qui montre une vue en coupe d'un exemple de sonde multiéléments unidirectionnelle. Selon cette configuration, un backing 1 supporte un circuit électrique 2 avec des pistes conductrices pi1, des transducteurs élémentaires ti1, comportant eux-mêmes des sous-éléments ti1k. Typiquement, la largeur des pistes pi1 est de l'ordre de 100 µm, ce qui limite le nombre de sous-éléments piézoélectriques. De plus, les pistes découpées sont fragiles et supportent mal les sollicitations électriques et mécaniques.To avoid parasitic vibration modes, especially the mode transverse, the elementary transducers are subcut into several piezoelectric sub-elements, thus mechanically separated but connected at the same electrical point. The sub-cuts are obtained by cutting beyond the metal tracks as illustrated in Figure 1 which shows a view in section of an example of a unidirectional phased array probe. according to this configuration, a backing 1 supports an electrical circuit 2 with conductive tracks pi1, elementary transducers ti1, comprising themselves ti1k sub-elements. Typically, the width of the pi1 tracks is of the order of 100 µm, which limits the number of sub-elements Piezoelectric. In addition, the cut tracks are fragile and support poor electrical and mechanical stress.

Les éléments piézoélectriques comportent également des éléments d'adaptation acoustique d'impédance différents L1i1k et L2i1k, les éléments L2i1k pouvant être métallisés en face inférieure pour permettre une reprise de masse.The piezoelectric elements also include acoustic adaptation elements with different impedance L1i1k and L2i1k, the L2i1k elements that can be metallized on the underside to allow a mass recovery.

La reprise de masse peut être aussi réalisée en intercalant entre la lame L2i1k et la céramique un film mince métallique ou en utilisant, dans le cas des sondes unidimensionnelles, des lames L1i1k et L2i1k de dimensions plus petites que celles de la céramique rendant ainsi accessible l'électrode de masse sur les extrémités de la céramique. Dans ce dernier cas, la masse est récupérée en soudant ou en collant un film métallique sur les extrémités « dégagées » de la céramique.Mass recovery can also be achieved by intercalating between the L2i1k blade and the ceramic a metallic thin film or using, in the case of one-dimensional probes, L1i1k and L2i1k slides smaller dimensions than ceramic making it accessible the ground electrode on the ends of the ceramic. In this last case, the mass is recovered by welding or sticking a metallic film on the "exposed" ends of the ceramic.

Pour pallier les inconvénients précités, la présente invention propose une sonde acoustique comprenant un film de matériau composite conducteur.To overcome the aforementioned drawbacks, the present invention offers an acoustic probe comprising a film of composite material driver.

Plus précisément, l'invention a pour objet une sonde acoustique comprenant des transducteurs piézoélectriques élémentaires et un circuit électrique comportant des pistes métalliques, de manière à connecter au moins une piste métallique à au moins un transducteur élémentaire, chaque transducteur élémentaire étant constitué de sous-éléments piézoélectriques séparés mécaniquement et reliés à une même piste, caractérisée en ce qu'elle comprend en outre, un film de matériau composite conducteur situé entre le circuit électrique et les transducteurs élémentaires, les sous-éléments piézoélectriques d'un même transducteur élémentaire étant séparés mécaniquement par des interstices se prolongeant jusque dans ledit film.More specifically, the invention relates to an acoustic probe comprising elementary piezoelectric transducers and a circuit electric with metal tracks, so as to connect to the at least one metal track to at least one elementary transducer, each elementary transducer consisting of piezoelectric sub-elements mechanically separated and connected to the same track, characterized in that it further comprises a film of conductive composite material located between the electrical circuit and the elementary transducers, the sub-elements piezoelectric of the same elementary transducer being mechanically separated by interstices extending into said movie.

De manière classique, le circuit électrique de la sonde acoustique selon l'invention est apposé sur un backing d'impédance ajustée pour servir de support acoustique.Conventionally, the electrical circuit of the acoustic probe according to the invention is affixed to a backing of impedance adjusted to serve acoustic support.

Une telle sonde présente notamment les avantages suivants :

  • les interstices définissant les sous-éléments piézoélectriques s'arrêtant dans le film de matériau conducteur, les pistes du circuit électrique ne sont plus « sous-découpées » et donc fragilisées;
  • le film de matériau composite conducteur permet de relier électriquement les éléments piézoélectriques et le circuit électrique sans passer par des vias comme décrits notamment dans le brevet français FR-A-2 702 309 ;
  • le film de matériau composite conducteur pouvant avoir une dilatation thermique intermédiaire entre celle du matériau piézoélectrique et celle du matériau constitutif du « backing », permet d'absorber les déformations dues aux contraintes thermiques de l'assemblage réalisé de manière classique, à haute température ;
  • les pistes du circuit électrique n'ont plus à être dimensionnées en fonction du nombre de sous-éléments piézoélectriques que l'on veut obtenir, car les interstices s'arrêtent dans le film de matériau composite conducteur.
Such a probe has the following advantages in particular:
  • since the interstices defining the piezoelectric sub-elements stop in the film of conductive material, the tracks of the electric circuit are no longer "under-cut" and therefore weakened;
  • the film of conductive composite material makes it possible to electrically connect the piezoelectric elements and the electrical circuit without passing through vias as described in particular in French patent FR-A-2 702 309;
  • the film of conductive composite material which can have an intermediate thermal expansion between that of the piezoelectric material and that of the material constituting the “backing”, makes it possible to absorb the deformations due to the thermal stresses of the assembly produced conventionally, at high temperature;
  • the tracks of the electrical circuit no longer have to be sized as a function of the number of piezoelectric sub-elements that it is desired to obtain, because the interstices stop in the film of conductive composite material.

Avantageusement, le film de matériau composite conducteur peut comprendre un matériau organique de type résine époxy, pouvant notamment être chargée avec des particules conductrices en métal du type argent, cuivre, nickel.Advantageously, the film of conductive composite material can include an organic material of epoxy resin type, which can in particular be charged with conductive metal particles of the type silver, copper, nickel.

L'invention a encore pour objet un procédé de fabrication d'une sonde acoustique selon l'invention et comprenant en outre les étapes suivantes :

  • l'assemblage d'au moins, une couche de matériau piézoélectrique, un film de matériau composite conducteur et un circuit électrique comportant des pistes métalliques ;
  • la découpe de la couche de matériau piézoélectrique et du film de matériau à composite conducteur de manière à définir des transducteurs piézoélectriques élémentaires séparés électriquement ;
  • la sous-découpe des transducteurs élémentaires et d'une partie du film de matériau composite de manière à définir des sous-éléments piézoélectriques séparés mécaniquement et connectés électriquement.
The subject of the invention is also a method of manufacturing an acoustic probe according to the invention and further comprising the following steps:
  • assembling at least one layer of piezoelectric material, a film of conductive composite material and an electrical circuit comprising metal tracks;
  • cutting the layer of piezoelectric material and the film of conductive composite material so as to define electrically separated elementary piezoelectric transducers;
  • the sub-cutting of the elementary transducers and of a part of the film of composite material so as to define piezoelectric sub-elements separated mechanically and electrically connected.

Selon une variante du procédé de l'invention, les étapes de découpe et de sous-découpe peuvent être réalisées avec une scie diamantée et ce en une même étape.According to a variant of the method of the invention, the steps of cutting and sub-cutting can be done with a saw diamond in one step.

L'invention sera mieux comprise et d'autres avantages apparaítront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :

  • la figure 1 illustre une coupe d'un exemple de sonde acoustique unidirectionnelle selon l'art connu ;
  • la figure 2 illustre une première variante de l'invention concernant une sonde unidimensionnelle ;
  • la figure 3 illustre une seconde variante de l'invention concernant une sonde bidirectionnelle.
The invention will be better understood and other advantages will appear on reading the description which follows given without limitation and thanks to the appended figures among which:
  • FIG. 1 illustrates a section of an example of a unidirectional acoustic probe according to the known art;
  • FIG. 2 illustrates a first variant of the invention relating to a one-dimensional probe;
  • FIG. 3 illustrates a second variant of the invention relating to a bidirectional probe.

De manière générale, la sonde acoustique selon l'invention comprend des transducteurs élémentaires piézoélectriques Tij, connectés par l'intermédiaire d'un film de matériau composite conducteur à des pistes métalliques situées à la surface d'un circuit électrique situé sur un backing.In general, the acoustic probe according to the invention includes Tij piezoelectric elementary transducers, connected by means of a film of composite material conducting to tracks metal located on the surface of an electrical circuit located on a backing.

Généralement, pour réaliser ce type de sonde, on fixe à la surface des transducteurs piézoélectriques une ou deux lames d'adaptation acoustique de type quart d'onde par exemple, pour améliorer le transfert d'énergie.Generally, to carry out this type of probe, one fixes on the surface piezoelectric transducers one or two adaptation blades quarter-wave type acoustics for example, to improve transfer energy.

Le matériau de ces lames d'adaptation peut être de type polymère chargé de particules minérales dont on ajuste les proportions pour obtenir les propriétés acoustiques désirées. En général, ces lames sont mises en forme par moulage ou usinage puis assemblées par collage sur une des faces des transducteurs piézoélectriques.The material of these adaptation blades can be of the polymer type loaded with mineral particles whose proportions are adjusted to obtain the desired acoustic properties. In general, these blades are put in shape by molding or machining then assembled by gluing on one of the faces of piezoelectric transducers.

Plus précisément, dans le cas de sondes possédant un ensemble de transducteurs élémentaires, on cherche à séparer mécaniquement les transducteurs piézoélectriques. Il est important de procéder à la découpe des lames d'adaptation acoustique pour éviter tout couplage acoustique entre transducteurs élémentaires.More specifically, in the case of probes having a set of elementary transducers, we seek to mechanically separate the piezoelectric transducers. It is important to cut acoustic adaptation blades to avoid any acoustic coupling between elementary transducers.

Par ailleurs, dans ce type de sonde multiéléments, chaque transducteur piézoélectrique élémentaire doit être relié d'un côté à la masse et de l'autre côté à un contact positif (encore appelé point chaud). Généralement la masse est située vers le milieu de propagation, c'est-à-dire qu'elle doit être du côté des éléments d'adaptation acoustique. De manière classique, l'électrode de masse peut être une couche métallique, sa position peut dépendre de la nature de la sonde, c'est-à-dire s'il s'agit d'une sonde unidirectionnelle ou bidirectionnelle.Furthermore, in this type of phased array probe, each elementary piezoelectric transducer must be connected on one side to ground and on the other side to a positive contact (also called hot spot). Generally the mass is located towards the medium of propagation, i.e. that it must be on the side of the acoustic adaptation elements. So classic, the ground electrode can be a metallic layer, its position may depend on the nature of the probe, i.e. if it is a probe unidirectional or bidirectional.

Exemple de sonde unidirectionnelleExample of a unidirectional probe

Pour réaliser ce type de sonde, on peut procéder de la manière suivante :To carry out this type of probe, one can proceed in the manner next :

On réalise par collage l'assemblage suivant :The following assembly is made by gluing:

A la surface du circuit électrique comprenant des pistes émergeantes par exemple collé à un backing à l'aide d'une colle de type époxy, on assemble la couche de matériau piézoélectrique audit backing par l'intermédiaire du film conducteur 3 qui de part sa nature permet l'adhérence de l'ensemble. Le film de matériau composite conducteur peut être composé d'un mélange de résine époxy et de particules métalliques (argent, cuivre, nickel ... ) avec un taux de charges compris entre 50 % et 80 %, en volume en fonction des propriétés acoustiques recherchées. Le film n'a pas d'influence sur les propriétés acoustiques de la sonde car son impédance est proche de celle du backing et son épaisseur (de l'ordre de 20 à 100 µm) reste faible devant la longueur d'onde ultrasonore générée par le matériau piézoélectrique.On the surface of the electrical circuit including tracks emerging for example glued to a backing using a type of glue epoxy, we assemble the layer of piezoelectric material to said backing by through the conductive film 3 which by its nature allows adhesion from the whole. The film of conductive composite material can be composed a mixture of epoxy resin and metallic particles (silver, copper, nickel ...) with a charge rate between 50% and 80%, by volume depending on the desired acoustic properties. The film did not influence on the acoustic properties of the probe because its impedance is close to that of the backing and its thickness (of the order of 20 to 100 µm) remains weak compared to the ultrasonic wavelength generated by the material piezoelectric.

Dans un second temps, les lames d'adaptation acoustique sont collées à la surface de la couche de matériau piézoélectrique à l'aide d'une colle de type époxy par exemple.In a second step, the acoustic adaptation blades are bonded to the surface of the layer of piezoelectric material using a epoxy type glue for example.

On procède alors à la découpe par une scie diamantée de l'assemblage préalablement réalisé, pour obtenir les transducteurs élémentaires Ti1 avec une largeur de l'ordre de 100 à 150 microns. On peut réaliser dans la même opération les sous-découpes permettant de définir les sous-éléments piézoélectriques Ti1k, dont la largeur est de l'ordre de 40 à 75 microns. Comme l'illustre la figure 2, alors que les découpes s'arrêtent dans le backing, les sous-découpes s'arrêtent dans l'épaisseur du film de matériau composite, permettant par là-même de conserver la connexion électrique entre les différents sous-éléments piézoélectriques Ti1k, d'un même élément Ti1 surmonté de ces éléments d'adaptation acoustique L1i1k et L2i1k. We then proceed to cut with a diamond saw of the assembly previously carried out, to obtain the transducers elementary Ti1 with a width of the order of 100 to 150 microns. We can carry out in the same operation the sub-cuts allowing to define the Ti1k piezoelectric sub-elements, the width of which is around 40 to 75 microns. As shown in Figure 2, while the cuts stop in the backing, the sub-cuts stop in the thickness of the film composite material, thereby keeping the connection electric between the different piezoelectric Ti1k sub-elements, of a same Ti1 element surmounted by these acoustic adaptation elements L1i1k and L2i1k.

La lame d'adaptation acoustique inférieure peut être métallisée au niveau de sa face inférieure de manière à assurer une reprise de masse en périphérie de la sonde.The lower acoustic adaptation blade can be metallized with level of its underside so as to ensure a recovery of mass in periphery of the probe.

Exemple de sonde bidirectionnelleExample of a bidirectional probe

L'assemblage du backing comportant le circuit électrique, du film composite conducteur et de la couche de matériau piézoélectrique peut typiquement être identique à celui précédemment cité dans le cas d'une sonde unidirectionnelle. Pour réaliser un plan de masse dans ce type de sonde, on peut procéder tel que dans le procédé décrit par la demanderesse dans la demande de brevet français publiée sous le n° 2 756 447, ou en intégrant un plan de masse entre les éléments transducteurs et les lames d'adaptation acoustique.The assembly of the backing comprising the electrical circuit, of the film conductive composite and the piezoelectric material layer can typically be identical to that previously cited in the case of a unidirectional probe. To make a ground plan in this type of probe, we can proceed as in the process described by the applicant in the French patent application published under No. 2,756,447, or in integrating a ground plane between the transducer elements and the blades acoustic adaptation.

Plus précisément, dans le cadre de l'invention, après avoir réalisé l'assemblage backing/film composite conducteur/couche piézoélectrique, on procède aux découpes et sous-découpes de manière à définir les éléments Tij et Tijk à l'aide d'une scie diamantée selon deux axes perpendiculaires. L'ensemble ainsi constitué est recouvert par une électrode de masse conductrice M, apposée puis collée, il peut typiquement s'agir d'une feuille métallique ou d'un film de polymère métallisé.More specifically, in the context of the invention, after having carried out the backing / conductive composite film / piezoelectric layer assembly, cuts and sub-cuts to define the elements Tij and Tijk using a diamond saw along two perpendicular axes. The assembly thus formed is covered by a ground electrode conductive M, affixed then glued, it can typically be a sheet metallic or metallized polymer film.

On peut alors procéder au collage de deux lames de matériau d'adaptation acoustique L1 et L2 ; la première lame présentant une forte impédance de l'ordre de 5 à 12 MégaRayleigh, la deuxième lame présentant une plus faible impédance de l'ordre de 2 à 4 MégaRayleigh. On procède alors à la découpe des lames d'adaptation acoustique, sans découper l'électrode de masse M.We can then glue two strips of material acoustic adaptation L1 and L2; the first blade with strong impedance of the order of 5 to 12 MegaRayleigh, the second blade having a lower impedance of the order of 2 to 4 MegaRayleigh. We proceed while cutting the acoustic adaptation blades, without cutting the ground electrode M.

Pour obtenir ce résultat, cette opération de découpe peut être effectuée par laser. Le laser utilisé peut être par exemple un laser infrarouge de type CO2 ou un laser UV de type Excimère ou de type YAG triplé ou quadruplé. On obtient alors une sonde bidirectionnelle comme illustrée en figure 3.To obtain this result, this cutting operation can be carried out by laser. The laser used can be, for example, an infrared laser of the CO 2 type or a UV laser of the Excimer type or of the tripled or quadrupled YAG type. We then obtain a bidirectional probe as illustrated in Figure 3.

Claims (12)

  1. Acoustic probe comprising elementary piezoelectric transducers (Tij) and an electrical circuit (2) comprising metal tracks (Pij), so as to connect at least one metal track to at least one elementary transducer, each elementary transducer being formed from piezoelectric subelements (Tijk) which are mechanically separated and connected to the same track, characterized in that it furthermore comprises a film of composite conducting material (3) lying between the electrical circuit (2) and the elementary transducers, the piezoelectric subelements (Tijk) of the same elementary transducer (Tij) being mechanically separated by gaps extending right into the said film.
  2. Acoustic probe according to Claim 1, characterized in that it comprises an acoustic support called a "backing" (1), the film of composite material (3) having acoustic properties similar to those of the backing.
  3. Acoustic probe according to either of Claims 1 and 2, characterized in that the film of composite material (3) comprises conducting particles, the size of which is much less than the wavelength of the ultrasound wave generated by the probe.
  4. Acoustic probe according to one of Claims 1 to 3, characterized in that the composite conducting film (3) is a film made of an organic material of the epoxy resin or polyimide type, comprising conducting particles.
  5. Acoustic probe according to Claim 4, characterized in that the conducting particles are particles of a metal such as silver, copper or nickel.
  6. Acoustic probe according to one of Claims 1 to 5, characterized in that the film of composite material (3) has a conducting filler content of between 50% and 30% by volume.
  7. Acoustic probe according to one of Claims 1 to 6, characterized in that the thickness of the film of composite material is in the region of several tens of microns.
  8. Acoustic probe according to one of Claims 1 to 7, characterized in that the elementary transducers (Tij) are electrically separated by gaps extending right into the electrical circuit.
  9. Process for fabricating an acoustic probe according to one of Claims 1 to 7, characterized in that it furthermore comprises the following steps:
    the assembly of at least one plate of piezoelectric material, one film of composite conducting material (3) and one electrical circuit (2) comprising metal tracks;
    the cutting of the plate of piezoelectric material and of the film of composite conducting material (3) so as to define elementary piezoelectric transducers (Tij) which are electrically separated;
    the subcutting of the elementary transducers (Tij) and of part of the film of composite material so as to define piezoelectric subelements (Tijk) which are mechanically separated and electrically connected.
  10. Process for fabricating an acoustic probe according to Claim 9, characterized in that the cutting and subcutting steps are carried out with a diamond saw.
  11. Process for fabricating an acoustic probe according to either of Claims 9 or 10, characterized in that the cutting and subcutting steps are carried out simultaneously.
  12. Fabrication process according to either of Claims 9 and 10, characterized in that the electrical circuit (2) is placed on the surface of an acoustic support, the cutting in order to define the elementary piezoelectric transducers being carried out right into the said acoustic support.
EP99922247A 1998-06-05 1999-06-01 Multielement sound probe comprising a composite electrically conducting coating and method for making same Expired - Lifetime EP1084000B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9807094 1998-06-05
FR9807094A FR2779575B1 (en) 1998-06-05 1998-06-05 MULTI-PIECE ACOUSTIC PROBE COMPRISING A CONDUCTIVE COMPOSITE FILM AND MANUFACTURING METHOD
PCT/FR1999/001284 WO1999064169A1 (en) 1998-06-05 1999-06-01 Multielement sound probe comprising a composite electrically conducting coating and method for making same

Publications (2)

Publication Number Publication Date
EP1084000A1 EP1084000A1 (en) 2001-03-21
EP1084000B1 true EP1084000B1 (en) 2004-10-13

Family

ID=9527060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99922247A Expired - Lifetime EP1084000B1 (en) 1998-06-05 1999-06-01 Multielement sound probe comprising a composite electrically conducting coating and method for making same

Country Status (7)

Country Link
US (1) US6522051B1 (en)
EP (1) EP1084000B1 (en)
JP (1) JP4288002B2 (en)
KR (1) KR100577036B1 (en)
CN (1) CN1217749C (en)
FR (1) FR2779575B1 (en)
WO (1) WO1999064169A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2810907B1 (en) * 2000-06-30 2002-10-31 Thomson Csf METHOD FOR MANUFACTURING A MULTI-PIECE ACOUSTIC PROBE USING A NEW METHOD FOR PRODUCING ELECTRICAL MASS
FR2818170B1 (en) * 2000-12-19 2003-03-07 Thomson Csf METHOD OF MANUFACTURING A MULTI-ELEMENT ACOUSTIC PROBE USING A METALLIC AND ABLATE POLYMER FILM AS A GROUND PLAN
US20050167188A1 (en) * 2001-02-15 2005-08-04 Integral Technologies, Inc. Low cost acoustical structures manufactured from conductive loaded resin-based materials
US20050167189A1 (en) * 2001-02-15 2005-08-04 Integral Technologies, Inc. Low cost acoustical structures manufactured from conductive loaded resin-based materials
KR100394876B1 (en) * 2001-06-05 2003-08-19 주식회사 나노위즈 method of fabricating ultrasonic wave probe
US20070046149A1 (en) * 2005-08-23 2007-03-01 Zipparo Michael J Ultrasound probe transducer assembly and production method
US8008842B2 (en) * 2007-10-26 2011-08-30 Trs Technologies, Inc. Micromachined piezoelectric ultrasound transducer arrays
US20090183350A1 (en) * 2008-01-17 2009-07-23 Wetsco, Inc. Method for Ultrasound Probe Repair
DE102008055116A1 (en) * 2008-12-23 2010-07-01 Robert Bosch Gmbh Method for producing an ultrasonic transducer
JP6102622B2 (en) * 2013-08-07 2017-03-29 コニカミノルタ株式会社 Ultrasonic probe
US10265729B2 (en) * 2015-02-06 2019-04-23 Olympus Scientific Solutions Americas Inc. Phased array ultrasonic transducers with solderless stack bonding assembly
JP5923205B1 (en) * 2015-07-07 2016-05-24 日立アロカメディカル株式会社 Ultrasonic probe
CN105170435B (en) * 2015-09-23 2017-12-22 深圳先进技术研究院 High-frequency transducer and preparation method thereof
DE112016006252T5 (en) 2016-01-19 2018-09-27 Sound Technology Inc. INTERCONNECT FOR A ULTRASONIC TRANSMITTER ARRAY
CN106984516A (en) * 2017-05-31 2017-07-28 陈江龙 A kind of contact ultrasonic transducer for being used to detect and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1162336B (en) * 1979-06-22 1987-03-25 Consiglio Nazionale Ricerche PROCEDURE FOR THE CREATION OF ULTRA ACOUSTIC TRANSDUCERS WITH CURTAIN OF LINES OR WITH A MATRIX OF POINTS AND TRANSDUCERS OBTAINED
US4384228A (en) * 1980-12-18 1983-05-17 Hewlett-Packard Company Acousto-electric transducer
JPS6077600A (en) * 1983-10-05 1985-05-02 Kureha Chem Ind Co Ltd Manufacture of array type ultrasonic wave probe
US4701659A (en) * 1984-09-26 1987-10-20 Terumo Corp. Piezoelectric ultrasonic transducer with flexible electrodes adhered using an adhesive having anisotropic electrical conductivity
FR2605139A1 (en) 1986-10-10 1988-04-15 Europ Composants Electron POLYMER FILM-TYPE CAPACITOR WITH HIGH TEMPERATURE STABILITY
US5167231A (en) * 1986-12-24 1992-12-01 Kabushiki Kaisha Toshiba Ultrasonic probe
FR2627008B1 (en) 1988-02-05 1990-06-08 Europ Composants Electron METHOD FOR IMPREGNATING ELECTROLYTIC CAPACITORS WITH TETRACYANOQUINODIMETHANE SALTS
FR2666173A1 (en) 1990-08-21 1992-02-28 Thomson Csf HYBRID INTERCONNECTION STRUCTURE FOR INTEGRATED CIRCUITS AND MANUFACTURING METHOD.
FR2670021B1 (en) 1990-12-04 1994-03-04 Thomson Csf PROCESS FOR PRODUCING MICROLENTILES FOR OPTICAL APPLICATIONS.
FR2685080B1 (en) 1991-12-17 1995-09-01 Thomson Csf MECHANICAL SENSOR COMPRISING A POLYMER FILM.
US5311095A (en) * 1992-05-14 1994-05-10 Duke University Ultrasonic transducer array
US5744898A (en) * 1992-05-14 1998-04-28 Duke University Ultrasound transducer array with transmitter/receiver integrated circuitry
FR2701602B1 (en) 1993-02-12 1995-03-31 Thomson Csf Thermal detector comprising a thermal insulator made of expanded polymer.
FR2702309B1 (en) 1993-03-05 1995-04-07 Thomson Csf Method for manufacturing a multi-element acoustic probe, in particular an ultrasound probe.
US5457863A (en) * 1993-03-22 1995-10-17 General Electric Company Method of making a two dimensional ultrasonic transducer array
US5559388A (en) * 1995-03-03 1996-09-24 General Electric Company High density interconnect for an ultrasonic phased array and method for making
FR2740933B1 (en) 1995-11-03 1997-11-28 Thomson Csf ACOUSTIC PROBE AND METHOD FOR PRODUCING THE SAME
FR2745973B1 (en) 1996-03-08 1998-04-03 Thomson Csf MASS MEMORY AND METHOD FOR MANUFACTURING MASS MEMORY
US5732706A (en) * 1996-03-22 1998-03-31 Lockheed Martin Ir Imaging Systems, Inc. Ultrasonic array with attenuating electrical interconnects
FR2756447B1 (en) * 1996-11-26 1999-02-05 Thomson Csf MULTIPLE ELEMENT ACOUSTIC PROBE COMPRISING A COMMON MASS ELECTRODE

Also Published As

Publication number Publication date
US6522051B1 (en) 2003-02-18
KR20010043944A (en) 2001-05-25
FR2779575A1 (en) 1999-12-10
CN1304340A (en) 2001-07-18
WO1999064169A1 (en) 1999-12-16
KR100577036B1 (en) 2006-05-08
CN1217749C (en) 2005-09-07
EP1084000A1 (en) 2001-03-21
JP4288002B2 (en) 2009-07-01
FR2779575B1 (en) 2003-05-30
JP2002517310A (en) 2002-06-18

Similar Documents

Publication Publication Date Title
EP1084000B1 (en) Multielement sound probe comprising a composite electrically conducting coating and method for making same
EP0883447B1 (en) Sound probe with multiple elements comprising a common earth electrode
EP1060562B1 (en) Device with acoustic waves guided in a fine piezoelectric material film bonded with a molecular bonding on a bearing substrate and method for making same
EP0801595B1 (en) Acoustic probe and method for making same
EP0354117B1 (en) Piezoelectric transducer for volume wave generation
FR2847492A1 (en) Electrical connection formation method for ultrasonic piezoelectric transducer, involves mounting acoustic baking layer on transducer array whose elements are electrically separated for allowing individual electrical connection
FR2770932A1 (en) METHOD FOR MANUFACTURING AN ACOUSTIC PROBE
FR2485857A1 (en) MULTI-ELEMENTS ULTRASONIC PROBE AND METHOD FOR MANUFACTURING THE SAME
EP0040559A1 (en) Piezoelectric convolution device using elastic waves
EP1274518B1 (en) Unidirectional acoustic probe and method for making same
CA1298395C (en) Ultrasound apparatus probe with a priezoelectric member strap
WO2002049775A1 (en) Method for making a multielement acoustic probe using a metallised and ablated polymer as ground plane
FR2828056A1 (en) Medical ultrasonic probe multielement piezoelectric transducer manufacture method having piezoelectric element isolating element placed/fractioned with grooves dielectric filled and front conductor covering
FR2802449A1 (en) Small size medical cardiology piezoelectric transducers having transducers interconnection network connected and upper acoustic adaptation layer with thin conductor layer interconnection network connected forming earth path
CA1294700C (en) Piezoelectric element array echography probe
FR2479608A1 (en) SURFACE ACOUSTIC WAVE DEVICE AND PRODUCTION METHOD
EP4211431A1 (en) Functionalised object with integrated mechanical wave sensor and associated production method
FR2818421A1 (en) Acoustic sandwich panel with several degrees of freedom has two or more cellular layers of different dimensions with porous separators
FR2810907A1 (en) Fabrication of multi-element acoustic medical imaging sensor each element is excited independently of the others uses piezo-electric transducers on whose surface a conducting adhesive is applied using heat
FR2736790A1 (en) Piezoelectric ultrasonic transducer with damping and focussing for non-destructive control of material or medical echograph
CA2243291A1 (en) Sound probe with multiple elements comprising a common earth electrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

17Q First examination report despatched

Effective date: 20020225

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR IT NL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110621

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150608

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150625

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601