KR100394876B1 - method of fabricating ultrasonic wave probe - Google Patents

method of fabricating ultrasonic wave probe Download PDF

Info

Publication number
KR100394876B1
KR100394876B1 KR10-2001-0031404A KR20010031404A KR100394876B1 KR 100394876 B1 KR100394876 B1 KR 100394876B1 KR 20010031404 A KR20010031404 A KR 20010031404A KR 100394876 B1 KR100394876 B1 KR 100394876B1
Authority
KR
South Korea
Prior art keywords
layer
metal
insulating layer
stacking
lower electrode
Prior art date
Application number
KR10-2001-0031404A
Other languages
Korean (ko)
Other versions
KR20020092644A (en
Inventor
주상백
최영준
이종원
김동균
전영득
박창수
옥재용
Original Assignee
주식회사 나노위즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노위즈 filed Critical 주식회사 나노위즈
Priority to KR10-2001-0031404A priority Critical patent/KR100394876B1/en
Publication of KR20020092644A publication Critical patent/KR20020092644A/en
Application granted granted Critical
Publication of KR100394876B1 publication Critical patent/KR100394876B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

초음파 탐촉자는 CMOS를 내장한 기판과, 상기 기판 위에 형성된 절연층과, 상기 절연층 위에 형성된 멤브레인층과, 상기 멤브레인층 위에 형성된 하부전극과, 상기 하부전극 위에 형성된 압전층과, 상기 압전층 위에 형성된 상부전극과, 상기 상부전극 위에 형성된 결합층을 포함하여 이루어져, 고화질의 3차원 초음파 진단기에 응용되는 2차원 어레이(N x M개)초음파 탐촉자를 구현할 수 있다.The ultrasonic probe includes a substrate having a CMOS, an insulating layer formed on the substrate, a membrane layer formed on the insulating layer, a lower electrode formed on the membrane layer, a piezoelectric layer formed on the lower electrode, and formed on the piezoelectric layer. Comprising an upper electrode and a bonding layer formed on the upper electrode, it is possible to implement a two-dimensional array (N x M) ultrasonic transducers applied to high-quality three-dimensional ultrasound diagnostics.

Description

초음파 탐촉자 제조방법{method of fabricating ultrasonic wave probe}Method of fabricating ultrasonic wave probe

본 발명은 초음파 진동자를 이용하는 초음파 탐촉자에 관한 것으로, 특히 실시간, 고화질의 3차원 초음파 진단기에 응용되는 2차원 어레이(N x M개)초음파 탐촉자의 제조방법에 관한 것이다.The present invention relates to an ultrasonic transducer using an ultrasonic vibrator, and more particularly, to a manufacturing method of a two-dimensional array (N x M) ultrasonic transducers applied to a real-time, high-quality three-dimensional ultrasonic diagnostic apparatus.

초음파 탐촉자는 전기적 에너지를 음파로 전환시키고 반사음을 받아 다시 전기적 에너지로 전환시키는 역할을 수행하는 것으로서, 이러한 탐촉자는 초음파 진단기 (의료용 주파수 대역: 1∼10MHz ), 초음파 치료기 (사용 주파수 대역: 1MHz, 6∼7cm피하), 초음파 탐상 검사(표면 또는 내부의 불연속부 검출을 위한 비파괴검사의 일종, 두께 측정 가능. 500kHz∼25MHz), 초음파 용착기 (초음파 진동에너지를 이용하여 용착물의 접합면에서 순간적인 마찰열로 프라스틱을 용해 접착되게 하여 강력한 분자적 결합이 되게함. 15k∼28kHz), 초음파 세척기 (음압효과와 공동(Cavitation)효과를 이용. 28k-40kHz), 초음파 유량계 및 감지 센서 등에 널리 적용된다.The ultrasonic transducer converts electrical energy into sound waves and receives reflected sound, and then converts the electrical energy back into electrical energy. The transducer is an ultrasonic diagnostic device (medical frequency band: 1 to 10 MHz), an ultrasonic therapy device (frequency band: 1 MHz, 6). ~ 7cm subcutaneous), ultrasonic flaw detection (a type of non-destructive test for detecting discontinuities on the surface or inside, thickness measurement available. 500kHz to 25MHz), ultrasonic welder (using ultrasonic vibration energy to provide instantaneous frictional heat at the joint surface of the deposit) Dissolves and bonds plastics for strong molecular bonds, 15k to 28 kHz), ultrasonic cleaners (using sound pressure and cavitation effects, 28 k to 40 kHz), ultrasonic flowmeters and sensing sensors.

현재 상용화하여 사용중인 3차원 초음파 진단기에 사용되는 초음파 탐촉자의 구성을 보면 선형 초음파 진동자 어레이(linear piezoelectric element array)를횡방향으로 일정한 범위를 반복하여 움직일 수 있게 하여 2차원적인 초음파 주사가 가능하게 하여 3차원을 구현하고 있다.According to the configuration of the ultrasonic probe used in the three-dimensional ultrasonic diagnostics that are currently commercially available, the linear piezoelectric element array can be moved repeatedly in a certain range in the lateral direction to enable two-dimensional ultrasonic scanning. The dimension is implemented.

그러나, 이는 진정한 실시간 3차원 초음파 검사를 구현하는 것이 아니며, 또한 벌크(bulk)형태의 압전물질(piezoelectric material)을 이용한 이 기술은 소자(element)의 구성을 위한 분리를 기계적 방법(dicing)을 사용하고 있어서 단위 면적당 초음파를 형성하는 소자의 개수인 집적도가 낮으며 해상도(resolution)를 증가시키기 위해선 많은 한계점을 드러내고 있다.However, this does not realize true real-time three-dimensional ultrasound, and this technique, which uses bulk piezoelectric materials, uses mechanical methods of separation for the construction of elements. As the number of devices forming ultrasonic waves per unit area is low, the degree of integration is low and many limitations are revealed to increase the resolution.

즉, 해상도의 증가를 위해 소자의 수를 증가시키는 경우 초음파 탐촉자의 크기가 매우 크게 되어 이를 운용하기가 곤란하고, 또한, 시스템의 구동을 외부에서 관리하는 형태이므로 초음파 검사기와 탐촉자의 연결을 수행하는 케이블이 비대화되는 등의 문제점이 발생한다.In other words, when the number of devices is increased to increase the resolution, the size of the ultrasonic transducer becomes very large, and thus it is difficult to operate it. Also, since the driving of the system is managed externally, the connection between the ultrasonic scanner and the transducer is performed. Problems such as oversizing of cables occur.

한편, 상기한 선형 어레이의 문제점을 극복하기 위해서 제안되고 있는 벌크형태의 압전 물질을 이용한 2차원 어레이의 제조 및 설계에 있어서도 한계점이 드러나고 있다.On the other hand, there are limitations in manufacturing and designing a two-dimensional array using a bulk piezoelectric material that has been proposed to overcome the problems of the linear array.

예를 들어, 미세한 두께로 연마된 압전 물질을 접착제를 이용하여 적층함으로써 2차원적인 초음파를 구현한 경우, 구조 안정제로 사용한 접착제의 접착성이 저하되는 문제와 기계적 가공에서 발생되는 집적도의 저하, 그리고 각각의 소자의 독립적 발진과 탐지에 대한 회로적 연결이 소자수의 증가시 한계를 갖는다.For example, when two-dimensional ultrasonic waves are implemented by laminating piezoelectric materials polished to a fine thickness using an adhesive, the adhesiveness of the adhesive used as a structural stabilizer is deteriorated, and the degree of integration resulting from mechanical processing is reduced, and The circuit connection for independent oscillation and detection of each device is limited in increasing the number of devices.

본 발명은 상기한 종래 기술의 문제점을 감안하여 이루어진 것으로서, 본 발명의 목적은 벌크 형태의 압전 물질을 박막(thin film) 또는 후막(thick film)을 증착하는 기술을 이용하고, 기판 위에 초음파에 사용하는 압전체를 형성하여 2차원 어레이가 가능하게 함으로써, 고화질의 3차원 초음파 진단기에 응용되는 2차원 어레이(N x M개)초음파 탐촉자의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to use a technique for depositing a thin film or a thick film of a piezoelectric material in bulk form, and using the ultrasonic wave on a substrate. The present invention provides a method for manufacturing a two-dimensional array (N x M) ultrasonic probes applied to a high-quality three-dimensional ultrasound diagnostic apparatus by forming a piezoelectric member.

상기한 본 발명의 목적을 달성하기 위하여, 본 발명에 따른 초음파 탐촉자는 CMOS를 내장한 기판과, 상기 기판 위에 형성된 절연층과, 상기 절연층 위에 형성된 멤브레인층과, 상기 멤브레인층 위에 형성된 하부전극과, 상기 하부전극 위에 형성된 압전층과, 상기 압전층 위에 형성된 상부전극과, 상기 상부전극 위에 형성된 결합층을 포함하여 이루어진다.In order to achieve the above object of the present invention, the ultrasonic probe according to the present invention is a substrate having a CMOS, an insulating layer formed on the substrate, a membrane layer formed on the insulating layer, a lower electrode formed on the membrane layer and And a piezoelectric layer formed on the lower electrode, an upper electrode formed on the piezoelectric layer, and a bonding layer formed on the upper electrode.

도 1(a)는 본 발명의 제1실시예에 따른 초음파 탐촉자의 부분 평면도, 도 1(b)는 도 1(a)의 A-A선에 따른 단면도를 나타낸다.1 (a) is a partial plan view of an ultrasonic probe according to a first embodiment of the present invention, and FIG. 1 (b) is a sectional view taken along the line A-A of FIG. 1 (a).

도 2는 본 발명의 제1실시예에 따른 초음파 탐촉자의 제조방법을 나타내는 흐름도.2 is a flowchart illustrating a method of manufacturing an ultrasonic probe according to a first embodiment of the present invention.

도 3(a)는 본 발명의 제2실시예에 따른 초음파 탐촉자의 부분 평면도, 도 3(b)는 도 3(a)의 B-B선에 따른 단면도를 나타낸다.3 (a) is a partial plan view of the ultrasonic transducer according to the second embodiment of the present invention, and FIG. 3 (b) is a sectional view taken along the line B-B of FIG. 3 (a).

도 4는 본 발명의 제2실시예에 따른 초음파 탐촉자의 제조방법을 나타내는 흐름도.4 is a flowchart illustrating a method of manufacturing an ultrasonic probe according to a second embodiment of the present invention.

도 5(a)는 본 발명의 제3실시예에 따른 초음파 탐촉자의 부분 평면도, 도 5(b)는 도 5(a)의 C-C선에 따른 단면도를 나타낸다.FIG. 5 (a) is a partial plan view of the ultrasonic transducer according to the third embodiment of the present invention, and FIG. 5 (b) is a sectional view taken along the line C-C of FIG. 5 (a).

도 6는 본 발명의 제3실시예에 따른 초음파 탐촉자의 제조방법을 나타내는 흐름도.6 is a flowchart illustrating a method of manufacturing an ultrasonic probe according to a third embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 ----- 기판 13 ----- 공통전극패드10 ----- substrate 13 ----- common electrode pad

15 ----- 트랜지스터패드 16 ----- 에어층15 ----- Transistor Pad 16 ----- Air Layer

17, 18 ----- 절연층 19 ----- 멤브레인층17, 18 ----- Insulation layer 19 ----- Membrane layer

21 ----- 하부전극 23 ----- 압전층21 ----- lower electrode 23 ----- piezoelectric layer

25 ----- 상부전극 27 ----- 금속25 ----- Upper electrode 27 ----- Metal

C1∼C8 ----- 컨택홀C1 ~ C8 ----- Contact Hole

본 발명에 따른 초음파 탐촉자는 초음파 절연체, 흡음(damping)층 등의 구성은 이하 생략하고 압전 물질을 사이에 두고 이루어지는 구성에 대하여만 논의한다.The ultrasonic probe according to the present invention omits the configuration of the ultrasonic insulator, the damping layer, and the like, and only discusses the configuration formed between the piezoelectric materials.

이하, 본 발명의 바람직한 실시예를 도면을 참조하여 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

도 1(a)는 본 발명의 제1실시예에 따른 초음파 탐촉자의 부분 평면도, 도 1(b)는 도 1(a)의 A-A선에 따른 단면도를 나타낸다.1 (a) is a partial plan view of an ultrasonic probe according to a first embodiment of the present invention, and FIG. 1 (b) is a sectional view taken along the line A-A of FIG. 1 (a).

도시하는 바와 같이, 본 발명에 따른 초음파 탐촉자는 CMOS(complementary metal oxide semiconductor)를 내장한 기판(10)과, 상기 기판(10) 위에 형성되어 층간 절연을 위한 절연층(17)과, 상기 절연층(17) 위에 형성되어 층간 스트레스 조절을 위한 멤브레인층(19)과, 상기 멤브레인층(19) 위에 형성된 하부전극(21)과, 상기 하부전극(21) 위에 형성된 압전층(23)과, 상기 압전층(23) 위에 형성된 상부전극(25)과, 상기 상부전극(25) 위에 형성된 결합층(도시하지 않음)을 포함하여 이루어진다.As shown, the ultrasonic probe according to the present invention includes a substrate 10 having a complementary metal oxide semiconductor (CMOS), an insulating layer 17 formed on the substrate 10 for interlayer insulation, and the insulating layer. A membrane layer 19 formed on the layer 17 to control interlayer stress, a lower electrode 21 formed on the membrane layer 19, a piezoelectric layer 23 formed on the lower electrode 21, and the piezoelectric element. And an upper electrode 25 formed on the layer 23 and a bonding layer (not shown) formed on the upper electrode 25.

도 2는 본 발명의 제1실시예에 따른 초음파 탐촉자의 제조방법을 나타내는 흐름도로서, 도시하는 바와 같이, 본 발명에 따른 초음파 탐촉자의 제조방법은 먼저, (N x M)개로 구성되는 독립적인 압전 물질을 전기적으로 조정 및 감지를 할 수 있게 하는 (N x M)개의 트랜지스터(도시하지 않음)로 구성된 CMOS를 내장한 기판(10) 위에 전기적 절연을 위해 SiOx 또는 SiNx을 LPCVD, APCVD, 또는 PECVD방법에 의해 증착하여 절연층(17)을 형성한다(S101). 이때, 절연층(17)의 두께는 8,000∼10,000Å이 바람직하다.FIG. 2 is a flowchart illustrating a method of manufacturing an ultrasonic probe according to a first embodiment of the present invention. As shown in the drawing, a method of manufacturing an ultrasonic probe according to the present invention is, first, an independent piezoelectric body consisting of (N × M) pieces. LPCVD, APCVD, or PECVD method of SiOx or SiNx for electrical insulation on a CMOS-embedded substrate (10) consisting of (N x M) transistors (not shown) to enable electrical regulation and sensing of materials. By depositing to form an insulating layer 17 (S101). At this time, the thickness of the insulating layer 17 is preferably 8,000 to 10,000 kPa.

도면에서 미설명부호 13은 공통전극패드를 나타내고, 15는 트랜지스터패드를 나타낸다.In the drawing, reference numeral 13 denotes a common electrode pad, and 15 denotes a transistor pad.

일반적인 반도체 기술을 이용한 CMOS인 경우는 300∼400℃ 이상의 후속 공정에 특성 저하를 보여 사용이 불가능하나, 본 발명의 경우 후속공정에서 800℃ 정도의 고온공정이 필요하므로 금속의 구성 물질과 트랜지스터 형성시의 확산깊이의 조절과 설계상의 마진의 여유를 확보하여 사용한다. 즉, 일반 반도체에서 금속 물질은 알루미늄, 알루미늄합금 또는 동을 사용하나 본 발명은 TiN-Ti-TiON-W 순서로 적층된 막을 금속층으로 사용하여 고온에서 MOS의 특성이 가능하게 한다.In the case of CMOS using general semiconductor technology, it is impossible to use it because it shows the deterioration of characteristics in the subsequent process of 300 to 400 ° C. or higher. It is used to secure the margin of design and the depth of diffusion. That is, in the general semiconductor, the metal material uses aluminum, aluminum alloy or copper, but the present invention enables the characteristics of the MOS at high temperature by using a film laminated in the order of TiN-Ti-TiON-W as a metal layer.

계속해서, 상기 절연층(17) 위에 층간 스트레스 조절을 위해 질화실리콘 또는 산화실리콘을 LPCVD, APCVD, 또는 PECVD방법에 의해 증착하여 멤브레인층(19)을 형성한다(S103). 이때, 멤브레인층(19)의 두께는 2,000∼4,000Å이 바람직하다.Subsequently, silicon nitride or silicon oxide is deposited on the insulating layer 17 by LPCVD, APCVD, or PECVD to form a membrane layer 19 (S103). At this time, the thickness of the membrane layer 19 is preferably 2,000 to 4,000 Pa.

그후, 상기 멤브레인층(19) 위에 금속을 적층하여 하부전극(21)을 형성한다(S105). 하부전극(21)으로는 플라티늄(Platinum), 알루미늄 또는 RuO등을 사용하며, 막의 접착성과 특성의 향상을 위해서 버퍼층(Buffer layer)으로 티타늄(Titanium), 또는 탄탈륨(Tantalum) 등을 사용한 다층으로 구성된다. 이때, 하부전극(21)은 스퍼터링 방법 또는 금속CVD 방법으로 증착하고 그 두께는 1,000∼2,000Å이 바람직하다.Thereafter, a metal is stacked on the membrane layer 19 to form a lower electrode 21 (S105). Platinum, aluminum, or RuO is used as the lower electrode 21, and a multilayer is formed using titanium, tantalum, or the like as a buffer layer to improve adhesion and properties of the film. do. At this time, the lower electrode 21 is deposited by a sputtering method or a metal CVD method, and the thickness thereof is preferably 1,000 to 2,000 mW.

계속해서, 상기 하부전극(21) 위에 압전 물질을 적층하여 압전층(23)을 형성한다(S107). 현재 사용되고 있는 벌크형의 압전 물질로는 ZnO, AlN, PZT(PbZrTiO3), PLZT(PbLaZrTiO3), BT(BaTiO3) 등이 있다. 이러한 물질을 증착 방법을 사용하여 박막(두께 : 0.1um∼1um) 또는 후막(두께 : 2∼수백um)을 형성하는데, 압전층(23)의 증착은 스퍼터링, 반응스퍼터링(reactive sputtering), 졸-겔프로세스(sol-gel process), 또는 MOCVD 등의 방법으로 증착을 한다.Subsequently, a piezoelectric material is stacked on the lower electrode 21 to form a piezoelectric layer 23 (S107). Bulk piezoelectric materials currently used include ZnO, AlN, PZT (PbZrTiO3), PLZT (PbLaZrTiO3), BT (BaTiO3), and the like. This material is formed using a deposition method to form a thin film (thickness: 0.1um to 1um) or a thick film (thickness: 2 to several hundredum), and the deposition of the piezoelectric layer 23 is performed by sputtering, reactive sputtering, sol- The deposition is carried out by a sol-gel process or MOCVD.

다음에, 상기 압전층(23) 위에 금속을 적층하여 상부전극(25)을 형성한다(S109). 상부전극(21)으로는 플라티늄, 알루미늄 또는 RuO등을 사용하며, 막의 접착성과 특성의 향상을 위해서 버퍼층으로 티타늄, 또는 탄탈륨 등을 사용한 다층으로 구성된다. 이때, 상부전극(25)은 스퍼터링 방법 또는 금속CVD 방법으로 증착하고 그 두께는 1,000∼1,500Å이 바람직하다.Next, a metal is stacked on the piezoelectric layer 23 to form an upper electrode 25 (S109). Platinum, aluminum, or RuO is used as the upper electrode 21, and a multilayer is formed using titanium, tantalum, or the like as a buffer layer to improve adhesion and properties of the film. At this time, the upper electrode 25 is deposited by a sputtering method or a metal CVD method, and the thickness thereof is preferably 1,000 to 1500 mW.

계속해서, 포토공정(photolithography) 및 에칭에 의해 상기 상부전극(25) 이하 하부전극(21)을 연속적으로 패터닝하고(S111), 멤브레인층(19) 및 절연층(17)을 동시에 패터닝하여 컨택홀 C1 및 C2를 형성한다(S113).Subsequently, the upper electrode 25 or the lower electrode 21 is continuously patterned by photolithography and etching (S111), and the membrane layer 19 and the insulating layer 17 are simultaneously patterned to form a contact hole. C1 and C2 are formed (S113).

다음에, 금속(27)을 적층하고 패터닝하여 공통전극패드(13)가 상부전극(25)에 전기적으로 접속되고, 트랜지스터패드(15)가 하부전극(21)에 전기적으로 접속되도록 한다(S115).Next, the metal 27 is stacked and patterned such that the common electrode pad 13 is electrically connected to the upper electrode 25, and the transistor pad 15 is electrically connected to the lower electrode 21 (S115). .

비록 도면으로 나타내지는 않았지만, 상기 금속(27) 및 상부전극(25) 위에는 결합층(matching layer)이 형성되어 피부와 같은 피사체와의 음향 임피던스 차이를 감소시키는 역할을 수행한다.Although not shown in the drawings, a matching layer is formed on the metal 27 and the upper electrode 25 to reduce a difference in acoustic impedance with a subject such as skin.

도 3(a)는 본 발명의 제2실시예에 따른 초음파 탐촉자의 부분 평면도, 도 3(b)는 도 3(a)의 B-B선에 따른 단면도를 나타낸다.3 (a) is a partial plan view of the ultrasonic transducer according to the second embodiment of the present invention, and FIG. 3 (b) is a sectional view taken along the line B-B of FIG. 3 (a).

도시하는 바와 같이, 본 발명의 제2실시예의 구성은 상기한 제1실시예의 구성과 비교하여 절연층(17)과 멤브레인층(19) 사이에 추가의 절연층(20)이 형성되고, 절연막(17, 20) 및 멤브레인층(19)을 통하여 이중의 컨택홀 C3 내지 C6를 형성함으로써 단위 면적당 소자의 집적도를 향상시키는 것이 가능하게 한다.As shown, in the configuration of the second embodiment of the present invention, an additional insulating layer 20 is formed between the insulating layer 17 and the membrane layer 19 as compared with the configuration of the first embodiment described above, and the insulating film ( It is possible to improve the degree of integration of the device per unit area by forming the double contact holes C3 to C6 through the layers 17 and 20 and the membrane layer 19.

도 4는 본 발명의 제2실시예에 따른 초음파 탐촉자의 제조방법을 나타내는 흐름도로서, 본 발명에 따른 초음파 탐촉자의 제조는 먼저, (N x M)개로 구성되는 독립적인 압전 물질을 전기적으로 조정 및 감지를 할 수 있게 하는 (N x M)개의 트랜지스터(도시하지 않음)로 구성된 CMOS를 내장한 기판(10) 위에 전기적 절연을 위해 SiOx 또는 SiNx을 LPCVD, APCVD, 또는 PECVD방법에 의해 증착하여 절연층(17)을 형성한다(S201).4 is a flowchart illustrating a method of manufacturing an ultrasonic probe according to a second embodiment of the present invention. In the manufacture of the ultrasonic probe according to the present invention, first, an independent piezoelectric material consisting of (N × M) pieces is electrically adjusted and Insulating layer by depositing SiOx or SiNx by LPCVD, APCVD, or PECVD method for electrical insulation on a substrate (10) containing CMOS composed of (N x M) transistors (not shown) for sensing (17) is formed (S201).

도면에서 미설명부호 13은 공통전극패드를 나타내고, 15는 트랜지스터패드를 나타낸다.In the drawing, reference numeral 13 denotes a common electrode pad, and 15 denotes a transistor pad.

계속해서, 상기 절연층(17)을 포토공정 및 에칭공정에 의해 패터닝하여 컨택홀 C3 및 C4를 형성한 후(S203), 금속(18)을 적층하고 패터닝한다(S205).Subsequently, the insulating layer 17 is patterned by a photo process and an etching process to form contact holes C3 and C4 (S203), and then the metal 18 is laminated and patterned (S205).

다음에, 상기 절연층(17) 및 금속(18) 위에 SiOx 또는 SiNx을 LPCVD, APCVD, 또는 PECVD방법에 의해 증착하여 절연층(20)을 적층하고(S207), 그 위에 질화실리콘 또는 산화실리콘을 LPCVD, APCVD, 또는 PECVD방법에 의해 증착하여 멤브레인층(19)을 형성한다(S209).Next, SiOx or SiNx is deposited on the insulating layer 17 and the metal 18 by LPCVD, APCVD, or PECVD to laminate the insulating layer 20 (S207), and silicon nitride or silicon oxide is deposited thereon. The membrane layer 19 is formed by deposition by LPCVD, APCVD, or PECVD (S209).

계속해서, 상기 절연층(20) 및 멤브레인층(19)을 포토공정 및 에칭공정에 의해 패터닝하여 컨택홀 C5를 형성한 후(S211), 멤브레인층(19) 위에 금속을 적층하여 하부전극(21)을 형성한다(S213).Subsequently, the insulating layer 20 and the membrane layer 19 are patterned by a photo process and an etching process to form a contact hole C5 (S211), and then a metal is laminated on the membrane layer 19 to form a lower electrode 21. ) Is formed (S213).

계속해서, 상기 하부전극(21) 위에 압전 물질을 적층하여 압전층(23)을 형성한 후(S215), 그 위에 스퍼터링 방법 또는 금속CVD 방법으로 금속을 적층하여 상부전극(25)을 형성한다(S217).Subsequently, the piezoelectric material is laminated on the lower electrode 21 to form the piezoelectric layer 23 (S215), and then the upper electrode 25 is formed by laminating the metal on the lower electrode 21 by sputtering or metal CVD. S217).

계속해서, 포토공정 및 에칭공정에 의해 상기 상부전극(25) 이하 하부전극(21)을 연속적으로 패터닝하고(S219), 멤브레인층(19) 및 절연층(20)을 동시에 패터닝하여 컨택홀 C6를 형성한다(S221).Subsequently, the upper electrode 25 or the lower electrode 21 is successively patterned by a photo process and an etching process (S219), and the membrane layer 19 and the insulating layer 20 are simultaneously patterned to form a contact hole C6. It is formed (S221).

다음에, 금속(27)을 적층하고 패터닝하여 공통전극패드(13)가 상부전극(25)에 전기적으로 접속되고, 트랜지스터패드(15)가 하부전극(21)에 전기적으로 접속되도록 한다(S223).Next, the metal 27 is stacked and patterned such that the common electrode pad 13 is electrically connected to the upper electrode 25, and the transistor pad 15 is electrically connected to the lower electrode 21 (S223). .

비록 도면으로 나타내지는 않았지만, 본 실시예도 앞선 제1실시예와 동일하게 상기 금속(27) 및 상부전극(25) 위에 결합층이 형성되어 피부와 같은 피사체와의 음향 임피던스 차이를 감소시키는 역할을 수행한다.Although not shown in the drawings, this embodiment also serves to reduce the difference in acoustic impedance with a subject such as skin by forming a bonding layer on the metal 27 and the upper electrode 25 as in the first embodiment. do.

도 5(a)는 본 발명의 제3실시예에 따른 초음파 탐촉자의 부분 평면도, 도 5(b)는 도 5(a)의 C-C선에 따른 단면도를 나타낸다.FIG. 5 (a) is a partial plan view of the ultrasonic transducer according to the third embodiment of the present invention, and FIG. 5 (b) is a sectional view taken along the line C-C of FIG. 5 (a).

도시하는 바와 같이, 본 발명의 제3실시예에 따른 구성은 제1실시예의 구성과 비교하여 절연층(17)과 멤브레인층(19)사이에 에어층(Air Gap) 형성을 위한 희생층(16)을 마련하고, 이를 구조적으로 지지하기 위한 추가의 절연층(18)을 형성하여 압전소자의 초음파 공진을 보다 효과적으로 향상시키도록 한다.As shown, the configuration according to the third embodiment of the present invention is a sacrificial layer 16 for forming an air gap between the insulating layer 17 and the membrane layer 19 as compared with the configuration of the first embodiment. ) And an additional insulating layer 18 for structurally supporting the same, to more effectively improve the ultrasonic resonance of the piezoelectric element.

도 6은 본 발명의 제3실시예에 따른 초음파 탐촉자의 제조 방법을 나타내는 흐름도로서, 본 발명에 따른 초음파 탐촉자의 제조는 먼저, (N x M)개로 구성되는 독립적인 압전 물질을 전기적으로 조정 및 감지할 수 있게 하는 (N x M)개의 트랜지스터(도시하지 않음)로 구성된 CMOS를 내장한 기판(10)위에 전기적 절연을 위해 SiOx 또는 SiNx을 LPCVD, APCVD, 또는 PECVD방법에 의해 증착하여 절연층(17)을 형성한다(S301).FIG. 6 is a flowchart illustrating a method of manufacturing an ultrasonic probe according to a third embodiment of the present invention. In the manufacture of the ultrasonic probe according to the present invention, first, an independent piezoelectric material consisting of (N × M) pieces is electrically adjusted and SiOx or SiNx was deposited by LPCVD, APCVD, or PECVD method for electrical insulation on a substrate (10) having a CMOS including (N x M) transistors (not shown) which can be sensed, and then an insulating layer ( 17) is formed (S301).

도면에서 미설명 부호 13은 공통전극패드를 나타내고, 15는 트랜지스터패드를 나타낸다.In the drawing, reference numeral 13 denotes a common electrode pad, and 15 denotes a transistor pad.

계속해서, 상기 절연층(17) 위에 폴리 실리콘(Poly-silicon)을 LPCVD, APCVD 또는 PECVD방법에 의행 증착하여 에어층(Air Gap)형성을 위한 희생층(16)을 형성한다(S303).Subsequently, poly-silicon is deposited on the insulating layer 17 by LPCVD, APCVD, or PECVD to form a sacrificial layer 16 for forming an air layer (S303).

다음에, 상기 절연층(17)과 멤브레인층(19)을 연결고정하기 위한 지지부(31)를 형성하기 위해 포토공정 및 에칭공정에 의해 희생층(16)을 패터닝한다(S305).Next, the sacrificial layer 16 is patterned by a photo process and an etching process to form the support part 31 for connecting and fixing the insulating layer 17 and the membrane layer 19 (S305).

계속해서, 상기 절연층(18)을 적층하고 표면의 평탄화(Planarization)을 위하여 CMP(chemical mechanical polishing) 후(S307), 멤브레인층(19)으로 질화실리콘 또는 산화실리콘을 LPCVD, APCVD 또는 PECVD방법으로 증착한다(S309).Subsequently, after the insulating layer 18 is laminated and chemical mechanical polishing (CMP) for planarization of the surface (S307), the silicon layer or silicon oxide is converted into the membrane layer 19 by LPCVD, APCVD, or PECVD. To deposit (S309).

계속해서, 상기 멤브레인층(19) 위에 금속을 적층하여 하부전극(21)을 형성한 후(S311), 상기 하부전극(21) 위에 압전물질을 적층하여 압전층(23)을 형성하고 (S313), 그 위에 스퍼터법 또는 금속 CVD방법으로 금속을 적층하여 상부전극(25)을 형성한다(S315).Subsequently, after depositing a metal on the membrane layer 19 to form a lower electrode 21 (S311), a piezoelectric material is laminated on the lower electrode 21 to form a piezoelectric layer 23 (S313). The upper electrode 25 is formed by stacking metal on the sputtering method or the metal CVD method (S315).

다음에, 포토공정 및 에칭공정에 의해 상기 상부전극(25), 압전층(23), 하부전극(21), 멤브레인층(19)을 연속적으로 패터닝하고(S317), 멤브레인층(19) 및 절연층(18), 그리고 절연층(17)을 동시에 패터닝하여 컨택홀 C7 및 C8를 형성한다(S319).Next, the upper electrode 25, the piezoelectric layer 23, the lower electrode 21, and the membrane layer 19 are successively patterned by the photo process and the etching process (S317), the membrane layer 19 and the insulation The layer 18 and the insulating layer 17 are simultaneously patterned to form contact holes C7 and C8 (S319).

계속해서, 금속(27)을 적층하고 패터닝하여 공통전극패드(13)가 상부전극(25)에 전기적으로 접속되고, 트랜지스터패드(15)가 하부전극(21)에 전기적으로 접속되도록 한 후(S321), 희생층을 제거하기 위한 에칭공정을 수행한다. 이에칭공정은 XeF2를 이용한 에칭으로써 상온상압에서 고체인 XeF2를 저압에서 기화(Vapor)시켜서 희생층으로 형성되어 있는 폴리실리콘(Poly-silicion)을 제거한다(S323).Subsequently, after the metal 27 is stacked and patterned, the common electrode pad 13 is electrically connected to the upper electrode 25, and the transistor pad 15 is electrically connected to the lower electrode 21 (S321). ), An etching process for removing the sacrificial layer is performed. The etching process uses an XeF2 etch to vaporize the solid XeF2 at low pressure at room temperature and to remove polysilicon formed as a sacrificial layer (S323).

비록 도면으로 나타내지는 않았지만, 상기 금속(27) 및 상부전극(23) 위에는 결합층이 형성되어 피부와 같은 피사체와의 음향 임피던스 차이를 감소시키는 역할을 수행한다.Although not shown in the drawings, a bonding layer is formed on the metal 27 and the upper electrode 23 to reduce a difference in acoustic impedance with a subject such as skin.

본 발명에 따르면, 벌크 형태의 압전 물질을 박막 또는 후막을 증착하는 기술을 이용하고 기판 위에 초음파에 사용하는 압전체를 형성하여 2차원 어레이가 가능하게 함으로써, 고화질의 3차원 초음파 진단기에 응용되는 2차원 어레이(N x M개)초음파 탐촉자를 제조하는 것이 가능하게 된다.According to the present invention, by using a technique for depositing a thin film or a thick film of the piezoelectric material in bulk form and forming a piezoelectric material used for ultrasound on a substrate to enable a two-dimensional array, two-dimensional applied to high-quality three-dimensional ultrasound diagnostics It becomes possible to manufacture an array (N x M) ultrasonic transducers.

Claims (4)

CMOS를 내장하고 공통전극패드(13) 및 트랜지스터패드(15)가 형성된 기판(10) 위에 절연층(17)을 형성하는 단계와,Forming an insulating layer 17 on a substrate 10 having a CMOS embedded therein and having a common electrode pad 13 and a transistor pad 15 formed thereon; 상기 절연층(17) 위에 멤브레인층(19)을 형성하는 단계와,Forming a membrane layer 19 on the insulating layer 17; 상기 멤브레인층(19) 위에 금속을 적층하여 하부전극(21)을 형성하는 단계와,Stacking a metal on the membrane layer 19 to form a lower electrode 21; 상기 하부전극(21) 위에 압전물질을 적층하여 압전층(23)을 형성하는 단계와,Stacking a piezoelectric material on the lower electrode 21 to form a piezoelectric layer 23; 상기 압전층(23) 위에 금속을 적층하여 상부전극(25)을 형성하는 단계와,Stacking a metal on the piezoelectric layer 23 to form an upper electrode 25; 포토공정 및 에칭에 의해 상기 상부전극(25), 압전층(23), 하부전극(21)을 연속적으로 패터닝하는 단계와,Continuously patterning the upper electrode 25, the piezoelectric layer 23, and the lower electrode 21 by photo process and etching; 상기 멤브레인층(19) 및 절연층(17)을 동시에 패터닝하여 컨택홀을 형성하는 단계와,Simultaneously patterning the membrane layer 19 and the insulating layer 17 to form a contact hole; 금속(27)을 적층하고 패터닝하여 상기 공통전극패드(13)를 상부전극(25)에 전기적으로 접속시키고, 상기 트랜지스터패드(15)를 하부전극(21)에 전기적으로 접속시키는 단계와,Stacking and patterning a metal 27 to electrically connect the common electrode pad 13 to the upper electrode 25, and electrically connect the transistor pad 15 to the lower electrode 21; 상기 금속(27) 및 상부전극(25) 위에 결합층을 형성하는 단계를 포함하여 이루어진 초음파 탐촉자 제조방법.Ultrasonic probe manufacturing method comprising the step of forming a bonding layer on the metal (27) and the upper electrode (25). CMOS를 내장하고 공통전극패드(13) 및 트랜지스터패드(15)가 형성된 기판(10) 위에 절연층(17)을 형성하는 단계와,Forming an insulating layer 17 on a substrate 10 having a CMOS embedded therein and having a common electrode pad 13 and a transistor pad 15 formed thereon; 상기 절연층(17)을 패터닝하여 컨택홀 C3 및 C4를 형성하는 단계와,Patterning the insulating layer 17 to form contact holes C3 and C4; 상기 절연층(17) 위에 금속(18)을 적층하고 패터닝하는 단계와,Stacking and patterning a metal 18 on the insulating layer 17; 상기 절연층(17) 및 금속(18) 위에 절연층(20)을 적층하는 단계와,Stacking the insulating layer 20 on the insulating layer 17 and the metal 18; 상기 절연층(20) 위에 멤브레인층(19)을 형성하는 단계와,Forming a membrane layer 19 on the insulating layer 20; 상기 절연층(20) 및 멤브레인층(19)을 패터닝하여 컨택홀 C5를 형성하는 단계와,Patterning the insulating layer 20 and the membrane layer 19 to form a contact hole C5; 상기 멤브레인층(19) 위에 금속을 적층하여 하부전극(21)을 형성하는 단계와,Stacking a metal on the membrane layer 19 to form a lower electrode 21; 상기 하부전극(21) 위에 압전물질을 적층하여 압전층(23)을 형성하는 단계와,Stacking a piezoelectric material on the lower electrode 21 to form a piezoelectric layer 23; 상기 압전층(23) 위에 금속을 적층하여 상부전극(25)을 형성하는 단계와,Stacking a metal on the piezoelectric layer 23 to form an upper electrode 25; 상기 상부전극(25), 압전층(23), 및 하부전극(21)을 연속적으로 패터닝하는 단계와,Continuously patterning the upper electrode 25, the piezoelectric layer 23, and the lower electrode 21; 상기 멤브레인층(19) 및 절연층(20)을 동시에 패터닝하여 컨택홀 C6를 형성하는 단계와,Simultaneously patterning the membrane layer 19 and the insulating layer 20 to form a contact hole C6; 금속(27)을 적층하고 패터닝하여 공통전극패드(13)를 상부전극(25)에 전기적으로 접속시키고, 트랜지스터패드(15)를 하부전극(21)에 전기적으로 접속시키는 단계와,Stacking and patterning a metal 27 to electrically connect the common electrode pad 13 to the upper electrode 25, and electrically connect the transistor pad 15 to the lower electrode 21; 상기 금속(27) 및 상부전극(25) 위에 결합층을 형성하는 단계를 포함하여 이루어진 초음파 탐촉자 제조방법.Ultrasonic probe manufacturing method comprising the step of forming a bonding layer on the metal (27) and the upper electrode (25). CMOS를 내장하고 공통전극패드(13) 및 트랜지스터패드(15)가 형성된 기판(10) 위에 절연층(17)을 형성하는 단계와,Forming an insulating layer 17 on a substrate 10 having a CMOS embedded therein and having a common electrode pad 13 and a transistor pad 15 formed thereon; 상기 절연층(17) 위에 희생층(16)을 형성하는 단계와,Forming a sacrificial layer 16 on the insulating layer 17; 상기 희생층(16)을 패터닝하는 단계와,Patterning the sacrificial layer (16), 상기 희생층(16) 위에 절연층(18)을 적층하고 평탄화하는 단계와,Stacking and planarizing the insulating layer 18 on the sacrificial layer 16; 상기 절연층(18) 위에 멤브레인층(19)을 형성하는 단계와,Forming a membrane layer 19 on the insulating layer 18; 상기 멤브레인층(19) 위에 금속을 적층하여 하부전극(21)을 형성하는 단계와,Stacking a metal on the membrane layer 19 to form a lower electrode 21; 상기 하부전극(21) 위에 압전물질을 적층하여 압전층(23)을 형성하는 단계와,Stacking a piezoelectric material on the lower electrode 21 to form a piezoelectric layer 23; 상기 압전층(23) 위에 금속을 적층하여 상부전극(25)을 형성하는 단계와,Stacking a metal on the piezoelectric layer 23 to form an upper electrode 25; 상기 상부전극(25), 압전층(23), 하부전극(21), 멤브레인층(19)을 연속적으로 패터닝하는 단계와,Continuously patterning the upper electrode 25, the piezoelectric layer 23, the lower electrode 21, and the membrane layer 19; 상기 멤브레인층(19), 절연층(18), 및 절연층(17)을 동시에 패터닝하여 컨택홀 C7 및 C8를 형성하는 단계와,Simultaneously patterning the membrane layer 19, the insulating layer 18, and the insulating layer 17 to form contact holes C7 and C8; 금속(27)을 적층하고 패터닝하여 상기 공통전극패드(13)를 상부전극(25)에 전기적으로 접속시키고, 상기 트랜지스터패드(15)를 하부전극(21)에 전기적으로 접속시키는 단계와,Stacking and patterning a metal 27 to electrically connect the common electrode pad 13 to the upper electrode 25, and electrically connect the transistor pad 15 to the lower electrode 21; 상기 희생층(16)을 제거하는 단계와,Removing the sacrificial layer 16; 상기 금속(27) 및 상부전극(25) 위에 결합층을 형성하는 단계를 포함하여 이루어진 초음파 탐촉자 제조방법.Ultrasonic probe manufacturing method comprising the step of forming a bonding layer on the metal (27) and the upper electrode (25). 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 CMOS의 금속층이 TiN-Ti-TiON-W 순서로 적층된 금속층인 것을 특징으로 하는 초음파 탐촉자 제조방법.The ultrasonic probe manufacturing method according to any one of claims 1 to 3, wherein the metal layer of the CMOS is a metal layer laminated in the order of TiN-Ti-TiON-W.
KR10-2001-0031404A 2001-06-05 2001-06-05 method of fabricating ultrasonic wave probe KR100394876B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031404A KR100394876B1 (en) 2001-06-05 2001-06-05 method of fabricating ultrasonic wave probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031404A KR100394876B1 (en) 2001-06-05 2001-06-05 method of fabricating ultrasonic wave probe

Publications (2)

Publication Number Publication Date
KR20020092644A KR20020092644A (en) 2002-12-12
KR100394876B1 true KR100394876B1 (en) 2003-08-19

Family

ID=27707893

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0031404A KR100394876B1 (en) 2001-06-05 2001-06-05 method of fabricating ultrasonic wave probe

Country Status (1)

Country Link
KR (1) KR100394876B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722370B1 (en) * 2005-02-22 2007-05-29 주식회사 휴먼스캔 Multilayered ultrasonic probe and fabricating method thereof
WO2009096631A1 (en) * 2008-01-31 2009-08-06 Industrial Cooperation Foundation Chonbuk National University Tuber diagnosis device
CN111682045B (en) * 2020-06-23 2022-06-21 京东方科技集团股份有限公司 Ultrasonic fingerprint identification sensor, manufacturing method thereof and display module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990045153A (en) * 1997-11-11 1999-06-25 이데이 노부유끼 Ultrasonic probe manufacturing method, ultrasonic probe and ultrasonic imaging device
KR20000069886A (en) * 1997-11-07 2000-11-25 트뤼옹-벵-똥 엠.쎄. Method for making a sonoprobe
KR20010043944A (en) * 1998-06-05 2001-05-25 트뤼옹-벵-똥 엠.쎄. Multielement sound probe comprising a composite electrically conducting coating and method for making same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000069886A (en) * 1997-11-07 2000-11-25 트뤼옹-벵-똥 엠.쎄. Method for making a sonoprobe
KR19990045153A (en) * 1997-11-11 1999-06-25 이데이 노부유끼 Ultrasonic probe manufacturing method, ultrasonic probe and ultrasonic imaging device
KR20010043944A (en) * 1998-06-05 2001-05-25 트뤼옹-벵-똥 엠.쎄. Multielement sound probe comprising a composite electrically conducting coating and method for making same

Also Published As

Publication number Publication date
KR20020092644A (en) 2002-12-12

Similar Documents

Publication Publication Date Title
US10864553B2 (en) Piezoelectric transducers and methods of making and using the same
US7441321B2 (en) Method of manufacturing ultrasound transducer device having acoustic backing
US7285897B2 (en) Curved micromachined ultrasonic transducer arrays and related methods of manufacture
JP4839176B2 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus
JP2003153391A (en) Ultrasonic transducer wafer having variable acoustic impedance
JP6123171B2 (en) Ultrasonic transducer, ultrasonic probe and ultrasonic inspection equipment
US10338034B2 (en) Transducer device comprising an insulating film between a through wiring line and a semiconductor substrate
JP6235902B2 (en) Capacitive transducer and manufacturing method thereof
CN106211005A (en) There is equipment and the manufacture method thereof of the electrode being connected with through track
US8858447B2 (en) Ultrasonic transducer and method of manufacturing the same
Wu et al. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays
EP3708263B1 (en) Flexible ultrasound array
KR100394876B1 (en) method of fabricating ultrasonic wave probe
Joshi et al. Fabrication of High-Frequency 2D Flexible pMUT Array
Yao et al. A transceiver integrated piezoelectric micromachined ultrasound transducer array for underwater imaging
US20230002213A1 (en) Micro-machined ultrasound transducers with insulation layer and methods of manufacture
EP4360767A1 (en) An ultrasound transducer and a method for producing an ultrasound transducer
EP4363369A1 (en) Micro-machined ultrasound transducers with insulation layer and methods of manufacture
CN117548321A (en) Micromechanical ultrasound transducer structure with dual carrier layers and method for manufacturing the same
JP2022147305A (en) Electromechanical conversion element, ultrasonic wave transducer, ultrasonic wave probe, and ultrasonic wave diagnostic apparatus
CN117548318A (en) PMUT structure with support layer and manufacturing method thereof
CN117548320A (en) Micromechanical ultrasonic transducer structure with double PMUTs arranged on same side of substrate and manufacturing method thereof
CN117548319A (en) Micromechanical ultrasonic transducer structure with double PMUTs on bearing layer and manufacturing method thereof
CN117548315A (en) PMUT structure with transistor unit integrated with PMUT unit with cavity

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee