EP1083389B1 - Gestion de la durée de pyrolyse - Google Patents

Gestion de la durée de pyrolyse Download PDF

Info

Publication number
EP1083389B1
EP1083389B1 EP00402441A EP00402441A EP1083389B1 EP 1083389 B1 EP1083389 B1 EP 1083389B1 EP 00402441 A EP00402441 A EP 00402441A EP 00402441 A EP00402441 A EP 00402441A EP 1083389 B1 EP1083389 B1 EP 1083389B1
Authority
EP
European Patent Office
Prior art keywords
cavity
cell
dirt
pyrolysis
oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00402441A
Other languages
German (de)
English (en)
Other versions
EP1083389A1 (fr
Inventor
Didier Thomson-CSF Propriete Intellec. Auger
Francis Thomson-CSF Propriete Intellec. Autin
Nicole Thomson-CSF Propriete Intellec. Baratin
Fabien Thomson-CSF Propriete Intellec. Oberle
Sylvain Thomson-CSF Propriete Intellec. Raimond
Jean Thomson-CSF Propriete Intellectuelle Sauton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brandt Industries SAS
Original Assignee
Brandt Cooking SAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brandt Cooking SAC filed Critical Brandt Cooking SAC
Publication of EP1083389A1 publication Critical patent/EP1083389A1/fr
Application granted granted Critical
Publication of EP1083389B1 publication Critical patent/EP1083389B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C14/00Stoves or ranges having self-cleaning provisions, e.g. continuous catalytic cleaning or electrostatic cleaning
    • F24C14/02Stoves or ranges having self-cleaning provisions, e.g. continuous catalytic cleaning or electrostatic cleaning pyrolytic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2007Removing cooking fumes from oven cavities
    • F24C15/2014Removing cooking fumes from oven cavities with means for oxidation of cooking fumes

Definitions

  • the invention relates to the field of oven pyrolysis management cooking, especially domestic, as well as pyrolysis ovens including such a pyrolysis time management system.
  • the principle of pyrolysis time management is to optimize the pyrolysis time depending on the degree of soiling in the oven cavity pyrolysis.
  • the aim is to achieve minimum energy consumption while guaranteeing an optimal cleaning quality.
  • the invention proposes a pyrolysis time management method which does not require user intervention to estimate the degree of dirt from the oven cavity.
  • the proposed process automatically performs a fine estimate of the degree of soiling to which it then makes match a duration of pyrolysis.
  • the invention also provides an oven with pyrolysis equipped with a pyrolysis time management system putting in implements a pyrolysis time management method according to the invention.
  • a method for managing the duration of pyrolysis of a baking oven comprising at the start of pyrolysis, at least two successive heating phases, first especially from the upper part then especially from the lower part of the cavity oven characterized in that the method comprises, for each heating phase, the determination of a degree partial soiling of the cavity; association, at all degrees partial soiling, with a corresponding remaining pyrolysis time.
  • the determination of the partial degree of soiling of the cavity is preference made from temperature measurement at level of an exothermic cracking cell for dirt.
  • a pyrolysis oven comprising a cooking cavity, at least one high heating element located at the level of the upper part of the cavity, at least one lower heating element located at the level of the lower part of the cavity, a time management system pyrolysis using during the start pyrolysis at least two heating phases, one heating phase top during which the top heating element is activated while the low heating element is not activated and a low heating phase during which the low heating element is activated the heating phase top being prior to the bottom heating phase, characterized in that the system comprises a cracking cell exothermic dirt from the cavity, the cell being located at near the upper part of the cavity, means for measuring temperature associated with the cell in that at each phase heating system, the system determines a partial degree of soiling performing a partial quantification of dirt in the cavity from temperature measurement at the cell level, and that at the set consisting of the partial degrees of soiling, the system then associates a corresponding remaining pyrolysis time by through a correspondence table.
  • FIG 1 schematically shows an example of a pyrolysis integrating a pyrolysis management system according to the invention.
  • the oven is shown in profile.
  • the pyrolysis management system preferably constituted by a microprocessor is not shown in Figure 1.
  • the oven has a cooking cavity 1 and a duct 2 evacuation connecting the cavity 1 to the external environment 9.
  • the cavity 1 is delimited with respect to the external environment 9 by an enclosure 10 comprising a muffle and an insulator surrounding the muffle.
  • the path of the air passing through the discharge pipe 2, from the cavity 1 to the external medium 9, is shown by arrows in solid lines.
  • the discharge conduit 2 comprises, at its entrance located on the side of cavity 1, a cell 4 for exothermic cracking of dirt from cavity 1.
  • This inlet is preferably located in the upper part of the cavity 1, the cell 4 then being located in the vicinity of the upper part of the cavity 1.
  • the cracking cell 4 is preferably a catalytic cell.
  • Cell 4 is for example of the block type in ceramic pierced with channels through which air from the cavity passes 1.
  • the dirt coming from the cavity 1 arrives in the duct 2 in the form of gaseous effluents which are broken down into smaller molecules by oxidation and cracking reactions. These reactions are exothermic and therefore contribute to the elevation of temperature of the cracking cell 4.
  • the rise in temperature of the cracking cell 4 is therefore linked to the amount of dirt from the cavity 1 and crossing cell 4, amount of soiling which itself reflects the degree of soiling in the cavity 1.
  • the exhaust duct 2 advantageously comprises a cell 5 heating element 4 located near it. Temperature measurement means 8 are associated with the cell 4. These means 8 consist for example of a platinum probe, but can also be for example a thermocouple.
  • the duct 2 evacuation still has a tangential 3 expelling towards the middle outside 9 the air located in the exhaust duct 2, thus allowing the ventilation of the exhaust duct 2.
  • the arrow in dotted lines represented on tangential 3 indicates the direction of expulsion of air.
  • the cavity 1 comprises at least one top heating element 6 located at the level of the upper part of the cavity 1 and at least one heating element 7 bottom located at the lower part of the cavity 1. These elements heating elements are for example resistors.
  • the high heating element 6 is for example located in the upper part of the cavity 1 while the element 7 bottom heater is located under cavity 1, near the bottom part of cavity 1.
  • the operation of the purpose of pyrolysis is to crack these deposited soiling, that is to say to transform into smaller, gaseous molecules which will be evacuated to the outside environment 9 through the discharge pipe 2, either solid in the form of ashes which will fall to the bottom of the lower part of the cavity 1 and which will only have to be picked up.
  • the dirt deposited in the upper and lower parts of the cavity 1 are of a different nature. Indeed, the dirt deposited in the upper part is for the most part remains of upward liquid projections that have remained attached to enclosure 10 or the heating element 6 high in the upper part of the cavity 1. These soils are less important and less strongly attached than dirt deposited in the lower part of cavity 1 which represent all the soiling which may have fallen during cooking. Dirt deposited in the lower part of cavity 1 are therefore more difficult to detach only the dirt deposited in the upper part of the cavity 1.
  • FIG. 2A schematically represents a detail of embodiment preferential in which the top heating element 6 of FIG. 1 is consisting of two resistors 61 and 62.
  • FIG. 2A represents a view of above the oven.
  • Resistor 61 is the so-called grill resistor.
  • Resistance 62 is the so-called vault resistance.
  • the grill resistor 61 heats especially the center of the upper part of cavity 1 while the vault resistor 62 especially heats the periphery.
  • FIG. 2B schematically represents an embodiment detail preferential in which the bottom heating element 7 of FIG. 1 is consisting of two resistors 71 and 72.
  • Figure 28 shows a view of above the oven.
  • Resistor 71 is the so-called silk resistance.
  • Resistance 72 is the so-called façade resistance. The sole 71 resistance heats above all the center of the lower part of cavity 1 while the façade resistance 72 especially heats the periphery.
  • the oven has a single resistance of grill 61 and a single resistance 71 of sole.
  • Pyrolysis time management takes place at the start of pyrolysis and allows, after a certain time necessary for measurements and treatment, determine a duration of pyrolysis remaining during which the pyrolysis is completed.
  • the temperature in cavity 1 in operation permanent that is to say a certain time after all the resistances to be activated during pyrolysis have been activated, can reach 500 ° C.
  • the pyrolysis temperature preferably remains constant whatever the degree of soiling estimated by the management system duration of pyrolysis.
  • Pyrolysis management has at least two phases consecutive heating. Each heating phase preferably lasts about 20 minutes.
  • the upper part of the cavity is mainly heated in a first while the lower part of the cavity is mostly heated in a second time.
  • Pyrolysis time management can include more than two phases, for example three, in particular when the cavity 1 has three groups of heating elements, for example one element high heater, a middle heater for example a resistance ventilator located in the vicinity of the cavity ventilator when the latter includes a, and a bottom heating element.
  • the pyrolysis time management may include three heating phases successively heating respectively the upper part, then especially the central part, and finally especially the lower part of the cavity 1.
  • the number of heating phases can correspond to the number of geographic sites in the cavity 1 between which the different elements are distributed heaters of cavity 1.
  • the upper part of cavity 1 must be heated before the lower part of the cavity 1, so as to allow dirt deposited in the upper part of cavity 1 to be evacuated for the most of them before most of the dirt deposited in the lower part of the cavity 1 does not begin to be evacuated.
  • the high heating element 6 is preferably chosen to be more powerful than the low heating element 7, which makes the successive evacuation of dirt deposited in the upper part of cavity 1 first and dirt deposited in the lower part of the cavity 1 then, more convenient to make and faster. So, the dirt deposited in the upper part of the cavity 1 arrive at the level of the cracking cell 4 first, and then we observe a first temperature peak on the temperature curve of cell 4 as a function of time, this first peak being essentially due to the cracking of the deposited dirt in the upper part of cavity 1 and reflecting the partial degree of soiling deposited in the upper part of the cavity 1.
  • the dirt deposited in the lower part of the cavity 1 arrive at the level of the cracking cell 4 in a second step, and we then observe a second temperature peak on the temperature curve of cell 4 as a function of time, this second peak being due to cracking of dirt deposited in the part bottom of cavity 1 and reflecting the partial degree of dirt deposited in the lower part of cavity 1. If the lower part of cavity 1 was heated before the upper part of cavity 1, a significant part of dirt from the upper part of the cavity 1 would reach the level of the cell 4 before most of the dirt from the lower part of the cavity 1 has crossed cell 4, which would prevent a distinction really clear between the partial degree of soiling deposited in the part top of cavity 1 and the partial degree of dirt deposited in the part lower cavity 1.
  • the optimal pyrolysis time is not the same, since from on the other hand the soiling is of a different nature and since on the other hand the heating elements located in the different parts of the oven are generally of different power.
  • the most partial degree of soiling penalizing in terms of duration of pyrolysis is the partial degree of soiling deposited in the lower part of the cavity 1.
  • a partial degree of soiling is determined, preferably from the temperature measurement at the level of the cracking cell 4, by a treatment comprising one or more steps.
  • a smoke detector could also be used.
  • the different partial degrees of soiling can be determined either directly either indirectly using one or more parameters intermediaries representative of the partial degree of soiling.
  • the pyrolysis time management system associates with the whole partial degrees of soiling, remaining pyrolysis time, preferably through a correspondence table.
  • the table correspondence has as many entries as types of partial degrees of soiling, for example two, namely one for the partial degree of dirt deposited in the upper part of the cavity 1 and one for the degree partial soiling deposited in the lower part of the cavity 1.
  • the table of correspondence to an output for the remaining pyrolysis time. In the below, a preferred embodiment of the duration management is described. pyrolysis according to the invention.
  • the top heating element 6 is at least partially activated while that the bottom heating element 7 is not activated.
  • an element heating is at least partially activated, this means either that the element is at least activated at a reduced power, or that some of its resistors at least, if it has several, are activated, at full power or reduced power.
  • the two resistances of grill 61 and vault 62 are started almost at their power Max.
  • the high heating phase lasts until the temperature in the center of the oven has reached a first prefixed transition value, by example about 275 ° C, at which the cracking cell 4 is already initiated and operating in steady state.
  • This temperature in the center of the oven is evaluated for example by another temperature probe placed in cavity 1 and not shown in Figure 1. Failing to reach this transition temperature, the high heating phase ends at the end of a first prefixed duration, worth for example approximately 24 minutes.
  • the heating resistor 5 of the cell 4 is activated for a priming time allowing priming of cell 4 when the latter is a catalytic cell.
  • the duration priming is determined so that cell 4 is primed before a substantial part of the dirt deposited in the upper part of the cavity 1 does not reach the level of the cracking cell 4.
  • the priming time is worth for example about five minutes.
  • the activation of resistance 5 of heating of cell 4 can be shortened or even made unnecessary and therefore suppressed in certain cases, such as when pyrolysis takes place immediately after cooking and cell 4 has already reached its priming temperature.
  • another possibility to prime cell 4 may be to increase the hot air flow through cell 4 by increasing the speed of rotation of the tangential 3 located in the discharge duct 2.
  • FIG. 3 schematically represents an example of a statement of temperature curve of cracked cell 4 with part of the associated treatment to estimate the partial degree of soiling deposited in the upper part of the cavity 1.
  • Curve C does not represent directly the temperature of the cracking cell 4 but the voltage V of the temperature probe 8 associated with the cracking cell 4.
  • the voltage V expressed in volts, is represented as a function of time t, expressed in minutes.
  • the different heating phases are indicated by dashed lines.
  • Voltage V is an intermediate parameter representative of the temperature of the cracking cell 4, temperature itself representative of the partial degree of soiling deposited in the upper part of the cavity 1.
  • the temperature measurement means of the cell 4 of cracking are for example either a thermocouple or a platinum probe.
  • the thermocouple has the advantage of being more sensitive than the platinum probe. If the peak A is too fleeting, the platinum probe having a high inertia risks not not "see” the peak or "see it badly". With a platinum probe in particular, it is very useful to carry out a treatment on curve C to extract the information contained in peak A even if it is not sufficient important and therefore to estimate the partial degree of soiling deposited in the upper part of cavity 1 with sufficient precision despite a peak A which may be small and / or narrow. During operation normal to cracking cell 4, only one peak A is likely to be statement.
  • the treatment applied to curve C consisting of the determination the partial degree of soiling, here that from the upper part of the cavity 1, preferably comprises a bypass step making it possible to to highlight more precisely the information relating to the degree partial soiling deposited in the upper part of the cavity 1, information which is contained in peak A.
  • the derivation step makes it possible to more to overcome variations in the furnace supply voltage.
  • a method by direct reading of the temperature of the cracking cell 4 is also possible although less precise, provided you use then a temperature sensor which is itself very sensitive.
  • curve C 'on which a new peak A' corresponds to the old peak A.
  • This peak A ' is representative of the partial degree of dirt deposited in the upper part of the cavity 1, and in particular the height ⁇ 1 of peak A '.
  • the ordinate axis for the curve C ' is staggered in arbitrary AU units.
  • the treatment includes also a peak height extraction step consisting in determining the ordinate of the top of the peak, this is the peak A 'for the heating phase top, as well as the ordinate of the base of this peak, then to realize the subtract these two ordinates from each other in order to obtain the height of the peak sought, here the height ⁇ 1 of the peak A '.
  • the treatment of determination of partial degree of soiling preferably comprises a step of comparing the peak height extracted with one or more thresholds.
  • the height ⁇ 1 of the peak A ' will be compared with a threshold S1.
  • the threshold S1 like all the other thresholds mentioned in the following text, is for example obtained by calibration. These thresholds are predefined thresholds.
  • the top heating phase of cavity 1 i.e. when the center of the oven has reached a first prefixed transition value, by example 275 ° C, or failing this when a first duration prefixed, by example 24 minutes, has elapsed
  • the bottom heating element 7 is at least partially activated.
  • the floor resistor 71 is started up practically at full power while the front resistance 72, when there is one, remains inactive.
  • the grill resistor 61 stays on practically at full power while the vault resistor 62 is periodically switched between the "on" state and the "off” state so that the cavity 1 gradually rises in temperature, that is to say so that soiling from cavity 1 is gradually released so as not to cause saturation of the cracking cell 4.
  • the low heating phase lasts until the temperature in the center of the oven has reached a second prefixed transition value, for example about 400 ° C, or failing to reach this temperature, after the flow a second prefixed duration worth for example 18 minutes.
  • a second prefixed transition value for example about 400 ° C, or failing to reach this temperature
  • the resistors remain activated for the entire 18 minutes, although the period of time after the temperature of 400 ° C has been reached is either more taken into account for the determination of the partial degree of soiling deposited in the lower part of the cavity 1.
  • the tangential 3 advantageously changes gears to turn faster and accelerate the passage of air in the exhaust duct 2.
  • dirt begins to be cracked in cavity 1 and the are already when they arrive at the cracking cell 4, the increase in the air flow through the cracking cell 4 does not normally does not cause saturation at cell level 4.
  • Figure 4 shows schematically the same example of statement of the temperature curve of the cracking cell 4 as in FIG. 3, with another part of the associated treatment to estimate the partial degree dirt deposited in the lower part of the cavity 1.
  • Curve C is the same as curve C shown in figure 3.
  • the temperature peak B of cell 4 is observed on curve C when most of the dirt deposited in the lower part of cavity 1 arrives at cell 4. It is this temperature peak B which is representative of the degree partial soiling deposited in the lower part of the cavity 1.
  • the peaks additional as peak B reflects the amount of soiling originally exothermic cracking reactions of which the cracking cell 4 is headquarters.
  • the importance of this peak B is representative of the partial degree of dirt deposited in the lower part of the cavity 1. If the peak B is too fugitive, the platinum probe having a high inertia risks not "seeing" the pic or ill see it.
  • the treatment applied to curve C is substantially the same as that applied to curve C in Figure 3.
  • the numerical parameters of step may be different, due to the different character presented by peaks A and B, that is to say that the curve C "obtained by derivation of curve C is on an arbitrary scale different from curve C ' shown in Figure 3. Except for this difference in scale concerning the curves C 'and C ", curve C is substantially subject to the same treatment for peak B than for peak A.
  • Determination of the partial degree dirt deposited in the lower part of the cavity 1 includes the same preferential steps of derivation, peak height extraction and comparison of the peak height extracted with one or more thresholds which can be and are preferably different from the threshold (s) considered in Figure 3.
  • curve C By derivative of curve C, we obtain curve C "on which a new peak B 'corresponds to the old peak B.
  • This peak B' is representative of the degree of soiling deposited in the lower part of the cavity 1, and in particular the height ⁇ 2 of the peak B '.
  • the height ⁇ 2 of the peak B ' will be compared with two thresholds S2 and S3 obtained as the threshold S1 of FIG. 3 by calibration.
  • a number of thresholds different can be chosen, the number of thresholds corresponding to the finesse with which the partial degrees of soiling are estimated.
  • the peak D of the curve C is not representative of the degree of soiling of the oven cavity, it simply translates the advantageous change of the tangential regime 3 which, as explained above, increases the air flow through the cracking cell 4, after the low heating phase is completed.
  • the association of a remaining pyrolysis time with all of the determined partial degrees of soiling can be effected by different means as through a function whose variables are partial degrees of soiling determined during the different phases of heater.
  • the remaining pyrolysis time comes from a correspondence table whose entries are these partial degrees of dirt.
  • the total duration of pyrolysis is equal to the sum of the durations of the previously described high and low heating phases to which is added the remaining pyrolysis time.
  • the duration of the heating phases always remaining essentially the same regardless of the degree of soiling of the oven cavity, only a fixed duration during which is carried out the estimate of the degree of soiling of the oven cavity separates the value of the remaining duration of pyrolysis and the value of the total duration of pyrolysis: it it is therefore equivalent to give one or the other.
  • the oven when the peak height ⁇ 1 of peak A 'is below threshold S1 and when the height ⁇ 2 of peak B 'is less than threshold S2, the oven is considered clean and the total duration of pyrolysis associated will be about an hour and a half, the remaining duration of pyrolysis worth about three quarters of an hour.
  • the oven is considered to be lightly soiled and the total duration of associated pyrolysis will be approximately one hour three quarters, the remaining duration of pyrolysis worth about an hour.
  • the oven When the height ⁇ 2 of peak B 'is between threshold S2 and threshold S3, the oven is considered to be moderately dirty and the total duration of associated pyrolysis will be approximately two and a quarter hours, the remaining duration of pyrolysis being approximately one hour and a half.
  • the furnace When the height ⁇ 2 of peak B 'is greater than the threshold S2, the furnace is considered very dirty and the total duration of associated pyrolysis will be approximately three hours, the remaining duration of pyrolysis being approximately two quarter hours.
  • the total duration of pyrolysis varies significantly from one hour and a half to three hours depending on the degree of soiling of the cavity, generally represented by the two partial degrees of soiling upper and lower parts of the cavity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Baking, Grill, Roasting (AREA)
  • Cookers (AREA)
  • Processing Of Solid Wastes (AREA)

Description

L'invention concerne le domaine de la gestion de pyrolyse des fours de cuisson, notamment domestique, ainsi que les fours à pyrolyse comportant un tel système de gestion de la durée de pyrolyse.
Le principe de la gestion de durée de pyrolyse est d'optimiser la durée de pyrolyse en fonction du degré de salissures de la cavité du four à pyrolyse. Il s'agit d'aboutir à une consommation d'énergie minimale tout en garantissant une qualité de nettoyage qui soit optimale.
Selon l'art antérieur (US-A-4 493 976), le degré de salissures est estimé par l'utilisateur qui choisit la durée de pyrolyse. L'estimation de l'utilisateur reste forcément approximative. Ce procédé a en effet souvent l'inconvénient soit d'aboutir à un four encore sale à la fin de la pyrolyse, soit de continuer la pyrolyse un bon moment après que le four soit devenu propre entraínant ainsi un gaspillage d'énergie.
L'invention propose un procédé de gestion de durée de pyrolyse qui ne nécessite pas l'intervention de l'utilisateur pour estimer le degré de salissures de la cavité de four. Le procédé proposé réalise automatiquement une estimation fine du degré de salissures à laquelle il fait ensuite correspondre une durée de pyrolyse. L'invention propose également un four à pyrolyse doté d'un système de gestion de durée de pyrolyse mettant en oeuvre un procédé de gestion de durée de pyrolyse selon l'invention.
Selon l'invention, il est prévu un procédé de gestion de la durée de pyrolyse d'un four de cuisson, comportant au début de la pyrolyse, au moins deux phases successives de chauffage, d'abord surtout de la partie haute puis surtout de la partie basse de la cavité du four caractérisé en ce que le procédé comporte, pour chaque phase de chauffage, la détermination d'un degré partiel de salissures de la cavité ; l'association, à l'ensemble des degrés partiels de salissures, d'une durée de pyrolyse restante correspondante.
La détermination du degré partiel de salissures de la cavité est de préférence effectuée à partir de la mesure de la température au niveau d'une cellule de craquage exothermique des salissures.
Selon l'invention, il est encore prévu un four à pyrolyse comportant une cavité de cuisson, au moins un élément chauffant haut situé au niveau de la partie haute de la cavité, au moins un élément chauffant bas situé au niveau de la partie basse de la cavité, un système de gestion de durée de pyrolyse mettant en oeuvre pendant le début de la pyrolyse au moins deux phases de chauffage, une phase de chauffage haut pendant laquelle l'élément chauffant haut est activé tandis que l'élément chauffant bas n'est pas activé et une phase de chauffage bas pendant laquelle l'élément chauffant bas est activé la phase de chauffage haut étant antérieure à la phase de chauffage bas, caractérisé en ce que le système comprend une cellule de craquage exothermique des salissures issues de la cavité, la cellule étant située au voisinage de la partie haute de la cavité, des moyens de mesure de température associés à la cellule en ce qu'à chaque phase de chauffage, le système détermine un degré partiel de salissures en réalisant une quantification partielle de salissures dans la cavité à partir de la mesure de la température au niveau de la cellule, et en ce qu'à l'ensemble constitué par les degrés partiels de salissures, le système associe ensuite une durée de pyrolyse restante correspondante par l'intermédiaire d'une table de correspondance.
L'invention sera mieux comprise et d'autres particularités et avantages apparaítront à l'aide de la description ci-après et des dessins joints, donnés à titre d'exemples, où :
  • la figure 1 représente schématiquement un exemple de four à pyrolyse intégrant un système de gestion de pyrolyse selon l'invention ;
  • la figure 2A représente schématiquement un détail de la figure 1, à savoir l'élément 6 ;
  • la figure 2B représente schématiquement un détail de la figure 1, à savoir l'élément 7 ;
  • la figure 3 représente schématiquement un exemple de relevé de courbe de température de la cellule de craquage avec une partie du traitement associé permettant d'estimer un degré partiel de salissures de la cavité de four ;
  • la figure 4 représente schématiquement le même exemple de relevé de courbe de température de la cellule de craquage que la figure 3, avec une autre partie du traitement associé permettant d'estimer un autre degré partiel de salissures de la cavité de four.
La figure 1 représente schématiquement un exemple de four à pyrolyse intégrant un système de gestion de pyrolyse selon l'invention. Le four est représenté de profil. Le système de gestion de pyrolyse préférentiellement constitué par un microprocesseur n'est pas représenté sur la figure 1. Le four comporte une cavité 1 de cuisson et un conduit 2 d'évacuation reliant la cavité 1 au milieu extérieur 9. La cavité 1 est délimitée par rapport au milieu extérieur 9 par une enceinte 10 comprenant un moufle et un isolant entourant le moufle. Le trajet de l'air passant par le conduit 2 d'évacuation, de la cavité 1 au milieu extérieur 9, est représenté par des flèches en traits pleins.
Le conduit 2 d'évacuation comporte, au niveau de son entrée située du côté de la cavité 1, une cellule 4 de craquage exothermique des salissures issues de la cavité 1. Cette entrée est de préférence située dans la partie haute de la cavité 1, la cellule 4 étant alors située au voisinage de la partie haute de la cavité 1 . La cellule 4 de craquage est de préférence une cellule catalytique. La cellule 4 est par exemple du type bloc en céramique percé de canaux par lesquels passe l'air provenant de la cavité 1. Les salissures issues de la cavité 1 arrivent dans le conduit 2 d'évacuation sous la forme d'effluents gazeux qui sont décomposés en molécules plus petites par des réactions d'oxydation et de craquage. Ces réactions sont exothermiques et contribuent par conséquent à l'élévation de température de la cellule 4 de craquage. L'élévation de température de la cellule 4 de craquage est donc liée à la quantité de salissures issues de la cavité 1 et traversant la cellule 4, quantité de salissures qui elle-même reflète le degré de salissures de la cavité 1. Le conduit 2 d'évacuation comporte avantageusement un élément 5 de chauffage de la cellule 4 situé près de celle-ci. Des moyens 8 de mesure de température sont associés à la cellule 4. Ces moyens 8 consistent par exemple en une sonde platine, mais peuvent également être par exemple un thermocouple. Le conduit 2 d'évacuation comporte encore une tangentielle 3 expulsant vers le milieu extérieur 9 l'air situé dans le conduit 2 d'évacuation, permettant ainsi la ventilation du conduit 2 d'évacuation. La flèche en traits pointillés représentée sur la tangentielle 3 indique le sens de l'expulsion de l'air.
La cavité 1 comporte au moins un élément 6 chauffant haut situé au niveau de la partie haute de la cavité 1 et au moins un élément 7 chauffant bas situé au niveau de la partie basse de la cavité 1. Ces éléments chauffants sont par exemple des résistances. L'élément 6 chauffant haut est par exemple situé dans la partie haute de la cavité 1 tandis que l'élément 7 chauffant bas est situé sous la cavité 1, au voisinage de la partie basse de la cavité 1.
Dans les parties haute et basse de la cavité, des salissures se déposent au cours des cuissons successives. Ces salissures sont représentées sur la figure 1 par des petits traits obliques. Les salissures de déposent sur toutes les parois de l'enceinte 10, mais pour des raisons de clarté, seules les salissures déposées dans les parties haute et basses sont représentées. Les salissures sont des graisses ou d'autres projections générées pendant les cuissons. Une partie de ces salissures est évacuée sous forme d'effluents gazeux pendant la cuisson. Une autre partie se dépose sur les parois de l'enceinte 10, en particulier au niveau de la paroi inférieure située au-dessus de l'élément 7 chauffant bas. L'opération de pyrolyse a pour but de craquer ces salissures déposées, c'est-à-dire de les transformer en molécules plus petites, soit gazeuses qui seront évacuées vers le milieu extérieur 9 au travers du conduit 2 d'évacuation, soit solides sous forme de cendres qui tomberont au fond de la partie basse de la cavité 1 et qui n'auront plus qu'à être ramassées. Les salissures déposés dans les parties haute et basse de la cavité 1 sont de nature différente. En effet, les salissures déposées dans la partie haute sont pour la plupart des restes de projections liquides vers le haut qui sont restés attachés à l'enceinte 10 ou à l'élément 6 chauffant haut dans la partie haute de la cavité 1. Ces salissures sont moins importantes et moins fortement attachées que les salissures déposées dans la partie basse de la cavité 1 qui représentent toutes les salissures qui ont pu tomber pendant la cuisson. Les salissures déposées dans la partie basse de la cavité 1 sont par conséquent plus difficiles à détacher que les salissures déposées dans la partie haute de la cavité 1.
La figure 2A représente schématiquement un détail de réalisation préférentielle dans laquelle l'élément 6 chauffant haut de la figure 1 est constitué de deux résistances 61 et 62. La figure 2A représente une vue de dessus du four. La résistance 61 est la résistance dite de grill. La résistance 62 est la résistance dite de voute. La résistance de grill 61 chauffe surtout le centre de la partie haute de la cavité 1 tandis que la résistance de voute 62 en chauffe surtout la périphérie.
La figure 2B représente schématiquement un détail de réalisation préférentielle dans laquelle l'élément 7 chauffant bas de la figure 1 est constitué de deux résistances 71 et 72. La figure 28 représente une vue de dessus du four. La résistance 71 est la résistance dite de soie. La résistance 72 est la résistance dite de façade. La résistance de sole 71 chauffe surtout le centre de la partie basse de la cavité 1 tandis que la résistance de façade 72 en chauffe surtout la périphérie.
Dans un autre exemple de réalisation, le four comporte une unique résistance de grill 61 et une unique résistance 71 de sole.
La gestion de durée de pyrolyse s'effectue au début de la pyrolyse et permet, après un certain temps nécessaire aux mesures et au traitement, de déterminer une durée de pyrolyse restante pendant laquelle la pyrolyse est menée à son terme. La température dans la cavité 1 en régime permanent, c'est-à-dire un certain temps après que toutes les résistances devant être activées pendant la pyrolyse aient été activées, peut atteindre les 500°C. La température de pyrolyse reste de préférence constante quelque soit le degré de salissures estimé par le système de gestion de durée de pyrolyse.
La gestion de pyrolyse comporte au moins deux phases consécutives de chauffage. Chaque phase de chauffage dure de préférence environ 20 minutes. La partie haute de la cavité est surtout chauffée dans un premier temps tandis que la partie basse de la cavité est surtout chauffée dans un deuxième temps. La gestion de durée de pyrolyse peut comporter plus de deux phases, par exemple trois, en particulier lorsque la cavité 1 comporte trois groupes d'éléments chauffants, par exemple un élément chauffant haut, un élément chauffant milieu par exemple une résistance de ventilateur située au voisinage du ventilateur de la cavité lorsque celle-ci en comporte un, et un élément chauffant bas. Dans ce cas là par exemple, la gestion de durée de pyrolyse pourra comporter trois phases de chauffage successives chauffant respectivement surtout la partie haute, puis surtout la partie centrale, et enfin surtout la partie basse de la cavité 1. Le nombre de phases de chauffage peut correspondre au nombre de sites géographiques dans la cavité 1 entre lesquels sont répartis les différents éléments chauffants de la cavité 1. La partie haute de la cavité 1 doit être chauffée avant la partie basse de la cavité 1, de manière à permettre aux salissures déposées dans la partie haute de la cavité 1 d'être évacuées pour la majeure part d'entre elles avant que la plupart des salissures déposées dans la partie basse de la cavité 1 ne commence à être évacuée. On chauffe d'abord la partie haute de la cavité 1 et ensuite la partie basse de la cavité 1, car les salissures déposées dans la partie haute sont plus facilement détachables que les salissures déposées dans la partie basse. Par ailleurs, l'élément 6 chauffant haut est préférentiellement choisi plus puissant que l'élément 7 chauffant bas, ce qui rend l'évacuation successive, des salissures déposées dans la partie haute de la cavité 1 d'abord et des salissures déposées dans la partie basse de la cavité 1 ensuite, plus commode à réaliser et plus rapide. Ainsi, les salissures déposées dans la partie haute de la cavité 1 arrivent au niveau de la cellule 4 de craquage dans un premier temps, et on observe alors un premier pic de température sur la courbe de la température de la cellule 4 en fonction du temps, ce premier pic étant essentiellement dû au craquage des salissures déposées dans la partie haute de la cavité 1 et reflétant le degré partiel de salissures déposées dans la partie haute de la cavité 1. Les salissures déposées dans la partie basse de la cavité 1 arrivent au niveau de la cellule 4 de craquage dans un second temps, et on observe alors un deuxième pic de température sur la courbe de la température de la cellule 4 en fonction du temps, ce second pic étant dû au craquage des salissures déposées dans la partie basse de la cavité 1 et reflétant le degré partiel de salissures déposées dans la partie basse de la cavité 1. Si la partie basse de la cavité 1 était chauffée avant la partie haute de la cavité 1, une part importante des salissures issues de la partie haute de la cavité 1 arriverait au niveau de la cellule 4 avant que l'essentiel des salissures issues de la partie basse de la cavité 1 n'ait traversé la cellule 4, ce qui empêcherait une distinction vraiment claire entre le degré partiel de salissures déposées dans la partie haute de la cavité 1 et le degré partiel de salissures déposées dans la partie basse de la cavité 1. Or pour une même quantité de salissures, selon que celles-ci sont situées dans la partie haute ou dans la partie basse de la cavité 1, la durée de pyrolyse optimale n'est pas la même, puisque d'une part les salissures sont de nature différente et puisque d'autre part les éléments chauffants situés dans les différentes parties du four sont généralement de puissance différente. Le degré partiel de salissures le plus pénalisant en terme de durée de pyrolyse est le degré partiel de salissures déposées dans la partie basse de la cavité 1.
Pour chaque phase de chauffage, un degré partiel de salissures est déterminé, de préférence à partir de la mesure de la température au niveau de la cellule 4 de craquage, par un traitement comportant une ou plusieurs étapes. Un détecteur de fumées pourrait également être utilisé. Les différents degrés partiels de salissures peuvent être déterminés soit directement soit indirectement à l'aide d'un ou de plusieurs paramètres intermédiaires représentatifs du degré partiel de salissures.
Une fois les différents degrés partiels de salissures déterminés par traitement, le système de gestion de durée de pyrolyse associe à l'ensemble des degrés partiels de salissures, une durée de pyrolyse restante, de préférence par l'intermédiaire d'une table de correspondance. La table de correspondance a autant d'entrées que de types de degrés partiels de salissures, par exemple deux, à savoir une pour le degré partiel de salissures déposées dans la partie haute de la cavité 1 et une pour le degré partiel de salissures déposées dans la partie basse de la cavité 1. La table de correspondance a une sortie pour la durée de pyrolyse restante. Dans la suite, est décrit un mode de réalisation préférentielle de la gestion de durée de pyrolyse selon l'invention.
Au début de la pyrolyse, pendant la phase de chauffage haut de la cavité 1, l'élément 6 chauffant haut est au moins partiellement activé tandis que l'élément 7 chauffant bas n'est pas activé. Lorsqu'on dit qu'un élément chauffant est au moins partiellement activé, cela signifie soit que l'élément chauffant est au moins activé à une puissance réduite, soit que certaines de ses résistances au moins, s'il en comporte plusieurs, sont activées, à pleine puissance ou à puissance réduite. De préférence, les deux résistances de grill 61 et de voute 62 sont mises en marche pratiquement à leur puissance maximale. La phase de chauffage haut dure jusqu'à ce que la température au centre du four ait atteint une première valeur de transition préfixée, par exemple environ 275°C, à laquelle la cellule 4 de craquage est déjà amorcée et fonctionne en régime permanent. Cette température au centre du four est évaluée par exemple par une autre sonde de température placée dans la cavité 1 et non représentée sur la figure 1. A défaut d'atteindre cette température de transition, la phase de chauffage haut prend fin au bout d'une première durée préfixée, valant par exemple environ 24 minutes. Au début de la phase de chauffage haut, la résistance 5 de chauffage de la cellule 4 est activée pendant une durée d'amorçage permettant l'amorçage de la cellule 4 lorsque celle-ci est une cellule catalytique. La durée d'amorçage est déterminée pour que la cellule 4 soit amorcée avant qu'une part substantielle des salissures déposées dans la partie haute de la cavité 1 n'arrive au niveau de la cellule 4 de craquage. La durée d'amorçage vaut par exemple environ cinq minutes. L'activation de la résistance 5 de chauffage de la cellule 4 peut être raccourcie ou même rendue inutile et donc supprimée dans certains cas, comme par exemple lorsque la pyrolyse a lieu immédiatement après une cuisson et que la cellule 4 a déjà atteint sa température d'amorçage. Au lieu d'utiliser une résistance 5 de chauffage de la cellule 4, une autre possibilité pour amorcer la cellule 4 peut consister à augmenter le débit d'air chaud au travers de la cellule 4 en augmentant la vitesse de rotation de la tangentielle 3 située dans le conduit 2 d'évacuation.
La figure 3 représente schématiquement un exemple de relevé de courbe de température de la cellule 4 de craquage avec une partie du traitement associé permettant d'estimer le degré partiel des salissures déposées dans la partie haute de la cavité 1. La courbe C ne représente pas directement la température de la cellule 4 de craquage mais la tension V de la sonde 8 de température associée à la cellule 4 de craquage. Sur la figure 3, la tension V, exprimée en volts, est représentée en fonction du temps t, exprimé en minutes. Les différentes phases de chauffage sont indiquées par des lignes en traits pointillés. La tension V est un paramètre intermédiaire représentatif de la température de la cellule 4 de craquage, température elle-même représentative du degré partiel de salissures déposées dans la partie haute de la cavité 1. Plus précisément, c'est la température de la cellule 4 au moment où l'essentiel des salissures déposées dans la partie haute de la cavité 1 arrive au niveau de la cellule 4 qui est représentative du degré partiel de salissures déposées dans la partie haute de la cavité 1. Ce moment est représenté sur la courbe C par le pic A. En effet, si l'augmentation générale de la courbe C au cours du temps reflète l'augmentation générale de la température de la cellule 4 de craquage dû à l'activation des différentes éléments chauffants, 5 pour la cellule 4 de craquage , 6 pour la partie haute de la cavité 1 et 7 pour la partie basse de la cavité 1, les pics supplémentaires comme le pic A reflètent la quantité de salissures à l'origine des réactions exothermiques de craquage dont la cellule 4 de craquage est le siège. L'importance de ce pic A est représentative du degré partiel de salissures déposées dans la partie haute de la cavité 1. Les moyens de mesure de température de la cellule 4 de craquage sont par exemple soit un thermocouple soit une sonde platine. Le thermocouple a l'avantage d'être plus sensible que la sonde platine. Si le pic A est trop fugitif, la sonde platine ayant une inertie importante risque de ne pas « voir » le pic ou de « mal le voir ». Avec une sonde platine notamment, il est très utile d'effectuer sur la courbe C un traitement permettant d'extraire l'information contenue dans le pic A même si celui-ci n'est pas suffisamment important et par conséquent d'estimer le degré partiel de salissures déposées dans la partie haute de la cavité 1 avec une précision suffisante malgré un pic A qui peut être petit et/ou étroit. Lors d'un fonctionnement normal de la cellule 4 de craquage, un seul pic A est susceptible d'être relevé. Le relevé de plusieurs pics A traduirait un phénomène de saturation au niveau de la cellule 4 de craquage, c'est-à-dire un fonctionnement anormal de la cellule 4 de craquage dû par exemple à des phases de chauffage inadaptées résultant en une montée trop rapide de température dans la cavité de four et une libération trop brutale des salissures qui sont ensuite à l'origine de ce phénomène de saturation de la cellule 4 de craquage.
Le traitement appliqué à la courbe C, consistant en la détermination du degré partiel de salissures, ici de celles issues de la partie haute de la cavité 1, comporte de préférence une étape de dérivation permettant de mettre en évidence de manière plus précise l'information relative au degré partiel de salissures déposées dans la partie haute de la cavité 1, information qui est contenue dans le pic A. L'étape de dérivation permet de plus de s'affranchir des variations de la tension d'alimentation du four. Une méthode par lecture directe de la température de la cellule 4 de craquage est également possible quoique moins précise, à condition d'utiliser alors une sonde de température qui soit elle-même très sensible. Par dérivée de la courbe C, on obtient la courbe C' sur laquelle un nouveau pic A' correspond à l'ancien pic A. Ce pic A' est représentatif du degré partiel de salissures déposées dans la partie haute de la cavité 1, et notamment la hauteur Δ1 du pic A'. L'axe des ordonnées pour la courbe C' est quant à lui échelonné en unités arbitraires ua.
De préférence, après l'étape de dérivation, le traitement comporte également une étape d'extraction de hauteur de pic consistant à déterminer l'ordonnée du somment du pic, il s'agit du pic A' pour la phase de chauffage haut, ainsi que l'ordonnée de la base de ce pic, puis de réaliser la soustraction de ces deux ordonnées l'une de l'autre afin d'obtenir la hauteur du pic cherché, ici la hauteur Δ1 du pic A'.
De préférence, après l'étape d'extraction, le traitement de détermination de degré partiel de salissures comporte préférentiellement une étape de comparaison de la hauteur de pic extraite avec un ou plusieurs seuils. Dans un exemple particulier considéré, la hauteur Δ1 du pic A' sera comparé avec un seuil S1. Le seuil S1, comme tous les autres seuils mentionnés dans la suite du texte, est par exemple obtenu par étalonnage. Ces seuils sont des seuils prédéfinis.
Après la phase de chauffage haut de la cavité 1, c'est-à-dire lorsque le centre du four a atteint une première valeur de transition préfixée, par exemple 275°C, ou bien à défaut lorsque une première durée préfixée, par exemple 24 minutes, s'est écoulée, débute alors la phase de chauffage bas de la cavité 1. L'élément 7 chauffant bas est au moins partiellement activé. De préférence, la résistance de sole 71 est mise en marche pratiquement à pleine puissance tandis que la résistance de façade 72, lorsqu'il y en a une, reste inactivée. La résistance de grill 61 reste en marche pratiquement à pleine puissance tandis que la résistance de voute 62 est périodiquement commutée entre l'état « marche » et l'état « arrêt » de manière à ce que la cavité 1 monte progressivement en température, c'est-à-dire de manière à ce que les salissures issues de la cavité 1 soient libérées progressivement afin de ne pas provoquer de saturation de la cellule 4 de craquage. La phase de chauffage bas dure jusqu'à ce que la température au centre du four ait atteint une deuxième valeur de transition préfixée, par exemple environ 400°C, ou à défaut d'atteindre cette température, après l'écoulement d'une deuxième durée préfixée valant par exemple 18 minutes. Avantageusement, dans le cas où la température de 400°C est atteinte, les résistances restent activées pendant l'intégralité des 18 minutes, bien que la période de temps après que la température de 400°C ait été atteinte ne soit plus prise en compte pour la détermination du degré partiel de salissures déposées dans la partie basse de la cavité 1. Après quoi, la tangentielle 3 change avantageusement de régime pour tourner plus rapidement et accélérer le passage de l'air dans le conduit 2 d'évacuation. Comme à partir de 400°C, les salissures commencent à être craquées dans la cavité 1 et le sont déjà lorsqu'elles arrivent au niveau de la cellule 4 de craquage, l'augmentation du débit d'air au travers de la cellule 4 de craquage ne provoque normalement pas de saturation au niveau de la cellule 4.
La figure 4 représente schématiquement le même exemple de relevé de courbe de température de la cellule 4 de craquage que la figure 3, avec une autre partie du traitement associé permettant d'estimer le degré partiel de salissures déposées dans la partie basse de la cavité 1. La courbe C est la même que la courbe C représentée à la figure 3. Le pic B de température de la cellule 4 est observé sur la courbe C au moment où l'essentiel des salissures déposées dans la partie basse de la cavité 1 arrive au niveau de la cellule 4. C'est ce pic B de température qui est représentatif du degré partiel de salissures déposées dans la partie basse de la cavité 1. En effet, si l'augmentation générale de la courbe C en fonction reflète l'augmentation générale de la température de la cellule 4 de craquage dû à l'activation des différentes éléments chauffants, 5 pour la cellule 4 de craquage, 6 pour la partie haute de la cavité 1 et 7 pour la partie basse de la cavité 1, les pics supplémentaires comme le pic B reflète la quantité de salissures à l'origine des réactions exothermiques de craquage dont la cellule 4 de craquage est le siège. L'importance de ce pic B est représentative du degré partiel de salissures déposées dans la partie basse de la cavité 1. Si le pic B est trop fugitif, la sonde platine ayant une inertie importante risque de ne pas « voir » le pic ou de mal le voir. Avec une sonde platine notamment, il est très utile d'effectuer sur la courbe C un traitement permettant d'extraire l'information contenue dans le pic B même si celui-ci n'est pas suffisamment important et par conséquent d'estimer le degré partiel de salissures déposées dans la partie basse de la cavité 1 avec une précision suffisante malgré un pic B qui peut être assez plat par exemple comme sur la figure 4.
Le traitement appliqué à la courbe C, consistant en la détermination du degré partiel de salissures, est substantiellement le même que celui appliqué à la courbe C de la figure 3. Les paramètres numériques de l'étape de dérivation peuvent être différents, à cause du caractère différent présenté par les pics A et B, c'est-à-dire que la courbe C" obtenue par dérivation de la courbe C est à une échelle arbitraire différente de la courbe C' représentée à la figure 3. Hormis cette différence d'échelle concernant les courbes C' et C", la courbe C est substantiellement soumise au même traitement pour le pic B que pour le pic A. La détermination du degré partiel de salissures déposées dans la partie basse de la cavité 1 comporte les mêmes étapes préférentielles de dérivation, d'extraction de hauteur de pic et de comparaison de la hauteur de pic extraite avec un ou plusieurs seuils qui peuvent être et sont préférentiellement différents du ou des seuils considérés au niveau de la figure 3.
Par dérivée de la courbe C, on obtient la courbe C" sur laquelle un nouveau pic B' correspond à l'ancien pic B. Ce pic B' est représentatif du degré de salissures déposées dans la partie basse de la cavité 1, et notamment la hauteur Δ2 du pic B'. Dans un exemple particulier considéré, la hauteur Δ2 du pic B' sera comparé avec deux seuils S2 et S3 obtenus comme le seuil S1 de la figure 3 par étalonnage. Un nombre de seuils différent peut être choisi, le nombre de seuils correspondant à la finesse avec laquelle les degrés partiels de salissures sont estimés. Le pic D de la courbe C n'est pas représentatif du degré de salissures de la cavité de four, il traduit simplement le changement avantageux du régime de la tangentielle 3 qui comme expliqué plus haut, augmente le débit d'air au travers de la cellule 4 de craquage, après que la phase de chauffage bas soit terminée.
L'association d'une durée de pyrolyse restante à l'ensemble des degrés partiels de salissures déterminés peut être effectué par différents moyens comme par l'intermédiaire d'une fonction ayant pour variables les degrés partiels de salissures déterminés au cours des différentes phases de chauffage. De préférence, la durée de pyrolyse restante est issue d'une table de correspondance dont les entrées sont ces degrés partiels de salissures. La durée totale de pyrolyse est égale à la somme des durées des phases de chauffage haut et bas précédemment décrites à laquelle est ajoutée la durée de pyrolyse restante. La durée des phases de chauffage restant toujours sensiblement la même quel que soit le degré de salissures de la cavité du four, seule une durée fixe pendant laquelle est réalisée l'estimation du degré de salissures de la cavité du four sépare la valeur de la durée restante de pyrolyse et la valeur de la durée totale de pyrolyse : il est donc équivalent de donner l'une ou l'autre.
Pour une raison de commodité c'est la valeur de la durée totale de pyrolyse qui est donnée dans le tableau suivant représentant, pour l'exemple numérique préférentiel, la table de correspondance associant ici la durée totale de pyrolyse à un ensemble de degrés partiels de salissures :
Δ2<S2 S2<Δ2<S3 Δ2>S3
Δ1<S1 1h30 2h15 3h
Δ1>S1 1h45 2h15 3h
Dans cet exemple, lorsque la hauteur de pic Δ1 de pic A' est inférieure au seuil S1 et lorsque la hauteur Δ2 de pic B' est inférieure au seuil S2, le four est considéré comme propre et la durée totale de pyrolyse associée sera environ une heure et demie, la durée restante de pyrolyse valant environ trois quarts d'heure. Lorsque la hauteur de pic Δ1 de pic A' est supérieure au seuil S1 et lorsque la hauteur Δ2 de pic B' est inférieure au seuil S2, le four est considéré comme peu sale et la durée totale de pyrolyse associée sera environ une heure trois quarts, la durée restante de pyrolyse valant environ une heure. Lorsque la hauteur Δ2 de pic B' est comprise entre le seuil S2 et le seuil S3, le four est considéré comme moyennement sale et la durée totale de pyrolyse associée sera environ deux heures et quart, la durée restante de pyrolyse valant environ une heure et demie. Lorsque la hauteur Δ2 de pic B' est supérieure au seuil S2, le four est considéré comme très sale et la durée totale de pyrolyse associée sera environ trois heures, la durée restante de pyrolyse valant environ deux heures et quart. La durée totale de pyrolyse varie sensiblement de une heure et demie à trois heures en fonction du degré de salissures de la cavité, globalement représenté par les deux degrés partiels de salissures des parties haute et basse de la cavité.

Claims (13)

  1. Procédé de gestion de la durée de pyrolyse d'un four de cuisson, comportant
    au début de la pyrolyse, au moins deux phases successives de chauffage, d'abord surtout de la partie haute puis surtout de la partie basse de la cavité (1) du four ; caractérisé en ce que le procédé comporte :
    pour chaque phase de chauffage, la détermination d'un degré partiel de salissures de la cavité (1) ;
    l'association, à l'ensemble des degrés partiels de salissures, d'une durée de pyrolyse restante correspondante.
  2. Procédé de gestion de la durée de pyrolyse d'un four de cuisson selon la revendication 1, caractérisé en ce que la détermination du degré partiel de salissures de la cavité (1) est effectuée à partir de la mesure de la température au niveau d'une cellule (4) de craquage exothermique des salissures.
  3. Four à pyrolyse comportant une cavité (1) de cuisson, au moins un élément (6) chauffant haut situé au niveau de la partie haute de la cavité (1), au moins un élément (7) chauffant bas situé au niveau de la partie basse de la cavité(1), un système de gestion de durée de pyrolyse mettant en oeuvre pendant le début de la pyrolyse au moins deux phases de chauffage, une phase de chauffage haut pendant laquelle l'élément (6) chauffant haut est activé tandis que l'élément (7) chauffant bas n'est pas activé et une phase de chauffage bas pendant laquelle l'élément (7) chauffant bas est activé, la phase de chauffage haut étant antérieure à la phase de chauffage bas, caractérisé en ce que le système comprend une cellule (4) de craquage exothermique des salissures issues de la cavité (1), des moyens (8) de mesure de température associés à la cellule (4), en ce qu'à chaque phase de chauffage, le système détermine un degré partiel de salissures en réalisant une quantification partielle de salissures dans la cavité (1) à partir de la mesure de la température au niveau de la cellule (4), et en ce qu'à l'ensemble constitué par les degrés partiels de salissures, le système associe ensuite une durée de pyrolyse restante correspondante par l'intermédiaire d'une table de correspondance.
  4. Four à pyrolyse selon la revendication 3, caractérisé en ce que la cellule (4) est une cellule catalytique.
  5. Four à pyrolyse selon la revendication 4, caractérisé en ce que le four comporte un élément (5) de chauffage de la cellule (4) et en ce que cet élément (5) est activé au début de la phase de chauffage haut de manière à amorcer la cellule (4) catalytique.
  6. Four à pyrolyse selon la revendication 4, caractérisé en ce que le four comporte une tangentielle (3) située dans le conduit (2) d'évacuation et en ce que la vitesse de rotation de la tangentielle (3) est augmentée au début de la phase de chauffage haut de manière à amorcer la cellule (4) catalytique.
  7. Four à pyrolyse selon l'une quelconque des revendications 3 à 6, caractérisé en ce que chacune des phases de chauffage dure de l'ordre de vingt minutes.
  8. Four à pyrolyse selon l'une quelconque des revendications 3 à 7, caractérisé en ce que la cavité (1) comporte deux éléments (61 et 62) chauffants hauts, la résistance (62) de voute et la résistance (61) de grill, et en ce que pendant la phase de chauffage bas, la résistance (61) de grill est continuellement activée tandis que la résistance (62) de voute commute entre un état activé et un état désactivé de manière à ce que la cavité (1) monte progressivement en température.
  9. Four à pyrolyse selon l'une quelconque des revendications 3 à 7, caractérisé en ce que la cavité (1) comporte un seul élément (61) chauffant haut, la résistance (61) de grill, et un seul élément (71) chauffant bas, la résistance (71) de sole.
  10. Four à pyrolyse selon l'une quelconque des revendications 3 à 9, caractérisé en ce que la détermination de degré partiel de salissures comporte une étape de dérivation, par rapport au temps, de la courbe (C) de température de la cellule (4) en fonction du temps (t).
  11. Four à pyrolyse selon la revendication 10, caractérisé en ce que la détermination de degré partiel de salissures comporte, après l'étape de dérivation, une étape d'extraction de hauteur (Δ1, Δ2) de pic (A', B').
  12. Four à pyrolyse selon la revendication 11, caractérisé en ce que la détermination de degré partiel de salissures comporte, après l'étape d'extraction, une étape de comparaison de la hauteur (Δ1, Δ2) de pic (A', B') extraite avec un ou plusieurs seuils (S1, S2, S3).
  13. Four à pyrolyse selon l'une quelconque des revendications 3 à 12, caractérisé en ce que la durée totale de la pyrolyse varie sensiblement d'une heure et demie à trois heures, en fonction du degré de salissures de la cavité (1).
EP00402441A 1999-09-10 2000-09-05 Gestion de la durée de pyrolyse Expired - Lifetime EP1083389B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9911374 1999-09-10
FR9911374A FR2798455B1 (fr) 1999-09-10 1999-09-10 Gestion de la duree de pyrolyse

Publications (2)

Publication Number Publication Date
EP1083389A1 EP1083389A1 (fr) 2001-03-14
EP1083389B1 true EP1083389B1 (fr) 2003-11-26

Family

ID=9549745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00402441A Expired - Lifetime EP1083389B1 (fr) 1999-09-10 2000-09-05 Gestion de la durée de pyrolyse

Country Status (4)

Country Link
EP (1) EP1083389B1 (fr)
DE (1) DE60006756T2 (fr)
ES (1) ES2212765T3 (fr)
FR (1) FR2798455B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044698A1 (de) * 2005-09-19 2007-03-22 BSH Bosch und Siemens Hausgeräte GmbH Hocheinbau-Gargerät
DE102006030644B4 (de) * 2006-07-03 2011-04-14 Electrolux Home Products Corporation N.V. Verfahren zum Betrieb eines Ofens, insbesondere eines Küchen-Gar- oder Backofens, und Ofen
ES2390172B1 (es) 2010-01-29 2013-09-17 Fagor, S. Coop. Horno pirolítico, preferentemente doméstico.
ES2389644B1 (es) 2010-01-29 2013-09-12 Fagor S Coop Horno preferentemente domestico.
DE102016103140A1 (de) * 2016-02-23 2017-07-06 Miele & Cie. Kg Kochfeldeinrichtung
DE102021110574A1 (de) * 2021-04-26 2022-10-27 Miele & Cie. Kg System, umfassend ein Gargerät mit einem Garraum und eine Dunstabzugsvorrichtung, und Verfahren zum Betrieb eines Systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493976A (en) * 1983-05-02 1985-01-15 General Electric Company Pyrolytic oven cleaning system
US4954694A (en) * 1989-01-31 1990-09-04 Matsushita Electric Industrial Co., Ltd. Cooking oven having function to automatically clean soils attached to inner walls thereof

Also Published As

Publication number Publication date
FR2798455A1 (fr) 2001-03-16
DE60006756D1 (de) 2004-01-08
DE60006756T2 (de) 2004-09-30
EP1083389A1 (fr) 2001-03-14
ES2212765T3 (es) 2004-08-01
FR2798455B1 (fr) 2001-12-14

Similar Documents

Publication Publication Date Title
EP0165187B1 (fr) Appareil de cuisson à injection de vapeur à pression atmosphérique
EP1083389B1 (fr) Gestion de la durée de pyrolyse
FR2874437A1 (fr) Procede de commande d&#39;un processus de cuisson delta-t ainsi qu&#39;un appareil pour celui-ci.
FR2577741A1 (fr) Dispositif de controle et de reglage de la puissance de chauffage pendant la phase d&#39;echauffement d&#39;un recipient destine a faire mijoter un aliment ou a le tenir au chaud
EP0534809A2 (fr) Procédé et dispositif de détection de vapeur d&#39;eau dans un volume d&#39;air et générateur de vapeur et four de cuisson à la vapeur utilisant ceux-ci
FR2621106A1 (fr) Systeme de commande automatique de cuisson pour un four a micro-ondes
FR2621716A1 (fr) Procede de commande de cuisson automatique pour un four a micro-ondes
FR2660515A1 (fr) Appareil de chauffage a commande automatique pour cuisson par ondes et par element chauffant.
EP3086044B1 (fr) Appareil de cuisson mettant en oeuvre un cycle de nettoyage par pyrolyse et procédé de nettoyage correspondant
CA2772693C (fr) Methode de caracterisation de la combustion dans des lignes de cloisons d&#39;un four a chambres a feu(x) tournant(s)
EP0076759B1 (fr) Installation de mesure en continu du pouvoir calorifique d&#39;un gaz
CA2991737A1 (fr) Procede de commande du temps de cuisson et appareil de cuisson associe
EP1010357B1 (fr) Procede de commande de la duree de rechauffage et/ou de cuisson dans un four et four pour la mise en oeuvre du procede
EP1199621B1 (fr) Procédé de régulation de la température dans un four de cuisson électrique
EP1151705B1 (fr) Procédé de régulation de température dans un four vapeur
FR2934360A1 (fr) Four universel a cuisson rapide
FR2880689A1 (fr) Procede d&#39;analyse de cokefaction d&#39;une huile pour turbomoteur.
EP1043547B1 (fr) Systéme d&#39;évaluation de l&#39;état de salissures de la cavité d&#39;un four
EP1850642B1 (fr) Procédè de rèchauffage d&#39;un aliment, et notamment d&#39;une boisson dans un four à micro-ondes
FR3015185A1 (fr) Procede de cuisson d&#39;un aliment et/ou d&#39;un auxiliaire de cuisson et d&#39;evaluation de la formation de composes neoformes
EP0950862B1 (fr) Système d&#39;évalution de l&#39;état de salissures de la cavité d&#39;un four
EP3905931B1 (fr) Appareil de cuisson electrique avec une fonction de marquage de l&#39;aliment a cuire
FR3119174A1 (fr) Procédé de lavage de linge, lave-linge et programme mettant en œuvre un tel procédé
EP1850641B1 (fr) Procédé de chauffage d&#39;une boisson et four à micro-ondes adapté a mettre en oevre le procédé
EP1857026A1 (fr) Appareil electromenager de couisson a la vapeur a cycle de chauffage regule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010622

AKX Designation fees paid

Free format text: DE ES FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60006756

Country of ref document: DE

Date of ref document: 20040108

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040304

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BRANDT INDUSTRIES

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2212765

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040827

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101020

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: FAGORBRANDT SAS, FR

Effective date: 20110826

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: FAGORBRANDT SAS

Effective date: 20111021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60006756

Country of ref document: DE

Owner name: GROUPE BRANDT, FR

Free format text: FORMER OWNER: BRANDT INDUSTRIES, RUEIL MALMAISON, FR

Effective date: 20120322

Ref country code: DE

Ref legal event code: R082

Ref document number: 60006756

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

Effective date: 20120322

Ref country code: DE

Ref legal event code: R081

Ref document number: 60006756

Country of ref document: DE

Owner name: FAGORBRANDT SAS, FR

Free format text: FORMER OWNER: BRANDT INDUSTRIES, RUEIL MALMAISON, FR

Effective date: 20120322

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120905

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150918

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GROUPE BRANDT

Effective date: 20160226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60006756

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60006756

Country of ref document: DE

Owner name: GROUPE BRANDT, FR

Free format text: FORMER OWNER: FAGORBRANDT SAS, RUEIL-MALMAISON, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160229

Year of fee payment: 16

Ref country code: IT

Payment date: 20160225

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GROUPE BRANDT, FR

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

Effective date: 20160426

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60006756

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160905

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160906

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180828

Year of fee payment: 19

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930