EP1082363A1 - Organometallverbindung, katalysatorsystem enthaltend diese organometallverbindung und seine verwendung - Google Patents

Organometallverbindung, katalysatorsystem enthaltend diese organometallverbindung und seine verwendung

Info

Publication number
EP1082363A1
EP1082363A1 EP00910601A EP00910601A EP1082363A1 EP 1082363 A1 EP1082363 A1 EP 1082363A1 EP 00910601 A EP00910601 A EP 00910601A EP 00910601 A EP00910601 A EP 00910601A EP 1082363 A1 EP1082363 A1 EP 1082363A1
Authority
EP
European Patent Office
Prior art keywords
methyl
indenyl
zirconium dichloride
dichloride dimethylsilanediyl
azapentalen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00910601A
Other languages
English (en)
French (fr)
Inventor
Jörg SCHOTTEK
Roland Kratzer
Andreas Winter
Volker Fraaije
Michael-Joachim Brekner
Markus Oberhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basell Polyolefine GmbH
Original Assignee
Targor GmbH
Basell Polyolefine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Targor GmbH, Basell Polyolefine GmbH filed Critical Targor GmbH
Publication of EP1082363A1 publication Critical patent/EP1082363A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • Organometallic compound Organometallic compound, catalyst system containing this organometallic compound and its use.
  • the present invention relates to specially substituted metal ocenes and corresponding highly active supported catalyst systems which can advantageously be used in olefin polymerization and to a process for their preparation and to polymers which are prepared using the supported catalyst systems.
  • Processes for the production of polyolefins using soluble, homogeneous catalyst systems, consisting of a transition metal component of the metallocene type and a cocatalyst component of the aluminoxane type, a Lewis acid or an ionic compound, are known. With high activity, these catalysts deliver polymers and copolymers with a narrow molecular weight distribution.
  • Catalyst systems form heavy deposits on the reactor walls and stirrer when the polymer is obtained as a solid. These deposits always arise from agglomeration of the polymer particles when metallocene and / or cocatalyst are present in solution in the suspension. Such deposits in the reactor systems must be removed regularly, since these quickly reach considerable strengths, have high strength and prevent heat exchange with the cooling medium. Such homogeneous catalyst systems cannot be used industrially in modern polymerization processes, for example in liquid monomer or in the gas phase.
  • supported catalyst systems have been proposed in which the metallocene and / or the aluminum compound serving as cocatalyst are fixed on an inorganic support material.
  • the catalyst activities can be increased by increasing the loading of the support with active substances (metallocene component (s), cocatalyst (s) and optionally additives), but at the same time such catalysts tend to form large amounts of deposits and cannot be used industrially.
  • active substances metallicocene component (s), cocatalyst (s) and optionally additives
  • the object on which the present invention is based is achieved by a specially substituted metallocene, a supported catalyst system which contains at least one specially substituted metallocene, at least one cocatalyst, at least one carrier and, if appropriate, at least one further additive component.
  • the catalyst system is produced according to the invention by mixing at least one specially substituted metallocene, at least one cocatalyst and at least one carrier and, if appropriate, at least one further additive component.
  • the metallocene according to the invention which is also used as a metallocene component in the catalyst system according to the invention, is a compound of the formula I below
  • M 1 is a metal from group IVb of the Periodic Table of the Elements
  • R 1 and R 2 are the same or different and a hydrogen atom, a C ⁇ -C ⁇ o-alkyl group, a C ⁇ -C ⁇ o alkoxy group, a
  • R 3 , R 4 , R 6 , R 7 and R 8 and R 3 'and R 4 ' are the same or different and are a hydrogen atom, a hydrocarbon group which can be partially halogenated, alo "-generated, linear, cyclic or branched, for example a -C-C ⁇ o-alkyl group, C 2 -C ⁇ 0 alkenyl group, C 6 -C 2 rj-aryl group, a C -C 4 o-arylalkyl group, a C 7 -C 4 o-alkyl aryl group, a C 8th -C 4 o-arylalkenyl group, an Si (R 13 ) 3 -, N (R 13 ) 2 -, SR 13 - or OR 13 group, with R 13 as R 4 , with the proviso that R 3 is different from hydrogen, R 3 'and R 4 ' can also be cyclically linked, and R 5 is a C 6 to C 40 aryl
  • R 14 is a halogen atom F, Cl or Br, a Ci to C o -alkyl radical, a C 2 to C 2 o-alkenyl radical, a C 6 to C 24 aryl radical, a C 7 to C 4 o-arylalkyl radical, a C 7 to C 4 o -alkylaryl, a Cs to C 4 o-arylalkenyl radical where the hydrocarbon radicals can also be halogenated or partially halogenated with fluorine, chlorine or bromine, -N (R 15 ) 2 , - ⁇ > (R 15 ) 2 , -SR 15 , -0R 15 , -Si (R 15 ) 3 ,
  • radicals R 16 can be the same or different despite the same indexing and the meaning of R 14 or hydrogen and adjacent R 16 radicals can also be cyclically linked, or one or more of the R 16 radicals form a cyclic linkage with the R 6 or R 4 and / or R 14 radicals, with the proviso that R 14 also Can be hydrogen if at least one of the radicals R16 is different from hydrogen,
  • R 9 means a bridge
  • R 10 , R 11 can also be the same or different with the same indexing and denote a hydrogen atom, a halogen atom, a C 1 -C 4 o-hetero atom-containing hydrocarbon group or a C 1 -C 4 o -carbon-containing group, such as a C 1 -C 20 -alkyl, a C ⁇ -C 10 fluoroalkyl, a C ⁇ -C ⁇ o alkoxy, a C 6 -C 14 aryl, a C ⁇ -Cio-fluoroaryl group, a C 6 -aryloxy -C ⁇ 0 , a C 2 -C ⁇ o alkenyl, a C 7 -C 4 o-arylalkyl, a C 7 -C 40 alkylaryl, a C 8 -C 40 arylalkenyl group, a -N (Rl 7 ) 2 , - P (Rl 7 ) 2 , -SR 17
  • x means an integer from 0 to 18,
  • M 2 means silicon, germanium or tin, and heteroatom-containing hydrocarbon groups are understood to mean hydrocarbons which contain at least one element from groups 13 to 16 of the Periodic Table of the Elements.
  • R 9 can also link two units of the formula I to one another.
  • R a denotes a saturated or unsaturated hydrocarbon group, preferably with 1 to 40 carbon atoms, in particular with 1 to 30 carbon atoms, which can also be substituted by one or more radicals with the meaning of R 3 , the radical R as such contains at least one heteroatom from groups 13, 14, 15 or 16 of the Periodic Table of the Elements. In the above meaning R a , this means that the heteroatom is present as such in the ring system. If the ring system already contains at least one heteroatom, one or more radicals R 3 can also contain a heteroatom.
  • M 1 is zirconium, hafnium or titanium
  • R 1 and R 2 are the same and represent methyl, dimethylamide, dibenzyl or chlorine,
  • R 3 and R 3 ' are the same or different and are a hydrocarbon group which can be partially halogenated, halogenated, linear, cyclic or branched, for example a -C 1 -C ⁇ alkyl group, C -C 1o alkenyl group, a C -C 4 o- Alkylaryl group mean
  • R 5 is a C 6 to C 2 o aryl group having a substituent R contributes in para-position to the binding site on the indenyl ring 14, and R 14 is a Ci to C ⁇ o _ alkyl, C 2 to Cio-alkenyl radical, a C 6 to C ⁇ 8 aryl, a C to
  • R a denotes a saturated or unsaturated hydrocarbon group with 2 to 40 carbon atoms, which can also be substituted with radicals as R 3 , and which has at least one heteroatom selected from the group B, Al, Si, Sn, N , P, O or S contains.
  • R 3 radicals as R 3
  • R 3 has at least one heteroatom selected from the group B, Al, Si, Sn, N , P, O or S contains.
  • M 1 is zirconium
  • R 1 and R 2 are the same and represent methyl or chlorine
  • R 3 and R 3 ' are the same or different and are a hydrocarbon group which can be halogenated, linear, cyclic or branched, for example a -C-C ⁇ o-alkyl group, C 2 -C ⁇ 0 -alkenyl group, a C 7 -C 40 -alkylaryl group ,
  • R 9 or - is in which R 10 and R 11 are identical or different and denote hydrogen, phenyl, methyl or ethyl, the radicals, R 4 , R 6 , R 7 and R 8 and R 4 'are hydrogen,
  • R 5 is a C 6 to C 20 aryl group, in particular a phenyl group,
  • Naphthyl or anthracenyl group mean one in the para position to the binding site to the indenyl ring
  • R 14 carries substituents, where R 14 is a Si (R 15 ) 3 radical, with R 15 as R 4 , or a linear Ci to C ⁇ o alkyl radical, a branched C 3 to C 10 alkyl radical C 2 to Cin-alkenyl radical or a branched C to C o ⁇ alkylaryl radical, where the hydrocarbon radicals can also be halogenated or partially halogenated with fluorine or chlorine, and
  • R a is a saturated or unsaturated hydrocarbon group with 1 to 30 carbon atoms, which can also be substituted with radicals as R 3 , and which has at least one
  • Heteroatom selected from the group N, P, 0 or S contains.
  • the fragment R a together with the cyclopentadienyl base to which it is attached very particularly preferably forms the following molecular fragments of the formula I (for reasons of clarity, the hydrogen atoms in the heteroatom-containing rings have been omitted in the rings). Only residues R were taken into account and indicated, which can also be different from hydrogen):
  • the heteroatom functions X are the same or different and have the meaning NR ⁇ , PR ⁇ , N, 0 or S, the radicals R ⁇ , R ⁇ , R ⁇ and R are hydrogen or the meaning of R 3 , the radicals R ⁇ the meaning of R 3 'and the radicals RP have the meaning of R 4 '.
  • Examples of preferred metallocene components of the catalyst system according to the invention are combinations of the following molecule fragments of the compound I:
  • R 3 , R 3 ' methyl, ethyl, n-propyl, isopropyl, isobutyl, n-butyl, s-butyl,
  • R 6, R 7 hydrogen, Ci to C 4 alkyl, C 6 to C ⁇ 0 aryl,
  • R 5 p-methyl-phenyl, p-ethyl-phenyl, pn-propyl-phenyl, p-isopropyl-phenyl, pn-butyl-phenyl, p-tert-butyl-phenyl, ps-butyl- phenyl, p-pentyl-phenyl, p-hexyl-phenyl, p-cyclohexyl-phenyl, p-trimethylsilyl-phenyl, p-adamantyl-phenyl, p- (F 3 C) 3 C-phenyl,
  • R 9 dimethylsilanediyl, phenyl (methyl) silanediyl, diphenylsilanedyl, dirnethylgermandiyl, ethylidene, 1-methylethylidene, 1,1-dimethylethylidene, 1,2-dirnethylethylidene, 1, 1, 2, 2-tetramethylethylidene, dimethylmethylidene, phenyl (methyl) methylidene, diphenylmethylidene,
  • R a 2-alkyl-4-azapentalene, 2-alkyl-5-azapentalene,
  • 2-alkyl-6-azapentalenes 2-alkyl-N-aryl-4-azapentalenes, 2-A1-alkyl-N-aryl-5-azapentalenes, 2-alkyl-N-aryl-6-azapentalenes, 2, 5- Dialkyl-4-azapentalene, 2,5-dialkyl-6-azapentalene,
  • Dimethylsilanediyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 '-isopropylphenyl-indenyl) zirconium dichloride Dimethylsilanediyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -isopropylphenyl -indenyl) zirconium dichloride dimethylsilanediyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 '-isopropylphenyl-indenyl) zirconium dichloride dimethylsilanediyl (2-methyl-4-oxapentalen) (2-methyl-4- ( 4 'isopropylphenyl indenyl) zirconium dichloride
  • Dimethylsilanediyl (2,5-dimethyl-6-thiapentalene) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirconium dichloride
  • dimethylsilanediyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 '-trimethylsilylphenyl-indenyl) zirconium dichloride
  • preferred metallocene components are furthermore the corresponding homologues of the abovementioned compounds which are substituted in the 2- and / or in the 2,5-position with ethyl, n-propyl, isopropyl, isobutyl, n-butyl and s-butyl.
  • the metallocenes of the formula I can be used as a mixture of isomers or as one of the possible racemic isomers in pure or enriched form.
  • the catalyst system according to the invention preferably additionally contains at least one cocatalyst.
  • the cocatalyst component which can be present in the catalyst system according to the invention contains at least one compound of the type of an aluminoxane or a Lewis acid or an ionic compound, which converts this into a cationic compound by reaction with a metallocene.
  • the usable in the inventive method aluminoxanes Kgs ⁇ NEN example, cyclic as in formula II
  • the radicals R in the formulas (II), (III) or (IV) can be the same or different and a C ⁇ -C o hydrocarbon group such as a Ci-Ce alkyl group, a C 6 -Ci 8 aryl group, benzyl or hydrogen mean, and p is an integer from 2 to 50, preferably 10 to 35.
  • the radicals R are preferably the same and are methyl, isobutyl, n-butyl, phenyl or benzyl, particularly preferably methyl.
  • radicals R are different, they are preferably methyl and hydrogen, methyl and isobutyl or methyl and n-butyl, with hydrogen or isobutyl or n-butyl preferably containing 0.01-40% (number of the radicals R).
  • the aluminoxane can be produced in various ways by known processes.
  • One of the methods is, for example, that an aluminum hydrocarbon compound and / or a hydridoaluminum hydrocarbon compound is reacted with water (gaseous, solid, liquid or bound - for example as water of crystallization) in an inert solvent (such as toluene).
  • an inert solvent such as toluene
  • AIR 3 + AIR ' 3 two different aluminum trialkyls (AIR 3 + AIR ' 3 ) are reacted with water according to the desired composition and reactivity (see S. Pasynkiewicz, Polyhedron 9 (1990) 429 and EP-A 302 424).
  • the Lewis acid used is preferably at least one organoboron or organoaluminum compound which contains C 1 -C 20 -carbon-containing groups, such as branched or unbranched alkyl or haloalkyl, such as methyl, propyl, isopropyl, isobutyl, trifluoromethyl, unsaturated Groups such as aryl or haloaryl such as phenyl, tolyl, benzyl groups, p-fluorophenyl, 3, 5-difluorophenyl, pentachlorophenyl, pentafluorophenyl, 3,4,5 trifluorophenyl and 3,5 di (trifluoromethyl) henyl.
  • organoboron or organoaluminum compound which contains C 1 -C 20 -carbon-containing groups, such as branched or unbranched alkyl or haloalkyl, such as methyl, propyl, isopropyl, isobutyl, trifluor
  • Preferred Lewis acids are trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tributyl aluminum, trifluoroborane, triphenylborane, tris (4-fluorophenyl) borane, tris (3,5-difluorophenyl) borane, tris (4-fluoromethylphenyl) borane, tris (p - fluorophenyl) borane, tris (tolyl) borane, tris (3,5-dimethylphenyljborane, tris (3,5-difluorophenyl) borane and / or
  • Tris (3, 4, 5-trifluorophenyl) borane Tris (pentafluorophenyl) borane is particularly preferred.
  • Compounds which contain a non-coordinating anion such as, for example, tetrakis (pentafluorophenyl) borates, tetraphenyl borates, SbFg-, CF 3 S0 3 - or C10 4 -, are preferably used as ionic cocatalysts.
  • a cationic counterion Lewis bases such as methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, pyridine, p-bromo-N, N -dimethylaniline, p-nitro-N, N-dimethylaniline, triethylphosphine, triphenylphosphine, diphenylphosphine, tetra-hydrothiophene and triphenylcarbenium are used.
  • Triethylammonium tetr (phenyl) borate Triethylammonium tetr (phenyl) borate
  • Trimethylammonium tetra (tolyl) borate Trimethylammonium tetra (tolyl) borate
  • Triphenylcarbenium tetrakis (phenyl) aluminate Triphenylcarbenium tetrakis (phenyl) aluminate
  • N, N-Dimethylanilinium tetrakis (pentafluorophenyl) borate N, N-Dimethylanilinium tetrakis (pentafluorophenyl) borate.
  • Mixtures of at least one Lewis acid and at least one ionic compound can also be used.
  • Borane or carborane compounds such as e.g.
  • the carrier component of the catalyst system according to the invention can be any organic or inorganic, inert solid, in particular a porous carrier such as talc, inorganic oxides and finely divided polymer powders (e.g. polyolefins).
  • Suitable inorganic oxides can be found in groups 2, 3, 4, 5, 13, 14, 15 and 16 of the Periodic Table of the Elements.
  • oxides preferred as carriers include silicon dioxide, aluminum oxide, and mixed oxides of the two elements and corresponding oxide mixtures.
  • Other inorganic oxides that can be used alone or in combination with the last-mentioned preferred oxide carriers are, for example, MgO, Zr0 2 , Ti0 or B0 3 , to name just a few.
  • the carrier materials used have a specific surface area in the range from 10 to 1000 m 2 / g, a pore volume in the range from 0.1 to 5 ml / g and an average particle size from 1 to 500 ⁇ m.
  • Carriers with a specific surface area in the range from 50 to 500 m 2 / g, a pore volume in the range between 0.5 and 3.5 ml / g and an average particle size in the range from 5 to 350 ⁇ m are preferred.
  • Carriers with a specific surface area in the range from 200 to 400 m 2 / g, a pore volume in the range between 0.8 to 3.0 ml / g and an average particle size of 10 to 200 ⁇ m are particularly preferred.
  • the carrier material used naturally has a low moisture content or residual solvent content, dehydration or drying can be avoided before use. If this is not the case, as with the use of silica gel as a carrier material, dehydration or drying is recommended.
  • the thermal dehydration or drying of the carrier material can be carried out under vacuum and / or inert gas overlay (eg nitrogen).
  • the drying temperature is in the range between 100 and 1000 ° C, preferably between 200 and 800 ° C.
  • the drying process can take between 1 and 24 hours. Shorter or longer drying times are possible, provided that under the selected conditions
  • Equilibrium can be done with the hydroxyl groups on the support surface, which normally takes between 4 and 8 hours.
  • Dehydration or drying of the carrier material is also possible chemically by reacting the adsorbed water and the hydroxyl groups on the surface with suitable inerting agents.
  • suitable inerting agents As a result of the reaction with the inerting reagent, the hydroxyl groups can be completely or partially converted into a form which does not lead to any negative interaction with the catalytically active centers.
  • Suitable inerting agents are, for example, silicon halides and silanes, such as silicon tetrachloride, chlorotrimethylsilane, dimethylaminotrichlorosilane or organometallic compounds of aluminum, boron and magnesium, such as trimethylaluminium, triethylaluminum, triisobutylaluminum, methylaluminoxane, triethylborane, dibutylmagnesium.
  • the chemical dehydration or inertization of the carrier material takes place, for example, by reacting a suspension of the carrier material in a suitable solvent with the inerting reagent in pure form or dissolved in a suitable solvent with exclusion of air and moisture.
  • Suitable solvents are e.g.
  • aliphatic or aromatic hydrocarbons such as pentane, hexane, heptane, toluene or xylene.
  • the inerting takes place at temperatures between 0 ° C and 120 ° C, preferably between 20 and 70 ° C. Higher and lower temperatures are possible.
  • the duration of the reaction is between 30 minutes and 20 hours, preferably 1 to 5 hours.
  • the carrier material is isolated by filtration under inert conditions, washed one or more times with suitable inert solvents as described above and then dried in an inert gas stream or under vacuum.
  • the supported catalyst system can also contain more than one metallocene.
  • metallocenes which can be used in this context are described, for example, in EP-A-0 485 821, DE 195 44 828 AI or EP-A-0 576 970. These are preferably bridged bisindenyl metallocenes which are in the 2-; 2.4-; 2.5-; 2,4,5-; 2,4,6-; 2,4,7-; 2,4,5,6- or 2, 5, 6-position are substituted.
  • At least one of the metallocene components of the formula I described above is brought into contact with at least one cocatalyst component in a suitable solvent, a soluble reaction product, an adduct or a mixture preferably being obtained.
  • the preparation thus obtained is then mixed with the dehydrated or rendered inert carrier material, the solvent is removed and the resulting supported metallocene catalyst system is dried to ensure that the solvent is completely or largely removed from the pores of the carrier material.
  • the supported catalyst is obtained as a free-flowing powder.
  • a possible method for producing a free-flowing and optionally prepolymerized supported catalyst system comprises the following steps:
  • Process steps a) and b) can also be combined, where
  • Preferred solvents for the production of the metallocene / cocatalyst mixture are hydrocarbons and hydrocarbon mixtures which are liquid at the selected reaction temperature and in which the individual components preferably dissolve.
  • the solubility of the individual components is not a prerequisite if it is ensured that the reaction product of metallocene and cocatalyst components is soluble in the chosen solvent.
  • suitable solvents include alkanes such as pentane, isopentane, hexane, heptane, octane, and nonane; Cycloalkanes such as cyclopentane and cyclohexane; and aromatics such as benzene, toluene. Ethylbenzene and diethylbenzene. Toluene is very particularly preferred.
  • a molar ratio of aluminum to transition metal in the metallocene of 10: 1 to 1000: 1 is preferably set, very particularly preferably a ratio of 50: 1 to 500: 1.
  • the metallocene can be dissolved in the form of a solid in a solution of the aluminoxane in a suitable solvent. It is also possible to dissolve the metallocene separately in a suitable solvent and then to combine this solution with the aluminoxane solution. Toluene is preferably used. If several metallocenes are used, the dissolving process can be carried out separately or with the previously mixed metallocenes.
  • the preactivation time can be 1 minute to 200 hours.
  • the pre-activation can take place at room temperature (20 ° C). In individual cases, the use of higher temperatures can shorten the time required for preactivation and cause an additional increase in activity. In this case, a higher temperature means a range between 20 and 150 ° C.
  • the preactivated solution (s) or the metallocene / cocatalyst mixture (s) can / can subsequently be mixed with an inert carrier material, preferably silica gel, in the form of a dry powder or as a suspension in one of the above mentioned solvents are present.
  • the carrier material is preferably used as a powder.
  • the order of addition is arbitrary. If several solutions or metallocene / cocatalyst mixtures are used, intermediate drying can also take place between the individual addition steps (sequential support).
  • the preactivated metallocene-cocatalyst solution (s) or the metallocene-cocatalyst mixture (s) can be metered into the support material or the support material can be introduced into the solution (s) .
  • the volume (or the sum of the individual volumes) of the preactivated solution (s) or of the metallocene / cocatalyst mixture (s) can exceed 100% of the total pore volume of the support material used or can be up to 100% of the total pore volume.
  • the temperature at which the preactivated solution (s) or the metallocene / cocatalyst mixture (s) is / are brought into contact with the support material can vary in the range between 0 and 100 ° C. However, lower or higher temperatures are also possible.
  • the solvent or solvent mixture is then completely or for the most part removed from the supported catalyst system, the mixture being able to be stirred and optionally also heated. Both the visible portion of the solvent and the portion in the pores of the carrier material are preferably removed.
  • the solvent can be removed in a conventional manner using vacuum and / or purging with inert gas. During the drying process, the mixture can be heated until the free solvent has been removed, which usually requires 1 to 3 hours at a preferably selected temperature between 30 and 60 ° C.
  • the free solvent is the visible proportion of solvent in the mixture. Residual solvent is the proportion that is enclosed in the pores.
  • the supported catalyst system can also be dried only to a certain residual solvent content, the free solvent having been removed completely.
  • the supported catalyst system can then be washed with a low-boiling hydrocarbon such as pentane or hexane and dried again.
  • the supported catalyst system shown according to the invention can either be used directly for the polymerization of olefins or prepolymerized with one or more olefinic monomers before being used in a polymerization process.
  • the prepolymerization of supported catalyst systems is described, for example, in WO 94/28034.
  • an olefin preferably an ⁇ -olefin (for example styrene or phenyldimethylvinylsilane) as an activity-increasing component or for example an antistatic agent (as in US patent application Serial No. 08/365280)
  • ⁇ -olefin for example styrene or phenyldimethylvinylsilane
  • an antistatic agent as in US patent application Serial No. 08/365280
  • the molar ratio of additive to metallocene is preferably between 1: 1000 to 1000: 1, very particularly preferably 1:20 to 20: 1.
  • the present invention also relates to a process for the preparation of a polyolefin by polymerization of one or more olefins in the presence of the catalyst system according to the invention, comprising at least one transition metal component of the formula I.
  • polymerization is understood to mean homopolymerization and also copolymerization.
  • olefins examples include 1-olefins having 2 to 40, preferably 2 to 10, carbon atoms, such as ethene, propene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene or 1-octene, Styrene, dienes such as 1, 3-butadiene, 1, 4-hexadiene, vinyl norbornene, norbornadiene, ethyl - norbornadiene and cyclic olefins such as norbornene, tetracyclododecenes or methylnorbornene.
  • 1-olefins having 2 to 40, preferably 2 to 10, carbon atoms, such as ethene, propene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene or 1-octene, Styrene, dienes such as 1, 3-butadiene, 1, 4-hexadiene, vinyl norbornene, norborna
  • propene or ethene are preferably homopolymerized, or Propene with ethene and / or with one or more 1-01efins with 4 to 20 C atoms, such as hexene, and / or one or more dienes with 4 to 20 C atoms, such as 1, 4-butadiene, norbornadiene, ethylidene copolymerized norbones or ethyl norbornadiene.
  • Examples of such copolymers are ethene / propene copolymers or ethene / propene / 1,4-hexadiene terpolymers.
  • the polymerization is carried out at a temperature of from -60 to 300 ° C., preferably from 50 to 200 ° C., very particularly preferably from 50 to 100 ° C.
  • the pressure is 0.5 to 2000 bar, preferably 5 to 100 bar.
  • the catalyst system can be metered into the polymerization system in any manner.
  • the catalyst system is preferably metered in in the form of a powder, a suspension or a paste with an adapted viscosity.
  • Two or more catalyst systems according to the invention or mixtures of catalyst system (s) according to the invention with at least one further catalyst system can also be separated into the polymerization or metered in as a mixture.
  • the polymerization can be carried out in solution, in bulk, in suspension, in the gas phase or in a supercritical medium continuously or batchwise, in one or more stages.
  • the catalyst system shown according to the invention can be used as the only catalyst component for the polymerization of olefins having 2 to 20 carbon atoms, or preferably in combination with at least one alkyl compound of the elements from I. to III.
  • Main group of the periodic table e.g. an aluminum, magnesium or lithium alkyl or an aluminoxane can be used.
  • the alkyl compound is added to the monomer or suspending agent and is used to purify the monomer from substances that can impair the catalyst activity. The amount of alkyl compound added depends on the quality of the monomers used.
  • hydrogen is added as a molecular weight regulator and / or to increase the activity.
  • an antistatic can also be metered into the polymerization system together with or separately from the catalyst system used.
  • the addition of an antistatic can also be carried out after the polymerization Process step may be useful to improve the processing of the polymer.
  • the catalyst systems according to the invention are highly active and no deposits or caking occur during the polymerization.
  • polymers such as polypropylene
  • polypropylene can be obtained with extremely high stereo and region specificity.
  • copolymers which can be prepared using the catalyst system according to the invention are notable for high molar masses. At the same time, such copolymers can be produced by using the catalyst system according to the invention with high productivity with technically relevant process parameters without formation of deposits.
  • the polymers obtainable by the process according to the invention are particularly suitable for the production of tear-resistant, hard and rigid moldings such as fibers, filaments, injection molded parts, foils, sheets or large hollow bodies (e.g. pipes), as well as for the production of copolymers with high rigidity, toughness, low white breakage and transparency.
  • organometallic compounds were produced and handled with the exclusion of air and moisture under an argon protective gas (Schlenk technique or glove box). All required solvents were flushed with argon before use and absoluteized using a molecular sieve.
  • the metallocenes used were analyzed by iH-NMR, 13 C-NMR and IR
  • Dimethylsilanediyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 't-butyl-phenyl) -indene) and Dimethylsilanediyl (2, 5-dimethyl-N-phe-5 nyl-4-azapentalen ) (2-methyl-4- (4 '- tert -butyl-phenyl-indene) were analogous to the ligand synthesis in WO 98/22486 from 2-methyl-4- (4'-tert. -Butyl-phenyl) -indene and the corresponding dimethylchlorosilanediylpentalene derivative.
  • Example la 45 Representation of the supported catalyst system: 62 mg (0.09 mmol) of dimethylsilanediyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4'-tert-butylphenyl-indenyl) zirconium dichloride were dissolved in 4.3 cm 3 (20 mmol AI) 30% toluene solution of methylaluminoxane 1 * was dissolved, the solution was diluted with 3.7 cm 3 of toluene and protected from light for 1 hour at 25 ° C. This solution was added in portions to 4 g of SiO 2 2) and the mixture was mixed at the end of the addition, stirring was continued for 10 min.
  • the ratio of the volume of the solution to the total pore volume of the carrier material was 1.25.
  • the mixture was then dried at 40 ° C. and 10 -3 mbar within 4 h. 5.6 g of a free-flowing powder were obtained which, according to elemental analysis, contained 0.17% by weight of Zr and 9.7% by weight of Al.
  • the catalyst activity was 1.7 kg PP / (g cat x h).
  • the polymer was a free-flowing powder and contained neither fine-grained fractions nor agglomerates. The inspection of the reactor showed no deposits.
  • Carrier The carrier example la was repeated, but it was
  • the result was 3.1 kg of polypropylene powder with a bulk density of 462 g / dm 3 .
  • the catalyst activity was 3.1 kg PP / (g cat x h).
  • the polymer was a free-flowing powder and contained neither fine-grained fractions nor agglomerates. The inspection of the reactor showed no deposits.
  • Carrier example 1a was repeated, but 55 mg (0.09 mmol) of dimethylsilanediyl (2-methyl-4-thiapentalene) (2-methyl-4- (4 't-butylphenyl-indenyl) zirconium dichloride were used.
  • the catalyst activity was 1.3 kg PP / (g cat x h).
  • the polymer was a free flowing powder and contained neither
  • Carrier example 1a was repeated, but 110 mg (0.18 mmol) of dimethylsilanediyl (2-methyl-4-thiapentalene) (2-methyl-4- (4'-tert-butylphenyl-indenyl) zirconium dichloride were used.
  • the result was 2.4 kg of polypropylene powder with a bulk density of 432 g / dm 3 .
  • the catalyst activity was 2.4 kg PP / (g cat x h).
  • the polymer was a free-flowing powder and contained neither fine-grained fractions nor agglomerates. The inspection of the reactor showed no deposits.
  • Solution A was added a little at a time to 4 g of SiO 2) . After the addition had ended, the mixture was stirred for 10 min. Then solution B was also added in portions with stirring. After the addition had ended, the mixture was also stirred for a further 10 min. The ratio of the total volume of solution A plus volume of solution B to the total pore volume of the carrier material was 1.25. The mixture was then dried at 40 ° C. and 10 -3 mbar within 4 h. 5.7 g of a free-flowing powder were obtained which, according to elemental analysis, contained 0.36% by weight of Zr and 9.9% by weight of Al.
  • Example 1 a The procedure was as in Example 1 a because of the high catalyst activity, the polymerization was terminated after 30 minutes. The result was 1.8 kg of polypropylene powder with a bulk density of 450 g / dm 3 .
  • the catalyst activity was 3.6 kg PP / (g cat x h).
  • the polymer was a free flowing powder and contained neither fine grain fractions nor agglomerates. The inspection of the reactor showed that there was no coating.
  • the polymerization was stopped by degassing and the copolymer obtained was dried in vacuo.
  • the result was 1.35 kg of free-flowing, agglomerate-free powder with a bulk density of 445 g / dm 3 .
  • the copolymer contained 3.5% by weight of statistically incorporated ethylene.
  • the catalyst activity was 2.7 kg copolymer / (g cat x h). The inspection of the reactor showed no deposits.
  • a dry 24 dm 3 reactor which had first been flushed with nitrogen and then with propene, was filled with 12 dm 3 of liquid propene, 0.25 Ndm 3 of hydrogen and 50 g of ethylene. 4 cm 3 of a 20% strength triethylaluminum solution in Varsol (Witco) were added as scavengers and the mixture was stirred at 30 ° C. for 5 min. A suspension of 1 g of the supported metallocene catalyst from Example 3 (support) in 20 cm 3 of Exxsol was then added to the reactor, heated to the polymerization temperature of 60 ° C. and the polymerization system was kept at 60 ° C. for 30 minutes.
  • the polymerization was stopped by degassing and the copolymer obtained was dried in vacuo.
  • the result was 1.4 kg of free-flowing, agglomerate-free powder with a bulk density of 430 g / dm 3 .
  • the copolymer contained 3.3% by weight of statistically incorporated ethylene.
  • the catalyst activity was 2.8 kg copolymer / (g cat x h). The inspection of the reactor showed no deposits.
  • a dry 24 dm 3 reactor which had first been flushed with nitrogen and then with propene, was filled with 10 dm 3 of liquid propene and 5 Ndm 3 of hydrogen. 6 cm 3 of a 20% strength triisobutylaluminum solution in Varsol (Witco) were added as scavengers and the mixture was stirred at 30 ° C. for 5 min.
  • a suspension of 0.5 g of the supported metallocene catalyst from Example 3 (support) was then rinsed into the reactor via a pressure lock with 2 dm 3 of liquid propene. It was then heated to the polymerization temperature of 75 ° C (7.5 ° C / min, in situ prepolymerization) and the polymerization system was kept at this temperature for 1 h.
  • the reactor was then let down to 10 bar and 25 bar of ethylene were applied.
  • the batch was polymerized further at 60 ° C. for 1 h.
  • the polymerization was stopped by degassing and the block copolymer obtained was dried in vacuo.
  • the result was 3.2 kg of free-flowing, agglomerate-free powder with a bulk density of 440 g / dm 3 .
  • the rubber (ethylene-propylene copolymer) produced in the second polymerization stage contained 39% by weight of ethylene and had a glass transition temperature of ⁇ 50 ° C. The inspection of the reactor showed no deposits.
  • Carrier example 1a was repeated, but 57 mg (0.09 mmol) of dimethylsilanediylbis (2, 5-dimethyl-N-phenyl-4-aza-pentalen) zirconium dichloride were used. 5.6 g of a free-flowing powder were obtained which, according to elemental analysis, contained 0.18% by weight of Zr and 9.8% by weight of Al.
  • Carrier example 1a was repeated, but 114 mg (0.18 mmol) of dimethylsilanediylbis (2, 5-dimethyl-N-phenyl-4-aza-pentalen) zirconium dichloride were used. 5-.5-g of a free-flowing powder were obtained, which according to elemental analysis contained 0.38% by weight of Zr and 9.4% by weight of Al.
  • Carrier example 1a was repeated, but 55 mg (0.09 mmol) of dimethylsilanediyl (2-methyl-indenyl) (2-methyl-4- (4'-tert-butylphenyl-indenyl) zirconium dichloride were used.
  • the catalyst activity was 1.4 kg PP / (g Kat xh).
  • the polymer was a free-flowing powder and contained neither fine-grain fractions nor agglomerates. The inspection of the reactor revealed that there was no deposit.
  • Carrier example 1a was repeated, except that 110 mg (0.18 mmol) of dimethylsilanediyl (2-methyl-indenyl) (2-methyl-4- (4'-tert-butylphenyl-indenyl) zirconium dichloride were used. 5.5 g of a free-flowing solution were used Powder obtained, which according to elemental analysis contained 0.40 wt% Zr and 10.1 wt% AI.
  • the result was 2.5 kg of polypropylene powder with a bulk density of 400 g / dm 3 .
  • the catalyst activity was 2.5 kg PP / (g cat x h).
  • the polymer contained 9.5% by weight of agglomerates.
  • the inspection of the reactor showed deposits on the reactor wall and on the stirrer blades.
  • Carrier example Ia was repeated, but 67 mg (0.09 mmol) of rac-dimethylsilanediylbis (2-methyl-4- (4'-tert-butylphenyl-indenyl) zirconium dichloride were used. 5.8 g of a free-flowing powder were obtained, which, according to Elemental analysis contained 0.18 wt% Zr and 9.6 wt% AI. Polymerization:
  • the result was 1.7 kg of polypropylene powder with a bulk density of 475 g / dm 3 .
  • the catalyst activity was 1.7 kg PP / (g Kat xh).
  • the polymer was a free-flowing powder and contained neither fine-grained fractions nor agglomerates. The inspection of the reactor revealed that there was no deposit.
  • Carrier example 1a was repeated, but 134 mg (0.18 mmol) of rac-dimethylsilanediylbis (2-methyl-4- (4 't-butylphenyl-indenyl) zirconium dichloride were used. 5.6 g of a free-flowing powder were obtained, which according to elemental analysis contained 0.37% by weight of Zr and 9.9% by weight of Al.
  • the result was 3.2 kg of polypropylene powder with a bulk density of 440 g / dm 3 .
  • the catalyst activity was 3.2 kg PP / (g cat x h).
  • the polymer contained about 5% by weight of agglomerates.
  • the inspection of the reactor showed deposits on the reactor wall and on the stirrer blades.
  • Carrier example 1a was repeated, but 44 mg (0.09 mmol) of dimethylsilanediylbis (2-methyl-4-thiapentalene) zirconium dichloride were used. 5.6 g of a free-flowing powder were obtained which, according to elemental analysis, contained 0.16% by weight of Zr and 9.5% by weight of Al.
  • Carrier example 1a was repeated, but 88 mg (0.18 mmol) of dimethylsilanediylbis (2-4-thiapentalene) zirconium dichloride were used. 5.7 g of a free-flowing powder were obtained which, according to elemental analysis, contained 0.39% by weight of Zr and 9.7% by weight of Al.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Die vorliegende Erfindung betrifft speziell substituierte Metallocene und entsprechende hochaktive geträgerte Katalysatorsysteme, die vorteilhaft bei der Olefinpolymerisation eingesetzt werden können und ein Verfahren zu ihrer Herstellung sowie Polymere, die mit den geträgerten Katalysatorsystemen hergestellt werden.

Description

Organometallverbindung, Katalysatorsystem enthaltend diese Organo etallverbindung und seine Verwendung.
Beschreibung
Die vorliegende Erfindung betrifft speziell substituierte Metall - ocene und entsprechende hochaktive geträgerte Katalysatorsysteme, die vorteilhaft bei der Olefinpolymerisation eingesetzt werden können und ein Verfahren zu ihrer Herstellung sowie Polymere, die mit den geträgerten KatalysatorSystemen hergestellt werden. Verfahren zur Herstellung von Polyolefinen mit Hilfe von löslichen, homogenen Katalysatorsystemen, bestehend aus einer Über- gangsmetallkomponente vom Typ eines Metallocens und einer Cokata- lysator-Komponente vom Typ eines Aluminoxans, einer Lewis-Säure oder einer ionischen Verbindung sind bekannt. Diese Katalysatoren liefern bei hoher Aktivität Polymere und Copolymere mit enger Molmassenverteilung .
Bei Polymerisationsverfahren mit löslichen, homogenen
Katalysatorsystemen bilden sich starke Beläge an Reaktorwänden und Rührer aus, wenn das Polymer als Feststoff anfällt. Diese Beläge entstehen immer dann durch Agglomeration der Polymer- partikel, wenn Metallocen und/oder Cokatalysator gelöst in der Suspension vorliegen. Derartige Beläge in den Reaktorsystemen müssen regelmäßig entfernt werden, da diese rasch erhebliche Stärken erreichen, eine hohe Festigkeit besitzen und den Wärmeaustausch zum Kühlmedium verhindern. Industriell in modernen Polymerisationsverfahren, beispielsweise in flüssigem Monomer oder in der Gasphase, sind solche homogenen Katalysatorsysteme nicht einsetzbar.
Zur Vermeidung von Belagsbildung im Reaktor sind geträgerte Katalysatorsysteme vorgeschlagen worden, bei denen das Metallocen und/oder die als Cokatalysator dienende Aluminiumverbindung auf einem anorganischen Trägermaterial fixiert werden.
Aus EP-A 0 576 970, EP-A 0 659 756 und EP-A 0 659 757 sind Metallocene und entsprechende geträgerte Katalysatorsysteme be- kannt.
Zur Absenkung von Katalysatorrestgehalten im Polymer und aus Kostengründen ist eine Verbesserung der Katalysatoraktivitäten wünschenswe t . Durch eine Erhöhung der Beladung des Trägers mit Wirksubstanzen (Metallocenkomponente (n) , Cokatalysator (en) und gegebenenfalls Additive) lassen sich die Katalysatoraktivitäten erhöhen, gleichzeitig neigen solche Katalysatoren aber zu starker Belagsbildung und sind industriell nicht einsetzbar.
Es bestand somit die Aufgabe, spezielle Metallocene sowie geträgerte Metallocenkatalysatorsysteme bereitzustellen, die auch bei hoher Katalysatoraktivität, entsprechend hoher Belegung mit Wirksubstanzen, unter technisch relevanten Polymerisationsbedingungen eine belagsfreie Polymerisation ermöglichen und Polymere mit hohem Schmelzpunkt und hoher Molmasse liefern.
Die der vorliegenden Erfindung zugrundeliegende Aufgabe wird durch ein speziell substituiertes Metallocen, ein geträgertes Katalysatorsystem, das mindestens ein speziell substituiertes Metallocen, mindestens einen Cokatalysator, mindestens einen Träger und gegebenenfalls mindestens eine weitere Additivkomponente enthält, gelöst.
Das Katalysatorsystem wird erfindungsgemäß hergestellt, indem mindestens ein speziell substituiertes Metallocen, mindestens ein Cokatalysator und mindestens ein Träger und gegebenenfalls mindestens eine weitere Additivkomponente gemischt werden.
Bei dem erfindungsgemäßen Metallocen, welches auch als Metallocenkomponente im erfindungsgemäßen Katalysatorsystem eingesetzt wird, handelt es sich um eine Verbindung der nachstehenden Formel I
worin
M1 ein Metall der Gruppe IVb des Periodensystems der Elemente ist,
R1 und R2 gleich oder verschieden sind und ein Wasserstoffatom, eine Cι-Cιo-Alkylgruppe, eine Cχ-Cιo-Alkoxygruppe, eine
C6-C2o-Arylgruppe, eine C6-Cιo-Aryloxygruppe, eine C2-Cι0-Alkenylgruppe, eine OH-Gruppe, eine NR12 2-Gruppe, wobei R12 eine Cj bis Cio -Alkylgruppe oder C6 bis Cχ4-Arylgruppe ist, oder ein Halogenatom bedeuten,
R3, R4, R6, R7 und R8 sowie R3' und R4' gleich oder verschieden sind und ein Wasserstoffatom, eine Kohlenwasserstoffgruppe, die teilhalogeniert, alo"- geniert, linear, cyclisch oder verzweigt sein kann, z.B. eine Cι-Cιo-Alkylgruppe, C2-Cι0-Alkenylgruppe, C6-C2rj-Aryl- gruppe, eine C -C4o-Arylalkylgruppe, eine C7-C4o-Alkyl- arylgruppe, eine C8-C4o-Arylalkenylgruppe, eine Si(R13)3-, N(R13)2-, SR13- oder OR13-Gruppe bedeuten, mit R13 in der Bedeutung von R4 , mit der Maßgabe, daß R3 von Wasser- stoff verschieden ist, R3' und R4' auch cyclisch verbunden sein können, und R5 eine C6 bis C40 -Arylgruppe die in para-Position zur Bindungs- stelle an den Indenylring einen Substituenten R14 trägt, bedeutet,
wobei
R14 ein Halogenatom F, Cl oder Br, ein Ci bis C o-Alkylrest, ein C2 bis C2o-Alkenylrest , ein C6 bis C24-Arylrest, ein C7 bis C4o-Arylalkylrest, ein C7 bis C4o-Alkylarylrest, ein Cs bis C4o-Arylalkenylrest wobei die Kohlenwasserstoffreste auch mit Fluor, Chlor oder Brom halogeniert oder teilhalogeniert sein können, -N(R15)2 , -Ε> (R15) 2 , -SR15, -0R15, -Si(R15)3,
-[N(R15)3]+ oder -[P(R15)3]+ bedeutet mit R15 in der Bedeutung von R4, die Reste R16 trotz gleicher Indizierung gleich oder verschieden sein können und die Bedeutung von R14 oder Wasserstoff haben und jeweils benachbarte Reste R16 auch cyclisch verbunden sein können, oder einer oder mehrere der Reste R16 bilden mit den Resten R6 oder R4 und/oder R14 eine cyclische Verknüpfung, mit der Maßgabe, daß R14 auch Wasserstoff sein kann, wenn mindestens einer der Reste R16 von Wasserstoff verschieden ist,
R9 bedeutet eine Verbrückung
R 1 0 R 1 0 R 1 0 1 0
R 1 0 R
I I
0 — - 0 - - c - 0 M - C M
1 1 I 1 1 1 1 R " , R R R 1 1 R
R 1 0 R 1 0 R 1 0
I I I — c — c — c —
I I I R 1 1 R 1 1 R 1 1 ,
/BR1 0 ,/A I R1 0 , -Ge- , -0- , -S- , ode r P ( 0 ) R ' ° , wobei
R10, R11 auch bei gleicher Indizierung, gleich oder verschieden sein können und ein Wasserstoffatom, ein Halogenatom, eine Cι-C4o-heteroatomhaltige Kohlenwasserstoff-Gruppe oder eine Cι-C4o-kohlenstoffhaltige Gruppe bedeuten, wie eine Cι-C20-Alkyl-, eine Cι-C10-Fluoralkyl-, eine Cι-Cιo-Alkoxy-, eine C6-C14-Aryl-, eine Cδ-Cio-Fluoraryl-, eine C6-Cι0-Aryloxy-, eine C2-Cιo-Alkenyl-, eine C7-C4o-Arylalkyl-, eine C7-C40-Alkylaryl-, eine C8-C40-Arylalkenylgruppe, eine -N(Rl7)2 , -P(Rl7)2, -SR17, -ORi7, -SiR3 17, -[N(Ri7)3]-*- oder -[P(R17)3]+ bedeuten mit R17 in der Bedeutung von R4, oder R10 und R11 bilden jeweils mit den sie verbindenden Atomen einen oder mehrere Ringe,
x bedeutet eine ganze Zahl von 0 bis 18,
M2 bedeutet Silizium, Germanium oder Zinn, und unter heteroatom- haltigen Kohlenwasserstoffgruppen sind Kohlenwasserstoffe zu verstehen, die mindestens ein Element der Gruppen 13 bis 16 des Periodensystems der Elemente enthalten.
R9 kann auch zwei Einheiten der Formel I miteinander verknüpfen.
Ra bedeutet eine gesättigte oder ungesättigte Kohlenwasserstoff- gruppe, vorzugsweise mit 1 bis 40 Kohlenstoffatomen, ins - besondere mit 1 bis 30 Kohlenstoffatomen, die auch mit einem oder mehreren Resten in der Bedeutung von R3 substituiert sein können, wobei der Rest R als solcher mindestens ein Heteroatom aus den Gruppen 13, 14, 15 oder 16 des Periodensystems der Elemente enthält. In der vorstehenden Bedeutung Ra bedeutet dies, daß das Heteroatom in dem Ringsystem als solches eingebaut vorliegt. Sollte das Ringsystem bereits mindestens ein Heteroatom beinhalten, so können auch ein oder mehrere Reste R3 ein Heteroatom enthalten.
Die den Verbindungen der Formel I entsprechenden 4, 5, 6, 7-Tetra- hydroindenyl-analoga sind ebenfalls von Bedeutung.
In Formel I gilt bevorzugt, daß
M1 Zirkonium, Hafnium oder Titan ist,
R1 und R2 gleich sind und für Methyl, Dimethylamid, Dibenzyl oder Chlor stehen,
R3 und R3' gleich oder verschieden sind und eine Kohlenwasserstoffgruppe, die teilhalogeniert, halogeniert, linear, cyclisch oder verzweigt sein kann, z.B. eine Cι-Cιo~Alkylgruppe, C -Cιo-Alkenyl- gruppe, eine C -C4o-Alkylarylgruppe bedeuten,
R9 Ri°R"Si=, R10R1:LGe=, RiθR11C= oder - (RioRιιc_CRιoRιi) - bedeutet, wobei R10 und R11 gleich oder verschieden sind und Wasserstoff, eine Cι-C2o~Kohlenwasserstoffgruppe, insbesondere Cι-Cιo-Alkyl oder C6-Cι4-Aryl bedeuten,
R5 eine C6 bis C2o -Arylgruppe bedeutet, die in para-Position zur Bindungsstelle an den Indenylring einen Substituenten R14 trägt, und R14 ein Ci bis Cιo_Alkylrest, ein C2 bis Cio-Alkenylrest , ein C6 bis Cχ8-Arylrest, ein C bis
C2o-Arylalkylrest, ein C bis C2o~Alkylarylrest, ein Cs bis C20-Arylalkenylrest wobei die Kohlenwasserstoffreste auch mit Fluor oder Chlor halogeniert oder teilhalogeniert sein können, -N(R15)2 , _p(Rl5)2 -SR15, -Si(Rl5)3 _[N(R15)3] + oder -[P(R15)3]+ bedeuten, mit R15 in der Bedeutung von R4, und die Reste R16 gleich oder verschieden sind und Fluor, Chlor, Wasserstoff, einen Ci bis Cιo_Alkylrest, der auch mit Fluor oder Chlor halogeniert oder teilhalogeniert sein kann, einen C6 bis Ci8~Arylrest oder einen C2 bis Cio-Alkenylrest bedeuten, oder benachbarte Reste R16 cyclisch verbunden sind.
Ra bedeutet eine gesättigte oder ungesättigte Kohlenwasserstoff- gruppe mit 2 bis 40 Kohlenstoff tomen die auch mit Resten in der Bedeutung von R3 substituiert sein kann, und die minde- stens ein Heteroatom ausgewählt aus der Gruppe B, AI, Si, Sn, N, P, O oder S enthält. In Formel I gilt ganz besonders bevorzugt, daß
M1 Zirkonium ist,
R1 und R2 gleich sind und für Methyl oder Chlor stehen,
R3 und R3' gleich oder verschieden sind und eine Kohlenwasserstoffgruppe, die halogeniert, linear, cyclisch oder verzweigt sein kann, z.B. eine Cι-Cιo-Alkylgruppe, C2-Cι0-Alkenylgruppe, eine C7-C40-Alkylarylgruppe bedeuten,
R9 oder - - ist, worin R10 und R11 gleich oder verschieden sind und Wasserstoff, Phenyl, Methyl oder Ethyl bedeuten, die Reste, R4,R6,R7 und R8 sowie R4' Wasserstoff sind,
R5 eine C6 bis C20 -Arylgruppe, insbesondere eine Phenyl-,
Naphthyl- oder Anthracenyl-Gruppe bedeuten, die in para-Posi- tion zur Bindungsstelle an den Indenylring einen
Substituenten R14 trägt, wobei R14 ein Si(R15)3 -Rest , mit R15 in der Bedeutung von R4 , oder ein linearer Ci bis Cχo- Alkyl- rest, ein verzweigter C3 bis C10- Alkylrest, ein C2 bis Cin- Alkenylrest oder ein verzweigter C bis C o~ Alkylarylrest ist, wobei die Kohlenwasserstoffreste auch mit Fluor oder Chlor halogeniert oder teilhalogeniert sein können, und
Ra eine gesättigte oder ungesättigte Kohlenwasserstoffgruppe mit 1 bis 30 Kohlenstoffatomen, die auch mit Resten in der Bedeu- tung von R3 substituiert sein kann, und die mindestens ein
Heteroatom ausgewählt aus der Gruppe N, P, 0 oder S enthält.
Das Fragment Ra bildet zusammen mit dem Cyclopentadienyl-Grundkör- per, an den es gebunden ist ganz besonders bevorzugt folgende Mo- lekülfragmente der Formel I ( in den Molekülfragmenten wurde aus Gründen der Übersichtlichkeit in den heteroatomhaltigen Ringen auf das Einzeichnen der Wasserstoff tome verzichtet. Es wurden nur Reste R berücksichtigt und indiziert, die auch von Wasserstoff verschieden sein können) :
Wobei die Heteroatomfunktionen X gleich oder verschieden sind und die Bedeutung NRλ, PRλ, N, 0 oder S haben, die Reste Rδ, Rε, R^ und R Wasserstoff sind oder die Bedeutung von R3 haben, die Reste Rα die Bedeutung von R3' und die Reste RP die Bedeutung von R4' ha- ben.
Beispiele für bevorzugte Metallocenkomponenten des erfindungs- gemäßen Katalysatorsystems sind Kombinationen folgender Molekül - fragmente der Verbindung I:
M^R2: ZrCl2, Zr(CH3)2,
R3, R3': Methyl, Ethyl, n-Propyl, Isopropyl, Isobutyl, n-Bu- tyl, s-Butyl,
R4, R8, R4': Wasserstoff
R6, R7: Wasserstoff, Ci- bis C4-Alkyl, C6 bis Cι0-Aryl,
R5 : p-methyl-phenyl, p-ethyl-phenyl , p-n-propyl-phenyl, p-Isopro- pyl-phenyl, p-n-Butyl-phenyl, p-tert.-Butyl-phenyl, p-s-bu- tyl-phenyl, p-Pentyl-phenyl, p-Hexyl-phenyl, p-Cyclohexyl- phenyl, p-Trimethylsilyl-phenyl, p-Adamantyl-phenyl, p-(F3C)3C-phenyl,
R9: Dimethylsilandiyl, Phenyl (methyl) silandiyl , Diphenylsilan- diyl, Dirnethylgermandiyl, Ethyliden, 1-Methylethyliden, 1,1-Dimethylethyliden, 1,2-Dirnethylethyliden, 1, 1, 2 , 2-Tetrame- thylethyliden, Dimethylmethyliden, Phenyl (methyl)methyliden, Diphenylmethyliden,
Ra: 2-Alkyl-4-azapentalene, 2-Alkyl-5-azapentalene,
2-Alkyl-6-azapentalene, 2-Alkyl-N-aryl-4-azapentalene, 2-A1- kyl-N-aryl-5-azapentalene, 2-Alkyl-N-aryl-6-azapentalene, 2, 5-Dialkyl-4-azapentalene, 2 , 5-Dialkyl-6-azapentalene,
2 , 5-Dialkyl-N-aryl-4-azapentalene, 2, 5-Dialkyl-N-aryl-6-aza- pentalene, 2-Alkyl-4-phosphapentalene, 2-Alkyl-5-phosphapenta- lene, 2-Alkyl-6-phosphapentalene, 2-Alkyl-P-aryl-4-phospha- pentalene, 2-Alkyl-P-aryl-5-phosphapentalene, 2-Alkyl-P- aryl-6-phosphapentalene, 2, 5-Dialkyl-4-phosphapentalene,
2,5-Dialkyl-6-phosphapentalene, 2, 5-Dialkyl-P-aryl-4-phospha- pentalene, 2 , 5-Dialkyl-P-aryl-6-phosphapentalene, 2-Alkyl-4-thiapentalene, 2-Alkyl-5-thiapentalene, 2-Alkyl-6-thiapentalene, 2 , 5-Dialkyl-4-thiapentalene, 2, 5-Dialkyl-6-thiaρentalene, 2-Alkyl-4-oxapentalene, 2-Alkyl-5-oxapentalene, 2-Alkyl-6-oxapentalene,
2, 5-Dialkyl-4-oxapentalene oder 2 , 5-Dialkyl-6-oxapentalene.
Konkrete Beispiele für bevorzugte Metallocenkomponenten des erfindungsgemäßen Katalysatorsystems sind somit folgende Verbindungen I :
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -methyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -methyl- phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapenta- len) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-θ-azapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 '-methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -me- thylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid , .Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -me- thylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 '-ethyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapenta- len) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapenta- len) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-azapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- 0 len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid 5 Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-thiapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapenta- 0 len) {2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid 5 Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-oxapenta- len) (2-methyl-4- (4 '-ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapenta- Q -len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4'-n-pro- pylpheny1-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -n-pro- pylphenyl-indenyl) zirkoniumdichlorid 5 Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -n-pro- pylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -n- propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -n- propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2- methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2- methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -n-pro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -n- propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -n- propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4'-n-pro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -n- propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -n- propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -isopro- pylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -isopro- -pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -iso¬ propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -n-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -n-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -n-butyl- phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -n- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -n- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 '-n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -n- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -n- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 '-n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -n- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -n- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -s-butyl- phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -s-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -s-butyl- phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -s-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 '-s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapenta- len) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -tert- -butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 '-tert- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4'- tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 '-tert-bu¬ tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -tert-bu¬ tylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 '-tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' - tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -n- pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -n- pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 '-n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4'-n- pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -n- -pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 '-n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4'-n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4'-n- pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4'-n- pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -n-hexyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -n-hexyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -n-hexyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4-
(4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4-
(4' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4-
(4 ' -h-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -n- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -n- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -n-he- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -n- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -n- hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -n-hexyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4'-n- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4'-n- hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4'-cyclohe- xylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -cyclohe- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -cyclohe- xylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -cyclo- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 '-cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -cyclohe- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -trime- -thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 '-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2,5-dimethyl-6-azapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5~thiapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -trime- thylsilylpheny1-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -adaman- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -adaman- tylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -adaman- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4-
(4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -ada- mantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4-
(4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4-
(4'-tris (trifluorrαethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4-
(4 '-tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4-
(4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-pheny1-5-azapentalen) (2-methyl-4- (4 '-tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4-
(4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4-
(4 '-tris (trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4-
(4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4~ (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 '-tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4-
(4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4-
(4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-ethyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5, 6-di-hydro-4-azapentalen) (2-ethyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-ethyl-4- (4 ' -tert-bu- tylphenyl-tetrahydroindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-n-butyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid Ethyliden (2-methyl-6-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-trimethylsilyl-4-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-tolyl-5-azapentalen) (2-n-pro- pyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dirnethylgermyldiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Methylethyliden (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-di-iso-propyl-6-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (2 , 6- dimethyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (2- methyl-4- (6 ' -tert-butylnaphthyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (2- methyl-4- (6' -tert-butylanthracenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-phosphapentalen) (2-methyl-4-
(4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Diphenylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Methylphenylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4-
(4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Methyliden(2,5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylmethylide (2, 5-dimethyl-6-thiapentalen) (2-methyl-4-
(4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Diphenylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4-
(4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Diphenylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid.
Weitere konkrete Beispiele für bevorzugte Metallocen-Komponenten sind ferner die entsprechenden in 2- und/oder in 2,5-Position mit Ethyl, n-Propyl, Isopropyl, Isobutyl, n-Butyl und s-Butyl substituierten Homologen der vorstehend genannten Verbindungen.
In den Polymerisationen kann das Metallocene der Formel I als Isomerengemisch oder als eines der möglichen racemischen Isomere in reiner oder angereicherter Form eingesetzt werden.
Mögliche Herstellungsverfahren für Metallocene der Formel I sind beispielsweise in Journal of Organometallic Chemistry 288 (1985) 63 - 67 und in den dort zitierten Dokumenten, sowie in WO 98/22486, EPA 0 659 757 oder EP 0 576 970 prinzipiell- beschrie- ben.
Das erfindungsgemäße Katalysatorsystem enthält vorzugsweise zusätzlich mindestens einen Cokatalysator.
Die Cokatalysatorkomponente, die erfindungsgemäß im Katalysator- system enthalten sein kann, enthält mindestens eine Verbindung vom Typ eines Aluminoxans oder einer Lewis-Säure oder einer ionischen Verbindung, die durch Reaktion mit einem Metallocen dieses in eine kationische Verbindung überführt. Die im erfindungsgemäßen Verfahren einsetzbaren Aluminoxane kön¬ nen z.B. cyclisch wie in Formel II
oder linear wie in Formel III
mit p = 0 bis 100,
oder vom Cluster-Typ wie in Formel IV sein,
wie sie in neuerer Literatur beschrieben werden; vgl. JACS 117 (1995), 6465-74 beziehungsweise Organometallics 13(1994), 2957-2969.
Die Reste R in den Formeln (II) , (III) oder (IV) können gleich oder verschieden sein und eine Cχ-C o-Kohlenwasserstoffgruppe wie eine Ci-Ce-Alkylgruppe, eine C6-Ci8-Arylgruppe, Benzyl oder Wasserstoff bedeuten, und p eine ganze Zahl von 2 bis 50, bevorzugt 10 bis 35 bedeuten. Bevorzugt sind die Reste R gleich und bedeuten Methyl, Isobutyl, n-Butyl, Phenyl oder Benzyl, besonders bevorzugt Methyl.
Sind die Reste R unterschiedlich, so sind sie bevorzugt Methyl und Wasserstoff, Methyl und Isobutyl oder Methyl und n-Butyl, wobei Wasserstoff bzw. Isobutyl oder n-Butyl bevorzugt zu 0,01 - 40 % (Zahl der Reste R) enthalten sind.
Das Aluminoxan kann auf verschiedene Arten nach bekannten Verfah- ren hergestellt werden. Eine der Methoden ist beispielsweise, daß eine AluminiumkohlenwasserstoffVerbindung und/oder eine Hydridoa- luminiumkohlenwasserstoffVerbindung mit Wasser (gasförmig, fest, flüssig oder gebunden - beispielsweise als Kristallwasser) in einem inerten Lösungsmittel (wie z. B. Toluol) umgesetzt wird. Zur Herstellung eines Aluminoxans mit verschiedenen Alkylgruppen R werden entsprechend der gewünschten Zusammensetzung und Reaktivität zwei verschiedene Aluminiumtrialkyle (AIR3 + AIR'3) mit Wasser umgesetzt (vgl. S. Pasynkiewicz, Polyhedron 9 (1990) 429 und EP-A 302 424) .
Unabhängig von der Art der Herstellung ist allen Aluminoxan- lösungen ein wechselnder Gehalt an nicht umgesetzter Aluminiumausgangsverbindung, die in freier Form oder als Addukt vorliegt, gemeinsam.
Als Lewis-Säure werden bevorzugt mindestens eine bor- oder aluminiumorganische Verbindung eingesetzt, die Cι-C2o-kohlenstoff - haltige Gruppen enthalten, wie verzweigte oder unverzweigte Alkyl- oder Halogenalkyl , wie z.B. Methyl, Propyl , Isopropyl, Isobutyl, Trifluormethyl, ungesättigte Gruppen, wie Aryl oder Halogenaryl, wie Phenyl, Tolyl, Benzylgruppen, p-Fluorophenyl , 3 , 5-Difluorophenyl, Pentachlorophenyl , Pentafluorophenyl, 3,4,5 Trifluorophenyl und 3,5 Di (trifluoromethyl) henyl .
Bevorzugte Lewis-Säuren sind Trimethylaluminium, Triethyl- aluminium, Triisobutylaluminium, Tributylaluminium, Trifluorobo- ran, Triphenylboran, Tris (4-fluorophenyl) boran, Tris (3 , 5-difluorophenyl)boran, Tris (4-fluoromethylphenyl)boran, Tris(penta- fluorophenyl) boran, Tris (tolyl) boran, Tris (3 , 5-dimethyl- phenyljboran, Tris (3 , 5-difluorophenyl) boran und/oder
Tris (3 ,4 , 5-trifluorophenyl) boran. Insbesondere bevorzugt ist Tris (pentafluorophenyl) boran.
Als ionische Cokatalysatoren werden bevorzugt Verbindungen einge- setzt, die ein nicht koordinierendes Anion enthalten, wie beispielsweise Tetrakis (pentafluorophenyl)borate, Tetraphenyl- borate, SbFg-, CF3S03— oder C104-. Als kationisches Gegenion werden Lewis-Basen wie z.B. Metyhlamin, Anilin, Dimethylamin, Diethyl- amin, N-Methylanilin, Diphenylamin, N,N-Dimethylanilin, Tri- methylamin, Triethylamin, Tri-n-butylamin, Methyldiphenylamin, Pyridin, p-Bromo-N,N-dimethylanilin, p-Nitro-N,N-dimethylanilin, Triethylphosphin, Triphenylphosphin, Diphenylphosphin, Tetra - hydrothiophen und Triphenylcarbenium eingesetzt.
Beispiele für solche erfindungsgemäßen ionischen Verbindungen sind . Triethylammoniumtetr (phenyl) borat,
Tributylammoniumtetra (phenyl) borat,
Trimethylammoniumtetra (tolyl) borat,
Tributylammoniumtetra (tolyl) borat,
Tributylammoniumtetra (pentafluorophenyl) borat, Tributylammoniumtetra (pentafluorophenyl) luminat,
Tripropylammoniumtetra (dimethylphenyl) borat,
Tributylammoniumtetra (trifluoromethylphenyl) borat,
Tributylammoniumtetra (4-fluorophenyl)borat,
N, N-Dimethylaniliniumtetra (phenyl) borat, N,N-Diethylaniliniumtetra (phenyl) borat,
N, N-Dimethylaniliniumtetrakis (pentafluorophenyl) borate,
N,N-Dimethylaniliniumtetrakis (pentafluorophenyl) aluminat,
Di (propyl) ammoniumtetrakis (pentafluorophenyl) borat,
Di (cyclohexyl) ammoniumtetrakis (pentafluorophenyl) borat, Triphenylphosphoniumtetrakis (phenyl) borat,
Triethylphosphoniumtetrakis (phenyl) borat,
Diphenylphosphoniu tetrakis (phenyl)borat,
Tri (methylphenyl)phosphoniumtetrakis (phenyl) borat,
Tri (dimethylphenyl)phosphoniumtetrakis (phenyl) borat, Triphenylcarbeniumtetrakis (pentafluorophenyl) borat,
Triphenylcarbeniumtetrakis (pentafluorophenyl) aluminat,
Triphenylcarbeniumtetrakis (phenyl) aluminat,
Ferroceniumtetrakis (pentafluorophenyl) borat und/oder
Ferroceniumtetrakis (pentafluorophenyl) aluminat. Bevorzugt sind Triphenylcarbeniumtetrakis (pentafluorophenyl) borat und/oder
N, N-Dimethylaniliniumtetrakis (pentafluorophenyl) borat .
Es können auch Gemische mindestens einer Lewis-Säure und minde- istens einer ionischen Verbindung eingesetzt werden.
Als Cokatalysatorkomponenten sind ebenfalls Boran- oder Carboran- Verbindungen wie z.B.
7 , 8-Dicarbaundecaboran (13 ) ,
Undecahydrid-7, 8-dimethyl-7, 8-dicarbaundecaboran, Dodecahydrid-l-phenyl-1 , 3-dicarbanonaboran, Tri (butyl) ammoniumundecahydrid-8-ethyl-7 , 9-dicarbaundecaborat, 4-Carbanonaboran (14) Bis (tri (butyl) ammonium)nonaborat, Bis (tri (butyl) mmonium) undecaborat, Bis (tri (butyl) ammonium) dodecaborat, Bis (tri (butyl) mmonium) decachlorodecaborat, Tri (butyl) ammonium-1-carbadecaborate, Tri (butyl) ammonium-1-carbadodecaborate, Tri (butyl) ammonium-1-trimethylsilyl-l-carbadecaborate, Tri (buyl) ammoniumbis (nonahydrid-1, 3-dicarbonnonaborat) cobal- täte (III) ,
Tri (butyl) ammoniumbis (undecahydrid-7, 8-dicarbaundecaborat) fer- rat(III)
von Bedeutung .
Die Trägerkomponente des erfindungsgemäßen Katalysatorsystems kann ein beliebiger organischer oder anorganischer, inerter Feststoff sein, insbesondere ein poröser Träger wie Talk, anorganische Oxide und feinteilige Polymerpulver (z.B. Polyolefine) .
Geeignete anorganische Oxide finden sich in den Gruppen 2, 3, 4, 5, 13, 14, 15 und 16 des Periodensystems der Elemente. Beispiele für als Träger bevorzugte Oxide umfassen Siliciumdioxid, Aluminiumoxid, sowie Mischoxide der beiden Elemente und ent- sprechende Oxid-Mischungen. Andere anorganische Oxide, die allein oder in Kombination mit den zuletzt genannten bevorzugten oxiden Trägern eingesetzt werden können, sind z.B. MgO, Zr02 , Ti0 oder B03 ,um nur einige zu nennen.
Die verwendeten Trägermaterialien weisen eine spezifische Oberfläche im Bereich von 10 bis 1000 m2/g, ein Porenvolumen im Bereich von 0,1 bis 5 ml/g und eine mittlere Partikelgröße von 1 bis 500 μm auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 50 bis 500 m2/g, einem Porenvolumen im Bereich zwischen 0,5 und 3,5 ml/g und einer mittleren Partikel - große im Bereich von 5 bis 350 μm. Besonders bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 200 bis 400 m2/g, einem Porenvolumen im Bereich zwischen 0,8 bis 3,0 ml/g und einer mittleren Partikelgröße von 10 bis 200 μm.
Wenn das verwendete Trägermaterial von Natur aus einen geringen Feuchtigkeitsgehalt oder Restlösemittelgehalt aufweist, kann eine Dehydratisierung oder Trocknung vor der Verwendung unterbleiben. Ist dies nicht der Fall, wie bei dem Einsatz von Silicagel als Trägermaterial, ist eine Dehydratisierung oder Trocknung empfehlenswert. Die thermische Dehydratisierung oder Trocknung des Trägermaterials kann unter Vakuum und/oder Inertgasüberlagerung (z.B. Stickstoff) erfolgen. Die Trocknungstemperatur liegt im Bereich zwischen 100 und 1000°C, vorzugsweise zwischen 200 und 800°C. Die Dauer des Trocknungsprozesses kann zwischen 1 und 24 Stunden betragen. Kürzere oder längere Trocknungsdauern sind mög- lieh, vorausgesetzt, daß unter den gewählten Bedingungen die
Gleichgewichtseinstellung mit den Hydroxylgruppen auf der Träger- Oberfläche erfolgen kann, was normalerweise zwischen 4 und 8 Stunden erfordert.
Eine Dehydratisierung oder Trocknung des Trägermaterials ist auch auf chemischem Wege möglich, indem das adsorbierte Wasser und die Hydroxylgruppen auf der Oberfläche mit geeigneten Inertisierungs- mitteln zur Reaktion gebracht werden. Durch die Umsetzung mit dem Inertisierungsreagenz können die Hydroxylgruppen vollständig oder auch teilweise in eine Form überführt werden, die zu keiner negativen Wechselwirkung mit den katalytisch aktiven Zentren führen. Geeignete Inertisierungsmittel sind beispielsweise Silicium- halogenide und Silane, wie Siliciumtetrachlorid, Chlortrimethyl- silan, Dimethylaminotrichlorsilan oder metallorganische Verbindungen von Aluminium- , Bor und Magnesium wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutyl- aluminium, Methylaluminoxan, Triethylboran, Dibutylmagnesium. Die chemische Dehydratisierung oder Inertisierung des Trägermaterials erfolgt beispielsweise dadurch, daß man unter Luft- und Feuchtig - keitsausschluß eine Suspension des Trägermaterials in einem geeigneten Lösemittel mit dem Inertisierungsreagenz in reiner Form oder gelöst in einem geeigneten Lösemittel zur Reaktion bringt. Geeignete Lösemittel sind z.B. aliphatische oder aromatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Toluol oder Xylol. Die Inertisierung erfolgt bei Temperaturen zwischen 0 °C und 120 °C, bevorzugt zwischen 20 und 70 °C. Höhere und niedrigere Temperaturen sind möglich. Die Dauer der Reaktion beträgt zwischen 30 Minuten und 20 Stunden, bevorzugt 1 bis 5 Stunden. Nach dem vollständigen Ablauf der chemischen Dehydratisierung wird.das Träger- material durch Filtration unter Inertbedingungen isoliert, ein- oder mehrmals mit geeigneten inerten Lösemitteln wie sie bereits zuvor beschrieben worden sind gewaschen und anschließend im Inertgasstrom oder am Vakuum getrocknet.
-Organische Trägermaterialien wie feinteilige Polyolefinpulver (z.B. Polyethylen, Polypropylen oder Polystyrol) können auch verwendet werden und sollten ebenfalls vor dem Einsatz von anhaftender Feuchtigkeit, Lösemittelresten oder anderen Verunreinigungen durch entsprechende Reinigungs- und Trocknungsoperationen be- freit werden. Das geträgerte Katalysatorsystem kann auch definitionsgemäß mehr als ein Metallocen enthalten. In diesem Fall werden entweder zwei oder mehr der erfindungsgemäßen Metallocene der Formel I verwendet, oder mindestens ein erfindungsgemäßes Metallocen der Formel I und mindestens ein weiteres Metallocen. In diesem Zusammenhang verwendbare Metallocene sind beispielsweise in EP-A-0 485 821, DE 195 44 828 AI oder EP-A-0 576 970 beschrieben. Bevorzugt handelt es sich dabei um verbrückte Bisindenyl-Metallocene, die am Indenylliganden in 2- ; 2,4- ; 2,5- ; 2,4,5- ; 2,4,6- ; 2,4,7-; 2,4,5,6- oder 2 , 5, 6-Stellung substituiert sind.
Zur Darstellung des geträgerten Katalysatorsystems wird beispielsweise mindestens eine der oben beschriebenen Metallocen- Komponenten der Formel I in einem geeigneten Lösemittel mit min- destens einer Cokatalysatorkomponente in Kontakt gebracht, wobei bevorzugt ein lösliches Reaktionsprodukt , ein Addukt oder ein Gemisch erhalten wird.
Die so erhaltene Zubereitung wird dann mit dem dehydratisierten oder inertisierten Trägermaterial vermischt, das Lösemittel entfernt und das resultierende geträgerte Metallocen-Katalysatorsy- stem getrocknet, um sicherzustellen, daß das Lösemittel vollständig oder zum größten Teil aus den Poren des Trägermaterials entfernt wird. Der geträgerte Katalysator wird als frei fließendes Pulver erhalten.
Ein mögliches Verfahren zur Darstellung eines frei fließenden und gegebenenfalls vorpolymerisierten geträgerten Katalysatorsystems umfaßt die folgenden Schritte:
a) Herstellung einer Metallocen-/Cokatalysator-Mischung in einem geeigneten Löse- oder Suspensionsmittel, wobei mindestens eine Metallocen-Komponente eine der zuvor beschriebenen
Strukturen der Formel I besitzt. b) Aufbringen der Metallocen-/Cokatalysator-Mischung auf einen porösen, bevorzugt anorganischen dehydratisierten Träger c) Entfernen des Hauptanteils an Lösemittel von der resultierenden Mischung d) Isolierung des geträgerten Katalysatorsystems "e) Gegebenenfalls eine Vorpolymerisation des erhaltenen geträgerten Katalysatorsystems mit einem oder mehreren olefinischen Monomer (en), um ein vorpolymerisiertes geträgertes Katalysatorsystem zu erhalten. Die Verfahrensschritte a) und b) können auch zusammengefaßt sein, wobei
alle möglichen Permutationen der Zugabereihenfolge der Katalysatorkomponenten möglich sind. Darüber hinaus ist es auch möglich, die Komponenten gleichzeitig zu vermischen.
Bevorzugte Lösemittel für die Herstellung der Metallocen-/Cokata- lysator-Mischung sind Kohlenwasserstoffe und Kohlenwasserstoff- gemische, die bei der gewählten Reaktionstemperatur flüssig sind und in denen sich die Einzelkomponenten bevorzugt lösen. Die Löslichkeit der Ξinzelkomponenten ist aber keine Voraussetzung, wenn sichergestellt ist, daß das Reaktionsprodukt aus Metallocen- und Cokatalysatorkomponenten in dem gewählten Lösemittel löslich ist. Beispiele für geeignete Lösemittel umfassen Alkane wie Pentan, Isopentan, Hexan, Heptan, Octan, und Nonan; Cycloalkane wie Cyclopentan und Cyclohexan; und Aromaten wie Benzol, Toluol. Ethylbenzol und Diethylbenzol . Ganz besonders bevorzugt ist Toluol.
Die bei der Präparation des geträgerten Katalysatorsystems eingesetzten Mengen an Aluminoxan und Metallocen können über einen weiten Bereich variiert werden. Bevorzugt wird ein molares Verhältnis von Aluminium zum Übergangsmetall im Metallocen von 10 : 1 bis 1000 : 1 eingestellt, ganz besonders bevorzugt ein Verhältnis von 50 : 1 bis 500 : 1.
Im Fall von Methylaluminoxan werden bevorzugt 30 %ige toluolische Lösungen eingesetzt; die Verwendung von 10 %igen Lösungen ist aber auch möglich.
Zur Voraktivierung kann das Metallocen in Form eines Feststoffes in einer Lösung des Aluminoxans in einem geeigneten Lösemittel aufgelöst werden. Es ist auch möglich, das Metallocen.getrennt in einem geeigneten Lösemittel aufzulösen und diese Lösung anschließend mit der Aluminoxan-Lösung zu vereinigen. Bevorzugt wird Toluol verwendet. Bei Verwendung mehrerer Metallocene kann der Lösungsvorgang getrennt oder mit den zuvor gemischten Metalloce- nen durchgeführt werden. Die Voraktivierungszeit kann 1 Minute - -bis 200 Stunden betragen. Die Voraktivierung kann bei Raumtemperatur (20 °C) stattfinden. Die Anwendung höherer Temperaturen kann im Einzelfall die erforderliche Dauer der Voraktivierung verkürzen und eine zusätzliche Aktivitätssteigerung bewirken. Höhere Temperatur bedeutet in diesem Fall ein Bereich zwischen 20 und 150 °C. Die voraktivierte (n) Lösung (en) bzw. das/die Metallocen-/Cokata- lysator-Gemisch (e) kann/können anschließend mit einem inerten Trägermaterial, bevorzugt Kieselgel, das in Form eines trockenen Pulvers oder als Suspension in einem der oben genannten Löse- mittel vorliegt, vereinigt werden. Bevorzugt wird das Trägermaterial als Pulver eingesetzt. Die Reihenfolge der Zugabe ist dabei beliebig. Bei Verwendung mehrerer Lösungen bzw. Metallocen/ Cokatalysator-Gemischen kann zwischen den einzelnen Zugabeschritten auch eine Zwischentrocknung erfolgen (sequentielle Trägerung) . Die voraktivierte (n) Metallocen-Cokatalysator-Lö- sung(en) bzw. das/die Metallocen-Cokatalysatorgemisch(e) kann/ können zum vorgelegten Trägermaterial dosiert, oder aber das Trägermaterial in die vorgelegte (n) Lösung (n) eingetragen werden.
Das Volumen (bzw. die Summe der Einzelvolumina) der vor- aktivierten Lösung (en) bzw. der/des Metallocen-Cokatalysatorgemi- sche(s) kann 100 % des Gesamtporenvolumens des eingesetzten Trägermaterials überschreiten oder aber bis zu 100 % des Gesamtporenvolumens betragen.
Die Temperatur, bei der die voraktivierte (n) Lösung (en) bzw. das/ die Metallocen-Cokatalysatorgemisch(e) mit dem Trägermaterial in Kontakt gebracht wird/werden, kann im Bereich zwischen 0 und 100°C variieren. Niedrigere oder höhere Temperaturen sind aber auch möglich.
Bei Verwendung mehrerer Metallocene ist bevorzugt, zuerst die Lösung (en) des/der nicht erfindungsgemäßen Metallocens/Metall- ocene auf den Träger aufzubringen und dann die Lösung (en) des/der erfindungsgemäßen Metallocens/Metallocene aufzubringen.
Anschließend wird das Lösemittel oder Lösemittelgemisch vollständig oder zum größten Teil vom geträgerten Katalysatorsystem entfernt, wobei die Mischung gerührt und gegebenenfalls auch erhitzt werden kann. Bevorzugt wird sowohl der sichtbare Anteil des Lösemittels als auch der Anteil in den Poren des Trägermaterials entfernt. Das Entfernen des Lösemittels kann in konventioneller Art und Weise unter Anwendung von Vakuum und/oder Spülen mit Inertgas erfolgen. Beim Trocknungsvorgang kann die Mischung erwärmt wer- -den, bis das freie Lösemittel entfernt worden ist, was üblicherweise 1 bis 3 Stunden bei einer vorzugsweise gewählten Temperatur zwischen 30 und 60 °C erfordert. Das freie Lösemittel ist der sichtbare Anteil an Lösemittel in der Mischung. Unter Restlösemittel versteht man den Anteil, der in den Poren eingeschlossen ist. Alternativ zu einer vollständigen Entfernung des Lösemittels kann das geträgerte Katalysatorsystem auch nur bis zu einem gewissen Restlösemittelgehalt getrocknet werden, wobei das freie Lösemittel vollständig entfernt worden ist. Anschließend kann das geträgerte Katalysatorsystem mit einem niedrig siedenden Kohlenwasserstoff wie Pentan oder Hexan gewaschen und erneut getrocknet werden.
Das erfindungsgemäß dargestellte geträgerte Katalysatorsystem kann entweder direkt zur Polymerisation von Olefinen eingesetzt oder vor seiner Verwendung in einem Polymerisationsprozeß mit einem oder mehreren olefinischen Monomeren vorpolymerisiert werden. Die Ausführung der Vorpolymerisation von geträgerten Katalysatorsystemen ist beispielsweise in WO 94/28034 beschrie- ben.
Als Additiv kann während oder nach der Herstellung des geträgerten Katalysatorsystems eine geringe Menge eines Olefins bevorzugt eines α-Olefins (beispielsweise Styrol oder Phenyldime- thylvinylsilan) als aktivitätssteigernde Komponente oder beispielsweise eines Antistatikums (wie in US-Patentanmeldung mit der Serial No. 08/365280 beschrieben) zugesetzt werden. Das molare Verhältnis von Additiv zu Metallocen beträgt dabei bevorzugt zwischen 1 : 1000 bis 1000 : 1, ganz besonders bevorzugt 1 : 20 bis 20 : 1.
Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines Polyolefins durch Polymerisation einer oder mehrerer Olefine in Gegenwart des erfindungsgemäßen Katalysator- Systems, enthaltend mindestens eine Übergangsmetallkomponente der Formel I. Unter dem Begriff Polymerisation wird eine Homopoly- merisation wie auch eine Copolymerisation verstanden.
Bevorzugt werden Olefine der Formel Rm-CH=CH-Rn polymexisiert, wo- rin Rm und Rn gleich oder verschieden sind und ein Wasserstoffatom oder einen kohlenstoffhaltigen Rest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atome, bedeuten, und Rm und Rn zusammen mit den sie verbindenden Atomen einen oder mehrere Ringe bilden können.
Beispiele für solche Olefine sind 1-Olefine mit 2 - 40, vorzugsweise 2 bis 10 C-Atomen, wie Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 4-Methyl-l-penten oder 1-Octen, Styrol, Diene wie 1, 3-Butadien, 1, 4-Hexadien, Vinylnorbornen, Norbornadien, Ethyl - norbornadien und cyclische Olefine wie Norbornen, Tetracyclodode- cen oder Methylnorbornen. Bevorzugt werden in dem erfindungs- gemäßen Verfahren Propen oder Ethen homopolymerisiert, oder Propen mit Ethen und/oder mit einem oder mehreren l-01efinen mit 4 bis 20 C-Atomen, wie Hexen, und/oder einem oder mehreren Dienen mit 4 bis 20 C-Atomen, wie 1, 4-Butadien, Norbornadien, Ethyliden- norbonen oder Ethylnorbornadien, copolymerisiert . Beispiele sol- eher Copolymere sind Ethen/Propen-Copolymere oder Ethen/Pro- pen/1, 4-Hexadien-Terpolymere.
Die Polymerisation wird bei einer Temperatur von - 60 bis 300°C , bevorzugt 50 bis 200°C, ganz besonders bevorzugt 50 - 100°C durch- geführt. Der Druck beträgt 0,5 bis 2000 bar, bevorzugt 5 bis 100 bar.
Die Dosierung des Katalysatorsystems in das Polymerisationssystem kann in beliebiger Weise erfolgen. Bevorzugt wird das Katalysatorsystem in Form eines Pulvers, einer Suspension oder einer Paste mit angepaßter Viskosität zudosiert.
Es können auch zwei oder mehr erfindungsgemäße Katalysatorsysteme oder Mischungen aus erfindungsgemäßem/erfindungsgemäßen Katalysatorsystem(en) mit mindestens einem weiteren Katalysatorsystem in die Polymerisation getrennt oder als Mischung dosiert werden.
Die Polymerisation kann in Lösung, in Masse, in Suspension, in der Gasphase oder in einem überkritischen Medium kontinuierlich oder diskontinuierlich, ein- oder mehrstufig durchgeführt werden.
Das erfindungsgemäß dargestellte Katalysatorsystem kann als einzige Katalysatorkomponente für die Polymerisation von Olefinen mit 2 bis 20 C-Atomen eingesetzt werden, oder bevorzugt in Kombination mit mindestens einer AIkylVerbindung der Elemente aus der I. bis III. Hauptgruppe des Periodensystems, wie z.B. einem Aluminium-, Magnesium- oder Lithiumalkyl oder einem Aluminoxan eingesetzt werden. Die AlkylVerbindung wird dem Monomeren oder Suspensionsmittel zugesetzt und dient zur Reinigung des Monomeren von Substanzen, die die Katalysatoraktivität beeinträchtigen können. Die Menge der zugesetzten Alkylverbindung hängt von der Qualität der eingesetzten Monomere ab.
Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben.
Bei der Polymerisation kann außerdem ein Antistatikum zusammen mit oder getrennt von dem eingesetzten Katalysatorsystem in das Polymerisationssystem eindosiert werden. Der Zusatz eines Anti- statikums kann auch in einem der Polymerisation nachgeordneten Verfahrensschritt sinnvoll sein, um die Aufarbeitung des Polymers zu verbessern.
Mit dem erfindungsgemäßen Katalysatorsystem können Polymerpulver mit gleichmäßiger Kornmorphologie und ohne Feinkornanteile hergestellt werden.
Die erfindungsgemäßen Katalysatorsysteme sind hochaktiv und bei der Polymerisation treten keine Beläge oder Verbackungen auf .
Mit dem erfindungsgemäßen Katalysatorsystem können Polymere, wie Polypropylen, mit außerordentlich hoher Stereo- und Regiospezifi- tät erhalten werden.
Die mit dem erfindungsgemäßen Katalysatorsystem herstellbaren Copolymere zeichnen sich durch hohe Molmassen aus. Gleichzeitig sind solche Copolymere durch Einsatz des erfindungsgemäßen Katalysatorsystems mit hoher Produktivität bei technisch relevanten Prozessparametern ohne Belagsbildung herstellbar.
Die nach dem erfindungsgemäßen Verfahren erhältlichen Polymere sind insbesondere zur Herstellung reißfester, harter und steifer Formkörper wie Fasern, Filamente, Spritzgußteile, Folien, Platten oder Großhohlkörpern (z.B. Rohre), sowie zur Herstellung von Copolymeren mit hoher Steifigkeit, Zähigkeit, Weißbrucharmut und Transparenz geeignet.
Beispiele:
Allgemeine Angaben:
Die Herstellung und Handhabung der organometallischen Verbindungen erfolgte unter Ausschluß von Luft und Feuchtigkeit unter Argon-Schutzgas (Schlenk-Technik bzw. Glove-Box) . Alle be- nötigten Lösemittel wurden vor Gebrauch mit Argon gespült und über Molsieb absolutiert.
Die eingesetzten Metallocene wurden mit iH-NMR, 13C-NMR und IR-
Spektroskopie charakterisiert.
Es bedeuten
PP = Polypropylen
MC = Metallocen
Kat = geträgertes Katalysatorsystem h = Stunde Komplexsynthesen
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -tert. - butyl-phenyl) -inden) und Dimethylsilandiyl (2, 5-dimethyl-N-phe- 5 nyl-4-azapentalen) (2-methyl-4- (4' - tert . -butyl-phenyl-inden) wurden analog der Ligandensynthese in WO 98/22486 aus 2-Methyl-4- (4 ' -tert. -butyl-phenyl) -inden und dem entsprechenden Dimethylchlorsilandiylpentalenderivat synthetisiert .
10 14 mmol des Liganden wurden in 70 ml Diethylether gelöst, bei Raumtemperatur mit 10.5 ml einer 20%igen Lösung von Butyllithium in Toluol versetzt und anschließend 3 Stunden zum Rückfluß erhitzt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mit 50 ml Hexan über eine G3-Schlenkfritte filtriert, mit
15 50 ml Hexan nachgewaschen und getrocknet (0.1 mbar, 20°C) . Das Dilithiumsalz wurde bei -78°C zu einer Suspension von 3.2 g (14 mmol) Zirkoniumtetrachlorid in 80 ml Methylenchlorid gegeben und im Verlauf von 18 h unter Rühren auf Raumtemperatur erwärmt. Der Ansatz wurde über eine G3-Fritte filtriert und der Rückstand
20 portionsweise mit insgesamt 400 ml Methylenchlorid nachextrahiert. Die vereinigten Filtrate wurden im Vakuum vom Lösungsmittel weitestgehend befreit. Der ausgefallene orange-braune Niederschlag aus Methylenchlorid wurde isoliert. Der Niederschlag besteht aus racemischen Isomeren, die durch weitere Umkristalli-
25 sation isoliert werden können. Der Einfachheit halber wurde in den Polymerisationsbeispielen das Isomerengemisch eingesetzt.
Ausbeute Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -tert . -butyl-phenyl) -indenyl) zirkonium- 30 dichlorid 2,0 g (21 %)
Elementaranalyse: H 6.07 (5.71) C 62.93 (64.60) N 2.04 (2.37) 1H-NMR (C6D6) , in ppm: 7.73-6.80 (m, 15H) , 2.48-2.02 (m, 9H) , 1.50-1.25 (m, 15H)
35 Ausbeute Dimethylsilandiyl (2-methyl-4-thiapenta- len) (2-methyl-4- (4 ' -tert .-butyl-phenyl) -indenyl) zirkoniumdichlorid 2,3 g (27 %)
Elementaranalyse: H 5.45 (5.35) C 59.50 (57.78) 1H-NMR (C6D6) in ppm: 7.81-6.79 (m, 11H) , 2.45-2.15 (m, 6H) ,
40- *1.50-1.22 (m, 15H)
Trägerungsbeispiele und Polymerisationsbeispiele:
Beispiel la 45 Darstellung des geträgerten Katalysatorsystems: 62 mg (0.09 mmol) Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid wurden bei Raumtemperatur in 4.3 cm3 (20 mmol AI) 30 %iger toluolischer Methylaluminoxan-Lösung1* gelöst. Die Lösung wurde mit 3.7 cm3 Toluol verdünnt und lichtgeschützt bei 25 °C 1 h gerührt. Diese Lösung wurde portionsweise unter Rühren zu 4 g Si02 2) gegeben und der Ansatz nach beendeter Zugabe 10 min nachgerührt. Das Verhältnis Volumen der Lösung zum Gesamtporenvolumen des Trägermaterials betrug 1.25. Anschließend wurde der Ansatz innerhalb von 4 h bei 40 °C und 10~3 mbar getrocknet. Es wurden 5.6 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.17 Gew% Zr und 9.7 Gew% AI enthielt.
1) Albemarle Corporation, Baton Rouge, Louisiana, USA 2) Silica Typ MS 948 , W.R. Grace, Davison Chemical Devision, Baltimore, Maryland, USA, Porenvolumen 1.6 ml/g, calciniert bei 600 °C
Polymerisation: Ein trockener 16 dm3 -Reaktor, der zunächst mit Stickstoff und anschließend mit Propen gespült worden war, wurde mit 10 dm3 flüssigem Propen gefüllt. Als Scavenger wurden 8 cm3 20 %iger Triethyla- luminium-Lösung in Varsol (Witco) zugesetzt und der Ansatz 15 min bei 30 °C gerührt. Anschließend wurde eine Suspension von 1 g des geträgerten Metallocen-Katalysators in 20 cm3 Exxsol in den Reaktor gegeben, auf die Polymerisationstemperatur von 65 °C aufgeheizt und das Polymerisationssystem 1 h bei 65 °C gehalten. Die Polymerisation wurde durch Entgasen gestoppt und das erhaltene Polymer im Vakuum getrocknet. Es resultierten 1.7 kg Polypropy- len-Pulver mit einer Schüttdichte von 460 g/dm3.
Die Katalysatoraktivität betrug 1.7 kg PP/ (g Kat x h) . Das Polymer war ein frei fließendes Pulver und enthielt weder Feinkornanteile noch Agglomerate. Die Inspektion des Reaktors ergab Be- lagsfreiheit.
Beispiel lb
Trägerung : Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch
124 mg (0.18 mmol) Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-aza- pentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid verwendet. Es wurden 5.7 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.31 Gew% Zr und 9.6 Gew% AI enthielt.
Polymerisation: Es wurde verfahren wie in Beispiel la.
Es resultierten 3.1 kg Polypropylen-Pulver mit einer Schüttdichte von 462 g/dm3.
Die Katalysatoraktivität betrug 3.1 kg PP/ (g Kat x h) . Das Polymer war ein frei fließendes Pulver und enthielt weder Feinkornanteile noch Agglomerate. Die Inspektion des Reaktors ergab Belagsfreiheit.
Beispiel 2a
Trägerung :
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 55 mg (0.09 mmol) Dimethylsilandiyl (2-methyl-4-thiapenta- len) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid verwendet.
Es wurden 5.4 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.18 Gew% Zr und 10.1 Gew% AI enthielt.
Polymerisation:
Es wurde verfahren wie in Beispiel la.
Es resultierten 1.3 kg Polypropylen-Pulver mit einer Schüttdichte von 432 g/dm3.
Die Katalysatoraktivität betrug 1.3 kg PP/ (g Kat x h) . Das Polymer war ein frei fließendes Pulver und enthielt weder
Feinkornanteile noch Agglomerate. Die Inspektion des Reaktors ergab Belagsfreiheit.
Beispiel 2b
Trägerung:
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 110 mg (0.18 mmol) Dimethylsilandiyl (2-methyl-4-thiapenta- len) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid verwendet.
Es wurden 5.7 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.35 Gew% Zr und 9.4 Gew% AI enthielt.
Polymerisation: Es wurde verfahren wie in Beispiel la.
Es resultierten 2.4 kg Polypropylen-Pulver mit einer Schüttdichte von 432 g/dm3.
Die Katalysatoraktivität betrug 2.4 kg PP/ (g Kat x h) .
Das Polymer war ein frei fließendes Pulver und enthielt weder Feinkornanteile noch Agglomerate. Die Inspektion des Reaktors ergab Belagsfreiheit. Beispiel 3
Trägerung:
126 mg (0.17 mmol) des Metallocens rac-Dimethylsilandiylbis (2- methyl-4- (4' -tert-butyl-phenyl-indenyl) zirkoniumdichlorid, wurden bei Raumtemperatur in 3.0 cm3 (14 mmol AI) 30 %iger toluolischer Methylaluminoxan-Lösung1' gelöst, mit 2.5 cm3 Toluol verdünnt und lichtgeschützt bei 25 °C 1 h gerührt (Lösung A) . Parallel dazu wurden 21 mg (0.03 mmol) des Metallocens Dimethylsilandiyl (2, 5- dimethyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkonium-dichlorid bei Raumtemperatur in 1.5 cm3 (7 mmol AI) 30 %iger toluolischer Methylaluminoxan-Lösung1' gelöst, mit 1.0 cm3 Toluol verdünnt und lichtgeschützt bei 25 °C 1 h gerührt (Lösung B) .
Lösung A wurde portionsweise unter Rühren zu 4 g Si02). Nach beendeter Zugabe wurde der Ansatz 10 min nachgerührt. Anschließend wurde Lösung B ebenfalls portionsweise unter Rühren zugegeben. Nach beendeter Zugabe wurde der Ansatz ebenfalls 10 min nach- gerührt. Das Verhältnis der Summe Volumen der Lösung A plus Volumen der Lösung B zum Gesamtporenvolumen des Trägermaterials betrug 1.25. Anschließend wurde der Ansatz innerhalb von 4 h bei 40 °C und 10~3 mbar getrocknet. Es wurden 5.7 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.36 Gew% Zr und 9.9 Gew% AI enthielt.
1) Albemarle Corporation, Baton Rouge, Louisiana, USA
2) Silica Typ MS 948 , W.R. Grace, Davison Chemical Devision, Baltimore, Maryland, USA, Porenvolumen 1.6 ml/g, calciniert bei 600 °C
Polymerisation:
Es wurde verfahren wie in Beispiel la aufgrund der hohen Katalysatoraktivität wurde die Polymerisation nach 30 min abgebrochen. Es resultierten 1.8 kg Polypropylen-Pulver mit einer Schüttdichte von 450 g/dm3.
Die Katalysatoraktivität betrug 3.6 kg PP/ (g Kat x h) . Das Polymer war ein frei fließendes Pulver und enthielt weder Feinkornanteile noch Agglomerate. Die Inspektion des Reaktors er- 'gab Belagsfreiheit.
Beispiel 4
Polymerisation: Ein trockener 24 dm3-Reaktor, der zunächst mit Stickstoff und anschließend mit Propen gespült worden war, wurde mit 12 dm3 flüssigem Propen, 0.25 Ndm3 Wasserstoff und 50 g Ethylen gefüllt. Als Scavenger wurden 4 cm3 einer 20 %igen Triethylaluminium-Lösung in Varsol (Witco) zugesetzt und der Ansatz 5 min bei 30 °C gerührt. Anschließend wurde eine Suspension von 1 g des geträgerten Metallocen-Katalysators aus Beispiel 2b (Trägerung) in 20 cm3 Ex- xsol in den Reaktor gegeben, auf die Polymerisationstemperatur von 65 °C aufgeheizt und das Polymerisationssystem 30 min bei 65 °C gehalten. Die Polymerisation wurde durch Entgasen gestoppt und das erhaltene Copolymer im Vakuum getrocknet. Es resultierten 1.35 kg frei fließendes, agglomeratfreies Pulver mit einer Schüttdichte von 445 g/dm3. Das Copolymer enthielt 3.5 Gew.-% statistisch eingebautes Ethylen.
Die Katalysatoraktivität betrug 2.7 kg Copolymer/ (g Kat x h) . Die Inspektion des Reaktors ergab Belagsfreiheit.
Beispiel 5
Polymerisation:
Ein trockener 24 dm3-Reaktor, der zunächst mit Stickstoff und an- schließend mit Propen gespült worden war, wurde mit 12 dm3 flüssigem Propen, 0.25 Ndm3 Wasserstoff und 50 g Ethylen gefüllt. Als Scavenger wurden 4 cm3 einer 20 %igen Triethylaluminium-Lösung in Varsol (Witco) zugesetzt und der Ansatz 5 min bei 30°C gerührt. Anschließend wurde eine Suspension von 1 g des geträgerten Metallocen-Katalysators aus Beispiel 3 (Trägerung) in 20 cm3 Exxsol in den Reaktor gegeben, auf die Polymerisationstemperatur von 60 °C aufgeheizt und das Polymerisationssystem 30 min bei 60 °C gehalten. Die Polymerisation wurde durch Entgasen gestoppt und das erhaltene Copolymer im Vakuum getrocknet. Es re- sultierten 1.4 kg frei fließendes, agglomeratfreies Pulver mit einer Schüttdichte von 430 g/dm3. Das Copolymer enthielt 3.3 Gew.-% statistisch eingebautes Ethylen.
Die Katalysatoraktivität betrug 2.8 kg Copolymer/ (g Kat x h) . Die Inspektion des Reaktors ergab Belagsfreiheit.
Beispiel 6
Polymerisation:
Ein trockener 24 dm3-Reaktor, der zunächst mit Stickstoff und an- schließend mit Propen gespült worden war, wurde mit 10 dm3 flüssigem Propen und 5 Ndm3 Wasserstoff befüllt. Als Scavenger wurden 6 cm3 einer 20 %igen Triisobutylaluminium-Lösung in Varsol (Witco) zugesetzt und der Ansatz 5 min bei 30 °C gerührt. Anschließend wurde eine Suspension von 0.5 g des geträgerten Metallocen-Kata- lysators aus Beispiel 3 (Trägerung) über eine Druckschleuse mit 2 dm3 flüssigem Propen in den Reaktor gespült. Es wurde dann auf die Polymerisationstemperatur von 75 °C aufgeheizt (7.5 °C/min, in situ Vorpolymerisation) und das Polymerisationssystem 1 h bei dieser Temperatur gehalten.
Anschließend wurde der Reaktor auf 10 bar entspannt und mit 25 bar Ethylen beaufschlagt. Der Ansatz wurde bei 60 °C 1 h weiter- polymerisiert. Die Polymerisation wurde durch Entgasen gestoppt und das erhaltene Blockopolymer im Vakuum getrocknet. Es resultierten 3.2 kg frei fließendes, agglomeratfreies Pulver mit einer Schüttdichte von 440 g/dm3. Der in der zweiten Polymerisations - stufe hergestellte Kautschuk (Ethylen-Propylen-Copolymer) enthielt 39 Gew.-% Ethylen und zeigte eine Glastemperatur von - 50 °C. Die Inspektion des Reaktors ergab Belagsfreiheit.
Vergleichsbeispiel la
Trägerung :
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 57 mg (0.09 mmol) Dimethylsilandiylbis (2 , 5-dimethyl-N-phenyl-4-aza- pentalen) -zirkoniumdichlorid verwendet. Es wurden 5.6 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.18 Gew% Zr und 9.8 Gew% AI enthielt.
Polymerisation:
Es wurde verfahren wie in Beispiel la. Es resultierte eine wachs - artige Polymermasse, die teilweise an Rührerblättern und Reaktor- wänden haften blieb. Auf eine Bestimmung der Polymerisationsaktivität wurde verzichtet.
Vergleichsbeispiel lb
Trägerung:
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 114 mg (0.18 mmol) Dimethylsilandiylbis (2, 5-dimethyl-N-phenyl-4-aza- pentalen) -zirkoniumdichlorid verwendet. Es wurden 5-.5-g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.38 Gew% Zr und 9.4 Gew% AI enthielt.
Polymerisation:
Es wurde verfahren wie in Beispiel la. Es resultierte eine wachs - artige Polymermasse, die teilweise an Rührerblättern und Reaktor- wänden haften blieb. Auf eine Bestimmung der Polymerisationsaktivität wurde verzichtet. Vergleichsbeispiel 2a
Trägerung :
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 55 mg (0.09 mmol) Dimethylsilandiyl (2-methyl-indenyl) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid verwendet.
Es wurden 5.7 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.17 Gew% Zr und 10.0 Gew% AI enthielt.
Polymerisation:
Es wurde verfahren wie in Beispiel la.
Es resultierten 1.4 kg Polypropylen-Pulver mit einer Schüttdichte von 445 g/dm3.
Die Katalysatoraktivität betrug 1.4 kg PP/(g Kat x h) . Das Poly¬ mer war ein frei fließendes Pulver und enthielt weder Feinkornanteile noch Agglomerate. Die Inspektion des Reaktors ergab Belags - freiheit.
Vergleichsbeispiel 2b
Trägerung :
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 110 mg (0.18 mmol) Dimethylsilandiyl (2-methyl-indenyl) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid verwendet. Es wurden 5.5 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.40 Gew% Zr und 10.1 Gew% AI enthielt.
Polymerisation:
Es wurde verfahren wie in Beispiel la.
Es resultierten 2.5 kg Polypropylen-Pulver mit einer Schüttdichte von 400 g/dm3.
Die Katalysatoraktivität betrug 2.5 kg PP/(g Kat x h) , Das Polymer enthielt 9.5 Gew.-% Agglomerate. Die Inspektion des Reaktors zeigte Beläge an der Reaktorwand und auf den Rührerblättern.
Vergleichsbeispiel 3a *
Trägerung:
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 67 mg (0.09 mmol) rac-Dimethylsilandiylbis (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid verwendet. Es wurden 5.8 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.18 Gew% Zr und 9.6 Gew% AI enthielt. Polymerisation:
Es wurde verfahren wie in Beispiel la.
Es resultierten 1.7 kg Polypropylen-Pulver mit einer Schüttdichte von 475 g/dm3. Die Katalysatoraktivität betrug 1.7 kg PP/ (g Kat x h) . Das Polymer war ein frei fließendes Pulver und enthielt weder Feinkornanteile noch Agglomerate. Die Inspektion des Reaktors ergab Belags - freiheit.
Vergleichsbeispiel 3b
Trägerung :
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 134 mg (0.18 mmol) rac-Dimethylsilandiylbis (2-methyl-4- (4 ' -tert-bu- tylphenyl-indenyl) zirkoniumdichlorid verwendet. Es wurden 5.6 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.37 Gew% Zr und 9.9 Gew% AI enthielt.
Polymerisation: Es wurde verfahren wie in Beispiel la.
Es resultierten 3.2 kg Polypropylen-Pulver mit einer Schüttdichte von 440 g/dm3.
Die Katalysatoraktivität betrug 3.2 kg PP/ (g Kat x h) .
Das Polymer enthielt ca. 5 Gew.-% Agglomerate. Die Inspektion des Reaktors zeigte Beläge an der Reaktorwand und auf den Rührerblättern.
Vergleichsbeispiel 4a
Trägerung:
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 44 mg (0.09 mmol) Dimethylsilandiylbis (2-methyl-4-thiapenta- len) -zirkoniumdichlorid verwendet. Es wurden 5.6 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.16 Gew% Zr und 9.5 Gew% AI enthielt.
Polymerisation:
Es wurde verfahren wie in Beispiel la. Es resultierte eine wachs - artige Polymermasse, die teilweise an Rührerblättern und Reaktor- "Vänden haften blieb. Auf eine Bestimmung der Polymerisationsaktivität wurde verzichtet. Vergleichsbeispiel 4b
Trägerung :
Das Trägerungsbeispiel la wurde wiederholt, es wurden jedoch 88 mg (0.18 mmol) Dimethylsilandiylbis (2-4-thiapentalen) zirkoniumdichlorid verwendet. Es wurden 5.7 g eines frei fließenden Pulvers erhalten, das laut Elementaranalyse 0.39 Gew% Zr und 9.7 Gew% AI enthielt.
Polymerisation:
Es wurde verfahren wie in Beispiel la. Es resultierte eine wachs - artige Polymermasse, die teilweise an Rührerblättern und Reaktorwänden haften blieb. Auf eine Bestimmung der Polymerisationsaktivität wurde verzichtet.
Die in den Beispielen la bis 3 und den Vergleichsbeispielen bei der Trägerung eingesetzten Metallocen-Mengen, die Polymerisationsaktivitäten der Katalysatoren, die Morphologie der erhaltenen Polymere und das jeweilige Ergebnis der Belagsinspektion sind in Tabelle zusammengefaßt.
Zur Beurteilung des Immobilisierungsgrades der Metallocene auf dem Trägermaterial wurde folgendes Extraktionsexperiment durchgeführt :
Jeweils lg der Katalysatoren aus den Beispielen la, lb und den Vergleichsbeispielen 2a, 2b, 3a und 3b wurde jeweils in 20 ml Toluol suspendiert, der Ansatz 30 min bei 50 °C gerührt und anschließend über eine G3-Fritte filtriert. Die jeweilige Farbe des Filtrats ist in Tabelle 1 aufgeführt.
Das Filtrat aus Vergleichsbeispiel 2b wurde analog zu Beispiel la in der Polymerisation eingesetzt. Die anschließende Inspektion des Reaktors ergab einen dünnen, weißen Belag an Rührer und Reak- torwänden. Eine Probe des Belags wurde getrocknet und mittels IR- Spektroskopie untersucht. Es handelte sich um isotaktisches Polypropylen.
Die Filtrate aus den Beispielen la und lb und dem Vergleichs - * -beispiel 2a wurden ebenfalls zur Polymerisation eingesetzt. Sie erwiesen sich als polymerisationsinaktiv, die Inspektion des Reaktors zeigte keine Beläge. Tabelle 1
VB Vergleichsbeispiel e.g. erfindungsgemäß n-e-<?- nicht erfindungsgemäß

Claims

Patentansprüche
1 . Verbindung der Formel I ,
worin
M1 ein Metall der Gruppe IVb des Periodensystems der Elemente ist,
R1, R2 gleich oder verschieden sind und ein Wasserstoffatom, eine Cι-Cιo-Alkylgruppe, eine Cι-Cιo-Alkoxygxuppe, eine C6-C o-Arylgruppe, eine Cg-Cι0-Aryloxygruppe, eine
C-Cιo-Alkenylgruppe, eine OH-Gruppe, eine N(R12) 2-Gruppe, wobei R12 eine Ci bis Cχo -Alkylgruppe oder Cg bis C14-Arylgruppe ist, oder ein Halogenatom bedeuten,
-R3, R4, R6, 7, R87 R3', R4- gleich oder verschieden sind und ein Wasserstoffatom, eine Kohlenwasserstoffgruppe mit 1 bis 40 Kohlenstoff - atomen, die teilhalogeniert, halogeniert, linear, cyclisch oder verzweigt sein kann, eine Si(R13)3-, N(R13) -, SR13- oder OR13-Gruppe bedeuten, mit R13 in der Bedeutung von R4, mit der Maßgabe, daß R3 von Wasserstoff verschie- den ist, R3' und R4' auch cyclisch verbunden sein können, und
R5 eine C6 bis C40 -Arylgruppe die in para-Position zur Bin- dungsstelle an den Indenylring einen Substituenten R14 trägt, bedeutet,
wobei
R14 ein Halogenatom F,C1 oder Br, ein Ci bis C20-Alkylrest, ein C2 bis C 0-Alkenylrest , ein Cg bis C2 -Arylrest, ein C7 bis C4o-Arylalkylrest, ein C7 bis C4o-Alkylarylrest , ein Cs bis
C40-Arylalkenylrest wobei die Kohlenwasserstoffreste auch mit Fluor, Chlor und/oder Brom halogeniert oder teilhalogeniert sein können, - (Ri5)2 , -P(R15)2 f -SR15 _0R15, _si(Ri5)3
-[N(R15)3]+ oder -[P(R15)3]+ bedeutet mit R1^ in der Bedeutung von R4,
R16 trotz gleicher Indizierung gleich oder verschieden sein können und die Bedeutung von R14 oder Wasserstoff haben und jeweils benachbarte Reste R16 auch cyclisch verbunden sein kön- nen, oder einer oder mehrere der Reste R16 bilden mit den Resten R6 oder R4 und/oder R14 eine cyclische Verknüpfung, mit der Maßgabe, daß R14 auch Wasserstoff sein kann, wenn mindestens einer der Reste R16 von Wasserstoff verschieden ist,
R9 eine Verbrückung
10 10 10 10
R R R10 R
-0 M 0 c 0 M - C - M -
I I
11 11 11 R 11 R R R11 R
10
R 10
R10 R
C — C
11 11
R11 R R
\. \. \.. \ \„ \„« \. V.
/BR./AIR10.-ββ-. -0-, -S-, ^SO, ^S02, /NR10, ^CO. ^PR10 o e r^ (0)Rto,
wobei
R10, R auch bei gleicher Indizierung, gleich oder verschieden sein können und ein Wasserstoffatom, ein Halogenatom, eine Cι-C4o-heteroatomhaltige Kohlenwasserstoffruppe, eine Cι-C4o_kohlenstoffhaltige Gruppe,
-N(R17)2 , -P(Rl7)2/ -SRI7, -OR17, -Si(Rl )3, -[N(Rl )3] + oder -[P(R17)3]+ bedeuten mit R17 in der Bedeutung von R4, oder R10 und R11 bilden jeweils mit den sie verbindenden Atomen einen oder mehrere Ringe, x bedeutet eine ganze Zahl von 0 bis 18, -M2 bedeutet Silizium, Germanium oder Zinn, und
R9 auch zwei Einheiten der Formel I miteinander verknüpfen kann,
Ra bedeutet eine gesättigte oder ungesättigte Kohlenwasserstoffgruppe, die auch mit Resten in der Bedeutung von R3 substituiert sein kann, und die mindestens ein Heteroatom aus den Gruppen 13, 14, 15 oder 16 des Periodensystems der Elemente enthält.
2. Verbindung der Formel I gemäß Anspruch 1, dadurch gekenn- zeichnet, daß die bei R3, R4, R6, R7, R8, R3', R4' beschriebene Kohlenwasserstoffgruppe eine Cι-Cιo-Alkylgruppe, C2-Cιo-Alkenylgruppe, Cg-C2o~Arylgruppe, eine C -C4o-Arylalkyl- gruppe, eine C7-C4o~Alkylarylgruppe oder eine C8-C4o-Aryl- alkenylgruppe ist.
3. Verbindung der Formel I gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die bei R10, R11 beschriebene kohlenstoffhaltige Gruppe eine Cι-C20-Alkyl-, eine Cι-Cιo-Fluoralkyl-, eine Cι-Cιo-Alkoxy-, eine Cg-Cι4-Aryl-, eine Cg-Cio-Fluoraryl-, eine Cg-Cio-Aryloxy-, eine C2-Cι0-Alkenyl-, eine C7-C4o-Aryl- alkyl-, eine C7-C4o-Alkylaryl- oder eine C8-C40-Arylalkenyl- gruppe ist.
4. Verbindung der Formel I gemäß Anspruch 1 bis 3, dadurch ge- kennzeichnet, daß die heteroatomhaltigen Kohlenwasserstoff - gruppen mindestens ein Element der Gruppen 13 bis 16 des Periodensystems der Elemente enthalten.
5. Verbindung der Formel I gemäß Anspruch 1 bis 4, dadurch ge- kennzeichnet, daß
M1 Zirkonium, Hafnium oder Titan ist,
R1, R2 gleich sind und für Methyl, Dimethylamid, Dibenzyl oder Chlor stehen, R3, R3' gleich oder verschieden sind und eine Cχ-Cιo-Alkylgruppe, C2~Gιo-Alkenylgruppe oder eine C7-C4o-Alkylarylgruppe bedeuten, R 9 RioRιιSi= Ri0RnGe=, R10R1:LC= oder - (Ri°RiiC-CR10R1:l) - bedeutet, wobei R10 und R11 gleich oder verschieden sind und Wasser- stoff, eine Cι-C2o-Kohlenwasserstoffgruppe, insbesondere Cl-Cirj-Alkyl oder Cg-Ci4~Aryl bedeuten, R5 eine Cg bis C 0 -Arylgruppe bedeutet, die in para-Position zur Bindungsstelle an den Indenylring einen Substituenten R14 trägt, und R14 ein Ci bis Cio-Alkylrest, ein C bis Cio-Alkenylrest , ein Cg bis Cis-Arylrest, ein C bis C2o-Arylalkylrest, ein C bis C2o-Alkylarylrest, ein Cs bis C20-Arylalkenylrest wobei die Kohlenwasserstoffreste auch mit Fluor und/oder Chlor halogeniert oder teilhalogeniert sein können, -NR2 15 , -P(R15)2/ -SR15, -Si(R15)3, -[N(Ri5)3]+ oder -[P(R15)3]+ bedeuten, mit R15 in der Bedeutung von R4 , R16 gleich oder verschieden sind und Fluor, Chlor, Wasserstoff, einen Ci bis Cio-Alkylrest, der auch mit Fluor und/oder Chlor halogeniert oder teilhalogeniert sein kann, einen Cg bis Ci8~Arylrest oder einen C bis Cio-Alkenylrest bedeuten, oder benachbarte Reste R16 cyclisch verbunden sind,
Ra bedeutet eine gesättigte oder ungesättigte Kohlenwasserstoff- gruppe mit 1 bis 40 Kohlenstoffatomen, die auch mit Resten in der Bedeutung von R3 substituiert sein kann, und .die mindestens ein Heteroatom ausgewählt aus der Gruppe B, AI, Si, Sn, N, P, 0 oder S enthält.
6. Verbindung der Formel I gemäß Anspruch 5, dadurch gekennzeichnet, daß
M1 Zirkonium ist,
R1, R2 gleich sind und für Methyl oder Chlor stehen, R9 0 er - (RioRιιc_CRιoRii) _ ist, worin R10 und R11 gleich oder verschieden sind und Wasserstoff, Phenyl, Methyl oder Ethyl bedeuten, die Reste, R4,R6,R7 und R8 sowie R4' Wasserstoff sind,
R5 eine C6 bis C20 -Arylgruppe, insbesondere eine Phenyl-,
Naphthyl- oder Anthracenyl-Gruppe bedeuten, die in paraPosition zur Bindungsstelle an den Indenylring einen Substituenten R14 trägt, wobei R14 ein SiR3 15 -Rest , mit R15 in der Bedeutung von R4 , oder ein linearer Ci bis
Cio- Alkylrest, ein verzweigter C3 bis Cirj- Alkylrest, ein C2 bis Cio- Alkenylrest oder ein verzweigter C7 bis C2o~ Alkylarylrest ist, wobei die Kohlenwasserstoffreste auch mit Fluor und/oder Chlor halogeniert oder teilhalogeniert sein können,
Ra eine gesättigte oder ungesättigte Kohlenwasserstoffgruppe mit 1 bis 30 Kohlenstoffatomen, die auch mit Resten in der Bedeutung von R3 substituiert sein kann, und die mindestens ein Heteroatom ausgewählt aus der Gruppe N, P, 0 oder S enthält.
7. Verbindung der Formel I gemäß Anspruch 1 bis 6, dadurch gekennzeichnet, daß der Rest Ra zusammen mit dem Cyclopentadie- nyl-Grundkörper, an den es gebunden ist, folgende Molekül - fragmente bildet
wobei die Heteroatomfunktionen X gleich oder verschieden sind und die Bedeutung NRλ, PRλ, N, 0 oder S haben, die Reste Rδ, Rε, Rζ und Rλ Wasserstoff sind oder die Bedeutung von R3 haben, die Reste Rα die Bedeutung von R3' und die Reste Rß die Bedeutung von R4' ha- ben.
8. Verbindung der Formel I gemäß Anspruch 1 bis 7, worin
M^-RiR2: ZrCl2, Zr(CH3)2, R3, R3' : Methyl, Ethyl, n-Propyl, Isopropyl, Isobutyl, n-Butyl, s-Butyl, R4, R8, R4': Wasserstoff
R6, R7: Wasserstoff, Cι~ bis C4~Alkyl, C6 bis Cι0-Aryl, R5 : p-methyl-phenyl, p-ethyl-phenyl, p-n-propyl-phenyl, p- Isopropyl-phenyl, p-n-Butyl-phenyl, p-tert. -Butyl-phenyl, p-s-butyl-phenyl, p-Pentyl-phenyl, p-Hexyl-phenyl, p-Cyclohexyl-phenyl, p-Trimethylsilyl- phenyl, p-Adamantyl-phenyl, p- (F3C) 3C-phenyl, R9 : Dimethylsilandiyl, Phenyl (methyl) silandiyl , Diphenylsilandiyl, Dimethylgermandiyl, Ethyliden, 1-Methylethyli- den, 1, 1-Dimethylethyliden,
1,2-Dimethylethyliden, 1, 1, 2, 2-Tetramethylethyliden, Dirnethylmethyliden, Phenyl (methyl) methyliden, Diphenylme- thyliden,
Ra: 2-Alkyl-4-azapentalene, 2-Alkyl-5-azapentalene, 2-Alkyl-6-azapentalene,
2-Alkyl-N-aryl-4-azapentalene, 2-Alkyl-N-aryl-5-azapenta- lene, 2-Alkyl-N-aryl-6-azapentalene, 2, 5-Dialkyl-4-aza- pentalene, 2, 5-Dialkyl-6-azapentalene,
2,5-Dialkyl-N-aryl-4-azapentalene, 2, 5-Dialkyl-N- aryl-6-azapentalene, 2-Alkyl-4-phosphapentalene, 2-Alkyl-5-phosphapentalene, 2-Alkyl-6-phosphapentalene, 2-Alkyl-P-aryl-4-phosphapentalene, 2-Alkyl-P- aryl-5-phosphapentalene, 2-Alkyl-P-aryl-6-phosphapenta- lene, 2, 5-Dialkyl-4-phosphapentalene, 2, 5-Dialkyl-6-phosphapentalene, 2, 5-Dialkyl-P- aryl-4-phosphapentalene, 2, 5-Dialkyl-P-aryl-6-phosphapen- talene, 2-Alkyl-4-thiapentalene, 2-Alkyl-5-thiapenta- lene, 2-Alkyl-6-thiapentalene, 2, 5-Dialkyl-4-thiapenta- lene, 2, 5-Dialkyl-6-thiapentalene, 2-Alkyl-4-oxapenta- lene, 2-Alkyl-5-oxapentalene, 2-Alkyl-6-oxapentalene, 2, 5-Dialkyl-4-oxapentalene oder 2, 5-Dialkyl-6-oxapentalene, bedeuten.
9. Verbindung der Formel I gemäß Anspruch 1 bis 8, in der Bedeutung von
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -methyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 '-methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 '-methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid 0 Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl- 4- (4' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (2- methyl- 4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -methyl- 5 phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid 0 Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4-.(4' -methyl- 5 phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 '-methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Q Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -ethyl- 5 phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -ethyl¬ phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapenta- len) (2-methyl-4- (4 '-ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapenta- len) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -ethyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4~ (4' -ethylphenyl-indenyl ) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-thiapenta- len) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -ethyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-oxapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-oxapenta- len) (2-methyl-4- (4 ' -ethylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -n-pro- , ^pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapenta- len) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -n- propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -n- propylpheny1-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 '-n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 '-n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 '-n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 '-n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -n- propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -n- propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 '-n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -n-propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -n- propylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -n- propylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 '-isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2-methyl- 4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl- 4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -isopro- pylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -isopropylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -isopropylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 '-n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -n-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4'-n- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4'-n- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2- methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl- 4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 '-n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -n- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -n- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -n-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 '-n-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -n-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -n- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -n- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -s-butyl- phenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -s- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2- methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -s-bu- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -s- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -s- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -s- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-thiapenta- len) (2-methyl-4- (4 '-tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 '-tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 '-tert-bu¬ tylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-oxapenta- len) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapenta- len) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- ( ' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapenta- len) (2-methyl-4- (4 ' -n-pentyiphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -n- pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -n- pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4' -n- pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4' -n- pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -n-pen- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -n-pentylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -n- pentylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -n- pentylphenyl-indenyl ) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-pheny1-4-azapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapenta- len) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-pheny1-6-azapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -n- hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -n- hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -n- hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -n- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -n-hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -n- hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -n- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 '-cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 '-cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4' -cy- clohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -cyclo- hexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 '-cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4' -cyclohe- xylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -trime- thylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 '-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkonium- dichlorid
Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 '-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 '-trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -trime- thy1silylpheny1-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -trimethylsilylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -tri- methylsilylpheny1-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-5-azapenta- len) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-azapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-thiapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4' -adaman- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-4-thiapenta- len) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-thiapenta- len) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-oxapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapentalen) (2-methyl-4- (4' -adaman- tylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4 ' -adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-azapentalen) (2-methyl-4- (4 '-tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-6-azapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-4-azapentalen) (2-methyl- 4- (4' -tris (trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-N-phenyl-5-azapentalen) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl- 4- (4' -tris (trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -tris (trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-6-azapentalen) (2-methyl-4- (4 '-tris (trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-4-azapenta- len) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (4' -tris (trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-thiapenta- len) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-thiapenta- len) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-thiapenta- len) (2-methyl-4- (4 ' -tris (trifluormethyl)methylphenyl-inde- nyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-dimethyl-4-thiapenta- len) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-6-thiapenta- len) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-oxapenta- len) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5-oxapenta- len) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-6-oxapenta- len) (2-methyl-4- (4 '-tris (trifluormethyl)methylphenyl-inde- nyl) zirkoniumdichlorid
Dimethylsilandiyl (2 , 5-dimethyl-4-oxapentalen) (2-methyl-4- (4 ' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -tris (trifluormethyl) methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-ethyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-5, 6-di-hydro-4-azapenta- len) (2-ethyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-4-azapentalen) (2-ethyl-4- (4' -tert-bu- tylphenyl-tetrahydroindenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-5-azapentalen) (2-n-butyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Ethyliden (2-methyl-6-azapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-trimethylsilyl-4-azapenta- len) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2-methyl-N-tolyl-5-azapentalen) (2-n-pro- pyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dirnethylgermyldiyl (2-methyl-N-phenyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Methylethyliden (2, 5-dimethyl-4-azapentalen) (2-methyl-4- (4' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2, 5-di-iso-propyl-6-azapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-4-azapentalen) (2,6- dimethyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2, 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (6' -tert-butylnaphthyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl (2 , 5-dimethyl-N-phenyl-6-azapenta- len) (2-methyl-4- (6' -tert-butylanthracenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl (2-methyl-4-phσsphapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Diphenylsilandiyl (2-methyl-5-thiapentalen) (2-methyl-4- (4 ' -tert- butylphenyl-indenyl) zirkoniumdichlorid
Methylphenylsilandiyl (2-methyl-6-thiapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
Methyliden (2, 5-dimethyl-4-thiapentalen) (2-methyl-4- (4'-tert-bu- tylpheny1-indenyl) zirkoniumdichlorid Dimethylmethyliden (2, 5-dimethyl-6-thiapentalen) (2-methyl-4- (4 ' -tert-butylphenyl-indenyl) zirkoniumdichlorid Diphenylsilandiyl (2, 5-dimethyl-4-oxapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid Diphenylsilandiyl (2, 5-dimethyl-6-oxapentalen) (2-methyl-4- (4' -tert-butylphenyl-indenyl) zirkoniumdichlorid
und die entsprechenden in 2- und / oder in 2,5-Position mit Ethyl, n-Propyl, Isopropyl, Isobutyl, n-Butyl und s-Butyl substituierten Homologen der vorstehend genannten Verbindungen.
10. Verwendung einer Verbindung der Formel I gemäß einem der Ansprüche 1 bis 9 zur Herstellung von Polyolefinen.
11. Katalysatorsystem enthaltend mindestens ein Metallocen der Formel I gemäß einem der Ansprüche 1 bis 9, mindestens einen
Cokatalysator, mindestens einen Träger.
12. Katalysatorsystem gemäß Anspruch 11, zusätzlich enthaltend mindestens eine weitere Additivkomponente.
13. Verwendung einer Verbindung der Formel I gemäß einem der Ansprüche 1 bis 9 zur Herstellung eines Katalysatorsystems gemäß einem der Ansprüche 11 oder 12.
14. Verwendung des Katalysatorsystems gemäß Anspruch 11 oder 12 in der Herstellung von Polyolefinen.
15. Verfahren zur Herstellung von Polyolefinen durch Polymerisation von einem oder mehreren Olefinen in Gegenwart eines Katalysatorsystems gemäß Anspruch 11 oder 12.
EP00910601A 1999-01-28 2000-01-22 Organometallverbindung, katalysatorsystem enthaltend diese organometallverbindung und seine verwendung Withdrawn EP1082363A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19903306 1999-01-28
DE19903306A DE19903306A1 (de) 1999-01-28 1999-01-28 Organometallverbindung, Katalysatorsystem enthaltend diese Organometallverbindung und seine Verwendung
PCT/EP2000/000471 WO2000044799A1 (de) 1999-01-28 2000-01-22 Organometallverbindung, katalysatorsystem enthaltend diese organometallverbindung und seine verwendung

Publications (1)

Publication Number Publication Date
EP1082363A1 true EP1082363A1 (de) 2001-03-14

Family

ID=7895623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910601A Withdrawn EP1082363A1 (de) 1999-01-28 2000-01-22 Organometallverbindung, katalysatorsystem enthaltend diese organometallverbindung und seine verwendung

Country Status (6)

Country Link
US (1) US6469114B1 (de)
EP (1) EP1082363A1 (de)
JP (1) JP2002535416A (de)
BR (1) BR0004493A (de)
DE (1) DE19903306A1 (de)
WO (1) WO2000044799A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544282A (ja) * 1999-05-13 2002-12-24 ザ ダウ ケミカル カンパニー ジ−及びトリ−ヘテロ原子置換インデニル金属錯体
US6211311B1 (en) * 1999-05-25 2001-04-03 Equistar Chemicals, L.P. Supported olefin polymerization catalysts
EP1074557A3 (de) * 1999-07-31 2003-02-26 Basell Polyolefine GmbH Übergangsmetallverbindung, Ligandensystem, Katalysatorsystem und seine Verwendung zur Polymerisation von Olefinen
EP1548037A3 (de) 1999-12-23 2007-09-12 Basell Polyolefine GmbH Random-Propylen-Ethylencopolymere
ATE354540T1 (de) 2000-01-21 2007-03-15 United States Borax Inc Nonaboratzusammensetzung und ihre herstellung
CN1250581C (zh) * 2000-09-26 2006-04-12 英国石油化学品有限公司 载体催化剂体系
US7459511B2 (en) * 2001-06-12 2008-12-02 Basell Polyolefine Gmbh Process for the polymerization of 1-butene
EP1446429B1 (de) * 2001-06-12 2009-10-07 Basell Polyolefine GmbH Verfahren zur Polymerisation von Buten-1
DE10158656A1 (de) * 2001-11-30 2003-06-26 Basell Polyolefine Gmbh Organoübergangsmetallverbindung, Biscyclopentadienylligandsystem, Katalysatorsystem und Verfahren zur Herstellung von Polyolefinen
ATE445651T1 (de) 2002-09-06 2009-10-15 Basell Polyolefine Gmbh Verfahren zur copolymerisation von ethylen
AU2003273400A1 (en) 2002-10-10 2004-05-04 Basell Polyolefine Gmbh Process for the copolymerization of ethylene
WO2004046214A2 (en) 2002-10-15 2004-06-03 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US7589160B2 (en) * 2002-12-04 2009-09-15 Basell Polyolefine Gmbh Process for preparing 1-butene polymers
DE60329523D1 (de) * 2002-12-04 2009-11-12 Basell Polyolefine Gmbh 1-Buten-Copolymere und Herstellungsverfahren dafür
EP1664139A1 (de) * 2003-09-11 2006-06-07 Basell Polyolefine GmbH Mehrschrittverfahren zur herstellung von heterophasigen propylencopolymeren
US6903170B2 (en) * 2003-09-29 2005-06-07 Equistar Chemicals, Lp Olefin polymerization process using triisobutylaluminum as a scavenger
DE102004020525A1 (de) * 2004-04-26 2005-11-10 Basell Polyolefine Gmbh Katalysatorsystem zur Olefinpolymerisation, dessen Herstellung und Verwendung
BRPI0511801A (pt) * 2004-06-04 2008-01-15 Basell Polyolefine Gmbh composto de metal de transição, sistema ligante, sistema catalisador e processo para preparar poliolefinas
US7169864B2 (en) * 2004-12-01 2007-01-30 Novolen Technology Holdings, C.V. Metallocene catalysts, their synthesis and their use for the polymerization of olefins
US7232869B2 (en) * 2005-05-17 2007-06-19 Novolen Technology Holdings, C.V. Catalyst composition for olefin polymerization
EP1847555A1 (de) * 2006-04-18 2007-10-24 Borealis Technology Oy Mehrfach verzweigtes Polypropylen
US8012900B2 (en) * 2007-12-28 2011-09-06 Chevron Phillips Chemical Company, L.P. Nano-linked metallocene catalyst compositions and their polymer products
EP2573091A1 (de) 2011-09-23 2013-03-27 Lummus Novolen Technology Gmbh Verfahren zur Wiedergewinnung freier Liganden aus ihren jeweiligen Metallocenkomplexen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID22443A (id) * 1996-11-15 1999-10-14 Montelll Technology Co Bv Metallosena heterosiklik dan polimerisasi katalis
IL130713A0 (en) * 1997-11-12 2000-06-01 Montell Technology Company Bv Metallocenes and catalysts for olefin-polymerisation
DE19804970A1 (de) * 1998-02-07 1999-08-12 Aventis Res & Tech Gmbh & Co Katalysatorsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0044799A1 *

Also Published As

Publication number Publication date
DE19903306A1 (de) 2000-08-03
BR0004493A (pt) 2000-12-19
WO2000044799A1 (de) 2000-08-03
US6469114B1 (en) 2002-10-22
JP2002535416A (ja) 2002-10-22

Similar Documents

Publication Publication Date Title
EP0942938B1 (de) Geträgertes katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
EP1054911B1 (de) Katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
WO2000044799A1 (de) Organometallverbindung, katalysatorsystem enthaltend diese organometallverbindung und seine verwendung
DE69631902T2 (de) Metallocene mit offen-pentodienyl, deren vorläufer und diese enthaltende polymerisationskatalysatoren
EP0776913B1 (de) Hochmolekulare Copolymere
EP1133504B1 (de) Verfahren zur herstellung von monoaryloxy-ansa-metallocenen
EP0859800B1 (de) Geträgertes katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
EP1250365A2 (de) Übergangsmetallverbindung, ligandensystem, katalysatorsystem und seine verwendung zur polymerisation und copolymerisation von olefinen
EP1033371B1 (de) Übergangsmetallverbindung, Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
EP1771484A1 (de) Verfahren zur herstellung von ultrahochmolekularen polymeren unter verwendung von unverbrückten metallocen-katalysatoren
EP1082353B1 (de) Katalysatorsystem und seine verwendung zur polymerisation von propylen
EP1000073B1 (de) Verfahren zur herstellung von metallocenen
EP1003757B1 (de) Verfahren zur herstellung von metallocenen
DE19622481A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
EP1052263A2 (de) Übergangsmetallverbindung, Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
EP0780402B1 (de) Geträgertes Katalysatorensystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE19823172A1 (de) Katalysatorsystem und seine Verwendung zur Polymerisation von Propylen
DE19962905A1 (de) Übergangsmetallverbindung, Ligandensystem, Katalysatorsystem und seine Verwendung zur Polymerisation und Copolymerisation von Olefinen
DE19713549A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE19713550A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE19940151A1 (de) Geträgerte Katalysatorsysteme, Verfahren zu ihrer Herstellung und Verfahren zur Herstellung von Poly-1-alkenen mit bimodaler oder multimodaler Molekularmassenverteilung
DE19912576A1 (de) Verfahren zur Herstellung von Monoaryloxy-Ansa-Metallocenen
WO1999054368A1 (de) Verfahren zur herstellung von polypropylen mit speziellen metallocenen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASELL POLYPROPYLEN GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASELL POLYOLEFINE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASELL POLYOLEFINE GMBH

17Q First examination report despatched

Effective date: 20061218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121206