EP1073864A1 - Ensemble chambre de combustion - Google Patents

Ensemble chambre de combustion

Info

Publication number
EP1073864A1
EP1073864A1 EP99927681A EP99927681A EP1073864A1 EP 1073864 A1 EP1073864 A1 EP 1073864A1 EP 99927681 A EP99927681 A EP 99927681A EP 99927681 A EP99927681 A EP 99927681A EP 1073864 A1 EP1073864 A1 EP 1073864A1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
axis
burner
component
mouth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99927681A
Other languages
German (de)
English (en)
Other versions
EP1073864B1 (fr
Inventor
Carsten Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1073864A1 publication Critical patent/EP1073864A1/fr
Application granted granted Critical
Publication of EP1073864B1 publication Critical patent/EP1073864B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing

Definitions

  • the invention relates to a Brennkam eranix with a
  • Combustion chamber in which a burner is arranged.
  • the combustion chamber is in particular an annular combustion chamber of a gas turbine.
  • the gas turbine has a turbine shaft with a main axis.
  • Each burner is directed along a major axis.
  • the main axis of each burner is tilted in relation to the main axis of the turbine shaft in order to generate a swirl of a working medium. By tilting the burner in this way, a swirl-generating structural part can be dispensed with.
  • Stimulate vibrations which are also called combustion vibrations. These are not only an undesirable source of sound, but can also lead to excessive mechanical loads on the combustion chamber.
  • Such a thermo-acoustic oscillation is actively damped in that the location of the heat release fluctuation associated with the combustion is controlled by injecting a fluid.
  • the object of the invention is to provide a burner chamber arrangement which exhibits favorable behavior, in particular with regard to the avoidance of thermoacoustic vibrations.
  • this object is achieved by a combustion chamber arrangement with a combustion chamber having a combustion chamber axis, in which a burner is arranged, which has a mouth for an inflow of a fuel gas flow along a direction of the mouth into the combustion chamber, a deflection means for U-directing the fuel gas flow in the region of the mouth is arranged in an inflow direction different from the mouth direction and the inflow direction is defined as a unit vector with a point in the mouth and a unit length by three component vectors: a) an axis component that is parallel to the combustion chamber axis b) a plane component that is perpendicular to the Is the combustion chamber axis and lies in a connecting plane which is spanned by the point of incidence and the combustion chamber axis, c) an orthogonal component which is perpendicular to the combustion chamber axis and to the
  • the location of the combustion of the fuel gas flowing out of the burner is shifted by the deflection of the fuel gas flow with the aid of the deflection means.
  • Such a shift has the consequence that the distances between the location of the combustion and the combustion chamber wall change.
  • the acoustic system which is formed by the burner and combustion chamber, is acoustically detuned.
  • a suitable orientation of the deflecting means i.e. The formation of a thermoacoustic oscillation can thus be suppressed by a suitable selection of the deflection direction.
  • the combustion chamber is preferably rotationally symmetrical about the combustion chamber axis.
  • the orthogonal component preferably has a length other than zero.
  • a non-zero orthogonal component of the inflow direction means that the direction 3 of the inflowing fuel gas flow is not in the connection plane, ie the inflow direction is rotated with respect to the combustion chamber axis.
  • Such an oblique inflow makes it possible to shift the location of the combustion particularly efficiently, so that formation of a thermoacoustic oscillation is suppressed.
  • a further burner is preferably provided which has a mouth for an inflow of a fuel gas stream along a further inflow direction into the combustion chamber, which has a further inflow direction as a unit vector with a further point in the mouth of the further burner and with the unit length by three further component vectors is defined: a) a further axis component which is parallel to the combustion chamber axis, b) a further plane component which is perpendicular to the combustion chamber axis and lies in a further connection plane which is spanned by the further point of incidence and the combustion chamber axis, c) a further orthogonal component, which is perpendicular to the combustion chamber axis and to the other plane component.
  • the axis component preferably has a length that is different from the further axis component.
  • the different lengths of the axis components of the two burners have the consequence that the respective inflow directions of the two burners are inclined or tilted differently with respect to the combustion chamber axis. Due to such a different inclination of the inflow direction, the locations of the respective combustion can be adjusted relative to one another in such a way that combustion vibrations emanating from these locations interfere with one another or even extinguish one another.
  • such an arrangement can be used for a combustion chamber with a large number of burners. Only two or more burners can be tilted differently with respect to the combustion chamber axis. Depending on the geometric design of the combustion chamber, it is too advantageous to tilt most or all of the burners differently to the combustion chamber axis.
  • a tilt of a burner or several burners with respect to the combustion chamber axis which manifests itself in a different length of the axis components of the burners, can also be combined with a twist.
  • Such a rotation corresponds to an orthogonal component other than zero, as already mentioned above.
  • the possibility of simultaneous twisting and tilting results in a wide range of options for relocating the location of the combustion. This results in a large number of configurations from which one can be selected which ensures acoustic detuning of the acoustic system comprising the combustion chamber and burner, i.e. with which a particularly large suppression of thermoacoustic vibrations is achieved. Such a selection can e.g. by trying different configurations and choosing the one with the best thermoacoustic behavior.
  • a further deflection means is preferably provided in the region of the mouth of the further burner for deflecting a fuel gas stream emerging from the further burner in the further inflow direction.
  • a combustion of the fuel gas stream from the burner in one energy column and a combustion of the fuel gas stream from the further burner in a further energy column can preferably be generated, which energy columns each represent an extension of the fuel gas stream, the orthogonal component and the further orthogonal component being so large and so oriented are that the energy column from the burner and the energy column from the other burner overlap.
  • An energy column is formed by the combustion of the fuel gas stream, which is a column and emerges from the burner.
  • the deflecting means is preferably a wall which projects into the combustion chamber and surrounds the mouth.
  • the deflection means further preferably has a tear-off edge for eddies which can be caused by the fuel gas flow.
  • a tear-off edge for vortices creates vortices in the fuel gas flow at the deflecting means.
  • These vortices lead to the fact that a return flow area for the fuel gas flow forms in the deflection means, in which a location for combustion is stabilized.
  • stabilization makes it easier to control acoustic detuning of the system.
  • fuel and combustion air are mixed still further by the swirling, which favorably has the additional advantage that NO x emissions are reduced.
  • the deflecting means is preferably a hollow cylinder or a hollow truncated cone with sloping top surfaces.
  • These cover surfaces are imaginary surfaces, that is to say not surfaces made of a single material. They are formed by the edge of the shell of the hollow cylinder or truncated cone.
  • One cover surface is thus the imaginary connection surface of the rim facing the mouth and the other cover surface is the imaginary connection surface of the rim protruding into the combustion chamber. This is a particularly simple and effective implementation of the deflecting means.
  • the combustion chamber is preferably an annular combustion chamber, in particular for a gas turbine.
  • the ring combustion chamber has a complex geometry. In such a system, the occurrence of thermoacoustic vibrations cannot be predicted and is 6 particularly difficult to control. Such a system can also be acoustically detuned in a structurally simple manner by deflecting means in such a way that thermoacoustic vibrations are suppressed.
  • the annular combustion chamber preferably has a multiplicity of burners, a deflection means being arranged in the region of a respective mouth for the majority of these burners, in particular for all burners.
  • FIG. 1 shows a longitudinal section through a burner arranged in a combustion chamber with a deflection means
  • FIG. 2 shows the burner from FIG. 1 with a differently designed deflection means
  • FIG. 3 shows an annular combustion chamber of a gas turbine
  • FIG. 4 shows an illustration of a component division for an inflow direction
  • FIG. 5 shows a representation corresponding to FIG. 4 from a different viewing direction
  • FIG. 6 shows a longitudinal section through an annular combustion chamber of a gas turbine
  • FIG. 7 shows a cross section through an annular combustion chamber of a gas turbine.
  • FIG. 1 shows a longitudinal section through a burner 3.
  • the burner 3 is designed as a hydride burner, ie it points as 7
  • Premixing stage an annular channel 5, which concentrically surrounds a pilot burner 7.
  • the burner is arranged on a combustion chamber wall 9 of a combustion chamber 11.
  • a fuel-air mixture 14A is guided in the ring duct 5. This combines with a fuel-air mixture 14B from the pilot burner 7 to form a fuel gas stream 14.
  • the fuel gas stream 14 emerges from the burner through a mouth 13 along a mouth direction 15.
  • the mouth 13 is surrounded by a hollow cylindrical deflection means 17, 17A.
  • the deflection means 17, 17A has imaginary cover surfaces 16A, 16B which are inclined relative to one another.
  • the deflecting means is therefore not rotationally symmetrical about the mouth direction 15.
  • the deflecting means 17, 17A could also have a preferred direction in cross-section, i.e.
  • the deflecting means 17 deflects the fuel gas stream 14 from the mouthing direction 15 m into an inflow direction 19.
  • the deflecting means 17, 17A has a tear-off edge 18. At this tear-off edge 18, vortices 20 are formed in the fuel gas stream 14. A vortex flow region for the fuel gas stream 14 is generated by these vortices 20. As a result, a combustion site is stabilized in these vortices 20.
  • the deflection means 17, 17A shift the location of the combustion of the fuel gas stream 14 relative to the combustion chamber wall 9, relative to an inflow along the mouth direction 15.
  • FIG. 2 shows the burner from FIG. 1 with a differently designed deflection means 17, 17B.
  • This deflection means 17, 17B is designed as a truncated cone. It also has imaginary cover surfaces 16A, 16B which are inclined relative to one another. The advantages of this arrangement correspond to the advantages of the arrangement from FIG. 1.
  • FIG. 3 shows a combustion chamber arrangement 1 in perspective, consisting of a combustion chamber 11 of a gas turbine designed as an annular combustion chamber and burners 3 arranged therein along a circumferential direction.
  • the combustion chamber 11 is rotationally symmetrical about a combustion chamber axis 25 and has an outer wall 21 and an inner wall 23 on.
  • the outer wall 21 and the inner wall 23 enclose an annular burner chamber 24.
  • the inner surface of the outer wall 21 and the outer surface of the inner wall 23 are provided with a refractory inner lining 27.
  • FIG. 4 shows how the inflow direction 19, 41 can be represented as a unit vector with the unit length L by three components.
  • a burner 3, 39 has a mouth direction 15, 43.
  • a deflection means 17, 45 deflects a fuel gas stream emerging from the burner 3, 39 in an inflow direction 19, 41.
  • This inflow direction 19, 41 is defined by a unit vector placed at an point A.
  • the point A lies in the center of gravity of the outer cover surface 16A located in the combustion chamber.
  • the unit vector has the following three component vectors:
  • a plane component 33, 34 which is perpendicular to the axis component 35, 36 and lies in a connecting plane 31 which is spanned by the point A and the combustion chamber axis 25.
  • An orthogonal component 37, 38 which is perpendicular to both the axis component 35, 36 and the plane component 33, 34. This orthogonal component 37, 38 is shown as a circle with a cross in order to clarify that the orthogonal component 37, 38 points into the plane of the drawing.
  • FIG. 5 shows the burner arrangement of FIG. 4 from a viewing direction along the combustion chamber axis 25.
  • the orthogonal component 37, 38 is visible in its length OL.
  • the axis component 35, 36 points out of the plane of the drawing.
  • FIG. 6 shows a longitudinal section through a combustion chamber 11 of a gas turbine, which is designed as an annular combustion chamber.
  • a burner 3 flows into the combustion chamber 11 along a mouth direction 15.
  • a deflecting means 17 deflects a fuel gas stream emerging from the burner 3 into an inflow direction 19.
  • the orthogonal component 37 of the inflow direction 19 is zero, so that the inflow direction 19 intersects the combustion chamber axis 25 and forms an angle 46 with the combustion chamber axis 25.
  • a further burner 39 mills the combustion chamber 11 along a further mouth direction 49 m.
  • a further deflecting means 45 deflects a fuel gas stream emerging from the further burner 39 into a further inflow direction 41.
  • the further inflow direction 41 also intersects the combustion chamber axis 25, specifically at an angle 48.
  • the angle 46 of the inflow direction 19 with the combustion chamber axis 25 is different from the angle 48 of the further inflow direction 41 with the combustion chamber axis 25.
  • the burner 3 and the further burner 39 thus have inflow directions 19, 41 tilted differently against the combustion chamber axis 25. This different tilting ensures that combustion vibrations from the respective locations of the 10
  • FIG. 7 shows a cross section through a combustion chamber 11 of a gas turbine designed as an annular combustion chamber.
  • a plurality of burners 3, 39 are arranged along a circle.
  • Each of these burners 3, 39 has a deflection means 17, 45 in the region of its mouth.
  • the deflecting means 17, 45 are aligned such that the energy columns 47, 49, which are formed in each case by combustion of the fuel gas emerging from the burner 3, 39 in the manner of a column, overlap in pairs. This also overlaps the pressure fluctuations that arise in the energy columns 47, 49 and that can be a cause for the occurrence of a combustion oscillation.
  • Such an overlay suppresses the formation of combustion vibrations.

Abstract

L'invention concerne un ensemble chambre de combustion (1), en particulier un ensemble chambre de combustion annulaire destiné à une turbine à gaz. Un ou plusieurs brûleurs (3) présentent, sur leur orifice de sortie (13), un moyen de déviation (17) par lequel un courant de gaz de combustion (14) entrant dans l'ensemble chambre de combustion (1) est dévié. On obtient ainsi un désaccord acoustique qui empêche la formation d'une oscillation de combustion.
EP99927681A 1998-04-23 1999-04-19 Agencement d'une chambre de combustion Expired - Lifetime EP1073864B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19818082 1998-04-23
DE19818082 1998-04-23
PCT/DE1999/001169 WO1999056060A1 (fr) 1998-04-23 1999-04-19 Ensemble chambre de combustion

Publications (2)

Publication Number Publication Date
EP1073864A1 true EP1073864A1 (fr) 2001-02-07
EP1073864B1 EP1073864B1 (fr) 2002-07-03

Family

ID=7865507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99927681A Expired - Lifetime EP1073864B1 (fr) 1998-04-23 1999-04-19 Agencement d'une chambre de combustion

Country Status (5)

Country Link
US (1) US6568190B1 (fr)
EP (1) EP1073864B1 (fr)
JP (1) JP2002513130A (fr)
DE (1) DE59901946D1 (fr)
WO (1) WO1999056060A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7302802B2 (en) * 2003-10-14 2007-12-04 Pratt & Whitney Canada Corp. Aerodynamic trip for a combustion system
US7827797B2 (en) * 2006-09-05 2010-11-09 General Electric Company Injection assembly for a combustor
US7810333B2 (en) * 2006-10-02 2010-10-12 General Electric Company Method and apparatus for operating a turbine engine
US8028512B2 (en) 2007-11-28 2011-10-04 Solar Turbines Inc. Active combustion control for a turbine engine
EP2264370B1 (fr) * 2009-06-16 2012-10-10 Siemens Aktiengesellschaft Agencement de brûleur pour une installation de combustion destinée à la combustion de combustibles fluidiques et procédé de fonctionnement d'un tel agencement de brûleur
DE102012001777A1 (de) 2012-01-31 2013-08-01 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenringbrennkammer
DE102012002465A1 (de) * 2012-02-08 2013-08-08 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer mit unsymmetrischen Kraftstoffdüsen
US9709279B2 (en) 2014-02-27 2017-07-18 General Electric Company System and method for control of combustion dynamics in combustion system
US9845956B2 (en) * 2014-04-09 2017-12-19 General Electric Company System and method for control of combustion dynamics in combustion system
US20240068402A1 (en) * 2022-08-25 2024-02-29 Collins Engine Nozzles, Inc. Fuel injectors assemblies with tangential flow component

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1321926A (en) * 1970-07-10 1973-07-04 Tokyo Gas Co Ltd High velocity gas burner and heating furnace provided with such a gas burner
DE3860569D1 (de) * 1987-01-26 1990-10-18 Siemens Ag Hybridbrenner fuer vormischbetrieb mit gas und/oder oel, insbesondere fuer gasturbinenanlagen.
US4967562A (en) * 1988-12-12 1990-11-06 Sundstrand Corporation Turbine engine with high efficiency fuel atomization
US5156002A (en) * 1990-03-05 1992-10-20 Rolf J. Mowill Low emissions gas turbine combustor
DE4339094A1 (de) 1993-11-16 1995-05-18 Abb Management Ag Verfahren zur Dämpfung von thermoakustischen Schwingungen sowie Vorrichtung zur Durchführung des Verfahrens
US5596873A (en) * 1994-09-14 1997-01-28 General Electric Company Gas turbine combustor with a plurality of circumferentially spaced pre-mixers
US5727378A (en) * 1995-08-25 1998-03-17 Great Lakes Helicopters Inc. Gas turbine engine
DE19541303A1 (de) 1995-11-06 1997-05-28 Siemens Ag Gasturbine
DE19615910B4 (de) * 1996-04-22 2006-09-14 Alstom Brenneranordnung
GB2319078B (en) * 1996-11-08 1999-11-03 Europ Gas Turbines Ltd Combustor arrangement
EP0931979A1 (fr) * 1998-01-23 1999-07-28 DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- Procédé et dispositif pour supprimer les fluctuations par flamme et par pression dans un four
WO2000012940A1 (fr) * 1998-08-31 2000-03-09 Siemens Aktiengesellschaft Procede d'exploitation d'une turbine a gaz et turbine a gaz correspondante

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9956060A1 *

Also Published As

Publication number Publication date
WO1999056060A1 (fr) 1999-11-04
JP2002513130A (ja) 2002-05-08
EP1073864B1 (fr) 2002-07-03
DE59901946D1 (de) 2002-08-08
US6568190B1 (en) 2003-05-27

Similar Documents

Publication Publication Date Title
DE60007946T2 (de) Eine Brennkammer
DE10205839B4 (de) Vormischbrenner zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen
EP0675322B1 (fr) Brûleur à prémélange
DE19839085C2 (de) Brenneranordnung mit primärem und sekundärem Pilotbrenner
WO1999037951A1 (fr) Dispositif permettant de supprimer les oscillations de la flamme/pression dans un foyer, notamment une turbine a gaz
EP2156095B1 (fr) Stabilisation sans tourbillonner de la flamme d'un brûleur à prémélange
DE2845619C2 (de) Brennkammer für ein Gasturbinentriebwerk
DE19615910B4 (de) Brenneranordnung
EP0576697B1 (fr) Chambre de combustion pour turbine à gaz
EP0733861A2 (fr) Chambre de combustion à combustion étagée
EP0924470B1 (fr) Chambre de combustion à prémélange pour turbine à gaz
EP0781967A2 (fr) Chambre de combustion annulaire pour turbine à gaz
EP0687860A2 (fr) Chambre de combustion à allumage automatique
CH698007A2 (de) Gestufte Mehrringdüse mit radialem Einlauf für mageres Vorgemisch und Zweistoff-Ringrohr-Brennkammer.
EP0754908B1 (fr) Procédé et dispositif pour supprimer des vibrations par flamme et par pression dans un four
EP0623786A1 (fr) Chambre de combustion
DE102009059222A1 (de) DLN-Zweibrennstoff-Primärdüse
EP0995066B1 (fr) Agencement de bruleurs pour une installation de chauffe, notamment une chambre de combustion de turbine a gaz
EP1073864B1 (fr) Agencement d'une chambre de combustion
WO1999006767A1 (fr) Brûleur
EP1510755B1 (fr) Brûleur avec lance et alimentation étagée en carburant
EP1002992B1 (fr) Brûleur
DE102010037299A1 (de) System zur Beherrschung von Gasturbinen-Verbrennungsdynamiken
CH709640A2 (de) Systeme und Verfahren zur Kohärenzreduktion in einem Verbrennungssystem mit erster und zweiter Brennkammer einer Gasturbine.
WO2000012939A1 (fr) Ensemble bruleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20011210

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59901946

Country of ref document: DE

Date of ref document: 20020808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030404

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150619

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160411

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160428

Year of fee payment: 18

Ref country code: FR

Payment date: 20160429

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59901946

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170419

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419