EP1068778B1 - Plasma torch with a microwave transmitter - Google Patents

Plasma torch with a microwave transmitter Download PDF

Info

Publication number
EP1068778B1
EP1068778B1 EP99920621A EP99920621A EP1068778B1 EP 1068778 B1 EP1068778 B1 EP 1068778B1 EP 99920621 A EP99920621 A EP 99920621A EP 99920621 A EP99920621 A EP 99920621A EP 1068778 B1 EP1068778 B1 EP 1068778B1
Authority
EP
European Patent Office
Prior art keywords
plasma torch
electrode
nozzle
plasma
hollow guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99920621A
Other languages
German (de)
French (fr)
Other versions
EP1068778A1 (en
Inventor
Heinz-Jürgen BLÜM
Uwe Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIKROWELLEN UMWELT TECHNOLOGIE GmbH
Original Assignee
BLUEM HEINZ JUERGEN
Bluem Heinz-Juergen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BLUEM HEINZ JUERGEN, Bluem Heinz-Juergen filed Critical BLUEM HEINZ JUERGEN
Publication of EP1068778A1 publication Critical patent/EP1068778A1/en
Application granted granted Critical
Publication of EP1068778B1 publication Critical patent/EP1068778B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the invention relates to a plasma torch with a microwave transmitter according to the preamble of the claims, which is intended, for example, for coating surfaces and for generating radicals.
  • a plasma generator in which a cavity and a coaxial conductor are capacitively coupled. Insulating, thin electrodes holding the electrode are arranged over the entire cross section of the cavity and the coaxial conductor. Apart from the fact that this is not a hollow waveguide, this arrangement is not suitable for impedance matching and for achieving a low-reflection hollow waveguide. Also known is a burner for a microwave plasma, a device which contains this burner, and methods for its use in the production of powder (EP 0296921 A1).
  • This device uses a coupling piece for decoupling the microwave from a rectangular waveguide into a coaxial conductor, the inner conductor of which is designed as a gas nozzle and at one end of which a plasma flame burning at atmospheric pressure should be ignitable. Gas-tight or thermal insulation and avoidance of parasitic discharges are therefore not guaranteed.
  • the existing gas shield is not directly related to the plasma flame and the coupling piece.
  • US Pat. No. 3,353,060 A discloses a high-frequency discharge generator with an auxiliary electrode, which couples the waves coming from the high-frequency source via a rectangular waveguide into a coaxial conductor (E-coupling), at the open end of which the inner conductor serves as an electrode and generates a free-burning plasma flame should.
  • the gas supply takes place at the other, closed end of the coaxial conductor.
  • a gas-tight or thermally insulating separation of the discharge area from the decoupling element is just as little provided as the formation of a standing wave in the discharge area.
  • the gas supply can hardly be matched to the plasma flame.
  • the invention is therefore based on the object of creating a plasma torch which generates a plasma in the region close to normal pressure with high densities. High performance should be able to be transferred.
  • the plasma torch should enable stable discharge in a defined discharge zone using the microwave power efficiently. Vulnerable quartz tubes or quartz domes for generating the plasma should be avoided. It's supposed to be under construction Overall, simple plasma torches are created which efficiently couple the microwaves out of a waveguide and into the plasma.
  • this object is achieved by the characterizing features of patent claim 1. It is initially irrelevant whether the coaxial conductor is directed transversely in a cross coupling or parallel to the waveguide in an axial coupling, whether its longitudinal axes are preferably at right angles to one another or whether their longitudinal axes essentially coincide with one another.
  • the plasma torch plasma generator
  • a recipient adjoining the coaxial conductor is under a pressure of 100 Pa to 10 kPa, which is suitable for the formation of the plasma. A high degree of efficiency is achieved regardless of the type of coupling.
  • the plasma torch according to the invention manages without cooling and magnetic coils.
  • the advantage of using a circular waveguide instead of a waveguide is that the microwave power is coupled into the plasma not only in the vicinity of the nozzle, where the greatest field strengths occur, but via the cavity waves along the entire waveguide axis.
  • This design enables a quasi-electrode-less coupling, which reduces the thermal load on the nozzle.
  • the hollow electrode is advantageously designed as a truncated cone and fastened to the non-conductive intermediate piece, which is connected to the coaxial conductor via a preferably disc-shaped holder.
  • the nozzle is connected to a gas connection through the intermediate piece.
  • the retaining washer is flanged to the coaxial conductor and the waveguide.
  • the hollow electrode is advantageously designed as a truncated cone, the top surface of which faces the recipient. On this side, it has the nozzle, preferably screwed in and replaceable, which is inserted into its cavity and has four outlet openings for the process gas which lie at regular intervals on a circle around the center of the outlet plane and in the outlet plane. This ensures that the microwave is optimally directed to the outlet level (nozzle tip) and a favorable energy input into the plasma flame.
  • a nozzle suitable for high temperatures advantageously consists of a metallic ceramic alloy.
  • An electrically non-conductive insulator thermally insulates the space of the plasma flame from the coupling of the coaxial conductor to the waveguide.
  • the electrode is axially and possibly radially adjustable.
  • a brass part and a connecting piece advantageously connect the nozzle and the intermediate piece with a gas connection.
  • the brass part always guarantees the electromagnetic coupling of the waveguide and coaxial conductor.
  • the waveguide, preferably a rectangular waveguide, of the cross coupling is provided with two screws.
  • the tuning is advantageously carried out by changing its length. For this purpose, it consists, for example, of two parts which can be telescopically pushed into one another, even during the process.
  • One of the tubes can be provided with longitudinal slots and resilient tabs remaining between them.
  • a microwave seal is advantageously provided in an annular gap between the tubes in the overlap area.
  • a vacuum feed-through of the electrode and the process gas is provided for the transition from the coaxial conductor to the recipient; this enables an efficient coupling of the electromagnetic wave.
  • Fig. 1 is to a rectangular waveguide 1 with a longitudinal axis XX, a cylindrical coaxial conductor 2 with a longitudinal axis YY over a Coupling piece 3 coupled near one of its ends so that the longitudinal axes XX and YY are directed at right angles to each other.
  • the coupling piece 3 is bowl-shaped with a central opening 4 and a peripheral flange 5 and contains a receiving disc 6 for an intermediate piece 7 made of insulating material.
  • the disc 6 is rigidly and tightly connected to the coupling piece 3 by means of a ring 8 screwed to the peripheral flange 5.
  • the central opening 4 in the coupling piece 3 corresponds to an identical opening 9 in the rectangular waveguide 1, which is also surrounded by a flange 10 to which the coupling piece 3 is screwed.
  • the ring 8 is the end part of a waveguide 20 which contains an insulator 11 and at the other end of which there is a recipient 12.
  • Receiving disc 6, intermediate piece 7 and insulator 11 are sufficiently solid and together form a gas-tight, thermally insulating, but microwave-permeable transition between the rectangular waveguide 1 and the waveguide 20.
  • the intermediate piece 7 must have dielectric properties that a low-reflection waveguide on Ensure transition.
  • a conical electrode 13 made of a metal-ceramic alloy is fastened to the intermediate piece 7 on its side facing the recipient 12 and, like the intermediate piece 7, has an axial passage 14 into which a nozzle 22 is fixed at the free end of the electrode 13 or used interchangeably, preferably screwed.
  • the longitudinal axis of the electrode 13 coincides with the axis YY.
  • the bushing 14 is followed by a brass part 16 provided with an axial bore 15 with an insulating connecting piece 17 which continues the axial bore 15 and which leads to a gas connection 18.
  • the connector 17 is held by a flat support 19 which is tightly screwed to the rectangular waveguide 1.
  • the cylindrical waveguide 20 and the electrode 13 together form a coaxial conductor 2.
  • the frustoconical electrode 13 is located in a corresponding recess 21 in the insulator 11 so that the nozzle 22 protrudes beyond the insulator 11 on the recipient side.
  • the rectangular waveguide 1 is provided at the other end with a magnetron 23, from which microwaves are generated and transmitted through the conductor 1 become.
  • Two screws (steps) 24 serve to influence the microwaves on the coupling.
  • the microwaves generated by the magnetron 23 pass through the conductor 1 and are matched to the coupling by the screws 24.
  • a longitudinal wave is coupled out into the coaxial conductor 2, and an axial electromagnetic field is created.
  • the cross coupling consists of a coupling pin which is essentially identical to the electrode 13 with which it projects into the circular waveguide 20 and forms the coaxial line with it.
  • the coupling pin 13 has the task of guiding the process gas and a plasma or a plasma flame 25 the opening of the nozzle 22 to be created.
  • the gas supply into the coupling pin takes place from the outer gas connection 18 via the bores 15 in the connecting piece 17 made of Teflon and in the brass part 16 and the bushing 14 in the intermediate piece 7 likewise made of Teflon.
  • the brass part 16 also ensures a good coupling of the microwave.
  • the electrode 13 is fastened in the coaxial conductor 2 in an insulated manner by the connecting piece 7.
  • the geometry of the electrode 13 is optimally matched to the process requirements.
  • the nozzle 22 is made of a special material. It consists of a composite material that has ceramic components and is metallically conductive. The ceramic fulfills the task of thermally isolating the plasma cloud from the electrode 13. The plasma can be operated up to a pressure of 35 kPa. A considerably larger mass throughput can thus be achieved.
  • the pipes 32, 33 can be mutually fixed with a clamp that encompasses both.
  • a membrane bellows and exchangeable circular waveguide pieces can also be used become. The quick, simple and precise adjustment of the round waveguide length is useful if the diaphragm bellows can also be adjusted in steps or continuously along a linear guide while the device according to the invention is in operation.

Abstract

A plasma torch with a microwave transmitter which, for example, is used to coat surfaces and to produce radicals. The plasma torch exhibits a minimal energy loss during the transmission of microwaves to the produced plasma flame. The plasma torch includes a waveguide for transmitted microwaves and has a coaxial conductor. An electrode is provided with a duct, and a nozzle provided on the other end of the duct, the end facing away from the waveguide, are arranged in the coaxial conductor in an essentially axial manner. The plasma flame is produced at the nozzle. A coupling element is arranged between the waveguide and the coaxial conductor. The electrode is connected to the coupling element via a mounting plate and an electrically insulating intermediate element in a gas tight, thermally insulated manner such that microwaves are permitted to pass through.

Description

Die Erfindung betrifft einen Plasmabrenner mit einem Mikrowellensender gemäß der Gattung der Patentansprüche, der bspw. zur Beschichtung von Oberflächen und zur Erzeugung von Radikalen bestimmt ist.The invention relates to a plasma torch with a microwave transmitter according to the preamble of the claims, which is intended, for example, for coating surfaces and for generating radicals.

Bekannte Magnetron-Ionenquellen arbeiten mit einem Magnetron zur Erzeugung eines elektrischen Wechselfeldes, siehe DE 37 38 352 A1. Nachteil ist, daß dabei ein Quarzdom und äußere Magnetfelder erforderlich sind, um das Gasplasma zu erzeugen. Das intensive Magnetfeld im Entladungsraum dient zur Anpassung der Zyklotronfrequenz an die des Mikrowellengenerators. Es wird mit einer elektrodenlosen Mikrowellengasentladung gearbeitet. Beim Betreiben ist eine Kühlung des Gerätes erforderlich. Diese Plasmageneratoren besitzen eine komplexe Struktur und sind in ihren Abmessungen begrenzt. Der technische Aufwand für Mikrowellenentladungssysteme ist hoch. Es können keine großen Leistungen übertragen werden, und es ist nicht ersichtlich, daß Plasmen hoher Dichte im Falle großer Leistungen stabil sind.Known magnetron ion sources work with a magnetron to generate an alternating electrical field, see DE 37 38 352 A1. The disadvantage is that a quartz dome and external magnetic fields are required to generate the gas plasma. The intense magnetic field in the discharge space serves to adapt the cyclotron frequency to that of the microwave generator. An electrodeless microwave gas discharge is used. The device must be cooled when it is in operation. These plasma generators have a complex structure and are limited in their dimensions. The technical effort for microwave discharge systems is high. No large powers can be transmitted and it cannot be seen that high density plasmas are stable in the case of large powers.

Vorrichtungen zur Erzeugung eines Plasmas durch Mikrowellen, wie sie bspw. aus DE 3905303 C2, DE 3915477 C2, US 5349154 A bekannt sind, arbeiten mit Quarzrohren. Ein Magnetron (Mikrowellensendeeinheit) ist an einem Ende eines Rechteckhohlleiters befestigt. Die erzeugten Mikrowellen laufen durch den Hohlleiter und treffen an seinem anderen Ende auf einen Quarzglaseinsatz, durch den ein spezielles Gas strömt. Die Strömung kommt durch einen im Rezipienten aufrecht erhalten Unterdruck zustande. Im Quarzglaseinsatz entsteht durch die Mikrowellenenergie ein Plasma, das durch den Quarzglaseinsatz in den Rezipienten strömt. Das Verfahren ist dadurch charakterisiert, daß es keine Elektroden besitzt.
Diese Vorrichtungen haben folgende Nachteile:

  • Die heißeste Stelle und das Zentrum des Plasmas befinden sich in dem Teil des Quarzglaseinsatzes, das im Rechteckhohlleiter angeordnet ist Dadurch wird die Energie nicht im Rezipienten, sondern davor umgesetzt, und es stehen bei einer entsprechenden Anwendung zu wenige Radikale für den Arbeitsprozeß zur Verfügung.
  • Es tritt ein hoher Anteil von Wandeffekten im Quarzglas auf.
  • Der Massendurchsatz und die Arbeitsdrücke von 500 Pa bis 3 kPa sind zu gering.
  • Der Quarzglaseinsatz ist nicht für einen großtechnischen Dauerbetrieb geeignet. Durch die ungewollt hohen Temperaturen treten an ihm Schmelzerscheinungen auf,
    oder es müssen aufwendige Kühlvorrichtungen zusätzlich vorgesehen werden.
  • Die Effizienz der Energieausnutzung ist gering.
  • Die Vakuumdichtheit ist an den Dichtflächen schwer einzuhalten.
  • Bei der Montage bzw. Demontage und durch die Wärmeausdehnung der Metallbauteile kann es zur Zerstörung des Glases kommen.
Devices for generating a plasma by microwaves, as are known, for example, from DE 3905303 C2, DE 3915477 C2, US 5349154 A, work with quartz tubes. A magnetron (microwave transmitter unit) is attached to one end of a rectangular waveguide. The microwaves generated run through the waveguide and meet at its other end a quartz glass insert through which a special gas flows. The flow comes about through a negative pressure maintained in the recipient. In the quartz glass insert, a plasma is created by the microwave energy, which flows through the quartz glass insert into the recipient. The process is characterized in that it has no electrodes.
These devices have the following disadvantages:
  • The hottest point and the center of the plasma are in the part of the quartz glass insert which is arranged in the rectangular waveguide As a result, the energy is not converted in the recipient, but in front of it, and if used appropriately, there are too few radicals available for the work process.
  • There is a high proportion of wall effects in the quartz glass.
  • The mass throughput and the working pressures of 500 Pa to 3 kPa are too low.
  • The quartz glass insert is not suitable for long-term operation. Due to the unintentionally high temperatures, melting phenomena appear on it,
    or complex cooling devices must also be provided.
  • The efficiency of energy use is low.
  • Vacuum tightness is difficult to maintain on the sealing surfaces.
  • During assembly or disassembly and due to the thermal expansion of the metal components, the glass can be destroyed.

Ferner sind Anordnungen bekannt, bei denen eine Kreuzkopplung eines Rechteckhohlleiters mit einem Koaxialleiter besteht. Auch in diesem Fall ist eine Mikrowellenerzeugungs- bzw. -sendeeinrichtung, das Magnetron, an einem Ende des Hohlleiters befestigt. Die erzeugten Mikrowellen laufen durch den Hohlleiter und treffen auf eine leitende längliche Düse. Der Hohlleiter ist mit einem Kurzschlußschieber abgeschlossen. Dadurch ist die entstehende elektromagnetische Welle abstimmbar. Eine solche bekannte Anordnung kann mit Quarzrohr (DE 195 11 915 C2) oder ohne Quarzrohr (US 4,611,108 A) ausgeführt werden. Die letztgenannte Ausführungsform (siehe auch EP 0 104 109 A1) enthält weder eine thermische Isolierung noch eine Gasisolierung des Entladungsraumes von der Auskopplung. Abgesehen davon, daß bei der Verwendung von Quarzrohren die dafür spezifischen, oben genannten Nachteile auftreten, sind dieser Kreuzkopplung folgende Nachteile zu eigen:

  • Die Ausnutzung der Mikrowellenleistung ist wenig effizient.
  • Es treten Energieverluste an der Kreuzkopplung von Rechteckhohlleiter und Koaxialleiter auf.
  • Der gesamte Aufbau ist kompliziert.
  • Der maximale Betriebsdruck und Massendurchsatz sind zu gering.
Arrangements are also known in which there is a cross coupling of a rectangular waveguide with a coaxial conductor. In this case too, a microwave generating or transmitting device, the magnetron, is attached to one end of the waveguide. The microwaves generated run through the waveguide and meet a conductive elongated nozzle. The waveguide is closed with a short-circuit slide. The resulting electromagnetic wave can thus be tuned. Such a known arrangement can be carried out with a quartz tube (DE 195 11 915 C2) or without a quartz tube (US 4,611,108 A). The latter embodiment (see also EP 0 104 109 A1) contains neither thermal insulation nor gas insulation of the discharge space from the coupling. Apart from the fact that the specific disadvantages mentioned above occur when using quartz tubes, this cross coupling has the following disadvantages:
  • The use of microwave power is not very efficient.
  • Energy losses occur at the cross coupling of the rectangular waveguide and the coaxial conductor.
  • The whole structure is complicated.
  • The maximum operating pressure and mass flow are too low.

Aus der US 4,473,736 A ist ein Plasmagenerator bekannt, bei dem ein Hohlraum und ein Koaxialleiter kapazitiv gekoppelt sind. Dabei sind isolierende, die Elektrode haltende, dünne Scheiben über den gesamten Querschnitt von Hohlraum und Koaxialleiter angeordnet. Abgesehen davon, daß es sich hierbei nicht um Hohlwellenleiter handelt, ist diese Anordnung nicht zur Impedanzanpassung und zur Erreichung einer reflexarmen Hohlwellenleitung geeignet.
Bekannt ist auch ein Brenner für ein Mikrowellenplasma, eine Vorrichtung, die diesen Brenner beinhaltet, und Verfahren zu ihrer Verwendung bei der Herstellung von Puder (EP 0296921 A1). Diese Vorrichtung verwendet ein Koppelstück zur Auskopplung der Mikrowelle aus einem Rechteckhohlleiter in einen Koaxialleiter, dessen Innenleiter als Gasdüse ausgebildet ist und an dessen einem Ende eine bei Atmosphärendruck brennende Plasmaflamme anzündbar sein soll. Somit ist eine gasdichte oder thermische Isolierung und eine Vermeidung von parasitären Entladungen nicht gewährleistet. Die vorhandene Gasabschirmung steht in keinem direkten Zusammenhang zur Plasmaflamme und zum Koppelstück
Schließlich ist aus der US 3 353 060 A ein Hochfrequenzentladungsgenerator mit Hilfselektrode bekannt, welche die aus der Hochfrequenzquelle kommenden Wellen über einen Rechteckhohlleiter in einen Koaxialleiter einkoppelt (E-Kopplung), an dessen offenem Ende der Innenleiter als Elektrode dient und eine frei brennende Plasmaflamme erzeugen soll. Die Gasversorgung erfolgt dabei am anderen, geschlossenen Ende des Koaxialleiters. Eine gasdichte oder thermisch isolierende Trennung des Entladungsgebietes vom Auskoppelelement ist ebensowenig vorgesehen, wie die Ausbildung einer stehenden Welle im Entladungsgebiet. Außerdem ist die Gaszuführung kaum auf die Plasmaflamme abstimmbar.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Plasmabrenner zu erstellen, der mit hohen Dichten ein Plasma im normaldrucknahen Bereich erzeugt. Dabei sollen hohe Leistungen übertragen werden können. Dern Plasmabrenner soll eine stabile Entladung in einer definierten Entladungszone unter effizienter Nutzung der Mikrowellenleistung ermöglichen. Anfällige Quarzrohre oder Quarzdome zum Erzeugen des Plasmas sind zu vermeiden. Es soll ein im Aufbau insgesamt einfacher Plasmabrenner entstehen, welcher die Mikrowellen effizient aus einem Wellenleiter aus- und in das Plasma einkoppelt.
From US 4,473,736 A a plasma generator is known in which a cavity and a coaxial conductor are capacitively coupled. Insulating, thin electrodes holding the electrode are arranged over the entire cross section of the cavity and the coaxial conductor. Apart from the fact that this is not a hollow waveguide, this arrangement is not suitable for impedance matching and for achieving a low-reflection hollow waveguide.
Also known is a burner for a microwave plasma, a device which contains this burner, and methods for its use in the production of powder (EP 0296921 A1). This device uses a coupling piece for decoupling the microwave from a rectangular waveguide into a coaxial conductor, the inner conductor of which is designed as a gas nozzle and at one end of which a plasma flame burning at atmospheric pressure should be ignitable. Gas-tight or thermal insulation and avoidance of parasitic discharges are therefore not guaranteed. The existing gas shield is not directly related to the plasma flame and the coupling piece
Finally, US Pat. No. 3,353,060 A discloses a high-frequency discharge generator with an auxiliary electrode, which couples the waves coming from the high-frequency source via a rectangular waveguide into a coaxial conductor (E-coupling), at the open end of which the inner conductor serves as an electrode and generates a free-burning plasma flame should. The gas supply takes place at the other, closed end of the coaxial conductor. A gas-tight or thermally insulating separation of the discharge area from the decoupling element is just as little provided as the formation of a standing wave in the discharge area. In addition, the gas supply can hardly be matched to the plasma flame.
The invention is therefore based on the object of creating a plasma torch which generates a plasma in the region close to normal pressure with high densities. High performance should be able to be transferred. The plasma torch should enable stable discharge in a defined discharge zone using the microwave power efficiently. Vulnerable quartz tubes or quartz domes for generating the plasma should be avoided. It's supposed to be under construction Overall, simple plasma torches are created which efficiently couple the microwaves out of a waveguide and into the plasma.

Gemäß der Erfindung wird diese Aufgabe durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Dabei ist es zunächst unerheblich, ob der Koaxialleiter in einer Kreuzkopplung quer oder in einer Axialkopplung parallel zum Hohlleiter gerichtet ist, ob also ihre Längsachsen einen vorzugsweise rechten Winkel miteinander einschließen oder ob ihre Längsachsen miteinander im wesentlichen koinzidieren. Der Plasmabrenner (Plasmagenerator) enthält eine Vakuumkammer und ein Magnetron, das selbst innerhalb der Vakuumkammer eine zur Plasmabildung ausreichende Feldstärke erzeugt. Ein sich an den Koaxialleiter anschließender Rezipient steht unter einen Druck von 100 Pa bis 10 kPa, der zur Ausbildung des Plasmas geeignet ist. Unabhängig von der Kopplungsart wird ein hoher Wirkungsgrad erzielt. Durch seinen einfachen axialen Aufbau mittels Antenne als Elektrode kommt der erfindungsgemäße Plasmabrenner ohne Kühlung und Magnetspulen aus. Der Vorteil der Verwendung eines Rundhohlleiters anstatt eines Wellenleiters liegt darin, daß die Mikrowellenleistung nicht nur in der Umgebung der Düse in das Plasma eingekoppelt wird, wo die größten Feldstärken auftreten, sondern über die Hohlraumwellen entlang der gesamten Hohlleiterachse. Diese Gestaltung ermöglicht eine quasi-elektrodenlose Einkopplung, welche die thermische Belastung der Düse verringert.
Vorteilhaft ist die Hohlelektrode als Kegelstumpf ausgebildet und am nichtleitenden Zwischenstück befestigt, das über einen vorzugsweise scheibenförmigen Halter mit dem Koaxialleiter verbunden ist. Durch das Zwischenstück ist die Düse mit einem Gasanschluß verbunden. Die Haltescheibe ist an den Koaxialleiter und den Hohlleiter angeflanscht. Die Hohlelektrode ist vorteilhaft als Kegelstumpf ausgebildet, dessen Deckfläche dem Rezipienten zugewandt ist. Sie weist an dieser Seite die in ihren Hohlraum eingeführte, vorzugsweise eingeschraubte und auswechselbare Düse auf, die vier in regelmäßigen Abständen auf einem Kreis um das Zentrum der Austrittsebene und in der Austrittsebene liegende Austrittsöffnungen für das Prozeßgas hat. Dadurch erfolgt eine optimale Leitung der Mikrowelle zur Austrittsebene (Düsenspitze) und ein günstiger Energieeintrag in die Plasmaflamme. Eine für hohe Temperaturen geeignete Düse besteht vorteilhaft aus einer metallischkeramischen Legierung. Ein elektrisch nicht leitender Isolator isoliert den Raum der Plasmaflamme thermisch von der Ankopplung des Koaxialleiters an den Hohlleiter. Eine für den Betrieb des Plasmabrenners günstige Lösung ergibt sich, wenn die Elektrode axial und ggf. radial verstellbar ist. Bei der Kreuzkopplung verbinden ein Messingteil und ein Verbindungsstück die Düse und das Zwischenstück vorteilhaft mit einem Gasanschluß. Das Messingteil gewährleistet in jedem Fall die elektromagnetische Kopplung von Hohlleiter und Koaxialleiter. Zur Abstimmung der elektromagnetischen Welle auf die Kopplung ist der Hohlleiter, vorzugsweise Rechteckhohlleiter, der Kreuzkopplung mit zwei Schrauben versehen. Beim Hohlleiter, vorzugsweise Rundhohlleiter, der Axialkopplung wird die Abstimmung günstigerweise dadurch vorgenommen, das seine Länge veränderbar ist. Hierzu besteht er bspw. aus zwei, auch während des Prozesses, teleskopartig ineinanderschiebbaren Teilen. Eines der Rohre kann mit Längsschlitzea und zwischen ihnen stehen gebliebenen federnden Lappen versehen sein. In einem zwischen den Rohren im Überlappungsbereich befindlichen Ringspalt ist günstigerweise eine Mikrowellendichtung vorgesehen. Zum Übergang vom Koaxialleiter in den Rezipienten ist eine Vakuumdurchführung der Elektrode und des Prozeßgases vorgesehen; eine effiziente Kopplung der elektromagnetischen Welle wird so ermöglicht.
According to the invention, this object is achieved by the characterizing features of patent claim 1. It is initially irrelevant whether the coaxial conductor is directed transversely in a cross coupling or parallel to the waveguide in an axial coupling, whether its longitudinal axes are preferably at right angles to one another or whether their longitudinal axes essentially coincide with one another. The plasma torch (plasma generator) contains a vacuum chamber and a magnetron, which generates a field strength sufficient for plasma formation even within the vacuum chamber. A recipient adjoining the coaxial conductor is under a pressure of 100 Pa to 10 kPa, which is suitable for the formation of the plasma. A high degree of efficiency is achieved regardless of the type of coupling. Due to its simple axial construction using an antenna as an electrode, the plasma torch according to the invention manages without cooling and magnetic coils. The advantage of using a circular waveguide instead of a waveguide is that the microwave power is coupled into the plasma not only in the vicinity of the nozzle, where the greatest field strengths occur, but via the cavity waves along the entire waveguide axis. This design enables a quasi-electrode-less coupling, which reduces the thermal load on the nozzle.
The hollow electrode is advantageously designed as a truncated cone and fastened to the non-conductive intermediate piece, which is connected to the coaxial conductor via a preferably disc-shaped holder. The nozzle is connected to a gas connection through the intermediate piece. The retaining washer is flanged to the coaxial conductor and the waveguide. The hollow electrode is advantageously designed as a truncated cone, the top surface of which faces the recipient. On this side, it has the nozzle, preferably screwed in and replaceable, which is inserted into its cavity and has four outlet openings for the process gas which lie at regular intervals on a circle around the center of the outlet plane and in the outlet plane. This ensures that the microwave is optimally directed to the outlet level (nozzle tip) and a favorable energy input into the plasma flame. A nozzle suitable for high temperatures advantageously consists of a metallic ceramic alloy. An electrically non-conductive insulator thermally insulates the space of the plasma flame from the coupling of the coaxial conductor to the waveguide. A solution which is favorable for the operation of the plasma torch is obtained if the electrode is axially and possibly radially adjustable. In the cross coupling, a brass part and a connecting piece advantageously connect the nozzle and the intermediate piece with a gas connection. The brass part always guarantees the electromagnetic coupling of the waveguide and coaxial conductor. In order to match the electromagnetic wave to the coupling, the waveguide, preferably a rectangular waveguide, of the cross coupling is provided with two screws. In the case of the waveguide, preferably the circular waveguide, of the axial coupling, the tuning is advantageously carried out by changing its length. For this purpose, it consists, for example, of two parts which can be telescopically pushed into one another, even during the process. One of the tubes can be provided with longitudinal slots and resilient tabs remaining between them. A microwave seal is advantageously provided in an annular gap between the tubes in the overlap area. A vacuum feed-through of the electrode and the process gas is provided for the transition from the coaxial conductor to the recipient; this enables an efficient coupling of the electromagnetic wave.

Die Erfindung wird nachstehend an Hand der schematischen Zeichnung zweier Ausführungsbeispiele näher erläutert. Es zeigen:

Fig. 1
eine Kreuzkopplung eines Rechteckhohlleiters mit einem Koaxialleiter im Längsschnitt,
Fig. 2
eine Axialkopplung eines Rundhohlleiters mit einem Koaxialleiter im Längsschnitt und
Fig. 3
eine vergrößerte Darstellung der Vorderansicht der Düse.
The invention is explained below with reference to the schematic drawing of two exemplary embodiments. Show it:
Fig. 1
a cross coupling of a rectangular waveguide with a coaxial conductor in longitudinal section,
Fig. 2
an axial coupling of a circular waveguide with a coaxial conductor in longitudinal section and
Fig. 3
an enlarged view of the front view of the nozzle.

In Fig. 1 is an einen Rechteckhohlleiter 1 mit einer Längsachse X-X ein zylindrischer Koaxialleiter 2 mit einer Längsachse Y-Y über ein Koppelstück 3 in der Nähe eines seiner Enden so angekoppelt, daß die Längsachsen X-X und Y-Y rechtwinklig zueinander gerichtet sind.
Das Koppelstück 3 ist schüsselartig mit einer zentralen Öffnung 4 und einem peripheren Flansch 5 gestaltet und enthält eine Aufnahmescheibe 6 für ein Zwischenstück 7 aus Isoliermaterial. Die Scheibe 6 ist mit Hilfe eines mit dem peripheren Flansch 5 verschraubten Ringes 8 starr und dicht mit dem Koppelstück 3 verbunden. Der zentralen Öffnung 4 im Koppelstück 3 entspricht eine gleiche Öffnung 9 im Rechteckhohlleiter 1, die ebenfalls von einem Flansch 10 umgeben ist, an dem das Koppelstück 3 festgeschraubt ist. Der Ring 8 ist Endteil eines Hohlleiters 20, der einen Isolator 11 enthält und an dessen anderem Ende sich ein Rezipient 12 befindet. Aufnahmescheibe 6, Zwischenstück 7 und Isolator 11 sind hinreichend massiv ausgeführt und bilden zusammen einen gasdichten, thermisch isolierenden, jedoch für Mikrowellen durchlässigen Übergang zwischen dem Rechteckhohlleiter 1 und dem Hohlleiter 20. Darüber hinaus muß das Zwischenstück 7 dielektrische Eigenschaften aufweisen, die eine reflexarme Wellenleitung am Übergang gewährleisten.
Am Zwischenstück 7 ist auf seiner dem Rezipienten 12 zugewandten Seite eine aus einer Metall-Keramik-Legierung bestehende, kegelförmige Elektrode 13 befestigt, die ebenso wie das Zwischenstück 7 eine axiale Durchführung 14 aufweist, in die am freien Ende der Elektrode 13 eine Düse 22 fest oder auswechselbar eingesetzt, vorzugsweise eingeschraubt ist. Die Längsachse der Elektrode 13 koinzidiert mit der Achse Y-Y. Auf der anderen Seite des Zwischenstücks 7 schließt sich an die Durchführung 14 ein mit einer Axialbohrung 15 versehenes Messingteil 16 mit einem isolierenden, die Axialbohrung 15 fortsetzenden Verbindungsstück 17 an, das zu einem Gasanschluß 18 führt. Gehaltert wird das Verbindungsstück 17 durch einen mit dem Rechteckhohlleiter 1 dicht verschraubten flachen Träger 19. Der zylindrische Hohlleiter 20 und die Elektrode 13 bilden zusammen einen Koaxialleiter 2. Die kegelstumpfförmige Elektrode 13 befindet sich in einer entsprechenden Ausnehmung 21 des Isolators 11 so, daß die Düse 22 den Isolator 11 rezipientenseitig überragt.
Der Rechteckhohlleiter 1 ist am anderen Ende mit einem Magnetron 23 versehen, von dem Mikrowellen erzeugt und durch den Leiter 1 gesendet werden. Zwei Schrauben (Stepps) 24 dienen zur Beeinflussung der Mikrowellen auf die Kopplung.
Die vom Magnetron 23 erzeugten Mikrowellen laufen durch den Leiter 1 und werden von den Schrauben 24 auf die Kopplung abgestimmt. Durch die Kreuzkopplung erfolgt eine Auskopplung einer longitudinalen Welle in den Koaxialleiter 2, und es entsteht ein axiales elektromagnetisches Feld. Die Kreuzkopplung besteht aus einem Koppelstift, der im wesentlichen mit der Elektrode 13 identisch ist, mit der dieser in den Rundhohlleiter 20 hineinragt und mit diesem die Koaxialleitung bildet Der Koppelstift 13 hat die Aufgabe das Prozeßgas zu führen und ein Plasma bzw. eine Plasmaflamme 25 an der Öffnung der Düse 22 entstehen zu lassen. Die Gaszuführung in den Koppelstift erfolgt vom äußeren Gasanschluß 18 über die Bohrungen 15 im aus Teflon bestehenden Verbindungsstück 17 und im Messingteil 16 sowie die Durchführung 14 im ebenfalls aus Teflon bestehenden Zwischenstück 7. Das Messingteil 16 gewährleistet auch eine gute Ankopplung der Mikrowelle. Die Elektrode 13 ist durch das Verbindungsstück 7 isoliert im Koaxialleiter 2 befestigt. Die Geometrie der Elektrode 13 ist optimal auf die Verfahrensanforderungen abgestimmt. Sie gewährleistet ein maximale Durchschlagfestigkeit. Wichtig für den Betrieb ist ihre günstige Länge, die durch die mittels Gewinde in der Elektrode 13 verstellbare Durchführung 14 veränderbar ist. Ihr Querschnitt ist so gewählt, das der Koaxialleiter 2 eine optimale Leitung der elektromagnetischen Welle gewährleistet und an der Düsenspitze die höchste Feldstärke auftritt. Dies ist sehr wichtig, da an der Stelle der größten Feldstärke das Plasma zündet. Die Düse 22 ist aus einem speziellen Material gefertigt. Sie besteht aus einem Verbundmaterial, welches keramische Anteile besitzt und metallisch leitend ist. Die Keramik erfüllt die Aufgabe, der thermischen Isolierung der Plasmawolke zur Elektrode 13. Ein Betreiben des Plasmas ist bis zu einem Druck von 35 kPa möglich. Damit ist ein erheblich größerer Massendurchsatz erreichbar. Dies ist ein großer Vorteil, um sehr viel mehr Reaktionspartner in einem entsprechenden Prozeß erzeugen zu können. Dadurch ist es möglich, die Prozeßzeiten durch den erheblich erhöhten Massendurchsatz stark zu senken. Ein weiterer Vorteil dieses Brenners ist, daß diese Parameter mit Luft als Prozeßgas ebenfalls erreicht werden. Dadurch entfallen alle teuren Zusatzgase, wie zum Beispiel Edelgase (Argon).
In Fig. 1 is to a rectangular waveguide 1 with a longitudinal axis XX, a cylindrical coaxial conductor 2 with a longitudinal axis YY over a Coupling piece 3 coupled near one of its ends so that the longitudinal axes XX and YY are directed at right angles to each other.
The coupling piece 3 is bowl-shaped with a central opening 4 and a peripheral flange 5 and contains a receiving disc 6 for an intermediate piece 7 made of insulating material. The disc 6 is rigidly and tightly connected to the coupling piece 3 by means of a ring 8 screwed to the peripheral flange 5. The central opening 4 in the coupling piece 3 corresponds to an identical opening 9 in the rectangular waveguide 1, which is also surrounded by a flange 10 to which the coupling piece 3 is screwed. The ring 8 is the end part of a waveguide 20 which contains an insulator 11 and at the other end of which there is a recipient 12. Receiving disc 6, intermediate piece 7 and insulator 11 are sufficiently solid and together form a gas-tight, thermally insulating, but microwave-permeable transition between the rectangular waveguide 1 and the waveguide 20. In addition, the intermediate piece 7 must have dielectric properties that a low-reflection waveguide on Ensure transition.
A conical electrode 13 made of a metal-ceramic alloy is fastened to the intermediate piece 7 on its side facing the recipient 12 and, like the intermediate piece 7, has an axial passage 14 into which a nozzle 22 is fixed at the free end of the electrode 13 or used interchangeably, preferably screwed. The longitudinal axis of the electrode 13 coincides with the axis YY. On the other side of the intermediate piece 7, the bushing 14 is followed by a brass part 16 provided with an axial bore 15 with an insulating connecting piece 17 which continues the axial bore 15 and which leads to a gas connection 18. The connector 17 is held by a flat support 19 which is tightly screwed to the rectangular waveguide 1. The cylindrical waveguide 20 and the electrode 13 together form a coaxial conductor 2. The frustoconical electrode 13 is located in a corresponding recess 21 in the insulator 11 so that the nozzle 22 protrudes beyond the insulator 11 on the recipient side.
The rectangular waveguide 1 is provided at the other end with a magnetron 23, from which microwaves are generated and transmitted through the conductor 1 become. Two screws (steps) 24 serve to influence the microwaves on the coupling.
The microwaves generated by the magnetron 23 pass through the conductor 1 and are matched to the coupling by the screws 24. Through the cross coupling, a longitudinal wave is coupled out into the coaxial conductor 2, and an axial electromagnetic field is created. The cross coupling consists of a coupling pin which is essentially identical to the electrode 13 with which it projects into the circular waveguide 20 and forms the coaxial line with it. The coupling pin 13 has the task of guiding the process gas and a plasma or a plasma flame 25 the opening of the nozzle 22 to be created. The gas supply into the coupling pin takes place from the outer gas connection 18 via the bores 15 in the connecting piece 17 made of Teflon and in the brass part 16 and the bushing 14 in the intermediate piece 7 likewise made of Teflon. The brass part 16 also ensures a good coupling of the microwave. The electrode 13 is fastened in the coaxial conductor 2 in an insulated manner by the connecting piece 7. The geometry of the electrode 13 is optimally matched to the process requirements. It ensures maximum dielectric strength. What is important for the operation is their favorable length, which can be changed by the bushing 14 which can be adjusted by means of a thread in the electrode 13. Their cross-section is chosen so that the coaxial conductor 2 ensures optimal conduction of the electromagnetic wave and the highest field strength occurs at the nozzle tip. This is very important because the plasma ignites at the point of greatest field strength. The nozzle 22 is made of a special material. It consists of a composite material that has ceramic components and is metallically conductive. The ceramic fulfills the task of thermally isolating the plasma cloud from the electrode 13. The plasma can be operated up to a pressure of 35 kPa. A considerably larger mass throughput can thus be achieved. This is a great advantage in order to be able to generate many more reaction partners in a corresponding process. This makes it possible to greatly reduce process times due to the significantly increased mass throughput. Another advantage of this burner is that these parameters with air as Process gas can also be achieved. This eliminates all expensive additional gases, such as noble gases (argon).

In Fig. 2 ist ein mit einem Steuergerät 26 verbundenes, luftgekühltes Magnetron 23 mit einem Lüfter 27, einem Temperaturwächter 28 und einem Heiztrafo 29 auf einer Grundplatte 30 befestigt. Das Magnetron 23 zur Erzeugung der Mikrowellen hat 2 kW Leistung und strahlt elektromagnetische Wellen mit einer festen Frequenz von 2,45 GHz und einer Wellenlänge von 12,24 cm ab. Seine Leistung ist durch das Steuergerät 26 linear zwischen 10% und 100% der maximalen Leistung regelbar. Mit dem Resonator des Magnetrons 23 steht der Temperaturwächter mit Thermoschalter in Verbindung. Bei einer Temperatur von 120°C schaltet er das Magnetron aus Sicherheitsgründen ab.
Die Grundplattte 30 ist an einem Rundhohlleiter 31 befestigt, der ein inneres Rohr 32 mit einem Durchmesser von 100 mm und einer Wandstärke von 2 mm und ein äußeres Rohr 33 mit einem Durchmesser von 104 mm und einer Wandstärke von 2 mm aufweist. Die Rohre 32, 33 sind sehr gut ineinander gepaßt und teleskopartig gegeneinander verschiebbar. Mit einer Klemmschraube 34 sind sie zueinander fixierbar. Das äußere Rohr 33 ist zur Erzeugung einer gewissen Pressung beim Verschieben mit Längsschlitzen 35 versehen, von denen nur einer erkennbar ist, so daß am Außenrohr 33 zwischen den Schlitzen 35 federnde, leicht gegen das Innenrohr drückende Lappen entstehen, die ein ungewolltes Verschieben beider Rohre 32, 33 gegeneinander auch bei gelöster Klemmung weitestgehend verhindern. Gleichzeitig wird dadurch der elektrische Kontakt zwischen den Rohren 32, 33 verbessert, und es werden Überschläge zwischen den Rohren vermieden. Um eine Mikrowellendichtheit des Rundhohlleiters 31 zu gewährleisten, kann in den Ringspalt zwischen beiden Rohren 32, 33 eine Mikrowellendichtung 36, bspw. in Form einer Metallgaze, eingeschoben sein. Das Außenrohr 33 ist an seinem dem Magnetron 23 abgewandten Ende mit einem Flansch 37 versehen, über den die axiale Kopplung mit einem sich anschließenden Koaxialleiter 2 erfolgt, der mit dem Rundhohlleiter 31 eine gemeinsame Längsachse X-Y hat. Durch diese Kopplung wird eine longitudinale Welle in den Koaxialleiter 2 ausgekoppelt, und es entsteht ein axiales elektrisches Feld.
Der Koaxialleiter 2 wie auch ein sich daran anschließender Rezipient 12 haben denselben Durchmesser bzw. Querschnitt wie das äußere Rohr 33. Dadurch erfüllt der Rezipient 12 gleichzeitig die Aufgabe eines Hohlleiters, der die seitliche Ausbreitung der Wellen verhindert und auf diese Weise Mikrowellenleistung über einen beträchtlichen Weg hinter der Düse 22 entlang der Achse X-Y (ebenso der Achse Y-Y in Fig. 1) in das Plasma 25 einkoppelt. Der Koaxialleiter 2 hat an seinem dem Rundhohlleiter 31 zugewandten Ende ebenfalls einen Flansch 38, der dem Flansch 37 angepaßt, mit diesem verschraubt ist und mit diesem im wesentlichen ein Koppelstück bildet, das dem Koppelstück 3 der Fig. 1. entspricht. Beide Flansche 37, 38 umgreifen die Peripherie einer Aufhahmescheibe 6 aus beliebigem Material (Aluminium, Quarzglas) und halten diese vakuumdicht und fest. In dieser Scheibe 6 ist über ein Zwischenstück 7 aus PIFE der Innenleiter 39 der Koaxialleitung 2 elektrisch isoliert aufgehängt. Die Verwendung von Teflon hat den Vorteil, daß es einfach bearbeitbar ist und eine dauerhafte Vakuumdichtheit garantiert. Diese Vakuumdurchführung erfüllt weiterhin die Aufgabe der Mikrowellendurchführung in den Rezipienten 12 und der thermischen Isolierung des Hohlleiters 32 vom heißen Plasma 25. Der Innenleiter 39 dient der Ankopplung von Rundhohlleiter und Rezipient, der Gaszufuhr und der Expansion des Gases über eine in eine Elektrode 13 eingeschraubte Düse 22 in den Rezipienten 12. Seine Position im Koaxialleiter 2 und seine Länge sind zur Abstimmung der Mikrowelle verstellbar. Die Elektrode 13 ist am Zwischenstück 7 befestigt und besitzt wie dieses eine Durchführung 14 zur Gaszufuhr.An diese Durchführung 14 kann ein Druckluftschlauch 40 aus PE (Polyäthylen) über ein Messingteil (ähnlich wie in Fig. 1) angeschlossen sein. Zwischenstück 7, Elektrode 13 und Düse 22 bilden eine Antenne, deren Außendurchmesser 20 mm beträgt. Ihre Längsachse fällt mit der Achse X-Y zusammen. An der am Ende der Antenne eingeschraubten Düse 22 entzündet sich das Plasma 25. Eine lösbare Verbindung zwischen Elektrode 13 und Düse 22 ist wichtig, um die Düse 22 austauschen oder erneuern zu können. Da die Düse 22 sehr hohen thermischen Belastungen ausgesetzt ist, ist sie aus hochtemperaturbeständigem Stahl gefertigt; bspw. wird eine metallische Legierung mit einer maximalen Betriebstemperatur von 1425 °C verwendet. Dieses Material zeichnet sich dadurch aus, daß die Düse 22 metallisch leitend ist und unter Einfluß hoher Temperaturen eine keramische Oberfläche ausbildet, die den hohen Temperaturen standhalten kann. Da die Frequenz der benutzten Mikrowelle unterhalb der Plasmafrequenz liegt, kann sie sich im Plasma 25 nicht ausbreiten. Um also einen möglichst guten Energieeintrag in das Plasma 25 zu realisieren, muß die Oberfläche der Plasmawolke ein Maximum annehmen. Deshalb sorgt die Düse 22 für eine starke Verwirbelung des Plasmas 25. Hierfür sind gemäß Fig. 3 in die Austrittsebene 41 der Düse 22 vier außeraxial, vorzugsweise in regelmäßiger Anordnung auf einem Kreis 42 liegende Gasaustrittsöffnungen 43 mit je einem Durchmesser von 1 mm vorgesehen. Zur thermischen Isolierung der Plasmaflamme von den Flanschen 37, 38 bzw. der scheibenförmigen Aufnahme 6 ist zwischen dieser und der Plasmaflamme 25 ein thermischer Isolator 11 angeordnet, durch den die Elektrode 13 mit der Düse 22 hindurchragt.
Der Rezipient 12 besteht ebenso wie der Koaxialleiter 2 aus einem Rohr mit einem Durchmesser von 104 mm, einer Wandstärke von 2 mm und einer Länge von 300 mm. Er kann mit nicht dargestellten Mitteln zur Temperaturmessung, zum Abpumpen und zur Beobachtung der Flamme versehen sein. Als Prozeßgas kann vorteilhaft Luft verwendet werden. Der Betrieb des Plasmas 25 ist bis zu einem Druck von 100 kPa möglich. Damit kann ein noch größerer Massendurchsatz erreicht werden. Die erfindungsgemäße Axialkopplung ist besonders gut geeignet, um im Rezipienten eine möglichst hohe Energie und viele Radikale zu erzeugen. Insgesamt bietet die erfindungsgemäße Axialkopplung folgende Vorteile:

  • Sie ermöglicht eine effiziente Ausnutzung der Mikrowellenleistung.
  • Sie ermöglicht einen unkomplizierten Aufbau.
  • Sie gewährleistet einen hohen maximalen Betriebsdruck und Massendurchsatz.
  • Sie vermeidet die Energieverluste der Kreuzkopplung.
In FIG. 2, an air-cooled magnetron 23 connected to a control unit 26 is attached to a base plate 30 with a fan 27, a temperature monitor 28 and a heating transformer 29. The magnetron 23 for generating the microwaves has a power of 2 kW and emits electromagnetic waves with a fixed frequency of 2.45 GHz and a wavelength of 12.24 cm. Its output can be regulated linearly between 10% and 100% of the maximum output by the control unit 26. The temperature monitor with the thermal switch is connected to the resonator of the magnetron 23. At a temperature of 120 ° C it switches off the magnetron for safety reasons.
The base plate 30 is fastened to a round hollow conductor 31 which has an inner tube 32 with a diameter of 100 mm and a wall thickness of 2 mm and an outer tube 33 with a diameter of 104 mm and a wall thickness of 2 mm. The tubes 32, 33 are very well fitted together and telescopically displaceable. They can be fixed to one another with a clamping screw 34. The outer tube 33 is provided with a longitudinal slot 35 to produce a certain amount of pressure when moving, of which only one can be seen, so that resilient tabs are formed on the outer tube 33 between the slots 35, which push slightly against the inner tube and prevent unwanted displacement of both tubes 32 , 33 largely prevent each other even when the clamping is released. At the same time, the electrical contact between the tubes 32, 33 is thereby improved and flashovers between the tubes are avoided. In order to ensure microwave tightness of the circular waveguide 31, a microwave seal 36, for example in the form of a metal gauze, can be inserted into the annular gap between the two tubes 32, 33. The outer tube 33 is provided at its end facing away from the magnetron 23 with a flange 37, via which the axial coupling takes place with an adjoining coaxial conductor 2, which has a common longitudinal axis XY with the circular waveguide 31. Through this coupling one longitudinal wave coupled out in the coaxial conductor 2, and there is an axial electric field.
The coaxial conductor 2 as well as an adjoining recipient 12 have the same diameter or cross-section as the outer tube 33. As a result, the recipient 12 simultaneously fulfills the task of a waveguide which prevents the waves from spreading laterally and in this way microwave power over a considerable distance couples into the plasma 25 behind the nozzle 22 along the XY axis (likewise the YY axis in FIG. 1). The coaxial conductor 2 also has at its end facing the circular waveguide 31 a flange 38 which is adapted to the flange 37, is screwed to it and essentially forms a coupling piece which corresponds to the coupling piece 3 of FIG. 1. Both flanges 37, 38 encompass the periphery of a receiving disk 6 made of any material (aluminum, quartz glass) and hold it vacuum-tight and firmly. In this disk 6, the inner conductor 39 of the coaxial line 2 is suspended in an electrically insulated manner via an intermediate piece 7 made of PIFE. The use of Teflon has the advantage that it is easy to work with and guarantees permanent vacuum tightness. This vacuum feedthrough also fulfills the task of microwave feedthrough in the recipient 12 and the thermal insulation of the waveguide 32 from the hot plasma 25. The inner conductor 39 serves to couple the circular waveguide and recipient, the gas supply and the expansion of the gas via a nozzle screwed into an electrode 13 22 in the recipient 12. Its position in the coaxial conductor 2 and its length are adjustable to match the microwave. The electrode 13 is fastened to the intermediate piece 7 and, like this, has a passage 14 for gas supply. A compressed air hose 40 made of PE (polyethylene) can be connected to this passage 14 via a brass part (similar to that in FIG. 1). Intermediate piece 7, electrode 13 and nozzle 22 form an antenna, the outer diameter of which is 20 mm. Its longitudinal axis coincides with the XY axis. The plasma 25 ignites at the nozzle 22 screwed in at the end of the antenna. A detachable connection between the electrode 13 and the nozzle 22 is important in order to be able to replace or replace the nozzle 22. Since the nozzle 22 is exposed to very high thermal loads, it is made of high-temperature resistant steel; For example, a metallic Alloy used with a maximum operating temperature of 1425 ° C. This material is characterized in that the nozzle 22 is metallically conductive and forms a ceramic surface under the influence of high temperatures, which can withstand the high temperatures. Since the frequency of the microwave used is below the plasma frequency, it cannot spread in the plasma 25. In order to achieve the best possible energy input into the plasma 25, the surface of the plasma cloud must assume a maximum. Therefore, the nozzle 22 ensures a strong swirling of the plasma 25. For this purpose, according to FIG. 3, four gas outlet openings 43 each with a diameter of 1 mm are provided in the outlet plane 41 of the nozzle 22, preferably in a regular arrangement on a circle 42. For thermal insulation of the plasma flame from the flanges 37, 38 or the disk-shaped receptacle 6, a thermal insulator 11 is arranged between the latter and the plasma flame 25, through which the electrode 13 with the nozzle 22 projects.
The recipient 12, like the coaxial conductor 2, consists of a tube with a diameter of 104 mm, a wall thickness of 2 mm and a length of 300 mm. It can be provided with means, not shown, for temperature measurement, for pumping out and for monitoring the flame. Air can advantageously be used as the process gas. The operation of the plasma 25 is possible up to a pressure of 100 kPa. This enables an even greater mass throughput to be achieved. The axial coupling according to the invention is particularly well suited to generate the highest possible energy and many radicals in the recipient. Overall, the axial coupling according to the invention offers the following advantages:
  • It enables efficient use of the microwave power.
  • It enables an uncomplicated setup.
  • It guarantees a high maximum operating pressure and mass throughput.
  • It avoids the energy loss of the cross coupling.

Anstatt mit der Klemmschraube 34 kann die gegenseitige Fixierung der Rohre 32, 33 mit einer beide umgreifenden Schelle vorgenommen werden. Zur Längenveränderung des Rundhohlleiters 31 können auch ein Membranbalg und auswechselbare Rundhohlleiterstücke verwendet werden. Der schnellen, einfachen und genauen Abstimmung der Rundhohlleiterlänge ist es dienlich, den Membranbalg auch während des Betreibens der erfindungsgemäßen Vorrichtung in Stufen oder stufenlos entlang einer Linearführung verstellen zu können.Instead of using the clamping screw 34, the pipes 32, 33 can be mutually fixed with a clamp that encompasses both. To change the length of the circular waveguide 31, a membrane bellows and exchangeable circular waveguide pieces can also be used become. The quick, simple and precise adjustment of the round waveguide length is useful if the diaphragm bellows can also be adjusted in steps or continuously along a linear guide while the device according to the invention is in operation.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
RechteckhohlleiterRectangular waveguide
22
Koaxialleitercoaxial
33
Koppelstückcoupling piece
4,94.9
Öffnungenopenings
5, 10, 37, 38.5, 10, 37, 38.
Flanscheflanges
66
Aufnahmescheibereceiving disc
77
Zwischenstückconnecting piece
88th
Ringring
1111
Isolatorinsulator
1212
Rezipientrecipient
1313
Elektrode (Koppelstift)Electrode (coupling pin)
1414
Durchführungexecution
1515
Axialbohrungenaxial bores
1616
Messingteilbrass part
1717
Verbindungsstückjoint
1818
Gasanschlußgas connection
1919
Trägercarrier
2020
Hohlleiterwaveguide
2121
Ausnehmungrecess
2222
Düsejet
2323
Magnetronmagnetron
2424
Schraubenscrew
2525
Plasmaplasma
2626
Steuergerätcontrol unit
2727
LüfterFan
2828
Temperaturwächtertemperature Monitor
2929
Heiztrafoheating transformer
3030
Grundplattebaseplate
3131
RundhohlleiterCircular waveguide
3232
inneres Rohr (Innenrohr)inner tube (inner tube)
3333
äußeres Rohr (Außenrohr)outer tube (outer tube)
3434
Klemmschraubeclamping screw
3535
(Längs-)Schlitze(Longitudinal) slots
3636
Mikrowellendichtungmicrowave seal
3939
Innenleiterinner conductor
4040
DruckluftschlauchCompressed air hose
4141
Austrittsebene der DüseExit plane of the nozzle
4242
Kreiscircle
4343
GasaustrittsöffnungenGas outlet openings
X-X, Y-Y, X-YX-X, Y-Y, X-Y
(Längs-)Achsen(Longitudinal) axis

Claims (18)

  1. A plasa torch comprising a microwave transmitter (23), a hollow guide (1; 31) for the emitted microwaves, a coaxial guide (2), in said coaxial guide in a substantially axial arrangement being provided: an electrode (13) including a passageway (14), and a nozzle (22) being arranged at that end of the passageway (14) facing away from the hollow guide (1; 31), whereby a plasma cloud (25) is produced at the nozzle (22), said plasma cloud (25) being directed towards a recipient (12), characterized in that, on the side opposite to the hollow guide, said electrode (13) is connected gas-tightly, but transmissive to microwaves to an electrically and thermally insulating intermediate member (7), which like the electrode (13) is provided with an axial passageway (14), and in that said intermediate member (7) is arranged in a disk-shaped mount (6), which is secured to and in a coupling member (3; 37, 38) connecting said hollow guide (1; 31) and said coaxial guide (2).
  2. A plasma torch as claimed in claim 1, characterized in that said electrode (13) is designed as a truncated cone.
  3. A plasma torch as claimed in claim 1, characterized in that said nozzle (22) is exchangeably secured in said passageway (14).
  4. A plasma torch as claimed in claim 2, characterized in that said nozzle (22) with said electrode (13) is adjustable in parallel and at right angles to the longitudinal axis of said electrode.
  5. A plasma torch as claimed in claim 4, characterized in that the insulating connection of the electrode (13) with the coupling member (3; 37, 38) has the shape of an intermediate member provided in a variable suspension.
  6. A plasma torch as claimed in claim 5, characterized in that the longitudinal axis Y-Y of the electrode (13) is transversally directed to the longitudinal axis X-X of the hollow guide (1).
  7. A plasma torch as claimed in claim 5, characterized in that the longitudinal axis of the electrode (13) is directed in parallel to the common longitudinal axis (X-Y) of the hollow guide (31) and of the coaxial guide (2).
  8. A plasma torch as claimed in claim 6 or 7, characterized in that a brass member (16) provided with a bore (15) is pre-positioned to that side of said electrode (13) and said intermediate member (7), which is opposite to said hollow guide, said bore (15) being arranged in the extension of the passageways (14) through said electrode (13) and said intermediate member (7).
  9. A plasma torch as claimed in claims 6 and 8, characterized in that the passageways (14) are connected to a gas inlet (18) via the bores (15) of the brass member (16) and a connecting member (17).
  10. A plasma torch as claimed in claim 1, characterized in that the nozzle (22) is made of a ceramic-metallic combination.
  11. A plasma torch as claimed in claim 6 or 7, characterized in that a thermal insulator (11) is provided between the plasma cloud (25) and the disk-shaped mount (6), the nozzle (22) projecting beyond said thermal insulator in direction of said recipient (12).
  12. A plasma torch as claimed in claim 6, characterized in that at least one screw (24) is provided in said hollow guide (1), said screw being adjustable transversally to the longitudinal axis X-X of said hollow guide for tuning the microwave field.
  13. A plasma torch as claimed in claim 7, characterized in that said hollow guide (31) is composed of two tubes (32, 33) which are adapted to be telescope-like slid in and adjusted to one another.
  14. A plasma torch as claimed in claim 13, characterized in that one of the two tubes (32, 33), preferably the outer one (33), is provided with longitudinal slots (35) along a part of its length.
  15. A plasma torch as claimed in claim 13 or 14, characterized in that a clamping means (34) is provided for arresting the tubes (32, 33).
  16. A plasma torch as claimed in claims 13 to 15, characterized in that a microwave seal (36) is provided in an annular groove between the two tubes (32, 33).
  17. A plasma torch as claimed in claim 1, 5 or 6 characterized in that the nozzle (22) is provided with gas exit orifices (43), which are located outside of the nozzle axis X-Y.
  18. A plasma torch as claimed in claim 1 having a recipient (12), characterized in that the recipient (12) is of a same cross-section as the hollow guide (31) for the emitted microwaves and considerably projects beyond the nozzle tip.
EP99920621A 1998-04-02 1999-04-01 Plasma torch with a microwave transmitter Expired - Lifetime EP1068778B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19814812A DE19814812C2 (en) 1998-04-02 1998-04-02 Plasma torch with a microwave transmitter
DE19814812 1998-04-02
PCT/EP1999/002413 WO1999052332A1 (en) 1998-04-02 1999-04-01 Plasma torch with a microwave transmitter

Publications (2)

Publication Number Publication Date
EP1068778A1 EP1068778A1 (en) 2001-01-17
EP1068778B1 true EP1068778B1 (en) 2003-01-29

Family

ID=7863378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99920621A Expired - Lifetime EP1068778B1 (en) 1998-04-02 1999-04-01 Plasma torch with a microwave transmitter

Country Status (7)

Country Link
US (1) US6388225B1 (en)
EP (1) EP1068778B1 (en)
AT (1) ATE232042T1 (en)
CA (1) CA2327093A1 (en)
DE (1) DE19814812C2 (en)
ES (1) ES2192383T3 (en)
WO (1) WO1999052332A1 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591957B2 (en) * 2001-01-30 2009-09-22 Rapt Industries, Inc. Method for atmospheric pressure reactive atom plasma processing for surface modification
US6660177B2 (en) * 2001-11-07 2003-12-09 Rapt Industries Inc. Apparatus and method for reactive atom plasma processing for material deposition
EP1361437A1 (en) * 2002-05-07 2003-11-12 Centre National De La Recherche Scientifique (Cnrs) A novel biological cancer marker and methods for determining the cancerous or non-cancerous phenotype of cells
US7560657B2 (en) * 2002-05-08 2009-07-14 Btu International Inc. Plasma-assisted processing in a manufacturing line
US7497922B2 (en) * 2002-05-08 2009-03-03 Btu International, Inc. Plasma-assisted gas production
US7494904B2 (en) * 2002-05-08 2009-02-24 Btu International, Inc. Plasma-assisted doping
DE60223726T2 (en) * 2002-05-08 2008-10-30 Leonhard Kurz Stiftung & Co. Kg METHOD OF DECORATING A BIG, THREE-DIMENSIONAL PLASTIC OBJECT
US7498066B2 (en) * 2002-05-08 2009-03-03 Btu International Inc. Plasma-assisted enhanced coating
US20060057016A1 (en) * 2002-05-08 2006-03-16 Devendra Kumar Plasma-assisted sintering
US20060237398A1 (en) * 2002-05-08 2006-10-26 Dougherty Mike L Sr Plasma-assisted processing in a manufacturing line
US20050233091A1 (en) * 2002-05-08 2005-10-20 Devendra Kumar Plasma-assisted coating
US7445817B2 (en) * 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
US20060062930A1 (en) * 2002-05-08 2006-03-23 Devendra Kumar Plasma-assisted carburizing
US7465362B2 (en) * 2002-05-08 2008-12-16 Btu International, Inc. Plasma-assisted nitrogen surface-treatment
US20060233682A1 (en) * 2002-05-08 2006-10-19 Cherian Kuruvilla A Plasma-assisted engine exhaust treatment
BR0309814A (en) * 2002-05-08 2005-03-01 Dana Corp Plasma Formation Methods
US20060228497A1 (en) * 2002-05-08 2006-10-12 Satyendra Kumar Plasma-assisted coating
US7638727B2 (en) * 2002-05-08 2009-12-29 Btu International Inc. Plasma-assisted heat treatment
US20040173316A1 (en) * 2003-03-07 2004-09-09 Carr Jeffrey W. Apparatus and method using a microwave source for reactive atom plasma processing
US7371992B2 (en) 2003-03-07 2008-05-13 Rapt Industries, Inc. Method for non-contact cleaning of a surface
US7304263B2 (en) * 2003-08-14 2007-12-04 Rapt Industries, Inc. Systems and methods utilizing an aperture with a reactive atom plasma torch
US7297892B2 (en) * 2003-08-14 2007-11-20 Rapt Industries, Inc. Systems and methods for laser-assisted plasma processing
US7091441B1 (en) * 2004-03-19 2006-08-15 Polytechnic University Portable arc-seeded microwave plasma torch
JP4109213B2 (en) * 2004-03-31 2008-07-02 株式会社アドテック プラズマ テクノロジー Coaxial microwave plasma torch
WO2005098083A2 (en) * 2004-04-07 2005-10-20 Michigan State University Miniature microwave plasma torch application and method of use thereof
US7164095B2 (en) * 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7271363B2 (en) * 2004-09-01 2007-09-18 Noritsu Koki Co., Ltd. Portable microwave plasma systems including a supply line for gas and microwaves
WO2006127037A2 (en) * 2004-11-05 2006-11-30 Dana Corporation Atmospheric pressure processing using microwave-generated plasmas
US9681529B1 (en) * 2006-01-06 2017-06-13 The United States Of America As Represented By The Secretary Of The Air Force Microwave adapting plasma torch module
TW200742506A (en) 2006-02-17 2007-11-01 Noritsu Koki Co Ltd Plasma generation apparatus and work process apparatus
US8748785B2 (en) * 2007-01-18 2014-06-10 Amastan Llc Microwave plasma apparatus and method for materials processing
US20100074810A1 (en) * 2008-09-23 2010-03-25 Sang Hun Lee Plasma generating system having tunable plasma nozzle
US7921804B2 (en) * 2008-12-08 2011-04-12 Amarante Technologies, Inc. Plasma generating nozzle having impedance control mechanism
US20100201272A1 (en) * 2009-02-09 2010-08-12 Sang Hun Lee Plasma generating system having nozzle with electrical biasing
US8932435B2 (en) * 2011-08-12 2015-01-13 Harris Corporation Hydrocarbon resource processing device including radio frequency applicator and related methods
CN102530859B (en) * 2011-12-29 2013-11-06 武汉凯迪工程技术研究总院有限公司 External-heating-type microwave plasma gasification furnace and synthesis gas production method
KR101967646B1 (en) * 2012-03-21 2019-04-10 엘지전자 주식회사 Microwave gas burner
US10477665B2 (en) * 2012-04-13 2019-11-12 Amastan Technologies Inc. Microwave plasma torch generating laminar flow for materials processing
CN103269560B (en) * 2013-05-03 2016-07-06 大连海事大学 A kind of microwave liquid phase plasma generator
CN103269561B (en) * 2013-05-15 2016-01-06 浙江大学 Waveguide direct-feed-type microwave plasma torch device
KR101765271B1 (en) * 2016-09-06 2017-08-04 이성주 Hospital waste plasma incinerator
DE102017130210A1 (en) 2017-12-15 2019-06-19 Hegwein GmbH Plasma torch tip for a plasma torch
DE102018100683A1 (en) 2018-01-12 2019-07-18 EMIL OTTO Flux- und Oberflächentechnik GmbH Process for producing a solder
ES2696227B2 (en) * 2018-07-10 2019-06-12 Centro De Investig Energeticas Medioambientales Y Tecnologicas Ciemat INTERNAL ION SOURCE FOR LOW EROSION CYCLONES
CN108901114B (en) * 2018-07-27 2020-07-10 上海工程技术大学 Plasma jet generating device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353060A (en) * 1964-11-28 1967-11-14 Hitachi Ltd High-frequency discharge plasma generator with an auxiliary electrode
FR2480552A1 (en) * 1980-04-10 1981-10-16 Anvar PLASMA GENERATOR
FR2533397A2 (en) * 1982-09-16 1984-03-23 Anvar IMPROVEMENTS IN PLASMA TORCHES
FR2616030A1 (en) * 1987-06-01 1988-12-02 Commissariat Energie Atomique PLASMA ETCHING OR DEPOSITION METHOD AND DEVICE FOR IMPLEMENTING THE METHOD
FR2616614B1 (en) * 1987-06-10 1989-10-20 Air Liquide MICROWAVE PLASMA TORCH, DEVICE COMPRISING SUCH A TORCH AND METHOD FOR MANUFACTURING POWDER USING THE SAME
DE3738352A1 (en) * 1987-11-11 1989-05-24 Technics Plasma Gmbh FILAMENTLESS MAGNETRON ION BEAM SYSTEM
DE3905303C2 (en) * 1988-02-24 1996-07-04 Hitachi Ltd Device for generating a plasma by means of microwaves
JP2805009B2 (en) * 1988-05-11 1998-09-30 株式会社日立製作所 Plasma generator and plasma element analyzer
US4943345A (en) * 1989-03-23 1990-07-24 Board Of Trustees Operating Michigan State University Plasma reactor apparatus and method for treating a substrate
US5349154A (en) * 1991-10-16 1994-09-20 Rockwell International Corporation Diamond growth by microwave generated plasma flame
US5439154A (en) * 1994-05-02 1995-08-08 Delligatti; Anna Diaper bag
TW285746B (en) * 1994-10-26 1996-09-11 Matsushita Electric Ind Co Ltd
DE19511915C2 (en) * 1995-03-31 1997-04-30 Wu Jeng Ming Dipl Ing Plasma torch with a microwave generator

Also Published As

Publication number Publication date
ATE232042T1 (en) 2003-02-15
DE19814812C2 (en) 2000-05-11
ES2192383T3 (en) 2003-10-01
CA2327093A1 (en) 1999-10-14
WO1999052332A1 (en) 1999-10-14
US6388225B1 (en) 2002-05-14
EP1068778A1 (en) 2001-01-17
DE19814812A1 (en) 1999-10-14

Similar Documents

Publication Publication Date Title
EP1068778B1 (en) Plasma torch with a microwave transmitter
DE3915477C2 (en) Device for generating a plasma with microwaves
US4609808A (en) Plasma generator
DE4136297A1 (en) Localised plasma prodn. in treatment chamber - using microwave generator connected to coupling device which passes through the wall of the chamber without using a coupling window
EP1994807B1 (en) Apparatus for producing a plasma jet
EP0872164B1 (en) Device for the production of plasmas by microwaves
DE4037091A1 (en) DEVICE FOR GENERATING A REGULAR MICROWAVE FIELD
EP0247397B1 (en) Apparatus for the surface treatment of work pieces
CN101778527B (en) Independent tuning microwave electron gun with external cathode
DE102010027619B3 (en) Microwave plasma source of microwave distribution system used during plasma treatment process of substrate, has inner tube and conduit that are arranged in coaxial manner, and guard portion arranged in conduit is contacted with inner tube
DE19812558A1 (en) Producing linearly-expanded ECR plasma
EP4111825A1 (en) Device for melting metals
DE10112494C2 (en) Method for plasma welding
AT523626B1 (en) Waveguide coupling unit
EP1421832B1 (en) Plasma burner with microwave stimulation
WO2018224097A1 (en) Device for producing a plasma beam in the mhz and ghz range with tem and waveguide modes
DE10215660A1 (en) High frequency electron source, especially neutralizer
DE10136951B4 (en) Method for laser-plasma hybrid welding
DE102012004034A1 (en) High frequency plasma ignition head for use in high frequency plasma radiator for e.g. igniting low pressure plasma in laboratory, has ignition unit exhibiting high resistive input impedance in ignition state and specific electrical length
DE102008028166B4 (en) Apparatus for generating a plasma jet
WO2008151335A1 (en) Apparatus for the production of plasma or radicals by means of microwaves
DE19511915C2 (en) Plasma torch with a microwave generator
DE1965003A1 (en) Process for the continuous graphitization of carbon threads, carbon fiber tapes, carbon yarns
US11956882B2 (en) High-power plasma torch with dielectric resonator
Baskaran et al. ECR ion source using slow wave structures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030129

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030129

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030401

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030520

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MIKROWELLEN UMWELT TECHNOLOGIE GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1068778E

Country of ref document: IE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2192383

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
BERE Be: lapsed

Owner name: *BLUM HEINZ-JURGEN

Effective date: 20030430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20031030

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040428

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040430

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050330

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050402

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050402

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060222

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050402

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070401