EP1067345B1 - Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
EP1067345B1
EP1067345B1 EP99121174A EP99121174A EP1067345B1 EP 1067345 B1 EP1067345 B1 EP 1067345B1 EP 99121174 A EP99121174 A EP 99121174A EP 99121174 A EP99121174 A EP 99121174A EP 1067345 B1 EP1067345 B1 EP 1067345B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
main heat
cold
cold end
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99121174A
Other languages
English (en)
French (fr)
Other versions
EP1067345A1 (de
Inventor
Horst Dipl.-Ing. Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1067345A1 publication Critical patent/EP1067345A1/de
Application granted granted Critical
Publication of EP1067345B1 publication Critical patent/EP1067345B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop

Definitions

  • the invention relates to a method and a device for the cryogenic separation of air, in which cooled and purified feed air cooled in a main heat exchanger and at least part of a rectification column is supplied, wherein a first partial flow the feed air at an intermediate temperature from the main heat exchanger removed and fed under this intermediate temperature of a cold compression.
  • the invention is used in such cases in which a part of the feed air ("first partial flow") is recompressed, for example, for the evaporation of a liquid process stream to be used.
  • a product stream e.g., liquid oxygen, liquid nitrogen, or liquid argon
  • a rectification column to the bottoms or intermediate liquid a rectification column or else an external liquid which for example, a storage tank is removed.
  • two or more such process streams against the recompressed air stream to evaporate.
  • the "main heat exchanger” is preferably a single Heat exchanger block formed. For larger systems, it may be useful to Main heat exchanger by several with respect to it temperature profile parallel strands realized by separated from each other Components are formed. In principle, it is possible that the Main heat exchanger or each of these strands by two or more serially connected blocks is formed.
  • this re-compaction is carried out in a conventional manner, by the partial air flow at about ambient temperature of a corresponding Machine is supplied.
  • a cold compressor for densification be used.
  • Cold compression is here a compression process understood, in which the gas is supplied to the compression at a temperature, the is well below the ambient temperature, generally below 250K; preferably below 200K.
  • WO 9528610 or EP 644388 A are methods of the beginning known type, in which the cold compression at an intermediate temperature is performed between the temperatures at the warm and cold end of the Main heat exchanger is located.
  • This intermediate temperature can in particular the point at which the curves of the to be heated and streams to be cooled in the heat exchange diagram (Q-T diagram) of the Closest to the main heat exchanger ("theoretical pinch point").
  • the invention is based on the object, a method of the type mentioned and to provide a corresponding device which is energetically particularly favorable operate.
  • the cold compression air partial flow so initially further than actually needed cooled in the main heat exchanger, so on the Intermediate temperature addition, which is about the inlet temperature of the cold compression equivalent. Then he is - again in the main heat exchanger - on the Intermediate temperature warmed up.
  • This procedure appears at first glance unfavorable, since by the needless cooling and reheating with additional exchange losses and thus higher energy consumption is expected.
  • it has been found that thereby the Heat transfer in the cold part of the main heat exchanger (below the Intermediate temperature) is improved.
  • the to be heated In the cold part of the main heat exchanger, the to be heated and namely, a higher density than in the warm part.
  • the Heat exchanger passages that flow through them usually have constructive The same number and cross sections.
  • the passages are in cold Part operated, so to speak, with an underload of about 20%. Due to this fact the flow conditions in the cold part of the main heat exchanger are not optimal.
  • the invention achieves an improvement here by the - anyway anyway treating - partial air flow for cold compression both the cooling, as also supplemented the currents to be heated. It has turned out that the Improvement of the heat transfer by the optimized within the scope of the invention Flow conditions in the cold part of the main heat exchanger the expected additional exchange losses overcompensated and total leads to an energetically particularly favorable process.
  • the first partial flow can be downstream of the cold compression against a evaporating process stream are at least partially liquefied.
  • This Heat exchange step can either in the main heat exchanger or in a be performed separate condenser-evaporator. This is particularly cheap Procedure, if the entire oxygen product or a large part of it as Liquid taken from the rectification, placed in liquid form on pressure and finally evaporated against the cold-compressed partial air stream. In this case will just as much air is cold-compressed that due to the flow conditions in the cold part the main heat exchanger by the reheating of this invention Air partial flow are practically optimal.
  • the first partial flow is before its warming in the cold end of the Main heat exchanger introduced. He will therefore be completely through the Main heat exchanger out and flows when it warms up again through the entire cold part of the main heat exchanger, so that the entire cold part of the Main heat exchanger comes into the enjoyment of improved flow.
  • the cooling of the first partial flow can separately from or together with other parts of the feed air are carried out.
  • the first partial flow can be downstream of the cold compression at an intermediate point of the main heat exchanger, which corresponds to a second intermediate temperature, the Cooling air flow to be supplied. Excluding those described in the previous paragraph Compensation of the compression heat is this second intermediate temperature above the first intermediate temperature. When mixing with the very cold second partial air flow upstream of the cold compression, the second Intermediate temperature at or even below the first intermediate temperature.
  • the invention also relates to a device for the cryogenic separation of air according to claims 5 to 8.
  • Atmospheric air 1 is compressed after flowing through a filter 2 (3) and Direct contact cooler 4 initiated. It occurs there in countercurrent contact with liquid Water 5.
  • the water remaining liquid in the direct heat exchange becomes 6 removed from the direct contact cooler 4.
  • the cooled and with steam laden air 7 is in a cleaning device 8 of water and carbon dioxide and optionally freed of further impurities.
  • the cleaning device 8 is preferably formed by at least two switchable container with an adsorbent, such as a molecular sieve are filled.
  • the purified feed air stream 9 is in a first main air flow 10 and a split second main air stream 20.
  • the former flows to the warm end of one Main heat exchanger 30, is in the main heat exchanger 30 at about dew point cooled, removed again at the cold end and finally via the lines 11 and 12 fed to the sump of the pressure column 50 of a double column.
  • the second main air stream 20 is in an externally driven after-compressor 21st further compressed and after flowing through an aftercooler 22 also on the warm End inserted in the main heat exchanger 30 (line 23).
  • Part 24 of the second Main air flow the "cooling air flow” remains until the cold end in Main heat exchanger 30 and is - optionally after slight throttling 25 than "first partial flow” 26 again introduced into the main heat exchanger 30, in the Warming Passages 17.
  • the first partial flow becomes removed via line 28 and fed to a cold compressor 29.
  • the cold-compacted first partial flow 31 is at a second intermediate temperature, which in the example is higher than the first intermediate temperature, again in the main heat exchanger 30th introduced, in the Abkühlpassagen 32.
  • After cooling and at least Partial liquefaction in the main heat exchanger becomes the first partial flow 33 finally fed via the valve 34 in the pressure column 50.
  • the feed-in point is one or more theoretical or practical soils above the Pressure column sump.
  • Another part 35 of the second main air stream 23 is at a third Intermediate temperature, which in the example between the first and the second Intermediate temperature is taken as a "turbine air stream" and a Relaxation machine 36 is supplied, which via a common shaft with the Cold compressor 29 and a generator 37 is coupled.
  • the working relaxed Air 38, together with the first main air flow 11 via line 12 to the sump the pressure column 50 out.
  • the double column has, in addition to the pressure column 50, a low-pressure column 51. Both Parts are connected via a common condenser-evaporator 52, the Main condenser in heat exchanging connection. Top gas 53 of the pressure column 50 is at least partially condensed in the main capacitor 52. The condensate flows to a first part 55 as return to the pressure column 50 back to a second part 55 it is undercooled in a subcooling countercurrent 56 and via line 57 and valve 58 is applied to the top of the low-pressure column 51.
  • Raw oxygen from the lower region of the pressure column 50 flows in the example two different routes to the low-pressure column 51.
  • a first crude oxygen fraction 59 is from the bottom of the pressure column is undercooled (56) and via line 60 and Throttle valve 61 transferred to the low pressure column.
  • a second Rohsauerstofffr is liquid the pressure column 50 and discharged in a similar manner (supercooling 56, line 63 and valve 64) at a slightly higher point in the low-pressure column 51 is fed.
  • the oxygen product is liquid via line 65 from the bottom of the Low pressure column 51 withdrawn, by a pump 66 in the liquid state on the desired product pressure, via line 67 to the main heat exchanger 30th led, evaporated there and warmed to about ambient temperature.
  • GOX-IC internally compressed product
  • no pure nitrogen is produced.
  • the nitrogen rich Top product 69 is used as residual gas in the subcooling countercurrent 56 and in Main heat exchanger 30 warmed up
  • the warm residual gas 70 can directly via line 71 are discharged into the atmosphere and / or via line 72 - if necessary after heating 73 - used as a regeneration gas for the cleaning device 8 become.
  • the moist regeneration gas flows via line 74 to the atmosphere.
  • the cooling air stream 24 is downstream of its removal from the cold end of the main heat exchanger 30 and the optional valve 25 to two Split streams, namely the "first partial stream” 226 - 227 - 228, analogous to the 1 is passed to the cold compressor 29, and a "second partial flow" 201, which - regulated by valve 202 - on the main heat exchanger 30 and in particular the Anürmpassagen 227 bypassed and 203 at the first Intermediate temperature warmed first partial stream 228 is mixed.
  • the Mixture flows under a correspondingly lower temperature to the entrance of the Cold compressor 29.
  • the cold-compressed air 231 has a lower one Temperature than in Figure 1, in the concrete example of Figure 2 is the second Intermediate temperature even lower than the first intermediate temperature.
  • Corresponding formed shorter are the cooling and liquefaction passages 232 for the first Partial flow downstream of the cold compression.
  • the cooling air flow 24 is here after partial liquefaction in Main heat exchanger 30 and 25 throttling for the purpose of phase separation in one Separator 301 initiated.
  • the liquid phase is analogous to the stream 33 of FIG. 1 fed via line 333 and valve 334 in the pressure column 50.
  • the steam 326 off the separator 301 forms the "first partial flow", the as in Figure 1 for Cold compression 29 is performed. Downstream of the cold compression 29 is the cold-compressed first substream 331, however, not in their own Abkühlpassagen introduced, but mixed with the second main air flow.
  • the cold-compacted Air quantity will thus be in a cycle 24 - 25 - 301 - 326 - 29 - 331 out.
  • the heat transfer in the cold part of the main heat exchanger can be particularly be designed favorably.
  • FIG. 4 differs in the same way from FIG. 3, FIG. 2 of FIG. 1, namely by an additional "second partial air flow” 401. This is out here is formed that part 401 of the steam from the separator 301, which does not have Line 426 as a "first partial flow" to the cold end of the main heat exchanger 30 is directed. As in FIG. 2, the admixture 403 of the cold second partial flow is used 401 to the first intermediate temperature heated first partial flow 428 of Compensation or overcompensation of the compression heat at the cold compression 29 is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Tieftemperaturzerlegung von Luft, bei dem verdichtete und gereinigte Einsatzluft in einem Hauptwärmetauscher abgekühlt und mindestens zum Teil einer Rektifiziersäule zugeführt wird, wobei ein erster Teilstrom der Einsatzluft bei einer Zwischentemperatur aus dem Hauptwärmetauscher entnommen und unter dieser Zwischentemperatur einer Kaltverdichtung zugeführt wird.
Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt.
Die Erfindung kommt in solchen Fällen zum Einsatz, in denen ein Teil der Einsatzluft ("erster Teilstrom") nachverdichtet wird, beispielsweise um zur Verdampfung eines flüssigen Prozeßstroms eingesetzt zu werden. Bei dem flüssigen Prozeßstrom kann es sich um einen Produktstrom (z.B. flüssigen Sauerstoff, flüssigen Stickstoff oder flüssiges Argon) aus einer Rektifiziersäule, um die Sumpf- oder Zwischenflüssigkeit einer Rektifiziersäule oder auch um eine externe Flüssigkeit handeln, die beispielsweise einem Speichertank entnommen wird. Es ist auch möglich, zwei oder mehr derartige Prozeßströme gegen den nachverdichteten Luftteilstrom zu verdampfen.
Der "Hauptwärmetauscher" wird vorzugsweise durch einen einzigen Wärmetauscherblock gebildet. Bei größeren Anlagen kann es sinnvoll sein, den Hauptwärmetauscher durch mehrere hinsichtlich es Temperaturverlaufs parallelgeschaltete Stränge zu realisieren, die durch voneinander getrennte Bauelemente gebildet werden. Grundsätzlich ist es möglich, daß der Hauptwärmetauscher beziehungsweise jeder dieser Stränge durch zwei oder mehr seriell verbundene Blöcke gebildet wird.
In vielen Fällen wird diese Nachverdichtung auf konventionelle Weise durchgeführt, indem der Luftteilstrom bei etwa Umgebungstemperatur einer entsprechenden Maschine zugeführt wird. Alternativ kann ein Kaltverdichter zur Nachverdichtung verwendet werden. Unter "Kaltverdichtung" wird hier ein Verdichtungsvorgang verstanden, bei dem das Gas der Verdichtung bei einer Temperatur zugeführt wird, die deutlich unterhalb der Umgebungstemperatur liegt, im allgemeinen unterhalb von 250 K; vorzugsweise unterhalb von 200 K.
Aus EP 689019 A, WO 9528610 oder EP 644388 A sind Verfahren der eingangs genannten Art bekannt, bei denen die Kaltverdichtung bei einer Zwischentemperatur durchgeführt wird, die zwischen den Temperaturen am warmen und kalten Ende des Hauptwärmetauschers liegt. Diese Zwischentemperatur kann insbesondere an demjenigen Punkt liegen, an dem sich die Kurven der anzuwärmenden und abzukühlenden Ströme im Wärmeaustauschdiagramm (Q-T-Diagramm) des Hauptwärmetauschers am nächsten kommen ("theoretical pinch point").
Bei den bekannten Verfahren wird der Luftteilstrom, der zur Kaltverdichtung führt, im Hauptwärmetauscher vom warmen Ende her bis zu der Zwischentemperatur abgekühlt und an der entsprechenden Zwischenstelle des Hauptwärmetauschers unmittelbar aus Abkühlpassagen entnommen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die energetisch besonders günstig zu betreiben sind.
Diese Aufgabe wird durch das Verfahren des Patentanspruchs 1 gelöst.
Gemäß der Erfindung wird der für die Kaltverdichtung vorgesehene Luftteilstrom also zunächst weiter als eigentlich nötig im Hauptwärmetauscher abgekühlt, also über die Zwischentemperatur hinaus, die etwa der Eintrittstemperatur der Kaltverdichtung entspricht. Anschließend wird er - ebenfalls im Hauptwärmetauscher - wieder auf die Zwischentemperatur angewärmt. Diese Verfahrensweise erscheint auf den ersten Blick ungünstig, da durch die an sich unnötige Abkühlung und Rückerwärmung mit zusätzlichen Austauschverlusten und damit höherem Energieverbrauch zu rechnen ist. Im Rahmen der Erfindung hat sich jedoch herausgestellt, daß dadurch der Wärmeübergang im kalten Teil des Hauptwärmetauschers (unterhalb der Zwischentemperatur) verbessert wird.
Im kalten Teil des Hauptwärmetauschers weisen die anzuwärmenden und abzukühlenden Ströme nämlich eine höhere Dichte auf als im warmen Teil. Die Wärmetauscherpassagen, die sie durchströmen, haben in der Regel aus konstruktiven Gründen dieselbe Anzahl und dieselben Querschnitte. Die Passagen werden im kalten Teil sozusagen mit einer Unterlast von etwa 20 % betrieben. Aufgrund dieser Tatsache sind die Strömungsverhältnisse im kalten Teil des Hauptwärmetauschers nicht optimal. Die Erfindung erreicht hier eine Verbesserung, indem der - ohnehin speziell zu behandelnde - Luftteilstrom für die Kaltverdichtung sowohl die abzukühlenden, als auch die anzuwärmenden Ströme ergänzt. Es hat sich herausgestellt, daß die Verbesserung des Wärmeübergangs durch die im Rahmen der Erfindung optimierten Strömungsverhältnisse im kalten Teil des Hauptwärmetauschers die erwartungsgemäßen zusätzlichen Austauschverluste überkompensiert und insgesamt zu einen energetisch besonders günstigen Prozeß führt. Außerdem führt der zusätzliche Mengenstrom im kalten Teil des Hauptwärmetauschers zu einem steileren Verlauf der Kurven der anzuwärmenden und abzukühlenden Ströme im Q-T-Diagramm und damit zu einer Verbesserung an der Stelle, an der sich diese Kurven am nächsten kommen ("theoretical pinch point").
Der erste Teilstrom kann stromabwärts der Kaltverdichtung gegen einen verdampfenden Prozeßstrom mindestens teilweise verflüssigt werden. Dieser Wärmeaustauschschritt kann entweder im Hauptwärmetauscher oder in einem separaten Kondensator-Verdampfer durchgeführt werden. Besonders günstig ist diese Verfahrensweise, wenn das gesamte Sauerstoffprodukt oder ein großer Teil davon als Flüssigkeit aus der Rektifikation entnommen, in flüssiger Form auf Druck gebracht und schließlich gegen den kaltverdichteten Luftteilstrom verdampft wird. In diesem Fall wird gerade soviel Luft kaltverdichtet, daß durch die Strömungsverhältnisse im kalten Teil des Hauptwärmetauschers durch die erfindungsgemäße Wiederanwärmung dieses Luftteilstroms praktisch optimal sind.
Vorzugsweise wird der erste Teilstrom vor seiner Anwärmung in das kalte Ende des Hauptwärmetauschers eingeführt. Er wird also zunächst vollständig durch den Hauptwärmetauscher geführt und strömt bei seiner Anwärmung nochmals durch den gesamten kalten Teil des Hauptwärmetauschers, so daß der gesamte kalte Teil des Hauptwärmetauschers in den Genuß der verbesserten Durchströmung kommt.
Die Abkühlung des ersten Teilstroms kann dabei separat von oder gemeinsam mit anderen Teilen der Einsatzluft durchgeführt werden. Dazu wird ein Abkühlluftstrom im Hauptwärmetauscher abgekühlt, am kalten Ende des Hauptwärmetauschers entnommen und mindestens zum Teil als erster Teilstrom wieder dem kalten Ende des Hauptwärmetauschers zugeführt.
Bei dem erfindungsgemäßen Verfahren kann es günstig sein, vor der Wiederanwärmung des ersten Teilstroms flüssige Anteile abzutrennen. Hierzu wird der Abkühlluftstrom nach seiner Entnahme aus dem kalten Ende des Hauptwärmetauschers einer Phasentrennung unterworfen, wobei der erste Teilstrom mindestens durch einen Teil der aus der Phasentrennung entnommenen Dampfphase gebildet wird. Vorzugsweise wird der gesamte Dampfanteil aus der Phasentrennung zur Kaltverdichtung geführt, während die abgeschiedene Flüssigkeit in die oder eine der Rektifiziersäulen eingespeist wird, zum Beispiel in die Drucksäule eines Zweisäulenapparats.
Insbesondere in diesem Fall ist es günstig, wenn der Abkühlluftstrom entspannt wird, bevor er der Phasentrennung unterworfen wird. Aber auch bei fehlender Phasentrennung kann es sinnvoll sein, den Abkühlluftstrom abzudrosseln, bevor er als erster Teilstrom dem kalten Ende des Hauptwärmetauschers zugeführt wird.
Grundsätzlich kann der gesamte Strom, der der Kaltverdichtung unterworfen wird, durch den ersten Teilstrom gebildet werden, der an der Zwischenstelle aus dem Hauptwärmetauscher abgezogen wird. In vielen Fällen ist es jedoch günstiger, wenn der Abkühlluftstrom in den ersten Teilstrom und in einen zweiten Teilstrom aufgeteilt wird, wobei der erste Teilstrom in das kalte Ende des Hauptwärmetauschers eingeführt wird und der zweite Teilstrom ohne temperaturverändemde Maßnahmen mit dem ersten Teilstrom zwischen seiner Entnahme bei der ersten Zwischentemperatur und der Kaltverdichtung zugeführt wird. Hierdurch wird zusätzlich Kälte in den Kaltverdichtungsstrom eingeführt, die zur teilweise oder vollständigen Kompensation oder unter Umständen sogar zur Überkompensation bei der Kaltverdichtung erzeugten Kompressionswärme dient. Hiermit erhält man einen zusätzlichen Parameter, der zur Optimierung des Wärmeaustauschprozesses eingesetzt werden kann.
Der erste Teilstrom kann stromabwärts der Kaltverdichtung an einer Zwischenstelle des Hauptwärmetauschers, die einer zweiten Zwischentemperatur entspricht, dem Abkühlluftstrom zugeführt werden. Ohne die im vorigen Absatz beschriebene Kompensation der Kompressionswärme liegt diese zweite Zwischentemperatur oberhalb der ersten Zwischentemperatur. Bei Vermischung mit dem sehr kalten zweiten Teilluftstrom stromaufwärts der Kaltverdichtung kann die zweite Zwischentemperatur bei oder sogar unterhalb der ersten Zwischentemperatur liegen.
Es ist außerdem günstig, wenn ein Turbinenluftstrom im Hauptwärmetauscher auf eine dritte Zwischentemperatur abgekühlt und anschließend arbeitsleistend entspannt wird, wobei mindestens eine Teil der bei der arbeitsleistenden Entspannung erzeugten mechanischen Energie zum Antrieb der Kaltverdichtung eingesetzt wird. Falls die für das Verfahren benötigte Kälte nicht durch eine weitere Entspannungsmaschine erzeugt wird, ist es notwendig, die Entspannungsmaschine nicht nur mit dem Kaltverdichter, sondern zusätzlich mit einem Generator oder einem Bremsgebläse zu koppeln.
Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß den Ansprüchen 5 bis 8.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
Figur 1
ein erstes Ausführungsbeispiel für die Erfindung,
Figur 2
eine Abwandlung des ersten Ausführungsbeispiels,
Figur 3
ein zweites Ausführungsbeispiel für die Erfindung und
Figur 4
eine Abwandlung des zweiten Ausführungsbeispiels.
Atmosphärische Luft 1 wird nach Durchströmen eines Filters 2 verdichtet (3) und Direktkontaktkühler 4 eingeleitet. Sie tritt dort in Gegenstromkontakt mit flüssigem Wasser 5. Das bei dem direkten Wärmeaustausch flüssig verbliebene Wasser 6 wird aus dem Direktkontaktkühler 4 abgezogen. Die abgekühlte und mit Wasserdampf beladene Luft 7 wird in einer Reinigungseinrichtung 8 von Wasser und Kohlendioxid und gegebenenfalls von weiteren Verunreinigungen befreit. Die Reinigungseinrichtung 8 wird vorzugsweise durch mindestens zwei umschaltbare Behälter gebildet, die mit einem Adsorbens, beispielsweise einem Molekularsieb gefüllt sind.
Der gereinigte Einsatzluftstrom 9 wird in einen ersten Hauptluftstrom 10 und einen zweiten Hauptluftstrom 20 aufgeteilt. Ersterer strömt zum warmen Ende eines Hauptwärmetauschers 30, wird im Hauptwärmetauscher 30 auf etwa Taupunkt abgekühlt, am kalten Ende wieder entnommen und schließlich über die Leitungen 11 und 12 dem Sumpf der Drucksäule 50 einer Doppelsäule zugeleitet.
Der zweite Hauptluftstrom 20 wird in einem extern angetriebenen Nachverdichter 21 weiter verdichtet und nach Durchströmen eines Nachkühlers 22 ebenfalls am warmen Ende in den Hauptwärmetauscher 30 eingeführt (Leitung 23). Ein Teil 24 des zweiten Hauptluftstroms, der "Abkühlluftstrom" verbleibt bis zum kalten Ende im Hauptwärmetauscher 30 und wird - gegebenenfalls nach leichter Drosselung 25 als "erster Teilstrom" 26 wieder in den Hauptwärmetauscher 30 eingeleitet, und zwar in die Anwärmpassagen 17. Bei einer ersten Zwischentemperatur wird der erste Teilstrom über Leitung 28 entnommen und einem Kaltverdichter 29 zugeführt. Der kaltverdichtete erste Teilstrom 31 wird bei einer zweiten Zwischentemperatur, die in dem Beispiel höher als die erste Zwischentemperatur ist, wieder in den Hauptwärmetauscher 30 eingeführt, und zwar in die Abkühlpassagen 32. Nach Abkühlung und mindestens teilweiser Verflüssigung im Hauptwärmetauscher wird der erste Teilstrom 33 schließlich über das Ventil 34 in die Drucksäule 50 eingespeist. Die Einspeisestelle liegt einen oder mehrere theoretische beziehungsweise praktische Böden oberhalb des Drucksäulensumpfs.
Ein anderer Teil 35 des zweiten Hauptluftstroms 23 wird bei einer dritten Zwischentemperatur, die in dem Beispiel zwischen der ersten und der zweiten Zwischentemperatur liegt, als "Turbinenluftstrom" entnommen und einer Entspannungsmaschine 36 zugeführt, die über eine gemeinsame Welle mit dem Kaltverdichter 29 und einem Generator 37 gekoppelt ist. Die arbeitsleistend entspannte Luft 38 wird gemeinsam mit dem ersten Hauptluftstrom 11 über Leitung 12 zum Sumpf der Drucksäule 50 geführt.
Die Doppelsäule weist außer der Drucksäule 50 eine Niederdrucksäule 51 auf. Beide Teile stehen über einen gemeinsamen Kondensator-Verdampfer 52, den Hauptkondensator in wärmetauschender Verbindung. Kopfgas 53 der Drucksäule 50 wird im Hauptkondensator 52 mindestens teilweise kondensiert. Das Kondensat strömt zu einem ersten Teil 55 als Rücklauf zur Drucksäule 50 zurück, zu einem zweiten Teil 55 wird es in einem Unterkühlungsgegenströmer 56 unterkühlt und über Leitung 57 und Ventil 58 auf den Kopf der Niederdrucksäule 51 aufgegeben.
Rohsauerstoff aus dem unteren Bereich der Drucksäule 50 strömt in dem Beispiel auf zwei verschiedenen Wegen zur Niederdrucksäule 51. Eine erste Rohsauerstofffraktion 59 wird vom Sumpf der Drucksäule wird unterkühlt (56) und über Leitung 60 und Drosselventil 61 in die Niederdrucksäule überführt. Auf Höhe der Einspeisung des verflüssigten ersten Teilluftstroms 33 wird eine zweite Rohsauerstofffraktion flüssig aus der Drucksäule 50 abgeführt und auf ähnliche Weise (Unterkühlung 56, Leitung 63 und Ventil 64) an etwas höherer Stelle in die Niederdrucksäule 51 eingespeist.
Das Sauerstoffprodukt wird über Leitung 65 flüssig aus dem Sumpf der Niederdrucksäule 51 abgezogen, durch eine Pumpe 66 in flüssigem Zustand auf den gewünschten Produktdruck gebracht, über Leitung 67 zum Hauptwärmetauscher 30 geführt, dort verdampft und auf etwa Umgebungstemperatur angewärmt. Der Sauerstoff verläßt die Anlage über Leitung 68 als innenverdichtetes Produkt (GOX-IC, gaseous oxygen - internally compressed).
In dem Ausführungsbeispiel wird kein reiner Stickstoff hergestellt. Das stickstoffreiche Kopfprodukt 69 wird als Restgas im Unterkühlungsgegenströmer 56 und im Hauptwärmetauscher 30 angewärmt Das warme Restgas 70 kann direkt über Leitung 71 in die Atmosphäre abgelassen werden und/oder über Leitung 72 - gegebenenfalls nach Erhitzen 73 - als Regeneriergas für die Reinigungseinrichtung 8 verwendet werden. Das feuchte Regeneriergas strömt über Leitung 74 zur Atmosphäre.
Abweichend von dem Ausführungsbeispiel kann in der Niederdrucksäule auf die bekannte Weise auch reiner Stickstoff gewonnen werden. Die Verdampfung des flüssig auf Druck gebrachten Sauerstoffs 67 kann auch außerhalb des Hauptwärmetauschers 30 in einem separaten Produktverdampfer (Nebenkondensator) durchgeführt wird, dessen Verflüssigungsraum von dem ersten Teilstrom stromabwärts der Kaltverdichtung 29 durchströmt wird.
Das Ausführungsbeispiel der Figur 2 entspricht dem Verfahren und der Vorrichtung von Figur 1 in weiten Teilen. Im folgenden werden lediglich die abweichenden Aspekte im einzelnen beschrieben.
In Figur 2 wird der Abkühlluftstrom 24 stromabwärts seiner Entnahme vom kalten Ende des Hauptwärmetauschers 30 beziehungsweise des optionalen Ventils 25 auf zwei Ströme aufgeteilt, nämlich den "ersten Teilstrom" 226 - 227 - 228, der analog zu dem Verfahren von Figur 1 zum Kaltverdichter 29 geführt wird, und eine "zweiten Teilstrom" 201, der - geregelt von Ventil 202 - am Hauptwärmetauscher 30 und insbesondere an den Anwärmpassagen 227 vorbeigeleitet und bei 203 dem auf die erste Zwischentemperatur angewärmten ersten Teilstrom 228 zugemischt wird. Das Gemisch strömt unter einer entsprechend niedrigeren Temperatur zum Eintritt des Kaltverdichters 29. Demzufolge weist auch die kaltverdichtete Luft 231 eine niedrigere Temperatur als bei Figur 1 auf, in dem konkreten Beispiel von Figur 2 ist die zweite Zwischentemperatur sogar geringer als die erste Zwischentemperatur. Entsprechend kürzer ausgebildet sind die Abkühl- und Verflüssigungspassagen 232 für den ersten Teilstrom stromabwärts der Kaltverdichtung.
Auch bezüglich Figur 3 werden im folgenden lediglich die Unterschiede zu Figur 1 detailliert besprochen. Der Abkühlluftstrom 24 wird hier nach Teilverflüssigung im Hauptwärmetauscher 30 und Drosselung 25 zwecks Phasentrennung in einen Abscheider 301 eingeleitet. Die flüssige Phase wird analog zum Strom 33 von Figur 1 über Leitung 333 und Ventil 334 in die Drucksäule 50 eingespeist. Der Dampf 326 aus dem Abscheider 301 bildet den "ersten Teilstrom", der wie in Figur 1 zur Kaltverdichtung 29 geführt wird. Stromabwärts der Kaltverdichtung 29 wird der kaltverdichtete erste Teilstrom 331 allerdings nicht in eigene Abkühlpassagen eingeführt, sondern mit dem zweiten Hauptluftstrom vermischt. Die kaltverdichtete Luftmenge wird somit in einem Kreislauf 24 - 25 - 301 - 326 - 29 - 331 geführt werden. Somit kann der Wärmeübergang im kalten Teil des Hauptwärmetauschers besonders günstig gestaltet werden.
Figur 4 unterscheidet sich auf dieselbe Weise von Figur 3 wird Figur 2 von Figur 1, nämlich durch einen zusätzlichen "zweiten Teilluftstrom" 401. Dieser wird hier aus demjenigen Teil 401 des Dampfs aus dem Abscheider 301 gebildet wird, der nicht über Leitung 426 als "erster Teilstrom" zum kalten Ende des Hauptwärmetauschers 30 geleitet wird. Wie in Figur 2 dient die Zumischung 403 des kalten zweiten Teilstroms 401 zum auf die erste Zwischentemperatur angewärmten ersten Teilstrom 428 der Kompensation beziehungsweise Überkompensation der Kompressionswärme, die bei der Kaltverdichtung 29 entsteht.

Claims (10)

  1. Verfahren zur Tieftemperaturzerlegung von Luft, bei dem verdichtete und gereinigte Einsatzluft (9, 10, 20) in einem Hauptwärmetauscher (30) abgekühlt und mindestens zum Teil einer Rektifiziersäule (50) zugeführt (12, 33, 333) wird, wobei ein erster Teilstrom (26, 226, 326, 426) der Einsatzluft dem Hauptwärmetauscher (30) zugeführt, mindestens zum Teil bei einer ersten Zwischentemperatur aus dem Hauptwärmetauscher entnommen (28, 228, 428) und einer Kaltverdichtung (29) zugeführt wird, dadurch gekennzeichnet, daß der erste Teilstrom (26, 226, 326, 426) im Hauptwärmetauscher (30) auf eine Temperatur abgekühlt wird, die niedriger als die erste Zwischentemperatur ist, und anschließend stromaufwärts seiner Entnahme (28, 228, 428) bei der ersten Zwischentemperatur im Hauptwärmetauscher (30) wieder auf die erste Zwischentemperatur angewärmt (27, 227) wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der erste Teilstrom (26, 226, 326, 426) vor seiner Anwärmung (27, 227) in das kalte Ende des Hauptwärmetauschers (30) eingeführt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein Abkühlluftstrom (23, 24) im Hauptwärmetauscher (30) abgekühlt, am kalten Ende des Hauptwärmetauschers entnommen (24) und mindestens zum Teil als erster Teilstrom (26, 226, 326, 426) wieder dem kalten Ende des Hauptwärmetauschers (30) zugeführt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Abkühlluftstrom (24) nach seiner Entnahme aus dem kalten Ende des Hauptwärmetauschers (30) einer Phasentrennung (301) unterworfen wird, wobei der erste Teilstrom (326, 426) mindestens durch einen Teil der aus der Phasentrennung (301) entnommenen Dampfphase gebildet wird.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Abkühlluftstrom (24) entspannt (25) wird, bevor er der Phasentrennung (301) unterworfen beziehungsweise als erster Teilstrom (26, 226) dem kalten Ende des Hauptwärmetauschers (30) zugeführt wird.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß der Abkühlluftstrom (24) in den ersten Teilstrom (226, 426) und in einen zweiten Teilstrom (201, 401) aufgeteilt wird, wobei der erste Teilstrom (226, 426) in das kalte Ende des Hauptwärmetauschers (30) eingeführt wird und der zweite Teilstrom (201, 401) ohne temperaturverändemde Maßnahmen mit dem ersten Teilstrom (228, 428) zwischen seiner Entnahme bei der ersten Zwischentemperatur und der Kaltverdichtung (29) zugeführt (203, 403) wird.
  7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der erste Teilstrom (331) stromabwärts der Kaltverdichtung (29) an einer Zwischenstelle des Hauptwärmetauschers (30), die einer zweiten Zwischentemperatur entspricht, dem Abkühlluftstrom (23, 24) zugeführt wird.
  8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß ein Turbinenluftstrom (23, 35) im Hauptwärmetauscher (30) auf eine dritte Zwischentemperatur abgekühlt und anschließend arbeitsleistend entspannt (36) wird, wobei mindestens ein Teil der bei der arbeitsleistenden Entspannung (36) erzeugten mechanischen Energie zum Antrieb der Kaltverdichtung (29) eingesetzt wird.
  9. Vorrichtung zur Tieftemperaturzerlegung von Luft mit
    einem Hauptwärmetauscher (30), der ein warmes und ein kaltes Ende aufweist, sowie Gruppen von Abkühl- und Anwärmpassagen aufweist, mit
    mindestens einer Rektifiziersäule (50), mit einer
    Einsatzluftleitung zur Zufuhr (9, 10, 20, 23) verdichteter und gereinigter Einsatzluft zu dem Hauptwärmetauscher (30) und zur Einspeisung (12, 33, 333) mindestens eines Teils der abgekühlten Einsatzluft in die Rektifiziersäule (50) und
    mit einer Kaltverdichtungsleitung (28, 228, 428), die von einer Zwischenstelle des Hauptwärmetauschers (30) zu einem Kaltverdichter (29) führt,
    dadurch gekennzeichnet, daß die Kaltverdichtungsleitung (28, 228, 428) stromaufwärts des Kaltverdichters (29) an der Zwischenstelle mit einer Gruppe von Anwärmpassagen (27, 227) des Hauptwärmetauschers (30) verbunden ist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Gruppe von Anwärmpassagen (27, 227) des Hauptwärmetauschers (30), die an der Zwischenstelle mit der Kaltverdichtungsleitung (28, 228, 428) verbunden sind, vom kalten Ende bis zu der Zwischenstelle durchgehend ausgebildet und am kalten Ende mit einer Gruppe von Abkühlpassagen verbunden (24, 26, 226, 326, 426) sind.
EP99121174A 1999-07-05 1999-10-22 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Expired - Lifetime EP1067345B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19930731 1999-07-05
DE19930731 1999-07-05

Publications (2)

Publication Number Publication Date
EP1067345A1 EP1067345A1 (de) 2001-01-10
EP1067345B1 true EP1067345B1 (de) 2004-06-16

Family

ID=7913552

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99121174A Expired - Lifetime EP1067345B1 (de) 1999-07-05 1999-10-22 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Country Status (4)

Country Link
US (1) US6336345B1 (de)
EP (1) EP1067345B1 (de)
AT (1) ATE269526T1 (de)
DE (1) DE59909750D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055448A1 (de) 2010-12-21 2012-06-21 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851330B1 (fr) * 2003-02-13 2006-01-06 Air Liquide Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air
FR2854683B1 (fr) * 2003-05-05 2006-09-29 Air Liquide Procede et installation de production de gaz de l'air sous pression par distillation cryogenique d'air
EP1767884A1 (de) * 2005-09-23 2007-03-28 L'Air Liquide Société Anon. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US7549301B2 (en) * 2006-06-09 2009-06-23 Praxair Technology, Inc. Air separation method
EP1972875A1 (de) * 2007-03-23 2008-09-24 L'AIR LIQUIDE, S.A. pour l'étude et l'exploitation des procédés Georges Claude Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
DE102009048456A1 (de) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2369281A1 (de) * 2010-03-09 2011-09-28 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090B1 (de) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
TR201808162T4 (tr) 2014-07-05 2018-07-23 Linde Ag Havanın düşük sıcaklıkta ayrıştırılması vasıtasıyla bir basınçlı gaz ürününün kazanılmasına yönelik yöntem ve cihaz.
EP2963370B1 (de) 2014-07-05 2018-06-13 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963369B1 (de) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
FR3066809B1 (fr) * 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil pour la separation de l'air par distillation cryogenique
CN109737689A (zh) * 2018-12-29 2019-05-10 侨源气体(福州)有限公司 空气分离与提纯系统及方法
EP4004468B1 (de) * 2019-07-26 2024-07-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und vorrichtung zur trennung von luft durch kryogenische destillation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224045A (en) * 1978-08-23 1980-09-23 Union Carbide Corporation Cryogenic system for producing low-purity oxygen
GB2080929B (en) * 1980-07-22 1984-02-08 Air Prod & Chem Producing gaseous oxygen
US5275003A (en) * 1992-07-20 1994-01-04 Air Products And Chemicals, Inc. Hybrid air and nitrogen recycle liquefier
FR2714721B1 (fr) * 1993-12-31 1996-02-16 Air Liquide Procédé et installation de liquéfaction d'un gaz.
FR2718836B1 (fr) * 1994-04-15 1996-05-24 Maurice Grenier Echangeur de chaleur perfectionné à plaques brasées.
FR2721383B1 (fr) * 1994-06-20 1996-07-19 Maurice Grenier Procédé et installation de production d'oxygène gazeux sous pression.
GB9619687D0 (en) * 1996-09-20 1996-11-06 Boc Group Plc Air separation
US5901576A (en) * 1998-01-22 1999-05-11 Air Products And Chemicals, Inc. Single expander and a cold compressor process to produce oxygen
US6009723A (en) * 1998-01-22 2000-01-04 Air Products And Chemicals, Inc. Elevated pressure air separation process with use of waste expansion for compression of a process stream

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055448A1 (de) 2010-12-21 2012-06-21 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2469205A1 (de) 2010-12-21 2012-06-27 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Also Published As

Publication number Publication date
DE59909750D1 (de) 2004-07-22
ATE269526T1 (de) 2004-07-15
US6336345B1 (en) 2002-01-08
EP1067345A1 (de) 2001-01-10

Similar Documents

Publication Publication Date Title
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE69012923T2 (de) Verfahren und Vorrichtung zur Herstellung von Stickstoff aus Luft.
EP1134525B1 (de) Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
DE69509841T2 (de) Verfahren und Vorrichtung zur Herstellung von Sauerstoff
EP1284404A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
WO2007104449A1 (de) Vefahren und vorrichtung zur tieftemperaturzerlegung von luft
EP1074805B1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10013073A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0948730B1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
WO2010017968A2 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE10018200A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
WO2021078405A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
WO2021104668A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3980705A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3394536A1 (de) Verfahren und vorrichtung zur erzeugung von reinem stickstoff und reinem sauerstoff durch tieftemperaturzerlegung von luft
EP3870917B1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP1189001B1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
WO2020187449A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3771873A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2863156A1 (de) Verfahren zur Gewinnung wenigstens eines Luftprodukts in einer Luftbehandlungsanlage und Luftbehandlungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010612

R17P Request for examination filed (corrected)

Effective date: 20010601

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59909750

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041003

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20041006

Year of fee payment: 6

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041014

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041020

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041022

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041216

Year of fee payment: 6

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050317

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051022

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051022

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060501

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041116