EP1063673B1 - Elektronenkanone - Google Patents
Elektronenkanone Download PDFInfo
- Publication number
- EP1063673B1 EP1063673B1 EP00305295A EP00305295A EP1063673B1 EP 1063673 B1 EP1063673 B1 EP 1063673B1 EP 00305295 A EP00305295 A EP 00305295A EP 00305295 A EP00305295 A EP 00305295A EP 1063673 B1 EP1063673 B1 EP 1063673B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- beam passing
- electron beam
- passing holes
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/485—Construction of the gun or of parts thereof
Definitions
- the present invention relates to an electron gun for a cathode ray tube (CRT), and more particularly, to an electrode having an improved structure and an electron gun using the same.
- CTR cathode ray tube
- an electron gun for a color CRT is mounted within the neck portion of the CRT and emits electron beams for irradiating a fluorescent layer.
- the electron gun includes a cathode structure 11, a control electrode 12 and a screen electrode 13 together constituting a triode section, and a plurality of focusing electrodes 14 constituting a main lens.
- the electron gun for a color CRT having the above-described configuration, as predetermined voltages are applied to the respective electrodes, electron beams emitted from an electron emitting material of the cathode structure 11 are focused and accelerated by electronic lenses formed among the respective electrodes and selectively deflected according to the scanning position of the fluorescent layer to then land on the fluorescent layer.
- Such an electron gun for a color CRT is provided with static converging means and focusing means, for changing paths of three electron beams emitted from a cathode individually or wholly in the course of accelerating and focusing the electron beams, thereby achieving precision of convergence.
- the static convergence action of the electron beams is weakened by several causes including processing errors occurring while manufacturing the respective electrodes 11 through 14 constituting the electron gun, deformation of electrodes which is caused by an external force applied when fixing the electrodes in a bead glass, a shift in the positions of electron beam passing holes which is caused by thermal expansion of electrodes, and the like.
- the triode section consisting of the cathode structure 11, the control electrode 12 adjacent thereto and the screen electrode 13, is subjected to heat treatment for heating an electron emitting material so that a thermal drift phenomenon of electron beams occurs due to thermal deformation, resulting in a convergence drift, and a cross-over point related to an objective point of an electron beam is formed.
- it is necessary to accurately control the size of an electron beam passing hole and the thickness of an electrode in the electron beam passing hole portion.
- FIG. 2 illustrates an example of a plate-shaped electrode which functions as a control electrode or a screen electrode.
- an electrode 20 made of a single plate includes three electron beam passing holes RH, GH and BH formed on a plate-shaped main body 21 in an in-line arrangement, and depressions 22a, 22b and 22c which are disposed around the electron beam passing holes RH, GH and BH, for thinning the portions where the electron beam passing holes RH, GH and BH are formed. Also, beads 23a, 23b and 23c for reinforcing the strength of the electrode portions around the electron beam passing holes RH, GH and BH are formed around the depressions 22a, 22b and 22c.
- a plane portion 24 is disposed around the beads 23a, 23b and 23c, and supporting portions 25 which are embedded in a bead glass (not shown), for supporting the electrode 20, are formed at edges of the main body 21 along a lengthwise direction thereof. Also, assembly holes 26 for aligning the electron beam passing holes RH, GH and BH are provided at both sides of the main body 21 along the horizontal axis thereof.
- the aforementioned electrode 20 for an electron gun has three electron beam passing holes RH, GH and BH formed in its main body 21 of a single plate in an in-line arrangement, it is very important to uniformly form pitches P and P' among the electron beam passing holes RH, GH and BH.
- the electron beam passing holes RH, GH and BH are formed by punching.
- the processing error in the pitch is ⁇ 0.005. That is, a high-precision processing technique is required for forming the electron beam passing holes within the error allowance.
- the assembly holes 26 must maintain a difference of ⁇ 0.005 mm in the processing eccentricity.
- a difference in the thickness between the portions of the electron beam passing holes RH, GH and BH, which is caused by the depressions 22a, 22b and 22c, must be within the range of ⁇ 0.005 mm.
- the single-plated electrode 20 is formed by a single mold, if a predetermined portion of the mold bears a difference beyond the allowance, the mold cannot function properly. Thus, maintenance of the predetermined portion is difficult to achieve, and the productivity is then lowered.
- the electrode 20 since the beads 23a, 23b and 23c and the depressions 22a, 22b and 22c are formed in an in-line arrangement in its main body 21 which is elongated horizontally, the areas of flat portions around the electron beam passing holes RH, GH and BH are not constant. In such a state, if the electrode 20 is heated at 980 to 1050°C for 8 to 10 minutes for the purpose of performing a hydrogen-reduction process for removing gases in the metal of the plate, the electrode 20 may be deformed due to asymmetrical processing stress and anisotropic shape stress.
- the plate-shaped electrode 20 since the plate-shaped electrode 20 is used as a control electrode installed to be adjacent to a cathode structure, the electrode 20 experiences thermal expansion due to heat generated from a heater of the cathode structure, as shown in FIG. 3.
- the thermal expansion shifts the positions of the electron beam passing holes RH, GH and BH formed in an in-line arrangement, relative to each other, to cause a thermal drift by which paths of the electron beams passing through the electron beam passing holes are shifted, which lowers the white-balancing characteristics and resolution of the CRT.
- a conventional electrode of a conventional electron gun is described in, for example, US 5 208 507.
- an electrode of an electron gun includes a first electrode member having supporting portions protruding from both edges thereof along a lengthwise direction, and three connection holes disposed in an in-line arrangement, and second electrode members connected to the connection holes of the first electrode member, and each having a plane portion where electron beam passing holes are formed, and a flange portion formed along the periphery of the plane portion and connected to the periphery of each connection hole of the first electrode member.
- depressions are preferably formed by press-molding peripheries of the electron beam passing holes formed in the plane portion, and a bead is preferably formed between the plane portion and the flange portion.
- the shapes of the electron beam passing holes may be circular, elliptical or polygonal.
- the weight of the central second electrode member may be different from that of either side second electrode member.
- an electron gun for a cathode ray tube having a cathode, a control electrode and a screen electrode together constituting a triode section, and a plurality of focusing electrodes sequentially installed from the screen electrode
- the control electrode or the screen electrode includes a first electrode member having supporting portions protruding from both edges of the control electrode or the screen electrode along a lengthwise direction and having three connection holes disposed in an in-line arrangement, and second electrode members connected to the connection holes of the first electrode member, and each having a plane portion where electron beam passing holes are formed, and a flange portion formed along the periphery of the plane portion and connected to the periphery of each connection hole of the first electrode member.
- an electron gun for a cathode ray tube includes a cathode structure 11 for emitting thermions, a control electrode 12, a screen electrode 13 and a plurality of focusing electrodes 14 for focusing and accelerating electron beams.
- the control electrode 12 adjacent to the cathode structure 11 and the screen electrode 13 are plate-shaped.
- An electrode 100 which functions as the control electrode 12 includes a first electrode member 110 which is buried in a bead glass (not shown) and forms a major part of the electrode 100, and three second electrode members 120, 130 and 140 which are connected to the first electrode member 110 and each of which has an electron beam passing hole.
- the first electrode member 110 has a plane portion 111 and a main body 113 having supporting portions 112 buried in the bead glass at both edges of the first electrode member 110.
- Three connection holes 114, 115 and 116 are formed in the plane portion 111 of the main body 113 in an in-line arrangement.
- Each reinforcement portion 117 for releasing or reinforcing precision of a heating process or the strength of assembly, is formed at both edges of the plane portion 111 adjacent to the supporting portions 112 along a lengthwise direction of the main body 113.
- the shape of the reinforcement portion 117 is not restricted to that described in this embodiment, and various changes and modifications may be effected in view of strengthening the electrode and precision of a heating process.
- the second electrode members 120, 130 and 140 are connected to the connection holes 114, 115 and 116 of the first electrode member 110 and are constructed as follows.
- the second electrode members 120, 130 and 140 include plane portions 122, 132 and 142 having electron beam passing holes 121, 131 and 141 formed through mold-piercing and lamination, and flange portions 123, 133 and 143 which are formed along the peripheries of the plane portions 122, 132 and 142 to be connected to the peripheries of the connection holes 114, 115 and 116.
- Electron beam passing holes 121, 131 and 141 formed in the plane portions 122, 132 and 142 have depressions 124, 134 and 144 formed by press-molding the peripheries thereof.
- the thickness t of a portion where each of the electron beam passing holes 121, 131 and 141 is formed may vary according to the depths of the depressions 124, 134 and 144.
- the thicknesses of the electron beam passing hole portions of the three second electrode members 120, 130 and 140 may differ.
- the shapes of the electron beam passing holes 121, 131 and 141 may be circular, elliptical or polygonal, and a combination thereof may be taken according to focusing characteristics of three electron beams.
- Cutting portions 123a, 133a and 143a for reducing cross-sectional areas of the second electrode members 120, 130 and 140 are formed at both sides of or upper and lower portions thereof, thereby adjusting the weights of the second electrode members 120, 130 and 140 to then control each thermal expansion rate.
- Beads 125, 135 and 145 are formed at the same distance from the center of each electron beam passing hole, between the plane portion 122 and the flange portion 123, between the plane portion 132 and the flange portion 133 and between the plane portion 142 and the flange portion 143, respectively, by a drawing or rounding process.
- the lengths of cylindrical portions 125a, 135a and 145a are preferably 2.0 mm or less.
- the plane portions 122, 132 and 142 and the flange portions 123, 133 and 143 must have an error allowance of ⁇ 0.002 mm or less due to a heating process in consideration of the structural precision thereof.
- the weight of the central second electrode member 130 is preferably equal to or greater than that of either side second electrode member 120 or 140.
- the difference in the weight may vary according to the kind of electron gun. Based on experiments by the present inventor, it has been shown that the preferred weight of a central second electrode member is equal to or less than 1.0 to 1.2 times than that of either side second electrode member.
- the electron emitting material 161 is heated to then generate thermions.
- the thus-generated thermions that is, electron beams, pass through a cathode lens formed between the electron beam passing holes 121, 131 and 141 of the plate-shaped electrode 100 which is a control electrode and the electron beam passing holes of the screen electrode 13 to produce cross-over points.
- the electron beams which produce cross-over points in such a manner are incident into focusing lenses including the main lens formed between the focusing electrodes 14 with a predetermined angle of incidence, focused and accelerated to then be deflected by a deflection yoke, thereby finally landing on a screen surface.
- the electrode 100 is installed to be adjacent to the cathode structure 11, it is heated by a radiation heat emitted from the heater 164 to then be thermally expanded. Since the second electrode members 120, 130 and 140 having the electron beam passing holes 121, 131 and 141 are installed independently of the first electrode member 110, a shift in the positions of the electron beam passing holes 121, 131 and 141, which is due to the thermal expansion of the second electrode members 120, 130 and 140, can be reduced, thereby preventing a thermal drift of electron beams passing therethrough.
- the cylindrical portions 125a, 135a and 145a produced by forming the beads 125, 135 and 145 in the second electrode members 120, 130 and 140 have a constant volume and are independent of each other, the emitted amount of the emitted electron beams can be maintained constant by adjusting the temperature of the cathode structure 11. Since the second electrode members 120, 130 and 140 having different weights have different heat capacities, a difference in the thermal expansion rate thereof, which is due to positions of the second electrode members 120, 130 and 140, that is, either center or either side, can be reduced.
- the present invention can be applied to a plate-shaped electrode or a rim electrode of a screen electrode or a focusing electrode.
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
- Cold Cathode And The Manufacture (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Claims (9)
- Elektrode (12, 100) für eine Elektronenkanone mit einem ersten Elektrodenelement (110) mit Trägerteilen (112), die von beiden Kanten entlang einer Längsrichtung hervorstehen, und drei Verbindungsbohrungen (114, 115, 116), die in einer Linienanordnung angeordnet sind, und zweiten Elektrodenelementen (120, 130, 140), die mit dem ersten Elektrodenelement (110) verbunden sind, dadurch gekennzeichnet, dass die Elektrode für eine Elektronenkanone die zweiten Elektrodenelemente (120, 130, 140) verbunden mit den Verbindungsbohrungen des ersten Elektrodenelements (110) umfasst, wobei jedes zweite Element einen Ebenenteil (122, 132, 142) aufweist, wo Elektronenstrahldurchtritte (121, 131, 141) ausgebildet sind, und einen Flanschteil (123, 133, 143), der entlang des Umfangs des Ebenenteils ausgebildet und mit dem Umfang jeder Verbindungsbohrung des ersten Elektrodenelements (110) verbunden ist.
- Elektrode nach Anspruch 1, worin Vertiefungen (124, 134, 144) durch pressgeformte Ränder der Elektronenstrahldurchtritte, die im Ebenenteil ausgebildet sind, gebildet sind.
- Elektrode nach Anspruch 1 oder 2, worin eine Verstärkung (125, 135, 145) zwischen dem Ebenenteil und dem Flanschteil ausgebildet ist.
- Elektrode nach Anspruch 3, worin die Länge eines zylindrischen Teils, der durch die Verstärkung um den Ebenenteil erzeugt ist, gleich oder kleiner 2,0 mm ist.
- Elektrode nach einem der vorhergehenden Ansprüche, worin die Formen der Elektronenstrahldurchtritte (121, 131, 141) kreisförmig, elliptisch oder polygonal sind.
- Elektrode nach einem der vorhergehenden Ansprüche, worin das Gewicht des zentralen zweiten Elektrodenelements (130) sich von dem des zweiten Elektrodenelements (120, 140) auf jeder Seite unterscheidet.
- Elektrode nach einem der vorhergehenden Ansprüche, worin das Gewicht des zentralen zweiten Elektrodenelements (130) 1,0- bis 1,2-fach dem des zweiten Elektrodenelements (120, 140) auf jeder Seite entspricht.
- Elektrode nach einem der vorhergehenden Ansprüche, worin die Dicken von Teilen im zweiten Elektrodenelement (120, 130, 140), wo die Elektronenstrahldurchtritte (121, 131, 141) ausgebildet sind, sich unterscheiden.
- Elektronenkanone für eine Kathodenstrahlröhre, wobei die Elektronenkanone eine Kathode (11), eine Steuerelektrode (12) und eine Schirmelektrode aufweist, die zusammen eine Triodensektion bilden, und eine Mehrzahl von Fokuselektroden (14), die sequentiell von der Schirmelektrode installiert sind, worin die Steuerelektrode oder die Schirmelektrode eine Elektrode gemäß einem der vorhergehenden Ansprüche umfasst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2381499 | 1999-06-23 | ||
KR1019990023814A KR100573096B1 (ko) | 1999-06-23 | 1999-06-23 | 전자총의 전극 및 이를 이용한 음극선관용 전자총 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1063673A2 EP1063673A2 (de) | 2000-12-27 |
EP1063673A3 EP1063673A3 (de) | 2003-11-19 |
EP1063673B1 true EP1063673B1 (de) | 2006-05-17 |
Family
ID=36571423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00305295A Expired - Lifetime EP1063673B1 (de) | 1999-06-23 | 2000-06-23 | Elektronenkanone |
Country Status (7)
Country | Link |
---|---|
US (1) | US6445115B1 (de) |
EP (1) | EP1063673B1 (de) |
JP (1) | JP2001035408A (de) |
KR (1) | KR100573096B1 (de) |
CN (1) | CN1188886C (de) |
DE (1) | DE60027961T2 (de) |
MY (1) | MY127024A (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070145266A1 (en) * | 2005-12-12 | 2007-06-28 | Avi Cohen | Electron microscope apparatus using CRT-type optics |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55154044A (en) * | 1979-05-18 | 1980-12-01 | Hitachi Ltd | Electrode structure of electron gun and its manufacture |
JPS56141150A (en) * | 1980-04-04 | 1981-11-04 | Hitachi Ltd | Camera tube |
KR930000958Y1 (ko) * | 1990-12-06 | 1993-03-02 | 삼성전관 주식회사 | 전자총 전극 |
KR200204587Y1 (ko) * | 1998-11-25 | 2001-01-15 | 김순택 | 음극선관용 전자총의 전극 |
KR100300413B1 (ko) * | 1998-12-02 | 2001-09-06 | 김순택 | 칼라음극선관용전자총의전극 |
US6342758B1 (en) * | 1999-11-29 | 2002-01-29 | Hitachi, Ltd. | Inline type color picture tube |
-
1999
- 1999-06-23 KR KR1019990023814A patent/KR100573096B1/ko not_active IP Right Cessation
-
2000
- 2000-06-20 JP JP2000185045A patent/JP2001035408A/ja not_active Withdrawn
- 2000-06-22 US US09/598,969 patent/US6445115B1/en not_active Expired - Fee Related
- 2000-06-22 MY MYPI20002827 patent/MY127024A/en unknown
- 2000-06-23 DE DE60027961T patent/DE60027961T2/de not_active Expired - Fee Related
- 2000-06-23 EP EP00305295A patent/EP1063673B1/de not_active Expired - Lifetime
- 2000-06-23 CN CNB001242733A patent/CN1188886C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1279501A (zh) | 2001-01-10 |
MY127024A (en) | 2006-11-30 |
DE60027961T2 (de) | 2007-04-19 |
EP1063673A2 (de) | 2000-12-27 |
US6445115B1 (en) | 2002-09-03 |
CN1188886C (zh) | 2005-02-09 |
EP1063673A3 (de) | 2003-11-19 |
JP2001035408A (ja) | 2001-02-09 |
DE60027961D1 (de) | 2006-06-22 |
KR100573096B1 (ko) | 2006-04-24 |
KR20010003505A (ko) | 2001-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1147010A (en) | Micro lens array and micro deflector assembly for fly's eye electron bean tubes using silicon components | |
US6577052B1 (en) | Electron gun for cathode ray tube | |
US6097142A (en) | Shadow mask having an effective face area and ineffective face area | |
US4651049A (en) | Electrode assembly for display apparatus | |
EP1063673B1 (de) | Elektronenkanone | |
EP0281379A2 (de) | Farbbildröhre mit Lochmaske | |
US5134338A (en) | Flat picture display device | |
GB2177627A (en) | Method of producing colour selection mechanism for cathode ray tube | |
US5877587A (en) | Inline electron gun having improved expanded focus lens electrodes | |
US6087768A (en) | Cathode ray tube having a deflection unit with play | |
US20030006690A1 (en) | Electron gun having improved electode support structure | |
KR100322068B1 (ko) | 음극선관용 전자총의 전극 | |
KR19990033503A (ko) | 컬러 음극선관용 전자총의 전극 제조 방법 및 그에 의한 전자총 | |
JP2002197989A (ja) | カラー受像管 | |
JPH0145074Y2 (de) | ||
KR100769921B1 (ko) | 측면투사형 음극선관 | |
KR20060025790A (ko) | 음극선관 | |
CN1303636C (zh) | 彩色阴极射线管的改进 | |
JPS58214245A (ja) | 画像表示装置の位置決め法 | |
JP3914233B2 (ja) | 表示装置及びスペーサ部材 | |
JP3631009B2 (ja) | 電子銃 | |
JPH02291646A (ja) | 電子銃構体 | |
EP1220275A2 (de) | Schattenmaske und Farbkathodenstrahlröhre | |
JP2001155652A (ja) | カラー陰極線管 | |
KR20010081619A (ko) | 음극선관용 전자총의 전극 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040331 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 20050310 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60027961 Country of ref document: DE Date of ref document: 20060622 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070603 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070621 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070620 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070608 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080623 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 |