EP1061534A2 - Soft magnetic, deformable composite material and process for producing the same - Google Patents

Soft magnetic, deformable composite material and process for producing the same Download PDF

Info

Publication number
EP1061534A2
EP1061534A2 EP00119956A EP00119956A EP1061534A2 EP 1061534 A2 EP1061534 A2 EP 1061534A2 EP 00119956 A EP00119956 A EP 00119956A EP 00119956 A EP00119956 A EP 00119956A EP 1061534 A2 EP1061534 A2 EP 1061534A2
Authority
EP
European Patent Office
Prior art keywords
composite material
silicon
material according
weight
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00119956A
Other languages
German (de)
French (fr)
Other versions
EP1061534A3 (en
Inventor
Wilfried Aichele
Hans-Peter Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1061534A2 publication Critical patent/EP1061534A2/en
Publication of EP1061534A3 publication Critical patent/EP1061534A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Definitions

  • the invention relates to a soft magnetic, mouldable Composite material that has soft magnetic properties Powder contains a non-magnetic coating have, as well as a method for its production.
  • Soft magnetic materials are required for the production of temperature, corrosion and solvent resistant magnetic components in the electronics sector and especially in electromechanics. These soft magnetic components require certain properties: they should have a high permeability ( ⁇ max ), a high magnetic saturation (B s ), a low coercive force (H c ) and a high specific electrical resistance ( ⁇ spec ). The combination of these magnetic properties with a high specific electrical resistance results in high switching dynamics, that is to say that the magnetic saturation and demagnetization of such a component take place within a short time.
  • EP 0 540 504 B1 discloses soft magnetic powders prepare with a plastic binder and thus through a Injection molding process to produce corresponding components.
  • the powder parts in injection moldable Composite materials limited to a maximum of 65% by volume.
  • the compression takes place in the case of axial pressing of free-flowing powders with almost no material flow.
  • the fill levels of these composite materials are typically at 90-98 vol%.
  • thermosetting resins for example epoxies or phenolic resins
  • thermosetting resins for example epoxies or phenolic resins
  • organic solvents for example Fuels for internal combustion engines
  • soluble are, or swell strongly.
  • the corresponding Composite components change their dimensions under these conditions, lose their strength and fail completely.
  • appropriate composite materials with high temperature and media resistance for example in organic solvents, especially fuels for internal combustion engines.
  • Another Problem have so far set the operating conditions for these components among which are both thermoplastics and thermosets no longer represent a suitable binder because they are otherwise would completely decompose.
  • Coating the soft magnetic powder with compounds of the boron or aluminum, which in pyrolysis in corresponding Skipping ceramics is another way solvent resistance and temperature resistance of the soft magnetic composite material and the material produced from it Increase molded parts.
  • the temperature after a shaping of the material is advantageously chosen so that the coating material is converted into a ceramic, metallic or even intermetallic end product. This results in a high magnetization and a temperature and solvent resistance achieved.
  • Silicon compounds selected from the group consisting of from binary hydrogen compounds of silicon, polydialkylsilanes, Carbosilanes, polysilazanes, alkoxyalkylsilanes, Alkyl polysiloxanes, alkyl silanols and compounds of alkylsilanols with elements of the first main group.
  • This ensures that a wide connection class of molecular precursor compounds of silicon can be used, which in pyrolysis to different Ceramics, both based on silicon-oxygen, or also on a silicon-nitrogen or silicon-nitrogen-oxygen basis to provide can and optimized according to the desired requirement profile are.
  • the applications of the component to be manufactured so can the corresponding ceramics that also one Influence on the magnetic field strength and the switching time which has soft magnetic connections. It is also possible to change the temperature range for the Choose application accordingly.
  • Soft magnetic powder boron compounds selected from the group consisting of borazole, pyridine or other ⁇ -donor borane adducts, for example borane-phosphine, borane-phosphinite, Borane-sulfur or borane-nitrogen adducts, Borosilazanes and polyborazanes are used, so that in simple way after the thermolysis different boron-containing Ceramics can be made available in a simple manner can
  • a polyazalane as an aluminum precursor compound to use, which in very small quantities of 0.2-2% by weight, based on the total weight can be. This makes aluminum-nitrogen ceramics as Coating for the soft magnetic powder produced, wherein the weight fraction of the soft magnetic powder especially is high.
  • the inorganic, or silicon, boron and organoaluminium compounds used for coating the soft magnetic powders which are predominantly polymeric in character, have good sliding or lubricating properties. After hardening, they thus represent a thermosetting binder, which is converted into a ceramic or into alloy additives for ferrous metals by subsequent thermal decomposition (pyrolysis). In connection with oxidation-sensitive magnetic materials, such as pure iron or pure nickel, the pyrolysis takes place under protective gas. In order to obtain composite bodies with a small proportion of pores, the volume shrinkage occurring during the pyrolysis must be small, which is ensured by the compounds used. Silicon hydrogen compounds (silicon hydrides) are one example.
  • Silicon hydrides with multiple Si atoms can be melted and thus also serve as lubricants for the coated magnetic powders. Depending on the hydride used, they decompose into Si and H 2 at higher temperatures. When the temperature increases further, the Si alloys in a surface layer, for example with pure iron powder. The Fe-Si alloy layer has a higher electrical resistance and a lower melting point than pure iron. The iron powder particles coated with Fe-Si sinter together to form composite bodies with a higher electrical resistance than pure iron. An alternative to this is the deposition of high-purity silicon on iron powder particles by thermal decomposition of SiH 4 . The method is common in semiconductor manufacturing for the build-up of silicon layers and in the tempering of glasses. Low molecular weight silicon hydrides are self-igniting, so that all process steps take place under protective gas.
  • a silicon carbide ceramic according to the invention is used, for example prepared by pyrolysis of polydialkylsilanes. In Connection with powders from the series of ferrous metals the elimination of carbon-containing compounds in the Pyrolysis to carburize. Through annealing treatments in hydrogen-containing The atmosphere then becomes the metal of the Carbon content withdrawn again.
  • Precursor compounds for BN ceramics as coating material are pyrolyzed under an ammonia atmosphere.
  • RCP Cubbon RAPRA Review Report No. 76, Polymeric Precursors for Ceramic Materials, Vol. 7, No. 4, 1994.
  • Borazole B 3 N 3 H 6
  • B 3 N 3 H 6 which splits off under reduced pressure at 90 ° CH 2 and turns into a polymer analogous to polyphenylene, has proven to be particularly suitable for soft-magnetic composite materials with a ceramic coating.
  • the elimination of H 2 continues until the hexagonal modification of BN is reached at approx. 750 ° C.
  • the pyrolysis takes place only under protective gas, for example argon or nitrogen, and not in an ammonia atmosphere.
  • the resulting slight weight loss of 5.1% results in low shrinkage and thus a small pore volume in the combination of BN and the magnetic powder.
  • polyazalanes As a suitable starting material for the coating of magnetic powders with an aluminum nitride ceramic, polyazalanes were found. These were by thermal condensation of Diisobutylaluminum hydride synthesized with unsaturated nitriles, which leads to curable liquid polyazalanes. This was used to coat the magnetic powders.
  • the polyazalans also serve as a thermoset glide and binder, which after subsequent pyrolysis crosslinked to a non-melting solid at 200 ° C. and in the next process step completely under an inert atmosphere pyrolyzed to AlN.
  • Carbosilanes and polysilazanes have proven to be a suitable starting material for coating magnetic powders with a silicon nitride ceramic.
  • Silicon nitride Si 3 N 4 is formed by pyrolysis of these compounds in an ammonia atmosphere. Pyrolysis under protective gas produced a coating with silicon carbonitrides of the formula SiN x C y .
  • Glasses, enamels and glazes are combinations of metal and non-metal oxides of different compositions.
  • An embodiment for the production of glass-like coatings of soft magnetic powders is the use of silanes with several silanol groups which form polymers when water is added with the elimination of alcohol.
  • the product NH 2100 manufactured by Hüls is a not yet fully cross-linked, soluble and meltable polycondensate of trimethoxymethylsilane (CH 3 Si (OCH 3 ) 3 ) x and is an excellent precursor material for a glass-like coating of magnetic powders.
  • the electrical resistance drops to 5 ⁇ m (pure iron has 0.1 ⁇ m), while the bending strength increases to 80 N / mm 2 .
  • the iron-iron sintered bridges and the strength increase, while the specific electrical resistance continues to decrease.
  • the corresponding glasses or enamels are formed by adding further compounds which can be converted into glass-forming oxides. Their composition is selected with a view to good adhesion to the magnetic powder.
  • an addition of aluminum stearate serves both as a lubricant for removal from the press tool and after its thermal decomposition to Al 2 0 3 as a glass former.
  • phosphated iron powder (AB 100.32, Höganäs) is wetted in the kneader with a solution of 2.4 g of methylpolysiloxane prepolymer (NH 2100, Nünchritz chemical plant) in acetone. After adding a solution of 46.3 g sodium trimethylsilanolate in acetone, a gel coat forms around the iron particles. After the acetone has been evaporated in a kneader, 5 g of aluminum tristearate are added and this is melted at 140 ° C. while kneading. The aluminum tristearate acts as a lubricant and mold release agent during the subsequent axial pressing of the composite material.
  • the methylpolysiloxane prepolymer When the compacts are heated to 200 ° C under protective gas, the methylpolysiloxane prepolymer initially hardens. When the temperature is increased further to 800 ° C., all the products used pyrolyze and melt to about 40 g of a glass with the approximate composition 27 g Si0 2 , 12.8 g Na 2 O and 0.3 g A1 2 0 3 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

The material is made up of a powder which has weakly magnetic properties. The powder grains or granules are coated with the non- magnetic thermoplastic binder. The binder is preferably insoluble in organic aliphatic solvents. Independent claims are also included to a substance made of weakly magnetic powder granules coated with an aluminum compound, and to a method of manufacturing the substance.

Description

Stand der TechnikState of the art

Die Erfindung betrifft einen weichmagnetischen, formbaren Verbundwerkstoff, der weichmagnetische Eigenschaften aufweisende Pulver enthält, die eine nichtmagnetische Beschichtung aufweisen, sowie ein Verfahren zu dessen Herstellung.The invention relates to a soft magnetic, mouldable Composite material that has soft magnetic properties Powder contains a non-magnetic coating have, as well as a method for its production.

Weichmagnetischen Werkstoffe werden zur Herstellung von temperatur-, korrosions- und lösungsmittelbeständigen magnetischen Bauteilen im Elektroniksektor und insbesondere in der Elektromechanik benötigt. Dabei bedürfen diese weichmagnetischen Bauteile gewisser Eigenschaften: sie sollen eine hohe Permeabilität (µmax), eine hohe magnetische Sättigung (Bs), eine geringe Koerzitivfeldstärke (Hc) und einen hohen spezifischen elektrischen Widerstand (ρspez) aufweisen. Die Kombination dieser magnetischen Eigenschaften mit einem hohen spezifischen elektrischen Widerstand ergibt eine hohe Schaltdynamik, das heißt, die magnetische Sättigung und die Entmagnetisierung eines derartigen Bauteiles erfolgen innerhalb kurzer Zeit. Soft magnetic materials are required for the production of temperature, corrosion and solvent resistant magnetic components in the electronics sector and especially in electromechanics. These soft magnetic components require certain properties: they should have a high permeability (µ max ), a high magnetic saturation (B s ), a low coercive force (H c ) and a high specific electrical resistance (ρ spec ). The combination of these magnetic properties with a high specific electrical resistance results in high switching dynamics, that is to say that the magnetic saturation and demagnetization of such a component take place within a short time.

Bislang werden beispielweise Weicheisenbleche zu Lamellenpaketen verklebt, um als Anker von Elektromotoren zu dienen. Die Lagenisolation wirkt jedoch nur in einer Richtung. Aus dem EP 0 540 504 B1 ist bekannt, weichmagnetische Pulvern mit einem Kunststoffbinder aufzubereiten und damit durch ein Spritzgußverfahren entsprechende Bauteile herzustellen. Um die für das Spritzgießen notwendige Fließfähigkeit zu gewährleisten, sind die Pulveranteile in spritzgießfähigen Verbundwerkstoffen auf maximal 65 Vol.-% begrenzt. Demgegenüber erfolgt beispielsweise bei axialem Verpressen die Verdichtung von rieselfähigen Pulvern nahezu ohne Materialfluß. Die Füllgrade dieser Verbundwerkstoffe liegen typischerweise bei 90-98 Vol.-%. Die durch axiales Verpressen von Pulvern geformten Bauteile zeichnen sich im Vergleich zu spritzgegossenen deshalb durch wesentlich höhere Permeabilitäten und höhere magnetische Feldstärken im Sättigungsbereich aus. Axiales Verpressen von Pulvern aus Reineisen oder EisenNickel mit Duroplastharzen, beispielweise Epoxiden oder Phenolharzen hat jedoch den Nachteil, daß die bislang verwendeten thermoplastischen und duroplastischen Bindemittel bei erhöhter Temperatur in organischen Lösungsmitteln, beispielsweise Kraftstoffen für Verbrennungsmotoren, löslich sind, beziehungsweise stark aufquellen. Die entsprechenden Verbundbauteile ändern unter diesen Bedingungen ihre Abmessungen, verlieren ihre Festigkeit und versagen gänzlich. Es war bislang nicht möglich, entsprechende Verbundwerkstoffe mit hoher Temperatur- und Medienbeständigkeit, beispielsweise in organischen Lösungsmitteln, insbesondere Kraftstoffen für Verbrennungsmotoren, herzustellen. Ein weiteres Problem stellten bislang diejenigen Einsatzbedingungen dieser Bauteile dar, unter denen sowohl Thermoplaste als auch Duroplaste kein geeignetes Bindemittel mehr darstellen, da sie sich sonst vollständig zersetzen würden. So far, for example, soft iron sheets have become lamella packages glued to serve as an anchor for electric motors. However, the layer insulation only works in one direction. Out EP 0 540 504 B1 discloses soft magnetic powders prepare with a plastic binder and thus through a Injection molding process to produce corresponding components. Around to ensure the flowability required for injection molding, are the powder parts in injection moldable Composite materials limited to a maximum of 65% by volume. In contrast for example, the compression takes place in the case of axial pressing of free-flowing powders with almost no material flow. The fill levels of these composite materials are typically at 90-98 vol%. By axially pressing powders molded components stand out compared to injection molded ones therefore by much higher permeabilities and higher magnetic field strengths in the saturation range. Axial pressing of pure iron or iron-nickel powders with thermosetting resins, for example epoxies or phenolic resins has the disadvantage, however, that the previously used thermoplastic and thermosetting binders elevated temperature in organic solvents, for example Fuels for internal combustion engines, soluble are, or swell strongly. The corresponding Composite components change their dimensions under these conditions, lose their strength and fail completely. It was not possible until now, appropriate composite materials with high temperature and media resistance, for example in organic solvents, especially fuels for internal combustion engines. Another Problem have so far set the operating conditions for these components among which are both thermoplastics and thermosets no longer represent a suitable binder because they are otherwise would completely decompose.

In dem Artikel von H. P. Baldus und M. Jansen in: "Angewandte Chemie 1997, 109, Seite 338-394", werden moderne Hochleistungskeramiken beschrieben, die aus molekularen Vorläufern durch Pyrolyse gebildet werden und teilweise ebenfalls magnetische Eigenschaften aufweisen. Diese Keramiken sind äußerst temperatur- und lösungsmittelstabil.In the article by H. P. Baldus and M. Jansen in: "Angewandte Chemie 1997, 109, pages 338-394 ", become modern high-performance ceramics described from molecular precursors formed by pyrolysis and partly also magnetic Have properties. These ceramics are extreme temperature and solvent stable.

Vorteile der ErfindungAdvantages of the invention

Durch die Beschichtung von weichmagnetischen Pulverkörnern mit einer siliziumhaltigen Verbindung, die bei Pyrolyse in eine siliziumhaltige Keramik übergeht, ist es möglich, die Koerzitivfeldstärke zu erhöhen, und die Temperaturstabilität eines aus diesem Verbundwerkstoff hergestellten Formteils entscheidend zu verbessern.By coating soft magnetic powder grains with a silicon-containing compound, which in pyrolysis in a silicon-containing ceramic passes over, it is possible to Increase coercive force, and temperature stability a molded part made from this composite material to improve decisively.

Beschichten des Weichmagnetpulvers mit Verbindungen des Bors beziehungsweise des Aluminiums, die bei Pyrolyse in entsprechende Keramiken übergehen, ist eine weitere Möglichkeit, die Lösemittelbeständigkeit und die Temperaturbeständigkeit des weichmagnetischen Verbundwerkstoffes und der daraus hergestellten Formteile zu erhöhen.Coating the soft magnetic powder with compounds of the boron or aluminum, which in pyrolysis in corresponding Skipping ceramics is another way solvent resistance and temperature resistance of the soft magnetic composite material and the material produced from it Increase molded parts.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen aufgeführt.Further advantageous refinements and developments of Invention are listed in the subclaims.

So wird bei einer Beschichtung der Pulverkörner mit einem Material aus einer Vorläuferkeramik, auch

Figure 00030001
Precursorkeramik" genannt, welche entweder Silicium, Aluminium oder Bor als Hauptbestandteile enthält, die Temperatur nach einer Formgebung des Materials vorteilhaft so gewählt, daß sich das Beschichtungsmaterial in ein keramisches, metallisches oder sogar intermetallisches Endprodukt umwandelt. Damit wird eine hohe Magnetisierung und eine Temperatur- und Lösemittelbeständigkeit erzielt. So when coating the powder grains with a material from a precursor ceramic, too
Figure 00030001
Precursor ceramic ", which contains either silicon, aluminum or boron as the main constituents, the temperature after a shaping of the material is advantageously chosen so that the coating material is converted into a ceramic, metallic or even intermetallic end product. This results in a high magnetization and a temperature and solvent resistance achieved.

In besonders bevorzugter Weise werden als Beschichtungsmaterial Siliziumverbindungen ausgewählt aus der Gruppe bestehend aus binären Wasserstoffverbindungen des Siliziums, Polydialkylsilanen, Carbosilanen, Polysilazanen, Alkoxyalkylsilanen, Alkylpolysiloxanen, Alkylsilanolen und Verbindungen von Alkylsilanolen mit Elementen der ersten Hauptgruppe verwendet. Damit ist gewährleistet, daß eine breite Verbindungsklasse von molekularen Vorläuferverbindungen des Siliziums eingesetzt werden kann, welches bei Pyrolyse zu verschiedenen Keramiken, sowohl auf Silizium-Sauerstoffbasis, beziehungsweise ebenso auf Silizium-Stickstoff oder Silizium-Stickstoff-Sauerstoff-Basis zur Verfügung gestellt werden können und je nach erwünschtem Anforderungsprofil optimiert sind. Entsprechend den Anwendungen des herzustellenden Bauteiles kann so die entsprechende Keramik, die auch einen Einfluß auf die magnetische Feldstärke und die Schaltzeit der weichmagnetischen Verbindungen hat, gewählt werden. Ebenso ist es dadurch möglich, den Temperaturbereich für die Anwendung entsprechend zu wählen.In a particularly preferred manner, are used as coating material Silicon compounds selected from the group consisting of from binary hydrogen compounds of silicon, polydialkylsilanes, Carbosilanes, polysilazanes, alkoxyalkylsilanes, Alkyl polysiloxanes, alkyl silanols and compounds of alkylsilanols with elements of the first main group. This ensures that a wide connection class of molecular precursor compounds of silicon can be used, which in pyrolysis to different Ceramics, both based on silicon-oxygen, or also on a silicon-nitrogen or silicon-nitrogen-oxygen basis to provide can and optimized according to the desired requirement profile are. According to the applications of the component to be manufactured so can the corresponding ceramics that also one Influence on the magnetic field strength and the switching time which has soft magnetic connections. It is also possible to change the temperature range for the Choose application accordingly.

In ebenso bevorzugter Weise können zum Beschichten des Weichmagnetpulvers Borverbindungen ausgewählt aus der Gruppe bestehend aus Borazol, Pyridin- oder sonstige π-Donor-Boranaddukte, beispielsweise Boran-Phosphan, Boran-Phosphinit, Boran-Schwefel oder Boran-Stickstoff-Addukte, Borsilazane und Polyborazane eingesetzt werden, so daß in einfacher Weise nach der Thermolyse verschiedene Borhaltige Keramiken in einfacher Weise zur Verfügung gestellt werden könnenIn a likewise preferred manner, for coating the Soft magnetic powder boron compounds selected from the group consisting of borazole, pyridine or other π-donor borane adducts, for example borane-phosphine, borane-phosphinite, Borane-sulfur or borane-nitrogen adducts, Borosilazanes and polyborazanes are used, so that in simple way after the thermolysis different boron-containing Ceramics can be made available in a simple manner can

Ebenso ist es bevorzugt möglich, ein Polyazalan als Aluminiumvorläuferverbindung zu verwenden, welches in Kleinstmengen von 0,2-2 Gew.%, bezogen auf die Gesamteinwaage, eingesetzt werden kann. Damit werden Aluminium-Stickstoff-Keramiken als Beschichtung für das weichmagnetische Pulver erzeugt, wobei der Gewichtsanteil des weichmagnetischen Pulvers besonders hoch ist.It is also preferably possible to use a polyazalane as an aluminum precursor compound to use, which in very small quantities of 0.2-2% by weight, based on the total weight can be. This makes aluminum-nitrogen ceramics as Coating for the soft magnetic powder produced, wherein the weight fraction of the soft magnetic powder especially is high.

AusführungsbeispieleEmbodiments Verpressen von trockenen Gemischen aus Magnetpulver und anorganischen PulvernCompression of dry mixtures of magnetic powder and inorganic Powders

Die zum Beschichten der weichmagnetischen Pulver eingesetzten anorganischen, beziehungsweise silizium-, bor und aluminiumorganischen Verbindungen mit vorwiegend polymeren Charakter weisen gute Gleit-, beziehungsweise Schmiereigenschaften auf. Nach der Aushärtung stellen sie somit ein duroplastisches Bindemittel dar, welches durch anschließende thermische Zersetzung (Pyrolyse) in eine Keramik oder in Legierungszusätze für Eisenmetalle umgewandelt wird. In Verbindung mit oxidationsempfindlichen magnetischen Materialien, wie beispielsweise Reineisen oder Reinnickel, erfolgt die Pyrolyse unter Schutzgas. Um Verbundkörper mit geringem Porenanteil zu erhalten, muß der bei der Pyrolyse auftretende Volumenschwund gering sein, was durch die eingesetzten Verbindungen gewährleistet ist. Ein Beispiel stellen Silizium-Wasserstoffverbindungen (Siliziumhydride) dar. Siliziumhydride mit mehren Si-Atomen sind schmelzbar und dienen somit zugleich als Gleitmittel für die beschichteten magnetischen Pulver. Sie zerfallen bei höheren Temperaturen je nach eingesetztem Hydrid in Si und H2. Bei weiterer Temperaturerhöhung legiert das Si in einer Oberflächenschicht, beispielsweise mit Reineisenpulver. Die Fe-Si-Legierungsschicht weist einen höheren elektrischen Widerstand und einen niedrigen Schmelzpunkt auf als Reineisen. Die mit Fe-Si beschichteten Eisenpulverteilchen sintern zu Verbundkörpern mit einem im Vergleich zu Reineisen höheren elektrischen Widerstand zusammen. Eine Alternative dazu ist die Abscheidung von Reinstsilizium auf Eisenpulverteilchen durch thermische Zersetzung von SiH4 . Das Verfahren ist bei der Halbleiterfertigung zum Aufbau von Siliziumschichten und beim Vergüten von Gläsern üblich. Niedermolekulare Siliziumhydride sind selbstentzündlich, so daß alle Verfahrensschritte unter Schutzgas erfolgen.The inorganic, or silicon, boron and organoaluminium compounds used for coating the soft magnetic powders, which are predominantly polymeric in character, have good sliding or lubricating properties. After hardening, they thus represent a thermosetting binder, which is converted into a ceramic or into alloy additives for ferrous metals by subsequent thermal decomposition (pyrolysis). In connection with oxidation-sensitive magnetic materials, such as pure iron or pure nickel, the pyrolysis takes place under protective gas. In order to obtain composite bodies with a small proportion of pores, the volume shrinkage occurring during the pyrolysis must be small, which is ensured by the compounds used. Silicon hydrogen compounds (silicon hydrides) are one example. Silicon hydrides with multiple Si atoms can be melted and thus also serve as lubricants for the coated magnetic powders. Depending on the hydride used, they decompose into Si and H 2 at higher temperatures. When the temperature increases further, the Si alloys in a surface layer, for example with pure iron powder. The Fe-Si alloy layer has a higher electrical resistance and a lower melting point than pure iron. The iron powder particles coated with Fe-Si sinter together to form composite bodies with a higher electrical resistance than pure iron. An alternative to this is the deposition of high-purity silicon on iron powder particles by thermal decomposition of SiH 4 . The method is common in semiconductor manufacturing for the build-up of silicon layers and in the tempering of glasses. Low molecular weight silicon hydrides are self-igniting, so that all process steps take place under protective gas.

Eine erfindungsgemäße Siliciumcarbidkeramik wird beispielsweise durch Pyrolyse von Polydialkylsilanen hergestellt. In Verbindung mit Pulvern aus der Reihe der Eisenmetalle führt die Abspaltung von kohlenstoffhaltigen Verbindungen bei der Pyrolyse zu Aufkohlen. Durch Glühbehandlungen in wasserstoffhaltiger Atmosphäre wird anschließend dem Metall der Kohlenstoffanteil wieder entzogen.A silicon carbide ceramic according to the invention is used, for example prepared by pyrolysis of polydialkylsilanes. In Connection with powders from the series of ferrous metals the elimination of carbon-containing compounds in the Pyrolysis to carburize. Through annealing treatments in hydrogen-containing The atmosphere then becomes the metal of the Carbon content withdrawn again.

Vorläuferverbindungen für BN-Keramiken als Beschichtungsmaterial werden unter Ammoniakatmosphäre pyrolysiert. (R.C.P. Cubbon, RAPRA Review Report Nr. 76, Polymeric Precursors for Ceramic Materials, Vol. 7, No. 4, 1994). Als besonders geeignet für weichmagnetische Verbundwerkstoffe mit einer keramischen Beschichtung erwies sich Borazol (B3N3H6), welches unter vermindertem Druck bereits bei 90 °C H2 abspaltet und in ein zu Polyphenylen analoges Polymer übergeht. Bei höheren Temperaturen schreitet die Abspaltung von H2 fort, bis bei ca. 750 °C die Stufe der hexagonalen Modifikation von BN erreicht ist. In diesem besonderen Falle erfolgt die Pyrolyse lediglich unter Schutzgas, beispielsweise Argon oder Stickstoff, und nicht in Ammoniakatmosphäre. Der dabei auftretende geringe Gewichtsverlust von 5,1 % hat eine geringe Schwindung und damit ein geringes Porenvolumen im Verbund aus BN und dem Magnetpulver zur Folge.Precursor compounds for BN ceramics as coating material are pyrolyzed under an ammonia atmosphere. (RCP Cubbon, RAPRA Review Report No. 76, Polymeric Precursors for Ceramic Materials, Vol. 7, No. 4, 1994). Borazole (B 3 N 3 H 6 ), which splits off under reduced pressure at 90 ° CH 2 and turns into a polymer analogous to polyphenylene, has proven to be particularly suitable for soft-magnetic composite materials with a ceramic coating. At higher temperatures, the elimination of H 2 continues until the hexagonal modification of BN is reached at approx. 750 ° C. In this particular case, the pyrolysis takes place only under protective gas, for example argon or nitrogen, and not in an ammonia atmosphere. The resulting slight weight loss of 5.1% results in low shrinkage and thus a small pore volume in the combination of BN and the magnetic powder.

Als geeigneter Ausgangstoff für die Beschichtung von Magnetpulvern mit einer Aluminiumnitrid-Keramik erwiesen sich Polyazalane. Diese wurden durch thermische Kondensation von Diisobutylaluminiumhydrid mit ungesättigten Nitrilen synthetisiert, was zu aushärtbarem flüssigen Polyazalanen führt. Damit wurden die magnetischen Pulver beschichtet. Die Polyazalane dienen dabei gleichzeitig als duroplastisches Gleit und Bindemittel, welches nach sich anschließender Pyrolyse bei 200 °C zu einem nichtschmelzenden Feststoff vernetzt und in nächsten Verfahrensschritt vollständig unter inerter Atmosphäre zu AlN pyrolysiert.As a suitable starting material for the coating of magnetic powders with an aluminum nitride ceramic, polyazalanes were found. These were by thermal condensation of Diisobutylaluminum hydride synthesized with unsaturated nitriles, which leads to curable liquid polyazalanes. This was used to coat the magnetic powders. The polyazalans also serve as a thermoset glide and binder, which after subsequent pyrolysis crosslinked to a non-melting solid at 200 ° C. and in the next process step completely under an inert atmosphere pyrolyzed to AlN.

Als geeigneter Ausgangstoff für die Beschichtung von Magnetpulvern mit einer Siliziumnitrid-Keramik erwiesen sich Carbosilane und Polysilazane. Siliziumnitrid Si3N4 entsteht dabei durch Pyrolyse dieser Verbindungen in Ammoniakatmosphäre. Die Pyrolyse unter Schutzgas erbrachte eine Beschichtung mit Siliziumcarbonitriden der Formel SiNxCy.Carbosilanes and polysilazanes have proven to be a suitable starting material for coating magnetic powders with a silicon nitride ceramic. Silicon nitride Si 3 N 4 is formed by pyrolysis of these compounds in an ammonia atmosphere. Pyrolysis under protective gas produced a coating with silicon carbonitrides of the formula SiN x C y .

Gläser, Emails und Lasuren stellen Kombinationen von Metallund Nichtmetalloxiden unterschiedlicher Zusammensetzung dar. Ein Ausführungsbeispiel zur Herstellung von glasartigen Beschichtungen von weichmagnetischen Pulvern ist die Verwendung von Silanen mit mehreren Silanolgruppen, die bei Zugabe von Wasser unter Abspaltung von Alkohol Polymere bilden. Das von der Fa. Hüls hergestellten Produkt NH 2100 ist ein noch nicht vollständig vernetztes, lösliches und schmelzbares Polykondensat des Trimethoxymethylsilan (CH3Si(OCH3)3)x und stellt ein ausgezeichnetes Vorläufermaterial für eine glasartige Beschichtung magnetischer Pulver dar. NH 2100 läßt sich unter Abspaltung von Wasser und Alkohol weiter kondensieren und geht bei einer anschließenden Pyrolyse mit einer keramischen Ausbeute von ca. 90 Gew.-% in ein Glas der Zusammensetzung SiOxCy (x = 1,9-2,1, y = 0,6-3,0) über.Glasses, enamels and glazes are combinations of metal and non-metal oxides of different compositions. An embodiment for the production of glass-like coatings of soft magnetic powders is the use of silanes with several silanol groups which form polymers when water is added with the elimination of alcohol. The product NH 2100 manufactured by Hüls is a not yet fully cross-linked, soluble and meltable polycondensate of trimethoxymethylsilane (CH 3 Si (OCH 3 ) 3 ) x and is an excellent precursor material for a glass-like coating of magnetic powders. NH 2100 leaves condense further with elimination of water and alcohol and, in the case of subsequent pyrolysis, goes into a glass of the composition SiO x C y (x = 1.9-2.1, y = 0) with a ceramic yield of approximately 90% by weight , 6-3.0) above.

Ausführungsbeispiel 1:Example 1:

99,9 Gew.-% Weicheisenpulver ABM 100,32 (oberflächenphosphatiert, Fa. Höganäs) werden mit 0,6 Gew.-% NH 2100 gecoatet, welches in einer Lösung in Aceton erfolgt. Bei Raumtemperatur wird diese Mischung unter 6 to/cm2 zu Probestäben verpreßt und das Harz bei 220 °C vernetzt. Die derart hergestellte Probe weist eine Festigkeit von 26 N/mm2 und einen spezifischen elektrischen Widerstand von 20000 µOhm auf. Das Polymer wird anschließend bei 700 °C unter Schutzgas pyrolysiert und geht in ein kohlenstoffhaltiges Glas SiOxCy über. Zusätzlich bilden sich erste Sinterhälse zwischen den Eisenteilchen. Dadurch sinkt der elektrische Widerstand auf 5 µΩm (Reineisen weist 0,1 µΩm auf), während die Biegefestigkeit auf 80 N/mm2 ansteigt. Bei weiterer Temperaturerhöhung nehmen die Eisen-Eisen-Sinterbrücken und die Festigkeit zu, während der spezifische elektrische Widerstand weiter abnimmt.99.9% by weight of soft iron powder ABM 100.32 (surface-phosphated, from Höganäs) are coated with 0.6% by weight of NH 2100, which is carried out in a solution in acetone. At room temperature, this mixture is pressed under 6 to / cm2 to test rods and the resin is crosslinked at 220 ° C. The sample produced in this way has a strength of 26 N / mm 2 and a specific electrical resistance of 20,000 μOhm. The polymer is then pyrolyzed at 700 ° C under a protective gas and passes into a carbon-containing glass SiO x C y . In addition, first sinter necks form between the iron particles. As a result, the electrical resistance drops to 5 µΩm (pure iron has 0.1 µΩm), while the bending strength increases to 80 N / mm 2 . As the temperature increases further, the iron-iron sintered bridges and the strength increase, while the specific electrical resistance continues to decrease.

Durch Zusatz weiterer Verbindungen, welche sich in glasbildende Oxide überführen lassen, entstehen die entsprechenden Gläser oder Emails. Ihre Zusammensetzung wird im Hinblick auf eine gute Haftung am Magnetpulver ausgewählt. So dient ein Zusatz von Aluminiumstearat sowohl als Gleitmittel zur Entformung aus dem Preßwerkzeug als auch nach seiner thermischen Zersetzung zu Al203 als Glasbildner.The corresponding glasses or enamels are formed by adding further compounds which can be converted into glass-forming oxides. Their composition is selected with a view to good adhesion to the magnetic powder. Thus, an addition of aluminum stearate serves both as a lubricant for removal from the press tool and after its thermal decomposition to Al 2 0 3 as a glass former.

Ausführungsbeispiel 2:Example 2:

946,5 g phosphatiertes Eisenpulver (AB 100.32,Fa. Höganäs) wird im Kneter mit einer Lösung von 2,4 g Methylpolysiloxan-Präpolymer (NH 2100, Chemiewerk Nünchritz) in Aceton benetzt. Nach Zugabe einer Lösung von 46,3 g Natrium-Trimethylsilanolat in Aceton bildet sich ein Gelmantel um die Eisenpartikel. Nach dem Verdampfen des Acetons im Kneter wird 5 g Aluminiumtristearat zugesetzt und dieses unter Kneten bei 140 °C aufgeschmolzen. Das Aluminiumtristearat wirkt beim anschließenden axialen Verpressen des Verbundwerkstoffes als Gleit- und Formtrennmittel. Beim Erhitzen der Preßlinge unter Schutzgas auf 200 °C härtet das Methylpolysiloxan-Präpolymer zunächst aus. Bei weiterer Temperaturerhöhung auf 800°C pyrolysieren alle eingesetzten Produkte und schmelzen zu ca. 40 g eines Glases mit der ungefähren Zusammensetzung 27 g Si02, 12.8 g Na2O und 0,3 g A1203 auf.946.5 g of phosphated iron powder (AB 100.32, Höganäs) is wetted in the kneader with a solution of 2.4 g of methylpolysiloxane prepolymer (NH 2100, Nünchritz chemical plant) in acetone. After adding a solution of 46.3 g sodium trimethylsilanolate in acetone, a gel coat forms around the iron particles. After the acetone has been evaporated in a kneader, 5 g of aluminum tristearate are added and this is melted at 140 ° C. while kneading. The aluminum tristearate acts as a lubricant and mold release agent during the subsequent axial pressing of the composite material. When the compacts are heated to 200 ° C under protective gas, the methylpolysiloxane prepolymer initially hardens. When the temperature is increased further to 800 ° C., all the products used pyrolyze and melt to about 40 g of a glass with the approximate composition 27 g Si0 2 , 12.8 g Na 2 O and 0.3 g A1 2 0 3 .

Claims (14)

Weichmagnetischer, formbarer Verbundwerkstoff, mit einem weichmagnetische Eigenschaften aufweisenden Pulver und mindestens einer Silizium enthaltenden Verbindung oder einer Aluminium enthaltenen Verbindung oder einer Bor enthaltenden Verbindung, wobei die Körner des Pulvers mit der Silizium enthaltenden Verbindung, der Aluminium enthaltenden Verbindung oder der Bor enthaltenden Verbindung beschichtet sind.Soft magnetic, malleable composite, with a soft magnetic powder and at least one compound containing silicon or one Aluminum-containing compound or a boron-containing Compound, the grains of the powder with the silicon containing compound, the aluminum containing compound or the compound containing boron are coated. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Siliziumverbindung ausgewählt ist aus der Gruppe: Wasserstoffverbindungen des Siliziums, Polydialkylsilanen, Carbosilanen, Polysilazanen, Alkoxyalkylsilanen, Alkylpolysiloxanen, Alkylsilanolen und Verbindungen von Alkylsilanolen mit Elementen der ersten Hauptgruppe.Composite material according to claim 1, characterized in that the silicon compound is selected from the Group: hydrogen compounds of silicon, polydialkylsilanes, Carbosilanes, polysilazanes, alkoxyalkylsilanes, Alkylpolysiloxanes, alkylsilanols and compounds of alkylsilanols with elements of the first main group. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anteil der Siliziumverbindung 0,2 bis 6 Gew.%, insbesondere 0,3 bis 1 Gew.%, bezogen auf die Gesamteinwaage, beträgt.Composite material according to claim 1 or 2, characterized in that that the proportion of silicon compound 0.2 to 6% by weight, in particular 0.3 to 1% by weight, based on the total weight, is. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß mindestens zwei Siliziumverbindungen ausgewählt aus der Gruppe: Wasserstoffverbindungen des Siliziums, Chlorverbindungen des Siliziums, Silizium enthaltene Carbodiimide, Polydialkylsilanen, Carbosilanen, Polysilazanen, Silazanen, Alkoxyalkylsilanen, Alkylpolysiloxanen, Alkylsilanolen und Verbindungen von Alkylsilanolen mit Elementen der ersten Hauptgruppe in der Beschichtung enthalten sind.Composite material according to claim 1, characterized in that selected at least two silicon compounds from the group: hydrogen compounds of silicon, Chlorine compounds of silicon, carbodiimides containing silicon, Polydialkylsilanes, carbosilanes, polysilazanes, Silazanes, alkoxyalkylsilanes, alkylpolysiloxanes, alkylsilanols and compounds of alkylsilanols with elements the first main group are included in the coating. Verbundwerkstoff nach Anspruch 4, dadurch gekennzeichnet, daß der Anteil der Siliziumverbindungen 0,2 bis 6 Gew.%, insbesondere 0,3 bis 5 Gew.%, bezogen auf die Gesamteinwaage, beträgt.Composite material according to claim 4, characterized in that the proportion of silicon compounds 0.2 to 6 % By weight, in particular 0.3 to 5% by weight, based on the total weight, is. Verbundwerkstoff nach Anspruch 5, dadurch gekennzeichnet, daß das Gewichtsverhältnis der zwei Siliziumverbindungen zueinander 1:10 bis 1:25, insbesondere 1:15 bis 1:21, beträgt.Composite material according to claim 5, characterized in that that the weight ratio of the two silicon compounds to each other 1:10 to 1:25, in particular 1:15 to 1:21. Verbundwerkstoff nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eine organometallische oder organische Aluminiumverbindung, insbesondere ein Polyazalan, enthalten ist.Composite material according to one of the preceding claims, characterized in that at least one organometallic or organic aluminum compound, in particular a polyazalan is included. Verbundwerkstoff nach Anspruch 7, dadurch gekennzeichnet, daß der Anteil der Aluminiumverbindung 0,2 bis 2 Gew.%, insbesondere 0,2 bis 0,9 Gew.% beträgt.Composite material according to claim 7, characterized in that the proportion of the aluminum compound 0.2 to 2% by weight, in particular 0.2 to 0.9% by weight. Verbundwerkstoff nach Anspruch 7, dadurch gekennzeichnet, daß der Anteil an Polyazalan 0,2 bis 2 Gew.%, bezogen auf die Gesamteinwaage, beträgt.Composite material according to claim 7, characterized in that the proportion of polyazalan 0.2 to 2 wt.% Based on the total weight. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Borverbindung ausgewählt ist aus der Gruppe: Borazol, π-Donor-Boranaddukt, Borasilazan, Polyborasilazane. Composite material according to claim 1, characterized in that the boron compound is selected from the group: Borazole, π-donor borane adduct, borasilazane, polyborasilazanes. Verbundwerkstoff nach Anspruch 1 oder 10, dadurch gekennzeichnet, daß der Anteil an der Borverbindung 0,2 bis 2 Gew.%, bezogen auf die Gesamteinwaage, beträgt.Composite material according to claim 1 or 10, characterized in that that the proportion of the boron compound 0.2 to 2% by weight, based on the total weight. Verfahren zur Herstellung eines weichmagnetischen Verbundwerkstoffes nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß nach einem Formpreßschritt der Formpreßling einer thermischen Behandlung unterworfen wird.Process for producing a soft magnetic Composite material according to one of claims 1 to 11, characterized characterized in that after a compression step the Molded product is subjected to a thermal treatment. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Temperatur nach dem Formpreßschritt so gewählt wird, daß sich das Beschichtungsmaterial in ein keramisches oder metallisches oder intermetallisches Endprodukt umwandelt.A method according to claim 12, characterized in that the temperature after the compression step is chosen that the coating material in a ceramic or converts metallic or intermetallic end product. Verfahren zur Herstellung eines weichmagnetischen Verbundwerkstoffes nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß der Verbundwerkstoff vor der thermischen Behandlung einer ersten thermischen Behandlung unterworfen wird, wobei die Temperatur der ersten thermischen Behandlung 100°C bis 200°C, insbesondere 120°C bis 180°C, beträgt.Process for producing a soft magnetic Composite material according to claim 12 or 13, characterized in that the composite material before thermal treatment subjected to a first thermal treatment being the temperature of the first thermal treatment 100 ° C to 200 ° C, in particular 120 ° C to 180 ° C.
EP00119956A 1997-08-14 1998-08-11 Soft magnetic, deformable composite material and process for producing the same Withdrawn EP1061534A3 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19735271A DE19735271C2 (en) 1997-08-14 1997-08-14 Soft magnetic, mouldable composite material and process for its production
DE19735271 1997-08-14
EP98948761A EP0931322B1 (en) 1997-08-14 1998-08-11 Soft magnetic, deformable composite material and process for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP98948761A Division EP0931322B1 (en) 1997-08-14 1998-08-11 Soft magnetic, deformable composite material and process for producing the same

Publications (2)

Publication Number Publication Date
EP1061534A2 true EP1061534A2 (en) 2000-12-20
EP1061534A3 EP1061534A3 (en) 2000-12-27

Family

ID=7838976

Family Applications (2)

Application Number Title Priority Date Filing Date
EP98948761A Expired - Lifetime EP0931322B1 (en) 1997-08-14 1998-08-11 Soft magnetic, deformable composite material and process for producing the same
EP00119956A Withdrawn EP1061534A3 (en) 1997-08-14 1998-08-11 Soft magnetic, deformable composite material and process for producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP98948761A Expired - Lifetime EP0931322B1 (en) 1997-08-14 1998-08-11 Soft magnetic, deformable composite material and process for producing the same

Country Status (5)

Country Link
US (1) US6537389B1 (en)
EP (2) EP0931322B1 (en)
JP (1) JP2001504283A (en)
DE (2) DE19735271C2 (en)
WO (1) WO1999009565A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033135A1 (en) * 2002-09-27 2004-04-22 Vacuumschmelze Gmbh & Co. Kg Moulded soft magnetic part produced by metal powder processing technique and exhibiting high maximum permeability, related manufacturing methods and uses

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945619A1 (en) * 1999-09-23 2001-04-19 Bosch Gmbh Robert Press compound and method for producing a soft magnetic composite material with the press compound
DE60132314T2 (en) * 2000-03-10 2009-01-02 Höganäs Ab METHOD FOR PRODUCING POWDER ON IRON BASE AND POWDER ON IRON BASIS
DE10106172A1 (en) * 2001-02-10 2002-08-29 Bosch Gmbh Robert Process for producing a molded part from a soft magnetic composite material
US7153594B2 (en) * 2002-12-23 2006-12-26 Höganäs Ab Iron-based powder
DE10331339A1 (en) 2003-07-10 2005-02-03 Siemens Ag Electromagnetic switching device
JP2005133148A (en) * 2003-10-30 2005-05-26 Mitsubishi Materials Corp Method for manufacturing compound soft magnetic material having high strength and high specific resistance
SE0303580D0 (en) * 2003-12-29 2003-12-29 Hoeganaes Ab Composition for producing soft magnetic composites by powder metallurgy
US7494600B2 (en) * 2003-12-29 2009-02-24 Höganäs Ab Composition for producing soft magnetic composites by powder metallurgy
SE0401644D0 (en) * 2004-06-23 2004-06-23 Hoeganaes Ab Lubricants for insulated soft magnetic iron-based powder compositions
KR100845392B1 (en) 2004-06-23 2008-07-09 회가내스 아베 Lubricants for insulated soft magnetic iron-based powder compositions
US7416578B2 (en) * 2004-09-17 2008-08-26 Höganäs Ab Powder metal composition
JP4613622B2 (en) * 2005-01-20 2011-01-19 住友電気工業株式会社 Soft magnetic material and dust core
DE102006032517B4 (en) * 2006-07-12 2015-12-24 Vaccumschmelze Gmbh & Co. Kg Process for the preparation of powder composite cores and powder composite core
JP5332408B2 (en) * 2008-08-29 2013-11-06 Tdk株式会社 Powder magnetic core and manufacturing method thereof
US8911663B2 (en) * 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications
DE102013212866A1 (en) * 2013-07-02 2015-01-08 Robert Bosch Gmbh Sintered soft magnetic composite material and process for its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696725A (en) * 1985-06-26 1987-09-29 Kabushiki Kaisha Toshiba Magnetic core and preparation thereof
US4919734A (en) * 1984-09-29 1990-04-24 Kabushiki Kaisha Toshiba Compressed magnetic powder core
EP0406580A1 (en) * 1989-06-09 1991-01-09 Matsushita Electric Industrial Co., Ltd. A composite material and a method for producing the same

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2068658A (en) * 1934-06-20 1937-01-26 Associated Electric Lab Inc Inductance coil core
DE667919C (en) * 1934-08-16 1938-11-23 Herbert Burchard Process for the production of mass cores
DE966314C (en) * 1949-08-26 1957-07-25 Standard Elek K Ag Process for the production of mass cores from magnetizable powder particles raised with an insulating material of high softening temperature
US3856582A (en) * 1973-06-22 1974-12-24 Gen Electric Fabrication of matrix bonded transition metal-rare earth alloy magnets
DE2501042B2 (en) * 1974-01-23 1977-12-08 Rilsan Corp, Glen Rock, N.J. (V.StA.) POWDER, THE PARTICLES OF WHICH ARE PRACTICALLY UNIFORM COVERED WITH A NYLON, WHICH CAN BE TRAINED OR. LET FIBERS DRAW OUT
JPS579802A (en) * 1980-06-20 1982-01-19 Dainippon Ink & Chem Inc Metallic magnetic powder and its manufacture
DE3026696A1 (en) * 1980-07-15 1982-02-18 Basf Ag, 6700 Ludwigshafen FERROMAGNETIC, PARTICULARLY IRON METAL PARTICLES WITH A SURFACE COVER, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR THE PRODUCTION OF MAGNETIC RECORDING CARRIERS
US4601765A (en) * 1983-05-05 1986-07-22 General Electric Company Powdered iron core magnetic devices
JPH0611008B2 (en) * 1983-11-16 1994-02-09 株式会社東芝 Dust core
US4731191A (en) * 1985-12-31 1988-03-15 Dow Corning Corporation Method for protecting carbonyl iron powder and compositions therefrom
JPH01164006A (en) * 1987-09-02 1989-06-28 Kao Corp Ferromagnetic metal powder and manufacture thereof
US4869964A (en) * 1987-12-14 1989-09-26 The B. F. Goodrich Company Oxidation resistant compositions for use with rare earth magnets
US5198137A (en) * 1989-06-12 1993-03-30 Hoeganaes Corporation Thermoplastic coated magnetic powder compositions and methods of making same
JPH03241705A (en) * 1989-11-14 1991-10-28 Hitachi Metals Ltd Magnetically anisotropic magnet and manufacture thereof
US5211896A (en) * 1991-06-07 1993-05-18 General Motors Corporation Composite iron material
JPH05109520A (en) * 1991-08-19 1993-04-30 Tdk Corp Composite soft magnetic material
US5206327A (en) * 1991-10-07 1993-04-27 Hercules Incorporated Preceramic polymers incorporating boron and their application in the sintering of carbide ceramics
EP0574856B1 (en) * 1992-06-15 1996-12-11 Kureha Kagaku Kogyo Kabushiki Kaisha Resin magnetic compound and molded article thereof
US5898253A (en) * 1993-11-18 1999-04-27 General Motors Corporation Grain oriented composite soft magnetic structure
US5798439A (en) * 1996-07-26 1998-08-25 National Research Council Of Canada Composite insulating coatings for powders, especially for magnetic applications
US5980603A (en) * 1998-05-18 1999-11-09 National Research Council Of Canada Ferrous powder compositions containing a polymeric binder-lubricant blend
US6410770B2 (en) 2000-02-08 2002-06-25 Gelest, Inc. Chloride-free process for the production of alkylsilanes suitable for microelectronic applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919734A (en) * 1984-09-29 1990-04-24 Kabushiki Kaisha Toshiba Compressed magnetic powder core
EP0434669A2 (en) * 1984-09-29 1991-06-26 Kabushiki Kaisha Toshiba Method of making a coated magnetic powder and a compressed magnetic powder core
US4696725A (en) * 1985-06-26 1987-09-29 Kabushiki Kaisha Toshiba Magnetic core and preparation thereof
EP0406580A1 (en) * 1989-06-09 1991-01-09 Matsushita Electric Industrial Co., Ltd. A composite material and a method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033135A1 (en) * 2002-09-27 2004-04-22 Vacuumschmelze Gmbh & Co. Kg Moulded soft magnetic part produced by metal powder processing technique and exhibiting high maximum permeability, related manufacturing methods and uses

Also Published As

Publication number Publication date
DE59808444D1 (en) 2003-06-26
EP0931322A1 (en) 1999-07-28
EP0931322B1 (en) 2003-05-21
DE19735271C2 (en) 2000-05-04
JP2001504283A (en) 2001-03-27
US6537389B1 (en) 2003-03-25
DE19735271A1 (en) 1999-02-25
WO1999009565A1 (en) 1999-02-25
EP1061534A3 (en) 2000-12-27

Similar Documents

Publication Publication Date Title
EP1061534A2 (en) Soft magnetic, deformable composite material and process for producing the same
DE2855785C2 (en) Process for sintering reaction-bonded silicon nitride
DE2813666C2 (en)
DE2256326B2 (en) Process for the production of a shaped body from a mixture of alpha silicon carbide, graphite and a binder
DE4113061A1 (en) Composite material and method for its production
DE2614839B2 (en) Silicon nitride sintered body and process for its manufacture
DE68907158T2 (en) Process for producing a composite body made of sintered silicon carbide.
DE3129633A1 (en) "PRACTICAL, PORE-FREE SHAPED BODIES MADE OF POLYCRISTALLINE SILICON CARBIDE, MADE BY ISOSTATIC HOT PRESSING"
DE10022940A1 (en) Molding of magnetic article e.g., magnetic core used in automotive industry involves forming encapsulated layer of ceramic material on ferromagnetic particles, compacting the particles and annealing the resultant magnetic article
EP1164114A2 (en) Shaped body of polymer-derived ceramic
EP2053138A1 (en) Composite material made from metal powder, starting material and process of preparation
DE19612926C2 (en) Silicon nitride composite powder for thermal coating technologies and processes for their production
EP0110053B1 (en) Method of manufacturing a dense polycrystalline silicon carbide article
DE3500962A1 (en) Process for preparing a sintered body comprising silicon carbide
DE3116786C2 (en) Homogeneous silicon carbide molded body and process for its production
US4518702A (en) Silicon carbide-boron carbide carbonaceous body
DE4007825C2 (en)
EP0672637A2 (en) Fibre composite material having a ceramic matrix and method of making it
WO2007028181A1 (en) Method for production of a ceramic material and ceramic material
EP0181317A2 (en) Process for manufacturing a porous filter body from metal powder
DE19708509C1 (en) Graded structure aluminium nitride-based composite ceramic
DE4013025C2 (en) Manufacture of boron nitride moldings
JPS61201662A (en) Manufacture of composite ceramics
DE102008034258A1 (en) Sintered material
DE102013200229B4 (en) Process for producing a soft magnetic composite material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AC Divisional application: reference to earlier application

Ref document number: 931322

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 20010627

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20021015

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050218