EP1057160A1 - Systeme d'aide a l'evitement de collisions d'aeronefs avec le terrain - Google Patents

Systeme d'aide a l'evitement de collisions d'aeronefs avec le terrain

Info

Publication number
EP1057160A1
EP1057160A1 EP99961104A EP99961104A EP1057160A1 EP 1057160 A1 EP1057160 A1 EP 1057160A1 EP 99961104 A EP99961104 A EP 99961104A EP 99961104 A EP99961104 A EP 99961104A EP 1057160 A1 EP1057160 A1 EP 1057160A1
Authority
EP
European Patent Office
Prior art keywords
aircraft
risk
terrain
symbol
trajectory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99961104A
Other languages
German (de)
English (en)
Inventor
Bruno Thomson-CSF Propriété Intell. AYMERIC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics SAS
Original Assignee
Thales Avionics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics SAS filed Critical Thales Avionics SAS
Publication of EP1057160A1 publication Critical patent/EP1057160A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0086Surveillance aids for monitoring terrain
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft

Definitions

  • the invention relates to assistance in piloting aircraft, and in particular assistance in avoiding collisions with the terrain.
  • This invention provides aircraft crews with the means of anticipating problems of conflict between the trajectory of the aircraft and the terrain, taking mainly into account the configuration of the terrain in the vicinity of the aircraft, but incidentally also the presence of '' other elements (other aircraft, adverse weather zones, etc.).
  • terrain databases are divided into cells whose uniform altitude is the altitude of the highest terrain point in the cell.
  • the cells are not all the same size: the lower the plane, the smaller the cells; if there is an aerodrome, the cells are smaller than if there is none.
  • the size of the cells typically varies from 15 minutes of arc (region always overflown at high altitude) to 3 seconds of arc (near an airstrip).
  • the terrain can be represented in plan with cells colored differently according to their altitude, either compared to a reference level of the ground, or compared to the current altitude level of the airplane (for example coloring in red of cells whose difference in altitude with respect to the aircraft is too small), or again with respect to the instantaneous plane of descent of the aircraft (for example, coloring in red of cells whose difference in altitude with respect to the aircraft, when the plane will pass over this cell, is greater than that of the plane).
  • the terrain can also be represented in lateral elevation, in the form of an altitude profile of the successive cells located on the path of the aircraft.
  • the terrain can be represented in three dimensions; the image presented is then the one that a pilot would see through the windshield or the one that an observer would see following the plane while staying above and behind him.
  • Each of these field representations can be faulted depending on the pilot's area of interest:
  • a lateral section or side view will not give any instruction.
  • an aircraft piloting assistance system comprising means for calculating a predicted trajectory of the aircraft from its current location point, a terrain database comprising information position and altitude of the terrain, and means for determining that there is a high risk of collision between the aircraft and the ground as a function of the predicted trajectory and of the terrain data surrounding this trajectory, characterized in that the system comprises means for simultaneously displaying on a screen a plot of the predicted trajectory and a collision risk symbol evoking the nature of the risk incurred, the risk symbol being located on the screen, relative to the plot of predicted trajectory, to a position that corresponds to the actual relative position, relative to the predicted path, of a soil creating this risk.
  • the display of this symbol on or near the predicted trajectory path can be done in a plan view or in a side elevation, or in both.
  • a three-dimensional representation is possible as well as it offers less interest.
  • the system preferably displays on the same screen not only the predicted trajectory of the aircraft, calculated from the current position, the speed data of the aircraft, and the engaged and armed modes of the automatic pilot, but also the trajectory theoretical of the aircraft (i.e. its flight plan). The risk of collision is also determined in relation to this theoretical trajectory.
  • the risk of collision with the ground symbol may have a variable shape, dimension, color and / or contour depending on the conditions which led to its display, but it is indeed a risk symbol and not a more or less schematic representation of the real configuration of the terrain.
  • the display is interactive in the sense that the system comprises means for designating on the screen a displayed collision risk symbol, and means for displaying, in response to this designation, additional information on the risks of collision associated with this symbol.
  • FIG. 1 shows a screen view associated with the system according to the invention, the view being a top view
  • FIG. 2 shows a screen view showing a side elevation along the predicted path of the aircraft
  • FIG. 3 shows a screen view similar to Figure 1, on which additional information, related to a particular terrain symbol, is displayed;
  • FIG. 1 represents an example of a screen as it would appear according to the invention during a navigation planned with a predetermined flight plan PV, represented by a line broken in solid lines but at a time when the airplane s 'is removed from this theoretical flight plan and follows a predicted trajectory TP represented here by a straight line in dotted lines.
  • PV predetermined flight plan
  • the airplane is supposed to fly here on automatic piloting, in heading maintenance mode; the predicted trajectory TP is therefore represented by a vertical straight line intersecting a circular sector graduated in heading, the point of intersection between the predicted trajectory and the graduated sector representing the heading imposed on the aircraft by the on-board computer.
  • An AV aircraft symbol in the center of the graduated sector represents the aircraft's current position on its predicted path.
  • the graduated sector, the airplane symbol, and the predicted trajectory remain generally at a fixed position on the screen, but the graduated sector revolves around its center when the airplane rotates.
  • the position of the aircraft and its predicted trajectory are the geographic reference with respect to which terrain symbols will be represented on this screen.
  • navigation indications may appear on the screen, such as the names of the devices used at this time to determine the position of the aircraft, the elapsed time of the flight, the "aypoints" (navigation reference points), etc.
  • Terrain relief symbols ST1, ST2, ST3, specific to the present invention are represented at various points on the screen, but only if the on-board computer determines that they must be represented because of the high risks they represent. An absence of risk will lead to an absence of symbol representation, whatever the altitude of the terrain overflown by the aircraft.
  • the terrain symbols are located on the screen at a position which represents, here in polar coordinates with respect to the airplane symbol AV and to the predicted trajectory TP, the real geographical position of the terrain at risk.
  • the angle formed on the screen between on the one hand the predicted trajectory and on the other hand the axis connecting the airplane symbol to the relief symbol corresponds to the deposit (in top view) of the relief at risk relative to the at the time of posting.
  • the distance between the airplane symbol and the relief symbol represents the estimated distance between the airplane and the relief at risk.
  • the screen is preferably graduated not only with regard to the heading (first polar coordinate), but also with regard to the distances.
  • two distance circles CD1 and CD2 are drawn concentrically to the sector graduated in heading, and are each assigned a predetermined distance value, preferably expressed in nautical miles.
  • the circle CD1 expresses a distance of 25 miles, and the circle CD2 a distance of 37.5 miles. These distances are displayed on these circles so that the pilot has an instant understanding of the geographical location of the reliefs at risk displayed by the on-board computer.
  • the graduation in distances is not necessarily constant during the various flight phases, the graduations can be separated by several tens of miles in cruise flight phase and only by a few miles or fractions of miles in approach phase aerodrome, the importance of the risks and the corrective measures to be taken being more critical during the approach phase.
  • a terrain symbol ST1 indicating a terrain at risk is displayed directly on the predicted trajectory of the aircraft, and two symbols ST2 and ST3 are displayed, one on the left, the other on the right of the trajectory. .
  • the symbol ST3, in this example, is located between the predicted trajectory and the predetermined flight plan PV.
  • Such an aircraft collision risk symbol CA is also represented on the predicted trajectory. This of course presupposes that the aircraft is equipped with means for knowing the position of the aircraft which surround it, whether these means are radars or a radio system for direct communication between aircraft, by which the aircraft communicate their position automatically, in a standardized format directly usable by the on-board computer.
  • the aircraft collision symbol CA is again represented on the screen at a position which represents, in polar coordinates, the relative position of the aircraft at risk with respect to the aircraft, and only if the risk is high. This representation of FIG. 1 is already in itself a precious and telling indication for the pilot. However, it can be supplemented with other information.
  • the computer to also display a representation in lateral elevation of the aircraft symbol, of its predicted trajectory, and of terrain terrain risk and aircraft collision risk symbols.
  • This representation can be simultaneous with the first, for example in the form of a screen portion (or a screen juxtaposed to the first) reserved for the lateral elevation.
  • the side elevation view is placed just below the plan view. Or, it appears on the screen instead of the plan view, upon interrogation of the pilot.
  • FIG. 2 represents such an elevation representation in a vertical surface passing through the predicted trajectory (vertical plane for a linear trajectory).
  • the predicted trajectory TP ′ which corresponds to the lateral elevation of the trajectory TP in FIG. 1, is a descent straight line, in the aerodrome approach phase.
  • the airplane symbol is designated by AV.
  • a vertical graduation in altitude is represented; a horizontal graduation in distance or flight time could also be represented; the AV airplane symbol is preferably fixed in vertical and horizontal position, the altitude graduation scrolling if the airplane changes altitude (the real altitude is given to the computer by the on-board instruments).
  • the terrain symbols, displayed by the calculator in case of risk, scroll sideways from right to left as the risks get closer.
  • the representation according to the invention is a representation at the same time complete but very simplified of the high risks of collision with the terrain, it is preferable that the pilot has the possibility of obtaining additional information on the risks indicated.
  • This information will preferably be obtained by moving a mobile cursor on the screen to a terrain symbol, and by "clicking" on this symbol, to launch a program for displaying additional information linked to this symbol.
  • the screen can display on its lower part a new image, represented in FIG. 4, which is a representation in front view, graduated in altitude, with an airplane symbol (AV) and a representation terrain relief in cells of different altitude levels, with an indication that the terrain exceeds the maximum altitude that the aircraft can fly over, given its current altitude.
  • FIG. 4 is a representation in front view, graduated in altitude, with an airplane symbol (AV) and a representation terrain relief in cells of different altitude levels, with an indication that the terrain exceeds the maximum altitude that the aircraft can fly over, given its current altitude.
  • AV airplane symbol
  • the airplane was flying on autopilot in heading maintenance mode.
  • the invention also applies to other modes of automatic piloting as well as manual piloting.
  • manual piloting the on-board computer will calculate the predicted trajectory from instantaneous speed and heading data for the aircraft. This trajectory will in principle be a straight line as in heading maintenance mode.
  • the predicted path shown on the screen will not necessarily be a straight line.
  • the airplane in a particular mode, the airplane must join a flight plan trajectory on which it is not currently.
  • the computer will be "armed” in "navigation” mode to join the flight plan; when it has joined the flight plan trajectory, it will switch to "effective navigation" mode and will follow a trajectory which is the flight plan.
  • the predicted trajectory includes the catch-up trajectory (Autopilot in heading maintenance mode) and a portion of the flight plan which will be followed since the autopilot will enter navigation mode.
  • the calculator develops a trajectory to reach the flight plan. It is this catch-up trajectory that will be displayed on the screen as a predicted trajectory, in relation to which the risks will be calculated and the terrain symbols displayed or not displayed. This trajectory has no reason to be a straight line; it can include broken segments or curves.
  • the predicted trajectory will be the flight plan, represented by example like the PV flight plan of figure 1, with an airplane symbol placed on this flight plan.
  • the autopilot in "armed” mode on “localizer”, the autopilot prepares the aircraft to receive an electromagnetic beam from ground equipment called “localizer” or “LOC”; it establishes a predicted trajectory, straight or curved, towards an area where the signaling device called “localizer” transmits a radio location signal.
  • the airplane symbols will be displayed by calculating the risks in relation to this trajectory.
  • the autopilot will go into "effective localizer”mode; the system will calculate the predicted trajectory from the radio information received.
  • the predicted trajectory will include, before intercepting the loc axis, a portion of this axis. It is in relation to this trajectory that risks will be calculated and displayed if they are high.
  • the system will also take into account the vertical modes of the autopilot.
  • one of these modes is conventionally "level change" in which an ascent (or descent) trajectory is taken until a set altitude is reached.
  • the system will predict the break in the vertical plane, when the set altitude is reached.
  • one criterion is the possibility for the plane to turn around at any time. This is the reason for example of the display of the symbol ST2 in FIG. 1. If the airplane follows its trajectory it remains far from the terrain relief and the risk should not be displayed for this reason alone. But if we want to leave the plane the possibility to turn around at any time, and taking into account the fact that it cannot turn around from the right because of the presence of another relief at right, the computer will display the symbol ST2. By clicking on this symbol, the pilot could also have confirmation by the appearance on the screen of a U-turn trajectory which would pass over this symbol.
  • the computer can take into account other elements than terrain relief to arrive at the need to represent a symbol of high risk of terrain collision.
  • the presence of an unfavorable weather zone preventing a U-turn from the right can cause the appearance of a terrain symbol on the left, while the risk linked to the terrain would in other circumstances be low: the plane normally has the possibility to turn around on the right, but no longer has it because of the weather zone.
  • the adverse weather symbol will appear on the right in addition to the terrain symbol on the left. This means that the system has increased the risk calculation margin due to the presence of this weather zone.
  • the computer will take into account four possible types of predicted trajectories: - instantaneous trajectory when the autopilot is not engaged;
  • a trajectory initiated at decision height at the minimum rate of climb with one engine less may be considered to display a terrain symbol at a place where the separation margin would be reduced.
  • a trajectory initiated at the end of the runway at minimum climb rate with one engine inoperative may be considered to display a terrain symbol in a location where the separation margin would be reduced.
  • the system considers the area between the trajectory of the flight plan and the predicted trajectory and identifies the separation between this area and the land.
  • trajectories will be taken into account by the system with lateral and vertical margins.
  • a trajectory is not defined as a wire, but as a tube of rectangular section.
  • the section of this tube will take account of margins which will depend on:
  • - altitude error, - flight phase for example, on final approach, the airplane is supposed to follow a fixed descent profile. In addition, it is natural for the aircraft to reduce its separation from the terrain. It is therefore not necessary to take a vertical margin. On the other hand, on an intermediate approach, the crew can receive an order from the air traffic control at any time to descend to a lower landing. A vertical margin will therefore be taken into account to generate symbols of lower priority but which can nevertheless warn the crew of the harmful consequence that a descent could have in certain places.
  • the present system can also take into account other "threats" to improve the diagnosis and adjust the lateral and / or vertical margins.
  • TCAS Traffic Collision Avoidance System
  • ADS-B Automatic Dependent Surveillance Broadcast
  • the present system will be able to carry out, along the above-mentioned trajectories, a verification of the separation margin of the airplane with the other planes, in priority at the places where the separation with the terrain is minimal. Similarly, the system will consider more margins important with the terrain where a minimum separation from another aircraft is planned.
  • the system can thus present the crew with a traffic symbol, associated with the terrain symbol, to indicate the predicted combination of two threats.
  • the flight plan protection will be performed on the entire flight plan, in the background.
  • the system will cover the first five minutes immediately and the rest of the flight plan will be covered in the background.
  • the type of symbol displayed may depend on the different cases causing conflict detection. We could for example use the following classification: - a trajectory considered, to within the accuracy of localization, intercepts the ground: the most serious case.
  • a lateral deviation or (exclusive) a vertical deviation would cause a conflict with the ground.
  • a lateral deviation and a vertical deviation would cause a conflict with the ground.

Abstract

L'invention concerne l'aide au pilotage et à la navigation aérienne. Pour permettre au pilote d'un aéronef d'avoir une appréciation instantanée des risques de collision avec le terrain, on propose un système comprenant des moyens pour calculer une trajectoire prédite de l'aéronef à partir de son point de localisation actuel, une base de données de terrain comprenant des informations de position et d'altitude de terrain, et des moyens pour déterminer un risque de collision entre l'aéronef et le sol en fonction de la trajectoire prédite et des données de terrain avoisinant cette trajectoire. Le système comporte des moyens pour afficher simultanément sur un écran un tracé de la trajectoire prédite (TP) et un symbole de risque de collision (ST1, ST2, ST3) évoquant la nature du risque encouru, le symbole de risque étant localisé sur l'écran, par rapport au tracé de trajectoire prédite, à une position qui correspond à la position relative réelle, par rapport à la trajectoire prédite, d'un obstacle engendrant ce risque.

Description

SYSTEME D'AIDE A LΕVITEMENT DE COLLISIONS D'AERONEFS AVEC LE TERRAIN
L'invention concerne l'aide au pilotage d'aéronefs, et notamment l'aide à l'évitement de collisions avec le terrain.
Cette invention apporte aux équipages d'avion les moyens d'anticiper les problèmes de conflit entre la trajectoire de l'avion et le terrain, en prenant en compte principalement la configuration du terrain au voisinage de l'aéronef, mais accessoirement aussi la présence d'autres éléments (autres aéronefs, zones météo défavorables, etc.).
On dispose actuellement de bases de données de terrain très complètes, embarquées dans les avions ; on dispose aussi de moyens de positionnement précis de l'aéronef à tout instant (récepteurs GPS, etc.) ; et on dispose enfin de moyens de traitement de ces deux sources d'information pour les mettre en relation l'une avec l'autre et déterminer des risques de conflits.
Classiquement, pour accomplir des fonctions d'aide à l'évitement de collisions, les bases de données terrain sont découpées en cellules dont l'altitude uniforme est l'altitude du point de terrain le plus élevé de la cellule. Les cellules ne sont pas toutes de la même dimension : plus l'avion est bas, plus les cellules sont petites ; s'il y a un aérodrome, les cellules sont plus petites que s'il n'y en a pas. La dimension des cellules varie typiquement de 15 minutes d'arc (région toujours survolée en haute altitude) à 3 secondes d'arc (près d'une piste d'atterrissage).
Les systèmes existant pour l'aide à l'évitement de collisions utilisent la hauteur radio-sonde, la trajectoire instantanée de l'avion, sa position, et la base de données terrain. Ils fournissent une alarme lorsque la séparation avec le terrain devient insuffisante compte tenu de la trajectoire de l'aéronef. L'alerte est donnée par exemple 60 secondes avant la collision théorique. Le système ne donne pas d'alerte plus longtemps en avance pour ne pas perturber l'équipage alors que l'obstacle se situe peut-être à un endroit que le pilote a de toutes façons des raisons d'éviter. D'autres systèmes présentent sur un écran la configuration du relief du terrain tel qu'il est décrit dans la base de données; le terrain peut être représenté en plan avec des cellules colorées différemment selon leur altitude, soit par rapport à un niveau de référence du sol, soit par rapport au niveau d'altitude actuelle de l'avion (par exemple coloration en rouge de cellules dont la différence d'altitude par rapport à l'avion est trop faible), soit encore par rapport au plan de descente instantanée de l'avion (par exemple coloration en rouge de cellules dont la différence d'altitude par rapport à l'avion, lorsque l'avion passera au dessus de cette cellule, est supérieure à celle de l'avion). Le terrain peut aussi être représenté en élévation latérale, sous forme de profil d'altitude des cellules successives situées sur la trajectoire de l'avion. Enfin, le terrain peut être représenté en trois dimensions ; l'image présentée est alors celle que verrait un pilote à travers le pare-brise ou celle que verrait un observateur suivant l'avion en restant au dessus et en arrière de lui. Chacune de ces représentations de terrain peut être mise en défaut en fonction du centre d'intérêt du pilote :
- si le pilote doit entreprendre un demi-tour et descendre, une représentation du terrain en vue de dessus (quel que soit l'angle de coupe du terrain) ne permettra pas de représenter le terrain d'une manière intéressante pour le pilote ;
- si le pilote veut apprécier sa marge de navigation latérale par rapport au terrain, une coupe latérale ou vue de côté ne donnera aucun enseignement.
Pour éviter ces inconvénients, l'invention propose un système d'aide au pilotage d'aéronef, comprenant des moyens pour calculer une trajectoire prédite de l'aéronef à partir de son point de localisation actuel, une base de données de terrain comprenant des informations de position et d'altitude de terrain, et des moyens pour déterminer qu'il y a un risque élevé de collision entre l'aéronef et le sol en fonction de la trajectoire prédite et des données de terrain avoisinant cette trajectoire, caractérisé en ce que le système comporte des moyens pour afficher simultanément sur un écran un tracé de la trajectoire prédite et un symbole de risque de collision évoquant la nature du risque encouru, le symbole de risque étant localisé sur l'écran, par rapport au tracé de trajectoire prédite, à une position qui correspond à la position relative réelle, par rapport à la trajectoire prédite, d'un obstacle de sol engendrant ce risque.
L'affichage de ce symbole sur le tracé de trajectoire prédite ou à proximité de ce tracé peut se faire sur une vue en plan ou sur une élévation latérale, ou sur les deux à la fois. Une représentation en trois dimensions est possible aussi bien qu'elle offre moins d'intérêt.
Le système affiche de préférence sur le même écran non seulement la trajectoire prédite de l'aéronef, calculée à partir de la position actuelle, des données de vitesse de l'aéronef, et des modes engagés et armés du pilote automatique, mais aussi la trajectoire théorique de l'aéronef (c'est-à-dire son plan de vol). Le risque de collision est déterminé également par rapport à cette trajectoire théorique.
Le symbole de risque de collision avec le terrain peut avoir une forme, une dimension, une couleur et/ou un contour variables en fonction des conditions qui ont conduit à son affichage, mais il s'agit bien d'un symbole de risque et non une représentation plus ou moins schématique de la configuration réelle du terrain.
De préférence, l'affichage est interactif en ce sens que le système comprend des moyens pour désigner sur l'écran un symbole de risque de collision affiché, et des moyens pour afficher, en réponse à cette désignation, des informations supplémentaires sur les risques de collision associés à ce symbole.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente une vue d'écran associé au système selon l'invention, la vue étant une vue de dessus ;
- la figure 2 représente une vue d'écran représentant une élévation latérale le long de la trajectoire prédite de l'avion ; - la figure 3 représente une vue d'écran analogue à la figure 1 , sur laquelle une information supplémentaire, liée à un symbole de terrain particulier, est affichée ;
- la figure 4 représente une vue de face explicitant une information supplémentaire liée au symbole de terrain particulier. La figure 1 représente un exemple d'écran tel qu'il apparaîtrait selon l'invention au cours d'une navigation prévue avec un plan de vol prédéterminé PV, représenté par une ligne brisée en traits pleins mais à un instant où l'avion s'est écarté de ce plan de vol théorique et suit une trajectoire prédite TP représentée ici par une droite en traits pointillés.
L'avion est supposé voler ici en pilotage automatique, en mode de maintien de cap; la trajectoire prédite TP est donc représentée par une droite verticale coupant un secteur circulaire gradué en cap, le point d'intersection entre la trajectoire prédite et le secteur gradué représentant le cap imposé à l'avion par le calculateur de bord.
Un symbole d'avion AV, au centre du secteur gradué, représente la position actuelle de l'avion sur sa trajectoire prédite. Le secteur gradué, le symbole avion, et la trajectoire prédite restent globalement à une position fixe sur l'écran, mais le secteur gradué tourne autour de son centre lorsque l'avion tourne. La position de l'avion et sa trajectoire prédite sont la référence géographique par rapport à laquelle des symboles de terrain seront représentés sur cet écran.
D'autres indications de navigation peuvent apparaître sur l'écran, telles que la dénomination des appareils utilisés à cet instant pour déterminer la position de l'avion, la durée écoulée du vol, les " aypoints" (points de référence de navigation), etc.
Des symboles de relief de terrain ST1 , ST2, ST3, spécifiques de la présente invention, sont représentés en divers points de l'écran, mais seulement si le calculateur de bord détermine qu'il faut les représenter en raison des risques élevés qu'ils représentent. Une absence de risque entraînera une absence de représentation de symbole, quelle que soit l'altitude du relief survolé par l'avion.
Les symboles de terrain sont localisés sur l'écran à une position qui représente, ici en coordonnées polaires par rapport au symbole avion AV et à la trajectoire prédite TP, la position géographique réelle du relief à risque. L'angle formé sur l'écran entre d'une part la trajectoire prédite et d'autre part l'axe reliant le symbole avion au symbole de relief, correspond au gisement (en vue de dessus) du relief à risque par rapport à l'avion à l'instant de l'affichage. La distance entre le symbole avion et le symbole de relief représente la distance estimée entre l'avion et le relief à risque. L'écran est de préférence gradué non seulement en ce qui concerne le cap (première coordonnée polaire), mais aussi en ce qui concerne les distances. Par exemple deux cercles de distance CD1 et CD2 sont tracés concent quement au secteur gradué en cap, et sont affectés chacun d'une valeur de distance prédéterminée, exprimée de préférence en miles nautiques. Par exemple le cercle CD1 exprime une distance de 25 miles, et le cercle CD2 une distance de 37,5 miles. Ces distances sont affichées sur ces cercles pour que le pilote ait une compréhension instantanée de la localisation géographique des reliefs à risques affichés par le calculateur de bord.
Cependant, la graduation en distances n'est pas nécessairement constante au cours des diverses phases de vol, les graduations pouvant être séparées de plusieurs dizaines de miles en phase de vol de croisière et seulement de quelques miles ou fractions de miles en phase d'approche d'aérodrome, l'importance des risques et des mesures de correction à prendre étant plus critique en phase d'approche.
Dans l'exemple représenté, un symbole de terrain ST1 indiquant un relief à risque est affiché directement sur la trajectoire prédite de l'avion, et deux symboles ST2 et ST3 sont affichés l'un à gauche, l'autre à droite de la trajectoire. Le symbole ST3, dans cet exemple, est situé entre la trajectoire prédite et le plan de vol prédéterminé PV.
De même que le calculateur affiche des symboles de terrain uniquement lorsqu'il détermine qu'un risque de collision avec le terrain existe (on reviendra plus loin sur les facteurs de décision d'existence de risque), on prévoit aussi qu'il affiche des symboles de risque de collision avec d'autres aéronefs. Un tel symbole CA de risque de collision avion est représenté également sur la trajectoire prédite. Cela suppose bien sûr que l'avion soit équipé de moyens pour connaître la position des aéronefs qui l'entourent, que ces moyens soient des radars ou un système radio de communication directe entre avions, par lequel les avions se communiquent automatiquement leur position, dans un format normalisé directement utilisable par le calculateur de bord. Le symbole CA de collision avion est représenté là encore sur l'écran à une position qui représente, en coordonnées polaires, la position relative de l'aéronef à risque par rapport à l'avion, et seulement si le risque est élevé. Cette représentation de la figure 1 est déjà à elle seule une indication précieuse et parlante pour le pilote. Cependant elle peut être complétée par d'autres éléments d'information.
Tout d'abord, on prévoit de préférence que le calculateur affiche également une représentation en élévation latérale du symbole avion, de sa trajectoire prédite, et des symboles de risque de relief de terrain et risque de collision avion. Cette représentation peut être simultanée avec la première, par exemple sous forme d'une portion d'écran (ou d'un écran juxtaposé au premier) réservée à l'élévation latérale. Par exemple, la vue en élévation latérale est placée juste au dessous de la vue en plan. Ou bien, elle apparaît sur l'écran à la place de la vue en plan, sur interrogation du pilote.
La figure 2 représente une telle représentation en élévation dans une surface verticale passant par la trajectoire prédite (plan vertical pour une trajectoire linéaire). Dans cet exemple, la trajectoire prédite TP', qui correspond à l'élévation latérale de la trajectoire TP de la figure 1 , est une droite de descente, en phase d'approche d'aérodrome. Le symbole avion est désigné par AV. Une graduation verticale en altitude est représentée ; une graduation horizontale en distance ou temps de vol pourrait être représentée également ; le symbole avion AV est de préférence fixe en position verticale et horizontale, la graduation d'altitude défilant si l'avion change d'altitude (l'altitude réelle est donnée au calculateur par les instruments de bord). Les symboles de terrain, affichés par le calculateur en cas de risque, défilent latéralement de la droite vers la gauche au fur et à mesure que les risques se rapprochent. Seuls les risques de terrain qui sont, à un instant donné, situés sur la trajectoire prédite de l'avion (avec une certaine marge bien entendu) sont affichés en élévation verticale. Dans cet exemple, le relief correspondant au symbole ST1 de la figure 1 est situé sur la trajectoire de l'avion. Il représente un risque parce que ce relief se situe à une altitude correspondant à la trajectoire de l'avion. Il est représenté, à l'altitude qu'il occupe dans la réalité, par le symbole ST'1 sur la figure 2. Si l'avion n'était pas en phase de descente, ce relief ne représenterait pas de risque : il ne serait pas affiché ni sur la figure 2 ni sur la figure 1.
On entrera plus loin dans la notion d'appréciation des risques, mais on peut remarquer déjà à propos de la figure 2 que le calculateur affiche un risque de collision avion (symbole CA' correspondant au symbole CA de la figure 1 ) bien que la trajectoire de descente ne coupe pas l'altitude de l'aéronef à risque. Mais, du fait de la présence d'un conflit entre la trajectoire prédite et le terrain, la trajectoire de descente peut être interrompue et l'aéronef à risque peut aussi changer d'altitude, ce qui implique que le risque est réel.
Les symboles ST2 et ST3 de la figure 1 ne sont pas repris sur la figure 2 parce qu'ils sont latéralement suffisamment écartés de la trajectoire. Il est préférable que le pilote ne les voie pas se superposer sur l'élévation latérale où ils diminueraient l'intelligibilité de la représentation. Toutefois, si l'avion entreprend un changement de cap qui le rapproche par exemple du symbole ST3 en l'éloignant du symbole ST1 , le symbole ST3 pourra apparaître sur la figure 2 et le symbole ST1 pourra disparaître.
Etant donné que la représentation selon l'invention est une représentation à la fois complète mais très simplifiée des risques élevés de collision avec le terrain, il est préférable que le pilote ait la possibilité d'obtenir des renseignements supplémentaires sur les risques signalés.
Ces informations seront de préférence obtenues en déplaçant un curseur mobile sur l'écran vers un symbole de terrain, et en "cliquant" sur ce symbole, pour lancer un programme d'affichage d'informations supplémentaires liées à ce symbole.
Par exemple, en cliquant sur le symbole ST3, situé à droite de l'avion, on peut faire apparaître un écran, presque identique à celui de la figure 1 mais montrant une information supplémentaire qui est une trajectoire TS possible de l'avion dans le cas où le pilote déciderait de rejoindre le plan de vol PV. En même temps ou séparément, l'écran peut afficher sur sa partie basse une nouvelle image, représentée à la figure 4, qui est une représentation en vue de face, graduée en altitude, avec un symbole d'avion (AV) et une représentation du relief du terrain en cellules de différents niveaux d'altitude, avec une indication du fait que le terrain dépasse l'altitude maximum que peut survoler l'avion compte-tenu de son altitude actuelle.
Dans ce qui précède, on a supposé que l'avion volait en pilotage automatique en mode de maintien de cap. L'invention s'applique aussi à d'autres modes de pilotage automatique ainsi qu'en pilotage manuel. En pilotage manuel, le calculateur de bord calculera la trajectoire prédite à partir des données instantanées de vitesses, et cap de l'avion. Cette trajectoire sera en principe une droite comme en mode de maintien de cap. Dans d'autres modes de pilotage automatique, la trajectoire prédite représentée sur l'écran ne sera pas nécessairement une droite. Par exemple, dans un mode particulier, l'avion doit rejoindre une trajectoire de plan de vol sur laquelle il n'est pas actuellement. Le calculateur sera "armé" sur le mode "navigation" pour rejoindre le plan de vol ; lorsqu'il aura rejoint la trajectoire de plan de vol, il passera en mode "navigation effective" et suivra une trajectoire qui est le plan de vol.
Dans ce cas, la trajectoire prédite inclut la trajectoire de rattrapage (Pilote automatique en mode maintien de cap) et une portion du plan de vol qui sera suivi car le pilote automatique passera en mode navigation.
Dans la première partie, le calculateur élabore une trajectoire pour rejoindre le plan de vol. C'est cette trajectoire de rattrapage qui sera affichée sur l'écran comme trajectoire prédite, par rapport à laquelle les risques seront calculés et les symboles de terrain affichés ou non affichés. Cette trajectoire n'a pas de raison d'être une droite ; elle peut comporter des segments brisés ou des courbes. Dans la deuxième partie, après que l'avion aura rejoint son plan de vol ou un plan alternatif (dans le cas où il a quitté un premier plan de vol pour rejoindre un autre), la trajectoire prédite sera le plan de vol, représenté par exemple comme le plan de vol PV de la figure 1 , avec un symbole avion placé sur ce plan de vol.
De même, en mode "armé" sur "localizer", le pilote automatique prépare l'avion à recevoir un faisceau électromagnétique d'un équipement au sol appelé "localizer" ou "LOC"; il établit une trajectoire prédite, droite ou courbe, vers une zone où l'appareil de signalisation appelé "localizer" émet un signal radio de localisation. Les symboles avion seront affichés en calculant les risques par rapport à cette trajectoire. Lorsque l'avion aura atteint la zone de réception radio, le pilote automatique passera en mode "localizer effectif ; le système calculera la trajectoire prédite à partir des informations radio reçues. La trajectoire prédite incluera, avant interception de l'axe loc, une partie de cet axe. C'est par rapport à cette trajectoire que les risques seront calculés et affichés s'ils sont élevés.
Le système prendra également en compte les modes verticaux du pilote automatique. Par exemple un de ces modes est classiquement "level change" dans lequel une trajectoire de montée (ou descente) est prise jusqu'à ce qu'une altitude de consigne soit atteinte. Dans ce cas le système prévoira la cassure dans le plan vertical, au moment où l'altitude de consigne sera atteinte.
On comprendra donc que le système utilise pour afficher le symbole de risque non seulement la trajectoire prédite instantanée mais aussi la trajectoire théorique calculée.
D'une manière générale, pour déterminer si le risque est suffisamment élevé pour être affiché sur l'écran, on essayera de trouver des critères. Les critères dépendent bien entendu des applications (civiles, militaires, pour petits avions, pour gros avions, en tenant compte de législations locales ou non, etc.).
A titre d'exemple, on peut imaginer qu'un critère est la possibilité pour l'avion de faire demi-tour à tout moment. C'est la raison par exemple de l'affichage du symbole ST2 sur la figure 1. Si l'avion suit sa trajectoire il reste éloigné du relief de terrain et le risque ne devrait pas être affiché pour cette seule raison. Mais si on veut laisser à l'avion la possibilité de faire demi-tour à tout moment, et compte-tenu du fait qu'il ne peut pas faire demi-tour par la droite du fait de la présence d'un autre relief à droite, le calculateur affichera le symbole ST2. En cliquant sur ce symbole, le pilote pourrait d'ailleurs en avoir confirmation par l'apparition sur l'écran d'une trajectoire de demi-tour qui passerait sur ce symbole.
Le calculateur peut prendre en compte d'autres éléments que le relief de terrain pour aboutir à la nécessité de représenter un symbole de risque élevé de collision terrain. Par exemple, la présence d'une zone météo défavorable empêchant de faire demi-tour par la droite peut engendrer l'apparition d'un symbole de terrain sur la gauche, alors que le risque lié au terrain serait en d'autres circonstances faible : l'avion a normalement la possibilité de faire demi-tour par la droite, mais ne l'a plus à cause de la zone météo. Le symbole de météo défavorable apparaîtra sur la droite en complément du symbole de terrain sur la gauche. Ceci veut dire que le système a augmenté la marge de calcul de risque en raison de la présence de cette zone météo.
D'une manière générale, on utilisera quand on le peut les informations suivantes pour élaborer les critères de risques de collision avec le terrain : - modes engagés au pilote automatique et valeurs de consignes associées (par exemple mode de maintien de cap engagé, avec valeur du cap de consigne) ;
- plan de vol présent et actif dans le FMS ("Flight Management System" : Système de Gestion de Vol) ; - existence d'un plan de vol alternatif dans le FMS
- position de l'avion calculée par le FMS ;
- altitude donnée par les instruments de bord
- trajectoire instantanée (vitesses instantanées selon trois axes) - état d'engagement du pilote automatique et du FMS
D'autres informations peuvent être prises en compte : situation du trafic environnant ; perturbations météo.
En pratique, le calculateur prendra en compte quatre types possibles de trajectoires prédites : - trajectoire instantanée quand le pilote automatique n'est pas engagé ;
- trajectoire prédite linéaire quand le pilote automatique est engagé mais non dirigé par le FMS (vol hors du plan de vol) ;
- plan de vol actif au FMS dans tous les cas ; - en option, les plans de vol alternatifs.
En fonction de la phase de vol (navigation, approche) et de la situation de l'avion, d'autres trajectoires pourront ponctuellement être prises en compte pour le calcul et l'affichage des risques, par exemple :
- en phase d'approche finale le terrain situé derrière la piste d'atterrissage peut encore représenter une menace si l'équipage décide de remettre les gaz. Ainsi, une trajectoire initiée à la hauteur de décision au taux minimal de montée avec un moteur en moins (prescription de la réglementation) pourra être considérée pour afficher un symbole de terrain à un endroit où la marge de séparation serait réduite. - en phase de décollage une trajectoire initiée en bout de piste au taux de montée minimal avec un moteur en panne (prescription de la réglementation) pourra être considérée pour afficher un symbole de terrain à un endroit où la marge de séparation serait réduite.
- lorsque le plan de vol du FMS n'est plus suivi, et que par exemple le pilote réalise lui-même les affichages du pilote automatique, le système considère l'aire comprise entre la trajectoire du plan de vol et la trajectoire prédite et identifie la séparation entre cette aire et le terrain.
Ces trajectoires seront prises en compte par le système avec des marges latérales et verticales. Ainsi, le système considérera qu'une trajectoire n'est pas définie comme un fil, mais comme un tube de section rectangulaire. La section de ce tube tiendra compte de marges qui dépendront de :
- la précision de la localisation fournie par le FMS,
- l'erreur d'altitude, - la phase de vol : par exemple, en approche finale, l'avion est censé suivre un profil de descente fixe. De plus il est naturel que l'avion réduise sa séparation avec le terrain. Il n'est donc pas nécessaire de prendre une marge verticale. Par contre, en approche intermédiaire, l'équipage peut recevoir à tout instant un ordre du contrôle aérien de descendre vers un palier inférieur. Une marge verticale sera donc prise en compte pour générer des symboles de moindre priorité mais pouvant cependant avertir l'équipage de la conséquence néfaste que pourrait avoir une descente à certains endroits.
Le présent système peut également prendre en compte d'autres "menaces" pour améliorer le diagnostic et ajuster les marges latérales et/ou verticales. Par exemple, l'équipement anticollision TCAS (Traffic Collision Avoidance System) peut fournir au présent système la position et la trajectoire instantanée de certains avions partageant l'espace aérien. Bientôt ce genre d'information pourra être fournie de façon plus complète par le système anticollision radioélectrique l'ADS-B (Automatic Dépendant Surveillance Broadcast).
Ainsi, le présent système pourra effectuer, le long des trajectoires mentionnées ci-dessus, une vérification de la marge de séparation de l'avion avec les autres avions, en priorité aux endroits où la séparation avec le terrain est minimale. De même, le système considérera des marges plus importante avec le terrain aux endroits où une séparation minimale avec un autre avion est prévue.
Le système pourra ainsi présenter à l'équipage un symbole de trafic, associé au symbole de terrain, pour indiquer la conjugaison prédite de deux menaces.
Lorsque l'avion suit la trajectoire prédite, il ne sera pas nécessaire de refaire en permanence tous les calculs de protection. D'un autre côté, certains cycles de calcul pourront être plus "chargés". Le système gérera donc le temps disponible pour les calculs en ajustant l'horizon de temps considéré pour les prédictions. Ainsi, de base, le système ne couvrira que 5 minutes de vol, mais en fonction des ressources disponibles il augmentera sa couverture.
La protection du plan de vol sera réalisée sur l'ensemble du plan de vol, en tâche de fond. Lorsque l'équipage changera son plan de vol, le système couvrira les cinq premières minutes immédiatement et le reste du plan de vol sera couvert en tâche de fond.
En sortie, le système enverra vers les systèmes d'affichage :
- la prédiction de trajectoire si le FMS ne dirige pas le pilote automatique : soit manuelle, soit automatique. - les coordonnées des symboles terrain à présenter et le type de symbole.
- l'identification de la trajectoire relative à chaque symbole.
- les marges latérales et verticales prédites à ces endroits par rapport au terrain. - le temps de vol jusqu'à chaque symbole.
- les coordonnées de symboles de trafic à présenter et l'identification des avions correspondants.
- les coordonnées des symboles météo ayant été pris en compte pour le calcul des marges. Ces informations ne sont pas toutes affichées directement sur l'écran, mais le pilote peut les obtenir sur demande.
Le type de symbole affiché peut dépendre des différents cas provoquant une détection de conflit. On pourra par exemple utiliser la classification suivante: - une trajectoire considérée, à la précision de localisation près, intercepte le sol : cas le plus sérieux.
- une déviation latérale ou (exclusif) une déviation verticale (degré de déviation pour chacune dépendant de la phase de vol) provoquerait un conflit avec le sol. - une déviation latérale et une déviation verticale (degré fonction de la phase de vol) provoqueraient un conflit avec le sol.
- une déviation latérale (degré de déviation important pour prendre en compte un conflit "météo") provoquerait un conflit avec le sol.
- une déviation verticale (degré de déviation important pour prendre en compte un conflit "trafic") provoquerait un conflit avec le sol.

Claims

R E V E N D I C A T I O N S
1. Système d'aide au pilotage d'aéronef, comprenant des moyens pour calculer une trajectoire prédite de l'aéronef à partir de son point de localisation actuel, une base de données de terrain comprenant des informations de position et d'altitude de terrain, et des moyens pour déterminer un risque de collision entre l'aéronef et le sol en fonction de la trajectoire prédite et des données de terrain avoisinant cette trajectoire, caractérisé en ce que le système comporte des moyens pour afficher simultanément sur un écran un tracé de la trajectoire prédite (TP) et un symbole de risque de collision (ST1 , ST2, ST3) évoquant la nature du risque encouru, le symbole de risque étant localisé sur l'écran, par rapport au tracé de trajectoire prédite, à une position qui correspond à la position relative réelle, par rapport à la trajectoire prédite, d'un obstacle de sol engendrant ce risque.
2. Système selon la revendication 1 , caractérisé en ce qu'il affiche un symbole d'une autre apparence s'il existe un risque de collision avec un autre aéronef, le système comprenant alors des moyens pour recevoir des informations sur la position d'autres aéronefs et des moyens pour déterminer un risque de collision avec un autre aéronef.
3. Système selon l'une des revendications 1 et 2, caractérisé en ce qu'il affiche une vue en plan horizontal de la trajectoire prédite.
4. Système selon l'une des revendications 1 à 3, caractérisé en ce qu'il affiche une vue en élévation latérale de la trajectoire prédite.
5. Système selon l'une des revendications 1 à 3, caractérisé en ce qu'il affiche simultanément sur l'écran un tracé de plan de vol théorique de l'aéronef et calcule les risques par rapport à ce plan de vol.
6. Système selon l'une des revendications 1 à 5, caractérisé en ce qu'il comprend des moyens pour désigner sur l'écran un symbole de risque de collision, et des moyens pour afficher, en réponse à cette désignation, des informations supplémentaires sur les risques de collision associés à ce symbole.
EP99961104A 1998-12-23 1999-12-17 Systeme d'aide a l'evitement de collisions d'aeronefs avec le terrain Withdrawn EP1057160A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9816345 1998-12-23
FR9816345A FR2787907B1 (fr) 1998-12-23 1998-12-23 Systeme d'aide a l'evitement de collisions d'aeronefs avec avec le terrain
PCT/FR1999/003186 WO2000039775A2 (fr) 1998-12-23 1999-12-17 Systeme d'aide a l'evitement de collisions d'aeronefs avec le terrain

Publications (1)

Publication Number Publication Date
EP1057160A1 true EP1057160A1 (fr) 2000-12-06

Family

ID=9534416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99961104A Withdrawn EP1057160A1 (fr) 1998-12-23 1999-12-17 Systeme d'aide a l'evitement de collisions d'aeronefs avec le terrain

Country Status (3)

Country Link
EP (1) EP1057160A1 (fr)
FR (1) FR2787907B1 (fr)
WO (1) WO2000039775A2 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777675B2 (en) 1999-03-05 2010-08-17 Era Systems Corporation Deployable passive broadband aircraft tracking
US7570214B2 (en) 1999-03-05 2009-08-04 Era Systems, Inc. Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surviellance
US7739167B2 (en) 1999-03-05 2010-06-15 Era Systems Corporation Automated management of airport revenues
US8446321B2 (en) 1999-03-05 2013-05-21 Omnipol A.S. Deployable intelligence and tracking system for homeland security and search and rescue
US7782256B2 (en) 1999-03-05 2010-08-24 Era Systems Corporation Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
US7667647B2 (en) 1999-03-05 2010-02-23 Era Systems Corporation Extension of aircraft tracking and positive identification from movement areas into non-movement areas
US7908077B2 (en) 2003-06-10 2011-03-15 Itt Manufacturing Enterprises, Inc. Land use compatibility planning software
US8203486B1 (en) 1999-03-05 2012-06-19 Omnipol A.S. Transmitter independent techniques to extend the performance of passive coherent location
US7889133B2 (en) 1999-03-05 2011-02-15 Itt Manufacturing Enterprises, Inc. Multilateration enhancements for noise and operations management
US7236104B2 (en) 2003-05-27 2007-06-26 Honeywell International Inc. Hybrid ground collision avoidance system
US7257487B2 (en) 2003-05-27 2007-08-14 Honeywell International Inc. Hybrid air collision avoidance system
US7948404B2 (en) 2003-05-27 2011-05-24 Honeywell International Inc. Obstacle avoidance situation display generator
US6873269B2 (en) * 2003-05-27 2005-03-29 Honeywell International Inc. Embedded free flight obstacle avoidance system
US7308343B1 (en) 2003-10-21 2007-12-11 Garmin At, Inc. Navigational instrument, method and computer program product for displaying ground traffic information
US6957130B1 (en) * 2003-10-21 2005-10-18 Garmin At, Inc. Navigational instrument, method and computer program product for displaying ground traffic information
FR2875916B1 (fr) * 2004-09-28 2015-06-26 Eurocopter France Procede et dispositif d'aide au pilotage d'un aeronef a voilure tournante au voisinage d'un point de pose ou de decollage
US7330147B2 (en) * 2005-04-21 2008-02-12 Honeywell International Inc. System and method for ground proximity warning with enhanced obstacle depiction
US7403132B2 (en) * 2005-04-21 2008-07-22 Honeywell International Inc. System and method for management of a ground obstacle display
FR2896872B1 (fr) * 2006-01-27 2008-04-18 Thales Sa Procede de prise en compte d'une situation meteorologique locale defavorable non conforme a une prevision meteorologique generale.
US7965227B2 (en) 2006-05-08 2011-06-21 Era Systems, Inc. Aircraft tracking using low cost tagging as a discriminator
BRPI0912689B1 (pt) 2008-05-14 2019-07-09 Elbit Systems Ltd. Aparelho e método para observação adiante de evitação de terreno (flta) em uma aeronave, método para uma fase de planejamento, método para evitação de terreno de observação adiante (flta) em uma aeronave

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179377A (en) * 1990-12-31 1993-01-12 Honeywell Inc. Tcas view display format with horizontal trend
FR2689668B1 (fr) * 1992-04-07 1994-05-20 Dassault Electronique Procede et dispositif d'anti-collisions terrain pour aeronef.
FR2721130B1 (fr) * 1994-06-14 1996-07-12 Sextant Avionique Dispositif d'évitement de collisions pour aéronef notamment avec le sol à bilan énergétique réduit.
GB2322611B (en) * 1997-02-26 2001-03-21 British Aerospace Apparatus for indicating air traffic and terrain collision threat to an aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0039775A3 *

Also Published As

Publication number Publication date
WO2000039775A3 (fr) 2002-10-03
FR2787907A1 (fr) 2000-06-30
FR2787907B1 (fr) 2001-03-16
WO2000039775A2 (fr) 2000-07-06

Similar Documents

Publication Publication Date Title
US11935420B1 (en) Flight assistant
EP1057160A1 (fr) Systeme d'aide a l'evitement de collisions d'aeronefs avec le terrain
US9524571B2 (en) Method for assisting the navigation of an aircraft with correlation of dynamic information with a 4D flight trajectory
EP1460384B1 (fr) procédé et dispositif pour construire une image de synthèse de l'environnement d'un aéronef et la présenter sur un écran dudit aéronef
EP1614086B1 (fr) Méthode et dispositif de navigation 3D sécurisée interactive
US9520066B2 (en) Determining landing sites for aircraft
US11270596B2 (en) Autonomous path planning
EP2171702B1 (fr) Procedes de generation d'un graphe de connectivite d'elements d'un aeroport pour l'aide au roulage et dispositifs associes
FR2923623A1 (fr) Systeme de securisation d'un plan de vol pour aeronef
US8049644B1 (en) Method for TAWS depiction on SVS perspective displays
EP2830032B1 (fr) Systèmes, procédés et affichage de poste de pilotage d'aéronef pour afficher des informations intégrées d'altitude minimale de sécurité et d'altitude de vectorisation minimale sur un dispositif d'affichage dans un aéronef
WO2007054448A1 (fr) Systeme d'evitement de terrain pour aeronefs de transport
FR2949897A1 (fr) Procede d'assistance au pilotage d'un aeronef et dispositif correspondant.
FR2897975A1 (fr) Procede et dispositif d'assistance au pilotage d'un aeronef.
FR3038750A1 (fr) Procede d'integration d'un nouveau service de navigation dans un systeme avionique embarque a architecture ouverte de type client-serveur, en particulier d'un service de manoeuvre fim
WO2008145590A2 (fr) Dispositif de visualisation tête haute pour aéronef comprenant des moyens d'affichage d'une symbologie dédiée a l'évitement d'obstacles
FR2908219A1 (fr) Dispositif de guidage d'un aeronef le long d'une trajectoire de vol
US11574549B2 (en) Composite vertical profile display systems and methods
FR2897839A1 (fr) Procede et dispositif d'ajustememnt automatique d'une image d'un ecran de navigation d'aeronef.
FR3087915A1 (fr) Dispositif anticollision, systeme avionique de protection, procede d'anticollision et programme d'ordinateur associes
FR2904706A1 (fr) Procede et dispositif pour determiner une hauteur de decision lors d'une approche autonome d'un aeronef.
EP1465136B1 (fr) Procédé et dispositif embarqué d'aide au pilotage en l'absence de contrôle aerien
WO2006125725A1 (fr) Procede de fourniture d'informations sur la situation d'un aeronef par rapport a une installation aeroportuaire
EP2150776A1 (fr) Dispositif de visualisation pour aéronef comprenant des moyens d'affichage d'une symbologie de navigation dédiée a l'évitement d'obstacles
WO2002045048A1 (fr) Systeme d'atterrissage et de navigaton avec representation virtuelle de l'environnement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES AVIONICS S.A.

D17D Deferred search report published (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040629