EP1055264B1 - Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter - Google Patents

Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter Download PDF

Info

Publication number
EP1055264B1
EP1055264B1 EP99966071A EP99966071A EP1055264B1 EP 1055264 B1 EP1055264 B1 EP 1055264B1 EP 99966071 A EP99966071 A EP 99966071A EP 99966071 A EP99966071 A EP 99966071A EP 1055264 B1 EP1055264 B1 EP 1055264B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
parallel
microstrip
transition
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99966071A
Other languages
English (en)
French (fr)
Other versions
EP1055264A1 (de
Inventor
Hashemi-Yeganeh S.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of EP1055264A1 publication Critical patent/EP1055264A1/de
Application granted granted Critical
Publication of EP1055264B1 publication Critical patent/EP1055264B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices

Definitions

  • the present invention relates generally to waveguide transitions, and, more particularly, to a broadband microstrip to parallel-plate-waveguide transition.
  • a transition between a coplanar line and a waveguide is, for example, disclosed in Patent Abstracts of Japan, Vol. 10, No. 340 (JP 61142802) and the paper "A NEW INTEGRATED WAVEGUIDE-MICROSTRIP TRANSITION", J.H.C. van Heuven, 4 th European Microwave Conference-Proceedings, September 10-13, 1974, pages 541-545.
  • the present invention comprises a broadband transition for use between a shielded microstrip and a parallel-plate waveguide.
  • the broadband transition comprises a metallic taper that is electrically connected to a conductive strip of the microstrip at one end and to a wall of the waveguide at the other end.
  • the metallic taper may be optimized to tune out, over a broad operating frequency band, reflections caused by the discontinuity between the two largely disparate transmission media comprising the microstrip and parallel-plate waveguide.
  • the broadband transition provides for a low VSWR transition with wide operating bandwidth and wide-angle scanning capability between a linear array of shielded microstrip circuits (e.g., phase shifters) and a parallel-plate waveguide structure (e.g., a continuous transverse stub array antenna).
  • the shielded microstrip lines minimize cross-coupling between adjacent circuits, thereby allowing their individual amplitude and phase excitations to be imposed on a line source along the parallel-plate waveguide interface.
  • the metallic taper is also suitable for construction of a planar, in-line transition between microstrip and rectangular waveguide with full-band coverage of the fundamental waveguide mode. No description of this particular type of transition has been found in the technical literature.
  • the present invention may be used in applications that require a low-VSWR. broadband, planar, inline transition between microstrip and parallel-plate or rectangular waveguide structures.
  • the present invention provides a capability to transition between a linear array of microstrip circuits (e.g., RF feed networks, ferrite or PIN-diode phase shifters, microwave amplifiers or mixers, etc.) and the line feed for parallel-plate or overmoded waveguide.
  • the present invention may be used to provide low-cost, two-dimensional scanning capability by combining this type electronic scanning line feed in one plane with mechanical rotation in an orthogonal plane.
  • Fig. I illustrates the use of a broadband microstrip to parallel-plate waveguide transition 20 in accordance with the principles of the present invention in an antenna system 10.
  • Fig. I illustrates a simplified block diagram of the antenna system 10 showing a typical application of the broadband transition 20.
  • the antenna system 10 comprises a planar antenna 30 with which the transition 20 is used.
  • the planar antenna 30 has a line feed input including a parallel-plate or overmoded waveguide section.
  • the planar antenna 30 also comprises a linear array of phase shifters 13 that each have a microstrip RF port 13a.
  • the broadband transition 20 provides an RF interface between the phase shifters 13 and the antenna 30.
  • a combiner/divider 12 for receiving input signals at an RF input 11 establishes an amplitude distribution along a line-feed input 30a of the antenna, and the linear array of phase shifters 13 may be adjusted to produce the appropriate phase front to scan the beam output by the antenna 30 at its radiating aperture at a desired angle.
  • Fig. 2 shows a solid-dielectric continuous transverse stub array antenna 30 as a representative example of the planar antenna 30.
  • the continuous transverse stub array antenna 30 has a parallel-plate waveguide horizontal line feed 31.
  • An eight-way vertical corporate feed 32 located behind an aperture plate 33, feeds eight continuous transverse stub radiators 34.
  • the horizontal aperture distribution which is provided by the n-way combiner/divider 12 and phase shifters 13 shown in Fig. 1, is imposed onto the parallel-plate line feed 30a along the rear of the antenna 30.
  • a section of the present broadband transition 20 used for three adjacent elements is shown in Fig. 3.
  • a 0.140 inch high, dielectric-filled, parallel-plate waveguide 21 (shown on the left-hand side of Fig. 3) corresponds to the parallel-plate line feed 30a of the continuous transverse stub array antenna 30.
  • a plurality of microstrip circuits 22 each comprising a shielded microstrip feed line 24 (shown on the right-hand side of Fig. 3), comprise output circuits for three phase shifters 13, and are the same height as the parallel-plate waveguide 12 in order to minimize the physical discontinuity at the interface.
  • the plurality of microstrip circuits 22 are fabricated on a substrate 23, such as a 0.025 inch thick Rexolite ® substrate 23, which is preferably the same dielectric material from which both the parallel-plate waveguide 21 and continuous transverse stub array antenna 30 are made.
  • a section of the top wall of the broadband transition 20 is cut away in Fig. 3 so that one of a plurality of metallic tapers 26 can be seen.
  • the tapers 26 may be fabricated cither as a separate part, or fabricated as part of the parallel-plate region by forming the required shape in the dielectric material and subsequently metalizing the cavity walls.
  • the metallic taper 26 is electrically connected to the microstrip feed line 24 of the microstrip circuit 22 at one end and to a wall (shown as the upper or top wall) of the waveguide 21 at the other end.
  • a broadband transition 20 for a 32-element continuous transverse stub array antenna 30 was modeled using a Hewlett-Packard High Frequency Structures Simulator (HFSS) computer program.
  • the array antenna 30 was designed to operate over the 6 to 18 GHz frequency band and scan to ⁇ 60 degrees without grating lobes. Equation (1) gives the maximum allowable element spacing as 0.340 inch, and thus a spacing of 0.325 inch was chosen to provide some margin for fabrication tolerances.
  • Fig. 4 shows the computed magnitude of reflection ls 11 l and transmission lS 21 l coefficients versus frequency.
  • the computed VSWR. shown in Fig 4, is below 1.50:1 from 7 to above 24 GHz. However, grating lobes occur above 22.7 GHz if the array is scanned to ⁇ 60 degrees. At 24 GHz, the array may be scanned only to ⁇ 27.8 degrees without grating lobes.
  • the element spacing may be increased slightly (e.g., 0.350 inch) to give the desired low-VSWR performance down to 6 GHz, but then ⁇ 60 degrees scan coverage without grating lobes would be achievable only up to 17.5 GHz. At higher frequencies, the usable scan sector would become progressively smaller, as expressed by Equation (1).
  • the broadband transition 20 of the present invention may also be used as a low-VSWR transition between microstrip circuits 22 and rectangular waveguide 21, as is shown in Fig. 5.
  • the wideband capability of this particular broadband transition 20, however, is limited by cutoff of the fundamental mode at the low frequency end and the propagation of higher-order modes at the high end.
  • the methodology used to the design the metallic taper 26 includes the following steps.
  • the width (Y direction) of the taper 26 is chosen to be equal to the line width of the microstrip circuit 22. This avoids the necessity of matching in the Y direction, and this option is available for special design requirements.
  • each taper 26 is determined by the operational bandwidth, desired VSWR and space limitations. Tapers 26 are typically several wavelengths long at the lowest frequency for the respective medium. In the example design, tapers 26 less than a wavelength long were dictated by physical constraints.
  • the curves of the tapers 26, which are initially parabolic, are optimized numerically to minimize reflection coefficient across the desired band. Alternately, optimization routines may be used to compute the curves.
  • Table 1 gives the X and Z coordinates for the lower and upper surfaces of the metallic taper 26, while Fig. 6 shows the profile defined by these points.
  • Table 1 Lower SurfaceUpper Surface X (inch) Z (inch) X (inch) Z (inch) -0.660 0.140 -0.660 0.140 -0.600 0.132 -0.600 0.140 -0.540 0.118 -0.540 0.140 -0.480 0.100 -0.480 0.140 -0.420 0.084 -0.420 0.140 -0.360 0.070 -0.360 0.140 -0.300 0.058 -0.300 0.140 -0.240 0.048 -0.240 0.140 -0.180 0.040 -0.180 0.140 -0.120 0.033 -0.120 0.140 -0.060 0.028 -0.060 0.140 0 0.025 0 0.140 0.100 0.025 0.100 0.140 0.200 0.025 0.200 0.140 0.300 0.025 0.300 0.140 0.400 0.025 0.400 0.140 0.500 0.025 0.500 0.

Landscapes

  • Waveguide Aerials (AREA)

Claims (10)

  1. Breitbandiger Übergang von einer Mikrostreifenleitung auf einen Parallelplatten-Hohlleiter (20) zum Koppeln von HF-Energie in eine planare Antenne (30), mit:
    einem Parallelplatten-Hohlleiter (21);
    einer Vielzahl von Mikrostreifenschaltungen (22), die jeweils eine abgeschirmte Mikrostreifeneinspeiseleitung (24) auf einem Substrat (23) angeordnet aufweisen; und
    einer Vielzahl von metallenen gebogenen Abschrägungen (26), die jeweils ein erstes Ende aufweisen, das mit einem der Vielzahl der Mikrostreifeneinspeiseleitungen gekoppelt ist, und die jeweils ein zweites Ende aufweisen, das benachbart dem Hohlleiter angeordnet ist, wobei die Breite (Y-Richtung) jeder metallenen Abschrägung (26) gleich der Leitungsbreite der Mikrostreifenschaltung (22) ist, die Länge jeder Abschrägung bestimmt wird durch die Betriebsbandbreite, die gewünschte VSWR und die Raumgrenzen, und die Krümmungen der Abschrägungen sind optimiert, um den Reflexionskoeffizienten über das gewünschte Band zu minimieren.
  2. Antennensystem (10) mit:
    einem HF-Eingang (11);
    einem Kombinierer/Teiler (12), der mit dem HF-Eingang (11) gekoppelt ist;
    einer linearen Anordnung von Phasenverschiebern (13), die jeweils einen Mikrostreifen HF-Anschluss (13a) aufweisen, der mit dem Kombinierer/Teiler (12) gekoppelt ist;
    einer planaren Antenne (30) mit einem Leitungseinspeiseeingang (30a) und einem Hohlleiterabschnitt; und
    einem breitbandigen Übergang (20) von einer Mikrostreifenleitung zu einem Parallelplatten-Hohlleiter, der zwischen der linearen Anordnung von Phasenverschiebern (13) und der planaren Antenne (30) gekoppelt ist, der aufweist:
    einen Parallelplatten-Hohlleiter (21);
    eine Vielzahl von Mikrostreifenschaltungen (22), die jeweils eine abgeschirmte Mikrostreifeneinspeiseleitung (24) auf einem Substrat (23) angeordnet aufweisen; und
    eine Vielzahl von metallenen gebogenen Abschrägungen (26), die jeweils ein erstes Ende aufweisen, das mit einem der Vielzahl der Mikrostreifeneinspeiseleitungen gekoppelt ist, und die jeweils ein zweites Ende aufweisen, das benachbart dem Hohlleiter angeordnet ist, wobei die Breite (Y-Richtung) jeder metallenen Abschrägung (26) gleich der Leitungsbreite der Mikrostreifenschaltung (22) ist, die Länge jeder Abschrägung bestimmt wird durch die Betriebsbandbreite, die gewünschte VSWR und die Raumgrenzen, und die Krümmungen der Abschrägungen sind optimiert, um den Reflexionskoeffizienten über das gewünschte Band zu minimieren.
  3. Antennensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass die planare Antenne (30) einen Parallelplatten-Hohlleiterabschnitt besitzt.
  4. Antennensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass die planare Antenne (30) einen übermodierten Hohlleiterabschnitt besitzt.
  5. Antennensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass die planare Antenne (30) eine Gruppenantenne mit Festkörperdielektrikum und kontinuierlichen quer verlaufenden Stichleitungen (30) aufweist.
  6. Antennensystem (10) nach Anspruch 5, dadurch gekennzeichnet, dass die Gruppenantenne mit kontinuierlicher quer verlaufenden Stichleitung (30) eine Parallelplatten-Hohlleiter-Horizontalleitungseinspeisung (31) aufweist.
  7. Antennensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass der breitbandige Übergang (20) einen Parallelplatten-Hohlleiter (21) mit Dielektrikumfüllung aufweist.
  8. Übergang nach Anspruch 1 oder System (10) nach Anspruch 2, dadurch gekennzeichnet, dass der Parallelplatten-Hohlleiter (21) einen mit Dielektrikum gefüllten Parallelplatten-Hohlleiter (21) aufweist.
  9. Übergang nach Anspruch 1 oder System (10) nach Anspruch 2, dadurch gekennzeichnet, dass die metallenen Abschrägungen (26) getrennte Metallteile aufweisen.
  10. Übergang nach Anspruch 1 oder System (10) nach Anspruch 2, dadurch gekennzeichnet, dass die metallenen Abschrägungen (26) ein metallisiertes abgeschrägtes Dielektrikummaterial aufweisen.
EP99966071A 1998-12-10 1999-12-09 Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter Expired - Lifetime EP1055264B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US209123 1994-03-08
US20912398A 1998-12-10 1998-12-10
PCT/US1999/029184 WO2000035044A1 (en) 1998-12-10 1999-12-09 Broadband microstrip to parallel-plate-waveguide transition

Publications (2)

Publication Number Publication Date
EP1055264A1 EP1055264A1 (de) 2000-11-29
EP1055264B1 true EP1055264B1 (de) 2007-01-24

Family

ID=22777433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99966071A Expired - Lifetime EP1055264B1 (de) 1998-12-10 1999-12-09 Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter

Country Status (5)

Country Link
EP (1) EP1055264B1 (de)
JP (1) JP2002532928A (de)
DE (1) DE69934968T2 (de)
DK (1) DK1055264T3 (de)
WO (1) WO2000035044A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849720B1 (fr) 2003-01-03 2005-04-15 Thomson Licensing Sa Transition entre un guide d'onde rectangulaire et une ligne microruban
US7432871B2 (en) * 2005-03-08 2008-10-07 Raytheon Company True-time-delay feed network for CTS array
GB2453697B (en) * 2006-08-04 2010-11-24 Advanced Risc Mach Ltd A bus interconnect device and a data processing apparatus including such a bus interconnect device
US7612733B2 (en) 2007-03-12 2009-11-03 The Regents Of The University Of Colorado Transition region for use with an antenna-integrated electron tunneling device and method
DE102010014916B4 (de) * 2010-04-14 2012-10-31 Aeromaritime Systembau Gmbh Phasengesteuerte Gruppenantenne

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1043431B (de) * 1958-04-02 1958-11-13 Telefunken Gmbh Symmetrieranordnung fuer den UEbergang von einer unsymmetrischen Bandleitung, insbesondere Microstrip-Leitung, auf eine symmetrische Leitung, insbesondere Bandleitung
JPH0640601B2 (ja) * 1984-12-17 1994-05-25 日本電信電話株式会社 導波管変換器
US5266961A (en) * 1991-08-29 1993-11-30 Hughes Aircraft Company Continuous transverse stub element devices and methods of making same
JPH0590807A (ja) * 1991-09-27 1993-04-09 Nissan Motor Co Ltd 導波管・ストリツプ線路変換器
JP3115194B2 (ja) * 1994-09-22 2000-12-04 三菱電機株式会社 フェーズドアレイアンテナ装置

Also Published As

Publication number Publication date
DK1055264T3 (da) 2007-04-30
WO2000035044A1 (en) 2000-06-15
EP1055264A1 (de) 2000-11-29
DE69934968D1 (de) 2007-03-15
JP2002532928A (ja) 2002-10-02
DE69934968T2 (de) 2007-11-22

Similar Documents

Publication Publication Date Title
EP3888186B1 (de) Stegwellenleiter mit lücke und mehrschichtige antennenanordnung damit
US6424298B1 (en) Microstrip array antenna
Doane et al. A wideband, wide scanning tightly coupled dipole array with integrated balun (TCDA-IB)
US5583524A (en) Continuous transverse stub element antenna arrays using voltage-variable dielectric material
EP0536522A2 (de) Kontinuierliche Querelement-Geräte und Verfahren zu deren Herstellung
EP1782500A1 (de) Wellenleiter-kerbenantenne
US5995055A (en) Planar antenna radiating structure having quasi-scan, frequency-independent driving-point impedance
US5303419A (en) Aperture-coupled line Magic-Tee and mixer formed therefrom
Bakhtafrooz et al. Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides
CN111969308A (zh) 一种周期漏波天线
CN111969312B (zh) 一种天线阵列
CN111262022A (zh) 一种圆极化天线
US6850203B1 (en) Decade band tapered slot antenna, and method of making same
CN113725599B (zh) 一种用于毫米波汽车雷达的组合天线
EP1055264B1 (de) Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter
CN115458892B (zh) 基于圆形siw谐振腔的四路同相不等功分器
CN112054305A (zh) 一种基于复合左右手结构增益高度稳定的周期性漏波天线
CA1256557A (en) Sandwich-wire antenna
CN116666995A (zh) 一种弧型切角圆极化微带天线稀疏阵列
CN216850344U (zh) 一种脊波导一维相控阵天线
Temga et al. A 5.5 GHz band 2-D beamforming network using broadside coupled stripline structure
CN216872258U (zh) 毫米波巴特勒矩阵波束成形网络
CN116130979A (zh) 一种低副瓣背腔缝隙阵列天线
US6166693A (en) Tapered leaky wave ultrawide band microstrip antenna
JP2000165116A (ja) 方向性結合器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE DK FI GB IT SE

17Q First examination report despatched

Effective date: 20040512

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FI GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69934968

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171206

Year of fee payment: 19

Ref country code: DK

Payment date: 20171212

Year of fee payment: 19

Ref country code: FI

Payment date: 20171211

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171213

Year of fee payment: 19

Ref country code: GB

Payment date: 20171206

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171221

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69934968

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20181231

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181210

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231