EP1055264B1 - Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter - Google Patents
Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter Download PDFInfo
- Publication number
- EP1055264B1 EP1055264B1 EP99966071A EP99966071A EP1055264B1 EP 1055264 B1 EP1055264 B1 EP 1055264B1 EP 99966071 A EP99966071 A EP 99966071A EP 99966071 A EP99966071 A EP 99966071A EP 1055264 B1 EP1055264 B1 EP 1055264B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- parallel
- microstrip
- transition
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007704 transition Effects 0.000 title claims description 39
- 239000000758 substrate Substances 0.000 claims description 4
- 239000003989 dielectric material Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
Definitions
- the present invention relates generally to waveguide transitions, and, more particularly, to a broadband microstrip to parallel-plate-waveguide transition.
- a transition between a coplanar line and a waveguide is, for example, disclosed in Patent Abstracts of Japan, Vol. 10, No. 340 (JP 61142802) and the paper "A NEW INTEGRATED WAVEGUIDE-MICROSTRIP TRANSITION", J.H.C. van Heuven, 4 th European Microwave Conference-Proceedings, September 10-13, 1974, pages 541-545.
- the present invention comprises a broadband transition for use between a shielded microstrip and a parallel-plate waveguide.
- the broadband transition comprises a metallic taper that is electrically connected to a conductive strip of the microstrip at one end and to a wall of the waveguide at the other end.
- the metallic taper may be optimized to tune out, over a broad operating frequency band, reflections caused by the discontinuity between the two largely disparate transmission media comprising the microstrip and parallel-plate waveguide.
- the broadband transition provides for a low VSWR transition with wide operating bandwidth and wide-angle scanning capability between a linear array of shielded microstrip circuits (e.g., phase shifters) and a parallel-plate waveguide structure (e.g., a continuous transverse stub array antenna).
- the shielded microstrip lines minimize cross-coupling between adjacent circuits, thereby allowing their individual amplitude and phase excitations to be imposed on a line source along the parallel-plate waveguide interface.
- the metallic taper is also suitable for construction of a planar, in-line transition between microstrip and rectangular waveguide with full-band coverage of the fundamental waveguide mode. No description of this particular type of transition has been found in the technical literature.
- the present invention may be used in applications that require a low-VSWR. broadband, planar, inline transition between microstrip and parallel-plate or rectangular waveguide structures.
- the present invention provides a capability to transition between a linear array of microstrip circuits (e.g., RF feed networks, ferrite or PIN-diode phase shifters, microwave amplifiers or mixers, etc.) and the line feed for parallel-plate or overmoded waveguide.
- the present invention may be used to provide low-cost, two-dimensional scanning capability by combining this type electronic scanning line feed in one plane with mechanical rotation in an orthogonal plane.
- Fig. I illustrates the use of a broadband microstrip to parallel-plate waveguide transition 20 in accordance with the principles of the present invention in an antenna system 10.
- Fig. I illustrates a simplified block diagram of the antenna system 10 showing a typical application of the broadband transition 20.
- the antenna system 10 comprises a planar antenna 30 with which the transition 20 is used.
- the planar antenna 30 has a line feed input including a parallel-plate or overmoded waveguide section.
- the planar antenna 30 also comprises a linear array of phase shifters 13 that each have a microstrip RF port 13a.
- the broadband transition 20 provides an RF interface between the phase shifters 13 and the antenna 30.
- a combiner/divider 12 for receiving input signals at an RF input 11 establishes an amplitude distribution along a line-feed input 30a of the antenna, and the linear array of phase shifters 13 may be adjusted to produce the appropriate phase front to scan the beam output by the antenna 30 at its radiating aperture at a desired angle.
- Fig. 2 shows a solid-dielectric continuous transverse stub array antenna 30 as a representative example of the planar antenna 30.
- the continuous transverse stub array antenna 30 has a parallel-plate waveguide horizontal line feed 31.
- An eight-way vertical corporate feed 32 located behind an aperture plate 33, feeds eight continuous transverse stub radiators 34.
- the horizontal aperture distribution which is provided by the n-way combiner/divider 12 and phase shifters 13 shown in Fig. 1, is imposed onto the parallel-plate line feed 30a along the rear of the antenna 30.
- a section of the present broadband transition 20 used for three adjacent elements is shown in Fig. 3.
- a 0.140 inch high, dielectric-filled, parallel-plate waveguide 21 (shown on the left-hand side of Fig. 3) corresponds to the parallel-plate line feed 30a of the continuous transverse stub array antenna 30.
- a plurality of microstrip circuits 22 each comprising a shielded microstrip feed line 24 (shown on the right-hand side of Fig. 3), comprise output circuits for three phase shifters 13, and are the same height as the parallel-plate waveguide 12 in order to minimize the physical discontinuity at the interface.
- the plurality of microstrip circuits 22 are fabricated on a substrate 23, such as a 0.025 inch thick Rexolite ® substrate 23, which is preferably the same dielectric material from which both the parallel-plate waveguide 21 and continuous transverse stub array antenna 30 are made.
- a section of the top wall of the broadband transition 20 is cut away in Fig. 3 so that one of a plurality of metallic tapers 26 can be seen.
- the tapers 26 may be fabricated cither as a separate part, or fabricated as part of the parallel-plate region by forming the required shape in the dielectric material and subsequently metalizing the cavity walls.
- the metallic taper 26 is electrically connected to the microstrip feed line 24 of the microstrip circuit 22 at one end and to a wall (shown as the upper or top wall) of the waveguide 21 at the other end.
- a broadband transition 20 for a 32-element continuous transverse stub array antenna 30 was modeled using a Hewlett-Packard High Frequency Structures Simulator (HFSS) computer program.
- the array antenna 30 was designed to operate over the 6 to 18 GHz frequency band and scan to ⁇ 60 degrees without grating lobes. Equation (1) gives the maximum allowable element spacing as 0.340 inch, and thus a spacing of 0.325 inch was chosen to provide some margin for fabrication tolerances.
- Fig. 4 shows the computed magnitude of reflection ls 11 l and transmission lS 21 l coefficients versus frequency.
- the computed VSWR. shown in Fig 4, is below 1.50:1 from 7 to above 24 GHz. However, grating lobes occur above 22.7 GHz if the array is scanned to ⁇ 60 degrees. At 24 GHz, the array may be scanned only to ⁇ 27.8 degrees without grating lobes.
- the element spacing may be increased slightly (e.g., 0.350 inch) to give the desired low-VSWR performance down to 6 GHz, but then ⁇ 60 degrees scan coverage without grating lobes would be achievable only up to 17.5 GHz. At higher frequencies, the usable scan sector would become progressively smaller, as expressed by Equation (1).
- the broadband transition 20 of the present invention may also be used as a low-VSWR transition between microstrip circuits 22 and rectangular waveguide 21, as is shown in Fig. 5.
- the wideband capability of this particular broadband transition 20, however, is limited by cutoff of the fundamental mode at the low frequency end and the propagation of higher-order modes at the high end.
- the methodology used to the design the metallic taper 26 includes the following steps.
- the width (Y direction) of the taper 26 is chosen to be equal to the line width of the microstrip circuit 22. This avoids the necessity of matching in the Y direction, and this option is available for special design requirements.
- each taper 26 is determined by the operational bandwidth, desired VSWR and space limitations. Tapers 26 are typically several wavelengths long at the lowest frequency for the respective medium. In the example design, tapers 26 less than a wavelength long were dictated by physical constraints.
- the curves of the tapers 26, which are initially parabolic, are optimized numerically to minimize reflection coefficient across the desired band. Alternately, optimization routines may be used to compute the curves.
- Table 1 gives the X and Z coordinates for the lower and upper surfaces of the metallic taper 26, while Fig. 6 shows the profile defined by these points.
- Table 1 Lower SurfaceUpper Surface X (inch) Z (inch) X (inch) Z (inch) -0.660 0.140 -0.660 0.140 -0.600 0.132 -0.600 0.140 -0.540 0.118 -0.540 0.140 -0.480 0.100 -0.480 0.140 -0.420 0.084 -0.420 0.140 -0.360 0.070 -0.360 0.140 -0.300 0.058 -0.300 0.140 -0.240 0.048 -0.240 0.140 -0.180 0.040 -0.180 0.140 -0.120 0.033 -0.120 0.140 -0.060 0.028 -0.060 0.140 0 0.025 0 0.140 0.100 0.025 0.100 0.140 0.200 0.025 0.200 0.140 0.300 0.025 0.300 0.140 0.400 0.025 0.400 0.140 0.500 0.025 0.500 0.
Landscapes
- Waveguide Aerials (AREA)
Claims (10)
- Breitbandiger Übergang von einer Mikrostreifenleitung auf einen Parallelplatten-Hohlleiter (20) zum Koppeln von HF-Energie in eine planare Antenne (30), mit:einem Parallelplatten-Hohlleiter (21);einer Vielzahl von Mikrostreifenschaltungen (22), die jeweils eine abgeschirmte Mikrostreifeneinspeiseleitung (24) auf einem Substrat (23) angeordnet aufweisen; undeiner Vielzahl von metallenen gebogenen Abschrägungen (26), die jeweils ein erstes Ende aufweisen, das mit einem der Vielzahl der Mikrostreifeneinspeiseleitungen gekoppelt ist, und die jeweils ein zweites Ende aufweisen, das benachbart dem Hohlleiter angeordnet ist, wobei die Breite (Y-Richtung) jeder metallenen Abschrägung (26) gleich der Leitungsbreite der Mikrostreifenschaltung (22) ist, die Länge jeder Abschrägung bestimmt wird durch die Betriebsbandbreite, die gewünschte VSWR und die Raumgrenzen, und die Krümmungen der Abschrägungen sind optimiert, um den Reflexionskoeffizienten über das gewünschte Band zu minimieren.
- Antennensystem (10) mit:einem HF-Eingang (11);einem Kombinierer/Teiler (12), der mit dem HF-Eingang (11) gekoppelt ist;einer linearen Anordnung von Phasenverschiebern (13), die jeweils einen Mikrostreifen HF-Anschluss (13a) aufweisen, der mit dem Kombinierer/Teiler (12) gekoppelt ist;einer planaren Antenne (30) mit einem Leitungseinspeiseeingang (30a) und einem Hohlleiterabschnitt; undeinem breitbandigen Übergang (20) von einer Mikrostreifenleitung zu einem Parallelplatten-Hohlleiter, der zwischen der linearen Anordnung von Phasenverschiebern (13) und der planaren Antenne (30) gekoppelt ist, der aufweist:einen Parallelplatten-Hohlleiter (21);eine Vielzahl von Mikrostreifenschaltungen (22), die jeweils eine abgeschirmte Mikrostreifeneinspeiseleitung (24) auf einem Substrat (23) angeordnet aufweisen; undeine Vielzahl von metallenen gebogenen Abschrägungen (26), die jeweils ein erstes Ende aufweisen, das mit einem der Vielzahl der Mikrostreifeneinspeiseleitungen gekoppelt ist, und die jeweils ein zweites Ende aufweisen, das benachbart dem Hohlleiter angeordnet ist, wobei die Breite (Y-Richtung) jeder metallenen Abschrägung (26) gleich der Leitungsbreite der Mikrostreifenschaltung (22) ist, die Länge jeder Abschrägung bestimmt wird durch die Betriebsbandbreite, die gewünschte VSWR und die Raumgrenzen, und die Krümmungen der Abschrägungen sind optimiert, um den Reflexionskoeffizienten über das gewünschte Band zu minimieren.
- Antennensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass die planare Antenne (30) einen Parallelplatten-Hohlleiterabschnitt besitzt.
- Antennensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass die planare Antenne (30) einen übermodierten Hohlleiterabschnitt besitzt.
- Antennensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass die planare Antenne (30) eine Gruppenantenne mit Festkörperdielektrikum und kontinuierlichen quer verlaufenden Stichleitungen (30) aufweist.
- Antennensystem (10) nach Anspruch 5, dadurch gekennzeichnet, dass die Gruppenantenne mit kontinuierlicher quer verlaufenden Stichleitung (30) eine Parallelplatten-Hohlleiter-Horizontalleitungseinspeisung (31) aufweist.
- Antennensystem (10) nach Anspruch 2, dadurch gekennzeichnet, dass der breitbandige Übergang (20) einen Parallelplatten-Hohlleiter (21) mit Dielektrikumfüllung aufweist.
- Übergang nach Anspruch 1 oder System (10) nach Anspruch 2, dadurch gekennzeichnet, dass der Parallelplatten-Hohlleiter (21) einen mit Dielektrikum gefüllten Parallelplatten-Hohlleiter (21) aufweist.
- Übergang nach Anspruch 1 oder System (10) nach Anspruch 2, dadurch gekennzeichnet, dass die metallenen Abschrägungen (26) getrennte Metallteile aufweisen.
- Übergang nach Anspruch 1 oder System (10) nach Anspruch 2, dadurch gekennzeichnet, dass die metallenen Abschrägungen (26) ein metallisiertes abgeschrägtes Dielektrikummaterial aufweisen.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US209123 | 1994-03-08 | ||
US20912398A | 1998-12-10 | 1998-12-10 | |
PCT/US1999/029184 WO2000035044A1 (en) | 1998-12-10 | 1999-12-09 | Broadband microstrip to parallel-plate-waveguide transition |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1055264A1 EP1055264A1 (de) | 2000-11-29 |
EP1055264B1 true EP1055264B1 (de) | 2007-01-24 |
Family
ID=22777433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99966071A Expired - Lifetime EP1055264B1 (de) | 1998-12-10 | 1999-12-09 | Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1055264B1 (de) |
JP (1) | JP2002532928A (de) |
DE (1) | DE69934968T2 (de) |
DK (1) | DK1055264T3 (de) |
WO (1) | WO2000035044A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2849720B1 (fr) | 2003-01-03 | 2005-04-15 | Thomson Licensing Sa | Transition entre un guide d'onde rectangulaire et une ligne microruban |
US7432871B2 (en) * | 2005-03-08 | 2008-10-07 | Raytheon Company | True-time-delay feed network for CTS array |
GB2453697B (en) * | 2006-08-04 | 2010-11-24 | Advanced Risc Mach Ltd | A bus interconnect device and a data processing apparatus including such a bus interconnect device |
US7612733B2 (en) | 2007-03-12 | 2009-11-03 | The Regents Of The University Of Colorado | Transition region for use with an antenna-integrated electron tunneling device and method |
DE102010014916B4 (de) * | 2010-04-14 | 2012-10-31 | Aeromaritime Systembau Gmbh | Phasengesteuerte Gruppenantenne |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1043431B (de) * | 1958-04-02 | 1958-11-13 | Telefunken Gmbh | Symmetrieranordnung fuer den UEbergang von einer unsymmetrischen Bandleitung, insbesondere Microstrip-Leitung, auf eine symmetrische Leitung, insbesondere Bandleitung |
JPH0640601B2 (ja) * | 1984-12-17 | 1994-05-25 | 日本電信電話株式会社 | 導波管変換器 |
US5266961A (en) * | 1991-08-29 | 1993-11-30 | Hughes Aircraft Company | Continuous transverse stub element devices and methods of making same |
JPH0590807A (ja) * | 1991-09-27 | 1993-04-09 | Nissan Motor Co Ltd | 導波管・ストリツプ線路変換器 |
JP3115194B2 (ja) * | 1994-09-22 | 2000-12-04 | 三菱電機株式会社 | フェーズドアレイアンテナ装置 |
-
1999
- 1999-12-09 DK DK99966071T patent/DK1055264T3/da active
- 1999-12-09 DE DE69934968T patent/DE69934968T2/de not_active Expired - Lifetime
- 1999-12-09 WO PCT/US1999/029184 patent/WO2000035044A1/en active IP Right Grant
- 1999-12-09 EP EP99966071A patent/EP1055264B1/de not_active Expired - Lifetime
- 1999-12-09 JP JP2000587404A patent/JP2002532928A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DK1055264T3 (da) | 2007-04-30 |
WO2000035044A1 (en) | 2000-06-15 |
EP1055264A1 (de) | 2000-11-29 |
DE69934968D1 (de) | 2007-03-15 |
JP2002532928A (ja) | 2002-10-02 |
DE69934968T2 (de) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3888186B1 (de) | Stegwellenleiter mit lücke und mehrschichtige antennenanordnung damit | |
US6424298B1 (en) | Microstrip array antenna | |
Doane et al. | A wideband, wide scanning tightly coupled dipole array with integrated balun (TCDA-IB) | |
US5583524A (en) | Continuous transverse stub element antenna arrays using voltage-variable dielectric material | |
EP0536522A2 (de) | Kontinuierliche Querelement-Geräte und Verfahren zu deren Herstellung | |
EP1782500A1 (de) | Wellenleiter-kerbenantenne | |
US5995055A (en) | Planar antenna radiating structure having quasi-scan, frequency-independent driving-point impedance | |
US5303419A (en) | Aperture-coupled line Magic-Tee and mixer formed therefrom | |
Bakhtafrooz et al. | Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides | |
CN111969308A (zh) | 一种周期漏波天线 | |
CN111969312B (zh) | 一种天线阵列 | |
CN111262022A (zh) | 一种圆极化天线 | |
US6850203B1 (en) | Decade band tapered slot antenna, and method of making same | |
CN113725599B (zh) | 一种用于毫米波汽车雷达的组合天线 | |
EP1055264B1 (de) | Breitbandiger übergang von mikrostreifenleitung auf parallelplatten-hohlleiter | |
CN115458892B (zh) | 基于圆形siw谐振腔的四路同相不等功分器 | |
CN112054305A (zh) | 一种基于复合左右手结构增益高度稳定的周期性漏波天线 | |
CA1256557A (en) | Sandwich-wire antenna | |
CN116666995A (zh) | 一种弧型切角圆极化微带天线稀疏阵列 | |
CN216850344U (zh) | 一种脊波导一维相控阵天线 | |
Temga et al. | A 5.5 GHz band 2-D beamforming network using broadside coupled stripline structure | |
CN216872258U (zh) | 毫米波巴特勒矩阵波束成形网络 | |
CN116130979A (zh) | 一种低副瓣背腔缝隙阵列天线 | |
US6166693A (en) | Tapered leaky wave ultrawide band microstrip antenna | |
JP2000165116A (ja) | 方向性結合器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000801 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE DK FI GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20040512 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE DK FI GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69934968 Country of ref document: DE Date of ref document: 20070315 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20071025 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171206 Year of fee payment: 19 Ref country code: DK Payment date: 20171212 Year of fee payment: 19 Ref country code: FI Payment date: 20171211 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20171213 Year of fee payment: 19 Ref country code: GB Payment date: 20171206 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20171221 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69934968 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20181231 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181210 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181209 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190702 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |