EP1051585B1 - Procede et dispositif pour faire fonctionner une installation de combustion - Google Patents

Procede et dispositif pour faire fonctionner une installation de combustion Download PDF

Info

Publication number
EP1051585B1
EP1051585B1 EP99914392A EP99914392A EP1051585B1 EP 1051585 B1 EP1051585 B1 EP 1051585B1 EP 99914392 A EP99914392 A EP 99914392A EP 99914392 A EP99914392 A EP 99914392A EP 1051585 B1 EP1051585 B1 EP 1051585B1
Authority
EP
European Patent Office
Prior art keywords
combustion
burner
characteristic quantities
module
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99914392A
Other languages
German (de)
English (en)
Other versions
EP1051585A1 (fr
Inventor
Thomas Merklein
Felix Fastnacht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1051585A1 publication Critical patent/EP1051585A1/fr
Application granted granted Critical
Publication of EP1051585B1 publication Critical patent/EP1051585B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/16Flame sensors using two or more of the same types of flame sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/02Controlling two or more burners

Definitions

  • the invention relates to a method for operating an incinerator. It also refers to a device for performing the method.
  • German utility model DE 80 17 259.4 41 a combustion system for controlled combustion of solid fossil fuels known in the case of multiple radiation sensors the flame area of each individual burner are assigned to the combustion system. Based on that for everyone Radiation intensity determined using a single burner is one Control of the individual burners enables.
  • a disadvantage here is that the radiation intensity of a single flame by a plurality each receiving a line of the flame Radiation sensor is determined. To accommodate a partial area The radiation sensors can be swiveled around the flame arranged. Such an arrangement is particularly time-consuming and expensive.
  • the invention is therefore based on the object of a method specify to operate an incinerator, with the particular the combustion process for you is simple and fast particularly low pollutant emissions can be set. This is said to be suitable for carrying out the method Device can be achieved with simple means.
  • the object is achieved by a method for operation an incinerator with a number of burners solved, the composition of the fuel mixture of each burner using at least one of the dynamic characterizing the combustion process Characteristics determined setpoint is controlled at which the Setpoint for each burner depending on it Share in the total share of a arising in the combustion process Reaction product, being for each burner Share in the reaction product based on the dynamic parameters Characteristics and characterizing the incinerator static parameters is determined.
  • the invention is based on the consideration that global Measured values for a particularly simple and quick setting a particularly low emission of pollutants is not sufficient are. Rather, the individual contribution should each Brenners determined and taken into account in the firing control become.
  • the determination of the proportion of a single burner of the concentration of one in the combustion process emerging reaction product, especially at the exit of the Combustion chamber, allows the influence of each one Brenners in terms of the total share of pollutant emissions to consider.
  • the burning behavior of a single burner and its influence on the combustion process be optimized.
  • the local one is advantageously used for each individual burner Course of at least one reaction product to be investigated, e.g. of a combustion radical or one Flue gas size CO or NOx within the combustion chamber, calculated to the exit of the combustion chamber.
  • This will expediently the proportion of the or each burner in the Reaction product determined spatially resolved.
  • Share of the burner in question in the concentration of the reaction product is at least one setpoint for the Composition of the fuel mixture of this burner determined.
  • the combustion model forms the combustion process particularly advantageously to.
  • This combustion model describes the combustion process based on the chemical reaction kinetics with suitable differential approaches.
  • the Transport processes e.g. based on the diffusion, the mass flow and / or the heat flow.
  • the chemical Reactions in the combustion chamber or in the flame, e.g. the Oxidation are based on those taking place during the combustion Elementary reactions described.
  • the physical Couplings between the transport processes or material flows of the individual burners with each other and between components the combustion chamber, e.g. Heat flow between the Burner and the wall of the combustion chamber are in the Combustion model with the help of the exchanged heat flow, convection and / or radiation.
  • the combustion model uses parameters as input variables fed.
  • parameters of the combustion process are preferably used as parameters of the combustion process the value of the concentration of the subject to be examined Reaction product, e.g. of the combustion radical CO or CH in the flame of the selected burner, the amount of fuel or supply of the selected burner, the air supply or the amount of air supplied to the selected burner and / or at least one change size with this burner components in heat exchange, e.g. other burners or the wall of the combustion chamber.
  • This the Combustion process characterizing parameters are dynamic Characteristics by the respective instantaneous values be characterized for a time range.
  • parameters of the incineration plant also called boiler sizes - are preferably at least one geometric size of the combustion chamber and / or the number of used Burner used.
  • the characteristics of the incinerator are static parameters that the incinerator describe in terms of structure and geometry.
  • the parameters are determined on the basis of measurements.
  • the concentration of the reaction product is reconstructed by computer tomography from an emission spectrum recorded in the combustion process.
  • at least some of the parameters are advantageously output from a memory as archived parameters. Using these archived parameters, the individual phases of the combustion process can be simulated, whereby the combustion process can be optimized with regard to a particularly low pollutant emission by changing individual parameters, for example the addition of oxygen for O 2 enrichment.
  • the resulting comparison value is preferably the Formation of at least one of the target values for the composition of the fuel mixture of the burner in question. Based on the comparison of the share of the individual burner with the total sum of the shares of all burners and the one formed from them The combustion behavior is particularly advantageous of the burner concerned with regard to the total combustion homogenized and optimized.
  • Setpoint module for determining the setpoint for the composition of the fuel mixture of each burner in Dependence on its share of the total share of one in the combustion process resulting reaction product is provided, where to determine the proportion of each burner Setpoint module a combustion analysis module for processing of the dynamic parameters and characterizing the incinerator static parameters is upstream. Conveniently, is the combustion model in the combustion analysis module deposited.
  • a data processing module is an advantageous embodiment to determine the dynamic parameters for each burner provided, the data processing module with the Combustion analysis module for processing the dynamic Parameters is connected.
  • a data module for archived parameters of the or each burner provided.
  • the data module with the combustion analysis module is preferably connected to the processing of the archived parameters.
  • the combustion analysis module is expedient supplied static parameters in a data memory deposited. Is particularly advantageous by means of Parameters archived in the data module and in the data memory and the resulting flue gas values the burning behavior of the single burner or a combination of several Burners can be simulated.
  • the saved parameters varied by small amounts and using the above described combustion model processed until a specifiable Flue gas value or value of the reaction product set is. Based on the determined value, for example represents a particularly low emission of the reaction product, are then setpoints for the individual burners the composition of the respective fuel mixture determined.
  • the combustion analysis module on the one hand directly and on the other hand with the interposition of a mean value module or / and a weighting module with the setpoint module connected.
  • a mean value module or / and a weighting module with the setpoint module connected.
  • the advantages achieved with the invention are in particular in that by determining the proportion of an individual Burner on the total value of a reaction product to be investigated, e.g. a flue gas size, the driving style of each individual burner is adjustable so that the total combustion with regard to a particularly low pollutant emission is improved.
  • the burner-resolved Determination of the respective flue gas values of all burners at the outlet the incinerator and the subsequent optimization the burner with each other enables a uniform Burning behavior of all burners.
  • the processing speed in this combustion model is due to the split of the total combustion on the individual burners in particular high. So this procedure is together with the Device for controlling an incinerator in real time suitable.
  • the combustion process of an incinerator takes place in a fire or combustion chamber 1 with a number by burners 2A to 2Z instead.
  • Optical sensors 3 in The form of special cameras each capture a sub-area T in the combustion chamber 1.
  • 2A to 2Z each radiation data D from its flame 2A 'to 2Z' in Formed emission spectra.
  • This radiation data D are a measuring module, in the further data processing module 4 called, supplied.
  • the data processing module 4 can, for example as a responsive programmable logic controller Control and / or powerful personal computer executed his.
  • the emission spectra become 4 in the data processing module a temperature distribution by means of computer tomographic reconstruction and concentration profiles of those in combustion resulting reaction products, e.g. NOx, CO and CH, calculated.
  • the temperature is determined by ratio pyrometry and the concentration of the reaction products or the Combustion radicals determined by emission spectroscopy.
  • the measured values M of the or each sensor 8 represent the respective total or global value of the concentration one of the reaction products to be detected. In other words: the measured values M of the or each sensor 8 describe the concentration of the reaction product on Output of the combustion chamber 1 and thus the corresponding one Pollutant emission.
  • the data processing module 4 are also about Sensors, not shown, are supplied with further measured values M '.
  • the measured values M ' characterize e.g. the fuel supply, the air supply of the or each burner 2A to 2Z or at least one alternating quantity of with one of these burners 2A up to 2Z in heat exchange components, e.g. another Burner 2B to 2Z or the wall of the combustion chamber 1.
  • the radiation data D and the measured values M, M ' are determined using of the data processing module 4 by computer tomography Reconstruction of the emission spectra or by analog-digital conversion to characterize the combustion process dynamic parameters Kp converted and a combustion analysis module 10 fed.
  • the combustion analysis module 10 is the incinerator characterizing static parameters Ka, e.g. the geometric size of the combustion chamber 1 or the Number of burners 2A to 2Z supplied.
  • the static parameters Ka are stored in a data memory 11.
  • a data storage 11 serves, for example, an optical memory or a hard disk space.
  • several combustion analysis modules 10 and data storage 11 be provided, for example a data processing module for each burner 2A to 2Z 4, a combustion analysis module 10 and a data memory 11.
  • the combustion analysis module 10 is used for the spatially resolved determination the concentration value of a reaction product to be investigated, e.g. CO, in the combustion chamber 1 the measured values converted to the dynamic parameters Kp M, M 'as global data and the radiation data D as spatially resolved data taken into account.
  • the geometrical relationships the incinerator are determined by the static Characteristics Ka described.
  • the combustion analysis module 10 determined on the basis of the global measured values M, M 'and on the basis of the burner-specific and spatially resolved radiation data D the contribution or share of each individual burner 2A to 2Z for the reaction product examined in each case.
  • the combustion analysis module 10 forms from these parameters an output quantity A for each by means of the combustion model Burner 2A to 2Z.
  • the output variable A represents spatially resolved the proportional value of the corresponding burner 2A to 2Z on the reaction product to be investigated Relation to the spatially resolved and burner resolved concentration profile set global, associated measured value M,
  • the output variable A comprises, in particular, information about the share of this burner 2A to 2Z in the corresponding Emission in the flue gas duct 6.
  • the combustion process can, depending on the given boundary conditions, optimized with regard to different parameters his.
  • optimized e.g. particularly low emission of NO or CO is achieved using the Combustion model as output variable A
  • the proportional value of the reaction product to be optimized NO or CO of the corresponding Burner 2A to 2Z determined.
  • the proportional value at the exit of the combustion chamber 1 is determined.
  • the output variable A for each burner 2A to 2Z then becomes fed to a mean value module 12.
  • the mean value module 12 includes a summer 12a and a divider 12b.
  • the mean value module 12 serves to determine the mean value W of the output variables A of all involved in the combustion process Burner 2A to 2Z.
  • the output variables are the summer 12a A fed to all burners 2A to 2Z.
  • the sum of all output variables A is then in the divider 12b divided by the number of all relevant burners 2A to 2Z.
  • the mean value W of the output variables formed in the mean value module 12 A is fed to a weighting module 14.
  • Weighting module 14 becomes a weighted one for each burner 2A to 2Z
  • Mean value GW formed by the mean value W with a weighting factor F is applied.
  • the Weighting factor F is the influence of the installation location on the Proportion of burner 2A to 2Z in the total concentration of Reaction product at the exit of the combustion chamber 1 is taken into account.
  • the type of optimization also influences the combustion control, e.g. Optimization according to NO or CO, the weighting factor F.
  • the weighted average GW of each burner 2A to 2Z becomes then fed to a setpoint module 16.
  • a setpoint module 16 is provided his.
  • the setpoint module 16 is that of the combustion analysis module 10 delivered output variable A of one to be examined or predetermined burner 2A to 2Z, i.e. the proportional Concentration value of the corresponding burner 2A to 2Z on the reaction product. From the weighted average GW and the output variable A is determined using the setpoint module 16 at least one setpoint SW for the composition of the burner 2A to 2Z to be examined Fuel mixture B formed.
  • When creating the setpoint SW becomes the share of the respective burner 2A to 2Z on the one hand via its output variable A and on the other hand via takes into account the weighted average GW assigned to it.
  • the respective setpoint SW becomes an associated controller block 18A to 18Z for forming a number of control signals U for the amount of the respective components of the fuel mixture B or for the air supply L or for the dose of one Additive H fed.
  • the respective controller block 18A up to 18Z is expediently constructed conventionally.
  • there a controller module 18A to 18Z is provided for each burner 2A to Z, that of sensors or transmitters, not shown associated actual values I of the respective burner 2A to 2Z are fed.
  • the respective controller module 18A to 18Z contains all intended for the operation of the incineration plant Control loops, e.g. for steam output, excess air, media flow etc., and serves to control all the combustion process influencing actuators.
  • the control signal U is via a control line 20A to 20Z to a control device 22A to 22Z.
  • the control the actuators of a single burner 2A to 2Z and consequently the addition of the fuel mixture B, the addition substance H or the air supply L takes place by means of the associated Controller module 18A to 18Z, which via the control line 20A to 20Z connected to the control device 22A to 22Z is.
  • the Controller module 18A to 18Z which via the control line 20A to 20Z connected to the control device 22A to 22Z is.
  • For the burner to be examined 2A to 2Z So deviations of the output quantity A from the weighted Average GW balanced by the setpoint SW. At a such compensation for all burners 2A to 2Z thus the total burning behavior of all burners 2A to 2Z in Combustion chamber 1 homogenized.
  • FIG. 2 shows the basic structure of an alternative Device for operating an incinerator, not shown, that in addition to the combustion analysis module 10 has a further combustion analysis module 10 '.
  • This are archived dynamic parameters Kp 'of a data module 24 fed.
  • the combustion analysis module 10 ' is identical with the combustion analysis module already described above 10. The difference lies in the type of parameters Kp 'that the combustion analysis module 10' in addition to static parameters characterizing the incinerator Ka can be supplied as input variables.
  • the combustion analysis module 10 ' Based on the stored dynamic parameters Kp 'and the static parameters Ka using the combustion model stored there for everyone Burner 2A to 2Z determined an output variable A '.
  • the Output variable A ' characterizes a burner-resolved and spatially resolved concentration value on a person to be examined Reaction product for the respective burner 2A to 2Z, which has a particularly favorable operating behavior Burner 2A to 2Z in the past.
  • This on stored parameters Kp 'based output variable A' then in a comparison module 26 with the currently determined Output variable A of the same burner 2A to 2Z compared.
  • the stored output variable A ' is always the Concentration value, which is a particularly low emission and achieved homogeneous combustion, used for its comparison. Is the one determined by the current parameters Kp and Ka Output variable A in terms of emissions worse than the one that was optimal and last archived Output variable A ', this archived output variable becomes A 'used to form the setpoints SW for the control. However, represents the currently determined output variable A is better than the archived output variable A ' The result for the formation of the setpoints SW are these Characteristics Kp as new, representing an optimum of combustion Characteristics Kp 'stored in the data module 24.
  • Setpoints SW are thus formed by means of the comparison module 26, which are analogous to the method described in FIG. 1 by means of the respective controller module 18A to 18Z Control signals U for the amount of the respective components of the respective fuel mixture B or for the air supply L or for the dose of an additive H of that Burner 2A to 2Z can be converted.
  • the respective controller block 18A to 18Z is via the associated control line 20A to 20Z to control the actuators with their control device 22A to 22Z.
  • the number of data processing modules 4, the data modules 24, the combustion analysis modules 10, 10 'and the setpoint or Comparison modules 16 and 26 can vary. For example can be 2A to 2Z for each burner, i.e. burner resolved a separate one or for all burners 2A to 2Z a common data processing module 4, a common one Data module 24, a common combustion analysis module 10, 10 'and a common setpoint or comparison module 16 or 26 may be provided.
  • the data module 24 and the combustion analysis module 10 'built burner analysis can also be off-line and therefore parallel to that of the data processing module 4 and the combustion analysis module 10 built on-line burner analysis switched his.
  • the off-line burner analysis then enables the simulation of the combustion process, taking as input variables or measured variables stored parameters Kp 'in the Data module 24 can be varied by small amounts as long to a particularly low emission Output variable A 'is determined. This optimized output size A 'is then used as the default for the comparison module 26 used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Claims (17)

  1. Procédé pour faire fonctionner une installation de combustion comprenant un certain nombre de brûleurs (2A à 2Z), dans lequel on se rend maítre de la composition du mélange (B) combustible de chaque brûleur (2A à 2Z) au moyen d'au moins une valeur (SW) de consigne qui est déterminée à l'aide de grandeurs (Kp) caractéristiques dynamiques caractérisant le processus de combustion,
       caractérisé en ce que l'on détermine la valeur (SW) de consigne en fonction de la proportion de chaque brûleur (2A à 2Z) individuel à tout un produit de réaction se formant dans le processus de combustion en déterminant pour chaque brûleur (2A à 2Z) sa proportion par rapport à tout le produit de réaction au moyen des grandeurs (Kp) caractéristiques dynamiques et des grandeurs (Ka) caractéristiques statiques caractérisant l'installation de combustion.
  2. Procédé suivant la revendication 1,
       caractérisé en ce que l'on détermine avec résolution dans l'espace la proportion de chaque brûleur (2A à 2Z) au produit de réaction.
  3. Procédé suivant la revendication 1 ou 2,
       caractérisé en ce que l'on traite les grandeurs (Kp ou Ka) caractéristiques dynamiques et/ou statiques au moyen d'un modèle de combustion du processus de combustion.
  4. Procédé suivant la revendication 3,
       caractérisé en ce que le modèle de combustion reproduit le processus de combustion de la cinétique de réaction chimique.
  5. Procédé suivant l'une des revendications 1 à 4,
       caractérisé en ce que l'on détermine au moins certaines des grandeurs (Kp) caractéristiques dynamiques au moyen de mesures.
  6. Procédé suivant l'une des revendications 1 à 5,
       caractérisé en ce que l'on sort d'une mémoire certaines des grandeurs (Kp) caractéristiques dynamiques sous la forme de grandeurs (Kp') caractéristiques archivées.
  7. Procédé suivant l'une des revendications 1 à 6,
       caractérisé en ce que les grandeurs (Kp) caractéristiques dynamiques du processus de combustion comprennent la valeur de la concentration du produit de réaction dans la flamme du brûleur (2A à 2Z) sélectionné, l'apport de combustible du brûleur (2A à 2Z) sélectionné, l'apport d'air du brûleur (2A à 2Z) sélectionné ou/et au moins une grandeur de remplacement d'éléments échangeant de la chaleur avec ce brûleur (2A à 2Z) sélectionné.
  8. Procédé suivant l'une des revendications 1 à 7,
       caractérisé en ce que les grandeurs (Ka) caractéristiques statiques de l'installation de combustion comprennent au moins une grandeur géométrique de la chambre (1) de combustion ou/et le nombre des brûleurs (2A à 2Z) utilisés.
  9. Procédé suivant l'une des revendications 1 à 8,
       caractérisé en ce que l'on transforme les grandeurs (Ka ou Kp) caractéristiques statiques et/ou dynamiques au moyen du modèle de combustion en une grandeur (A) de sortie caractérisant le brûleur ou chaque brûleur (2A à 2Z).
  10. Procédé suivant la revendication 9,
       caractérisé en ce que l'on compare la grandeur (A) de sortie caractérisant le brûleur (2A à 2Z) respectif à la valeur (W) moyenne pondérée des grandeurs (A) de sortie caractérisant les autres brûleurs (2A à 2Z) et on utilise la valeur de comparaison qui en résulte pour former la valeur (SW) de consigne pour le brûleur (2A à 2Z) concerné.
  11. Dispositif pour faire fonctionner une installation de combustion ayant un certain nombre de brûleurs (2A à 2Z) que l'on commande respectivement au moyen d'au moins une valeur (SW) de consigne de la composition du mélange (B) combustible, la valeur (SW) de consigne étant déterminée au moyen de grandeurs (Kp) caractéristiques dynamiques caractérisant le processus de combustion,
       caractérisé en ce qu'il est prévu un module (16) de valeur de consigne destiné à déterminer la valeur (SW) de consigne de chaque brûleur (2A à 2Z) individuel en fonction de sa proportion à tout le produit de réaction se formant dans le processus de combustion, un module (10) d'analyse de la combustion, destiné à traiter les grandeurs (Kp) caractéristiques dynamiques et les grandeurs (Ka) de combustion statiques caractérisant l'installation de combustion étant monté en amont du module (16) de valeur de consigne en vue de déterminer la proportion de chaque brûleur (2A à 2Z) individuel.
  12. Dispositif suivant la revendication 11,
       caractérisé en ce qu'il est prévu un module (4) de traitement des données destiné à déterminer les grandeurs (Kp) caractéristiques dynamiques de chaque brûleur (2A à 2Z).
  13. Dispositif suivant la revendication 11 ou 12,
       caractérisé en ce qu'il est prévu un module (24) de données pour des grandeurs (Kp') caractéristiques dynamiques qui sont archivées.
  14. Dispositif suivant la revendication 13,
       caractérisé en ce que le module (24) de données est relié au module (10') d'analyse de la combustion.
  15. Dispositif suivant l'une des revendications 11 à 14,
       caractérisé en ce qu'il est prévu une mémoire (11) de données destinée à archiver des grandeurs (Ka) caractéristiques statiques caractérisant l'installation de combustion.
  16. Dispositif suivant l'une des revendications 11 à 15,
       caractérisé en ce qu'il est mémorisé un modèle de combustion dans le module (10, 10') d'analyse de la combustion.
  17. Dispositif suivant l'une des revendications 11 à 16, le module (16) de valeur de consigne étant relié avec interposition d'un module (12) de valeur moyenne ou/et d'un module (14) de pondération au module (10, 10') d'analyse de la combustion.
EP99914392A 1998-01-30 1999-01-29 Procede et dispositif pour faire fonctionner une installation de combustion Expired - Lifetime EP1051585B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19803715 1998-01-30
DE19803715 1998-01-30
PCT/DE1999/000248 WO1999039137A1 (fr) 1998-01-30 1999-01-29 Procede et dispositif pour faire fonctionner une installation de combustion

Publications (2)

Publication Number Publication Date
EP1051585A1 EP1051585A1 (fr) 2000-11-15
EP1051585B1 true EP1051585B1 (fr) 2002-12-11

Family

ID=7856206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99914392A Expired - Lifetime EP1051585B1 (fr) 1998-01-30 1999-01-29 Procede et dispositif pour faire fonctionner une installation de combustion

Country Status (7)

Country Link
US (1) US6361310B1 (fr)
EP (1) EP1051585B1 (fr)
AT (1) ATE229630T1 (fr)
AU (1) AU740219B2 (fr)
DE (1) DE59903735D1 (fr)
DK (1) DK1051585T3 (fr)
WO (1) WO1999039137A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469647B2 (en) * 2005-11-30 2008-12-30 General Electric Company System, method, and article of manufacture for adjusting temperature levels at predetermined locations in a boiler system
US7475646B2 (en) 2005-11-30 2009-01-13 General Electric Company System and method for decreasing a rate of slag formation at predetermined locations in a boiler system
US7581945B2 (en) 2005-11-30 2009-09-01 General Electric Company System, method, and article of manufacture for adjusting CO emission levels at predetermined locations in a boiler system
US7931466B2 (en) * 2008-06-24 2011-04-26 Equistar Chemicals, Lp Flare gas flammability control
DE102008056674A1 (de) * 2008-11-11 2010-05-12 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Überwachen der Verbrennung eines Kraftwerks auf der Grundlage einer realen Konzentrationsverteilung eines Stoffes
DE102008056675A1 (de) * 2008-11-11 2010-05-12 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Überwachen der Verbrennung von Brennmaterial in einem Kraftwerk
EP2199679A1 (fr) * 2008-12-22 2010-06-23 Siemens Aktiengesellschaft Procédé et dispositif d'optimisation de la combustion dans une centrale
ITPD20130186A1 (it) * 2013-07-02 2015-01-03 Sit La Precisa S P A Con Socio Uni Co Metodo di controllo del funzionamento di un bruciatore

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292855A (en) * 1965-10-01 1966-12-20 Exxon Research Engineering Co Microwave sensing apparatus and method for burner control
US4059385A (en) * 1976-07-26 1977-11-22 International Business Machines Corporation Combustion monitoring and control system
DE8017259U1 (de) 1980-06-28 1983-04-28 Steag Ag, 4300 Essen Feuerungsanlage zur gesteuerten verbrennung von festen fossilen brennstoffen
US4622922A (en) * 1984-06-11 1986-11-18 Hitachi, Ltd. Combustion control method
US4913647A (en) * 1986-03-19 1990-04-03 Honeywell Inc. Air fuel ratio control
JPS6321730A (ja) 1986-07-16 1988-01-29 Matsushita Electric Ind Co Ltd マグネトロン
US4887958A (en) * 1986-10-10 1989-12-19 Hagar Donald K Method and system for controlling the supply of fuel and air to a furnace
JPS63217130A (ja) * 1987-03-03 1988-09-09 Ishikawajima Harima Heavy Ind Co Ltd 自動燃焼調整装置
US4969408A (en) * 1989-11-22 1990-11-13 Westinghouse Electric Corp. System for optimizing total air flow in coal-fired boilers
DE4305645C2 (de) 1993-02-24 1996-10-02 Rwe Entsorgung Ag Verfahren zur Ermittlung charakteristischer Eigenschaften von Radikale bildenden Prozessen, Verwendung des Verfahrens und Vorrichtung zur Durchführung des Verfahrens
DE19509412C2 (de) * 1995-03-15 1997-01-30 Siemens Ag Verfahren und Vorrichtung zur Feuerungsregelung einer Dampferzeugeranlage
US5794549A (en) * 1996-01-25 1998-08-18 Applied Synergistics, Inc. Combustion optimization system
US5755819A (en) * 1996-05-24 1998-05-26 General Electric Company Photodiode array for analysis of multi-burner gas combustors
DE19710206A1 (de) 1997-03-12 1998-09-17 Siemens Ag Verfahren und Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum

Also Published As

Publication number Publication date
DE59903735D1 (de) 2003-01-23
US6361310B1 (en) 2002-03-26
AU3325099A (en) 1999-08-16
WO1999039137A1 (fr) 1999-08-05
AU740219B2 (en) 2001-11-01
DK1051585T3 (da) 2003-03-24
EP1051585A1 (fr) 2000-11-15
ATE229630T1 (de) 2002-12-15

Similar Documents

Publication Publication Date Title
DE69604555T2 (de) Kohlenstaubkessel mit einer Regelvorrichtung zum Schätzen des Zustandes des Innenkessels
DE2656840C2 (de) Verfahren und Vorrichtung zur Regelung der Energiezufuhr zu einer Heizvorrichtung für den Verbrennungsraum einer Veraschungseinheit
DE3208567C2 (de) Verfahren zur Regelung einer Dampfkesselfeuerung
EP1698827B1 (fr) Procédé pour brûler des combustibles et plus particulièrement des déchets
EP2048553B1 (fr) Circuit régulateur destiné au réglage d'un processus, en particulier d'un processus de combustion
EP2920515B1 (fr) Simulation cfd d'un foyer à plusieurs brûleurs en tenant compte séparément des fractions de combustible et d'air provenant de chaque brûleur
EP0815397B2 (fr) Procede et dispositif de regulation de la combustion d'un generateur de vapeur
DE69910126T2 (de) Verbrennunungsverfahren eines Brennstoffes mit einem sauerstoffreichen Oxidationsmittel
EP0897086A2 (fr) Procédé de détermination du rayonnement moyen d'un lit de combustion dans un système d'incinération et la commande du processus de la combustion
EP1051585B1 (fr) Procede et dispositif pour faire fonctionner une installation de combustion
EP3696462B1 (fr) Procédé de commande d'une chaudière d'une installation d'incinération des déchets à l'aide d'un réseau de neurones appris, et procédé d'apprentissage d'un réseau de neurones pour commander une chaudière d'une installation d'incinération des déchets
EP0499976B1 (fr) Procédé pour fonctionnement d'une installation d'incinération
EP4058727A1 (fr) Procédé et dispositif de réglage de la combustion dans des installations de chauffage
EP1967792B1 (fr) Circuit régulateur pour réguler un processus de combustion
WO2016139363A1 (fr) Procédé de fonctionnement régulé d'un four industriel chauffé, notamment à régénération, dispositif de commande et de régulation et four industriel pouvant être chauffé
EP1890207A1 (fr) Méthode de réaliser d'un modèle de processus
EP0156958A1 (fr) Procédé de régulation de la quantité d'air de combustion d'une installation de chauffage
WO2004018940A1 (fr) Procede pour controler un processus thermodynamique
EP0802372A1 (fr) Procédé et dispositif de commande d'un processus de combustion dans une chaudière
DE3607261C2 (de) Verfahren und Vorrichtung zur Führung einer Anlage zur Herstellung von Zementklinker
EP1114280B1 (fr) Procede et dispositif pour determiner la charge en suie d'une chambre de combustion
DE60021095T2 (de) Regelungssystem für eine verbrennungsanlage, wie z.b. eine müllverbrennungsanlage
DE102019002848A1 (de) Steuerungsvorrichtung einer anlage, anlage, steuerungsverfahren einer anlage und steuerungsprogramm einer anlage
DE10347340A1 (de) Vorrichtung und Verfahren zur Optimierung des Abgasausbrandes in Verbrennungsanlagen
AT503169A1 (de) Verfahren zur regelung eines prozesses

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK GB GR LI NL

17Q First examination report despatched

Effective date: 20020124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK GB GR LI NL

REF Corresponds to:

Ref document number: 229630

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59903735

Country of ref document: DE

Date of ref document: 20030123

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20030400603

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030315

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120210

Year of fee payment: 14

Ref country code: DK

Payment date: 20120119

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120411

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20111214

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20130123

Year of fee payment: 15

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20130131

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 229630

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20030400603

Country of ref document: GR

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150108

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150320

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150114

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59903735

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160129

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160129

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160201