EP1049818B1 - Anodes metalliques exemptes de carbone pour cellules de production d'aluminium - Google Patents

Anodes metalliques exemptes de carbone pour cellules de production d'aluminium Download PDF

Info

Publication number
EP1049818B1
EP1049818B1 EP99900110A EP99900110A EP1049818B1 EP 1049818 B1 EP1049818 B1 EP 1049818B1 EP 99900110 A EP99900110 A EP 99900110A EP 99900110 A EP99900110 A EP 99900110A EP 1049818 B1 EP1049818 B1 EP 1049818B1
Authority
EP
European Patent Office
Prior art keywords
coating
anode
electrolyte
electrochemically active
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99900110A
Other languages
German (de)
English (en)
Other versions
EP1049818A1 (fr
Inventor
Vittorio De Nora
Jean-Jacques Duruz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moltech Invent SA
Original Assignee
Moltech Invent SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/126,359 external-priority patent/US6365018B1/en
Priority claimed from US09/126,206 external-priority patent/US6077415A/en
Priority claimed from US09/126,840 external-priority patent/US6113758A/en
Application filed by Moltech Invent SA filed Critical Moltech Invent SA
Publication of EP1049818A1 publication Critical patent/EP1049818A1/fr
Application granted granted Critical
Publication of EP1049818B1 publication Critical patent/EP1049818B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • C25C7/025Electrodes; Connections thereof used in cells for the electrolysis of melts

Definitions

  • This invention relates to non-carbon metal-based anodes for use in cells for the electrowinning of aluminium by the electrolysis of alumina dissolved in a molten fluoride-containing electrolyte, and to methods for their fabrication and reconditioning, as well as to electrowinning cells containing such anodes and their use to produce aluminium.
  • the anodes are still made of carbonaceous material and must be replaced every few weeks.
  • the operating temperature is still not less than 950°C in order to have a sufficiently high solubility and rate of dissolution of alumina and high electrical conductivity of the bath.
  • the anodes have a very short life because during electrolysis the oxygen which should evolve on the anode surface combines with the carbon to form polluting CO 2 and small amounts of CO and fluoride-containing dangerous gases.
  • the actual consumption of the anode is as much as 450 Kg/Ton of aluminium produced which is more than 1/3 higher than the theoretical amount of 333 Kg/Ton
  • US Patent 4,614,569 (Duruz/Derivaz/Debely/Adorian) describes non-carbon anodes for aluminium electrowinning coated with a protective coating of cerium oxyfluoride, formed in-situ in the cell or pre-applied, this coating being maintained by the addition of cerium compounds to the molten cryolite electrolyte. This made it possible to have a protection of the surface only from the electrolyte attack and to a certain extent from the gaseous oxygen but not from the nascent monoatomic oxygen.
  • EP Patent application 0 306 100 (Nyguen/Lazouni/Doan) describes anodes composed of a chromium, nickel, cobalt and/or iron based substrate covered with an oxygen barrier layer and a ceramic coating of nickel, copper and/or manganese oxide which may be further covered with an in-situ formed protective cerium oxyfluoride layer.
  • Metal or metal based anodes are highly desirable in aluminium electrowinning cells instead of carbon-based anodes. Many attempts were made to use metal-based anodes for aluminium production, however they were never adopted by the aluminium industry because of their poor performance.
  • An object of the invention is to substantially reduce the consumption of the active anode surface of an aluminium electrowinning anode which is attacked by the nascent oxygen by enhancing the reaction of nascent oxygen to biatomic molecular gaseous oxygen.
  • Another object of the invention is to provide a coating for an aluminium electrowinning anode which has a high electrochemical activity and also a long life and which can be replaced as soon as such activity decreases or when the coating is worn out.
  • a major object of the invention is to provide an aluminium electrowinning anode which has no carbon so as to eliminate carbon-generated pollution and reduce the cost of operation.
  • the invention provides a non-carbon metal-based anode of a cell for the electrowinning of aluminium, in particular by the electrolysis of alumina dissolved in a molten fluoride-containing electrolyte.
  • the anode comprises an electrically conductive metal substrate resistant to high temperature, the surface of which becomes passive and substantially inert to the electrolyte, and an electrochemically active coating adherent to the surface of the metal substrate making and keeping the surface of the anode conductive and electrochemically active for the oxidation of oxygen ions present at the electrolyte interface.
  • This passivation property offers a self-healing effect, i.e. when the surface of the anode is imperfectly covered, damaged or partly worn out, parts of the metal substrate which come into contact with the electrolyte are automatically passivated during electrolysis and become inert to the electrolyte and not corroded.
  • Metal substrates providing for this self-healing effect in molten fluoride-based electrolyte may be made of one or more metals selected from nickel, cobalt, chromium, molybdenum, tantalum and the Lanthanide series of the Periodic Table, and their alloys or intermetallics, such as nickel-plated copper.
  • the coatings usually comprise:
  • Coatings can be obtained by applying their active constituents and their precursors by various methods which can be different for each constituent and can be repeated in several layers.
  • a coating can be obtained by directly applying a powder onto the passivatable metal substrate or constituents of the coating may be applied from a slurry or suspension containing colloidal or polymeric material.
  • the colloidal material can be a binder solely or can be part of the active material.
  • the colloidal material may include at least one colloid selected from colloidal alumina, ceria, lithia, magnesia, silica, thoria, yttria, zirconia, tin oxide, zinc oxide and colloid containing the active material.
  • the dry colloid content corresponds to up to 50 weight% of the colloid plus liquid carrier, usually from 10 to 20 weight%.
  • the coating can be applied on the substrate by plasma spraying, physical vapor deposition (PVD), chemical vapor deposition (CVD), electrodeposition or callendering rollers.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a slurry or a dispersion is preferably applied by rollers, brush or spraying.
  • the electrochemically active constituent(s) is/are selected from oxides, oxyfluorides, phosphides, carbides and combinations thereof.
  • the oxide may be present in the electrochemically active layer as such, or in a multi-compound mixed oxide and/or in a solid solution of oxides.
  • the oxide may be in the form of a simple, double and/or multiple oxide, and/or in the form of a stoichiometric or non-stoichiometric oxide.
  • the oxides may be in the form of spinels and/or perovskites, in particular spinels which are doped, non-stoichiometric and/or partially substituted.
  • Doped spinels may comprise dopants selected from Ti 4+ , Zr 4+ , Sn 4+ , Fe 4+ , Hf 4+ , Mn 4+ , Fe 3+ , Ni 3+ , Co 3+ , Mn 3+ , Al 3+ , Cr 3+ , Fe 2+ , Ni 2+ , Co 2+ , Mg 2+ , Mn 2+ , Cu 2+ , Zn 2+ and Li + .
  • Such a spinel may be a ferrite, in particular a ferrite selected from cobalt, manganese, molybdenum, nickel and zinc, and mixtures thereof.
  • the ferrite may be doped with at least one oxide selected from the group consisting of chromium, titanium, tantalum, tin, zinc and zirconium oxide.
  • Nickel-ferrite or nickel-ferrite based constituents are advantageously used for their resistance to electrolyte and may be present as such or partially substituted with Fe 2+ .
  • the coating may also contain a chromite which is usually selected from iron, cobalt, copper, manganese, beryllium, calcium, strontium, barium, magnesium, nickel and zinc chromite.
  • a chromite which is usually selected from iron, cobalt, copper, manganese, beryllium, calcium, strontium, barium, magnesium, nickel and zinc chromite.
  • the electrochemically active constituents of the coating may be selected from iron, chromium, copper and nickel, and oxides, mixtures and compounds thereof, as well as a Lanthanide as an oxide or an oxyfluoride such as cerium oxyfluoride, and mixtures thereof.
  • an electrocatalyst is present in the coating it is selected preferably from noble metals such as iridium, palladium, platinum, rhodium, ruthenium, or silicon, tin and zinc, the Lanthanide series of the Periodic Table and mischmetal oxides, and mixtures and compounds thereof.
  • noble metals such as iridium, palladium, platinum, rhodium, ruthenium, or silicon, tin and zinc, the Lanthanide series of the Periodic Table and mischmetal oxides, and mixtures and compounds thereof.
  • Coatings can be formed with or without reaction at low or high temperature.
  • a reaction can either take place among the constituents of the coating; or between the constituents of the coating and the passivatable metal substrate.
  • the active constituents When no reaction takes place to form the coating the active constituents must already be present in the applied material, for example in a slurry or suspension applied onto the substrate.
  • any electrically conductive and heat-resisting materials may be used.
  • metals which do not offer the self-healing effect can only be used as metal cores which must be coated with a layer forming the passivatable metal substrate having this self-healing effect particularly when exposed to a fluoride-containing electrolyte, such as cryolite.
  • the metal core may comprise metals, alloys, intermetallics, cermets and conductive ceramics, such as metals selected from copper, chromium, cobalt, iron, aluminium, hafnium, molybdenum, nickel, niobium, silicon, tantalum, titanium, tungsten, vanadium, yttrium and zirconium, and combinations and compounds thereof.
  • the core may be made of an alloy comprising 10 to 30 weight% of chromium, 55 to 90 weight% of at least one of nickel, cobalt and/or iron and 0 to 15 weight% of at least one of aluminium, hafnium, molybdenum, niobium, silicon, tantalum, tungsten, vanadium, yttrium and zirconium.
  • the core may be covered with an oxygen barrier layer.
  • This layer may be obtained by oxidising the surface of the core when it contains chromium and/or nickel or by applying a precursor of the oxygen barrier layer onto the core and heat treating.
  • the oxygen barrier layer comprises chromium oxide and/or black non-stoichiometric nickel oxide.
  • the oxygen barrier layer may be covered in turn with at least one protective layer consisting of copper or copper and at least one of nickel and cobalt, and/or (an) oxide(s) thereof to protect the oxygen barrier layer by inhibiting its dissolution into the electrolyte.
  • the oxygen barrier layer may be coated first with a nickel layer and then with a copper layer, heat treated for several hours in an inert atmosphere, such as 5 hours at 1000°C in argon, to interdiffuse the nickel and the copper layer, and upon heat treatment in an oxidising media, such as an air oxidation for 24 hours at 1000°C, the interdiffused and oxidised nickel-copper layer constitutes a good a protective layer.
  • the invention relates also to a method of manufacturing the described non-carbon metal-based anode.
  • the method comprises coating a substrate of electrically conductive metal resistant to high temperature the surface of which during electrolysis becomes passive and substantially inert to the electrolyte with at least one layer containing electrochemically active constituents or precursors thereof and heat-treating the or each layer on the substrate to obtain a coating adherent to the metal substrate making the surface of the anode electrochemically active for the oxidation of oxygen ions present at the electrolyte interface.
  • the method of the invention can be applied for reconditioning the non-carbon metal-based anode when at least part of the active coating has been dissolved or rendered non-active or dissolved.
  • the method comprises clearing the surface of the substrate before re-coating said surface with a coating adherent to the passivatable metal substrate once again making the surface of the anode electrochemically active for the oxidation of oxygen ions.
  • Another aspect of the invention is a cell for the production of aluminium by the electrolysis of alumina dissolved in a fluoride-containing electrolyte, in particular a fluoride-based electrolyte or a cryolite-based electrolyte or cryolite, having non-carbon metal-based anodes comprising an electrically conductive passivatable metal substrate and a conductive coating having an electrochemically active surface as described hereabove.
  • a fluoride-containing electrolyte in particular a fluoride-based electrolyte or a cryolite-based electrolyte or cryolite, having non-carbon metal-based anodes comprising an electrically conductive passivatable metal substrate and a conductive coating having an electrochemically active surface as described hereabove.
  • the cell comprises at least one aluminium-wettable cathode. Even more preferably, the cell is in a drained configuration by having at least one drained cathode on which aluminium is produced and from which aluminium continuously drains.
  • the cell may be of monopolar, multi-monopolar or bipolar configuration.
  • a bipolar cell may comprise the anodes as described above as a terminal anode or as the anode part of a bipolar electrode.
  • the cell comprises means to improve the circulation of the electrolyte between the anodes and facing cathodes and/or means to facilitate dissolution of alumina in the electrolyte.
  • means to improve the circulation of the electrolyte between the anodes and facing cathodes can for instance be provided by the geometry of the cell as described in co-pending application PCT/IB98/00161 (de Nora/Duruz) or by periodically moving the anodes as described in co-pending application PCT/IB98/00162 (Duruz/Bell ⁇ ).
  • the cell may be operated with the electrolyte at conventional temperatures, such as 950 to 970°C, or at reduced temperatures as low as 750°C.
  • the invention also relates to the use of such an anode for the production of aluminium in a cell for the electrowinning of aluminium by the electrolysis of alumina dissolved in a fluoride-containing electrolyte, wherein oxygen ions in the electrolyte are oxidised and released as molecular oxygen by the electrochemically active anode coating.
  • An non-carbon metal-based anode is prepared according to the invention by hot calendar rolling at 900°C of nickel ferrite particles having a particle size of 10-50 micron into a nickel metal sheet of 2 mm thickness used as an electrically conductive substrate for the anode.
  • the nickel ferrite particles are coated onto the nickel sheet in an amount of 500 g/m 2 .
  • the anode was tested in an electrolytic cell using cryolite with 6 weight% alumina as an electrolyte and a carbon cathode covered with molten aluminium.
  • the anode was polarised at 1 A/cm 2 for 93 hours and sustained this current density during the entire test, the cell voltage remaining comprised between 5.5 and 5.8 Volts.
  • the anode was dimensionally unchanged and no sign of corrosion could be detected at the anode surface.
  • a non-carbon metal-based anode according to the invention was obtained from a nickel substrate which was coated with a slurry with subsequent heat-treatment.
  • the slurry was made from a solution consisting of 10 ml of colloidal magnesia acting as a binder mixed with 20 g of nickel ferrite powder providing the electrochemically active constituents, as described in Example 1.
  • the slurry was then applied onto the substrate by means of a brush. 15 successive layers were applied onto the substrate. Each time a layer had been applied onto the substrate, the layer was cured on the substrate by a heat treatment at 500°C for 15 minutes before applying the next layer.
  • the anode After coating the substrate with the 15 successive layers the anode had a final coating of 0.6 to 1.0 mm thick.
  • the anode was then tested in a laboratory scale cell for the electrowinning of aluminium. 10 minutes after immersing the anode into the electrolytic bath the anode was extracted from the cell. The parts of the anodes which were not protected by the coating had been passivated under the effect of the current by the formation of an inert and adherent nickel oxide layer formed on the uncoated surfaces which could be observed by optical microscopy and scanning electron microscopy of a cross section of the anode after test.
  • Example 2 Similarly to Example 2, a coating was applied onto a nickel substrate in 10 layers, except that 0.2 g of iridium powder acting as a catalyst were added to the mixture of colloidal alumina with nickel-nickel ferrite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Claims (32)

  1. Procédé de fabrication d'une anode métallique exempte de carbone d'une cuve pour l'électro-obtention d'aluminium, en particulier par l'électrolyse d'alumine dissoute dans un électrolyte contenant du fluorure, ledit procédé consistant à enrober un substrat de métal électriquement conducteur résistant à haute température et dont la surface devient passive et sensiblement inerte vis-à-vis de l'électrolyte, avec au moins une couche d'un précurseur de revêtement électrochimiquement actif sous la forme d'un coulis ou d'une suspension contenant au moins un constituant électrochimiquement actif ou un précurseur de celui-ci, et à traiter thermiquement la ou chaque couche sur le substrat pour obtenir un revêtement adhérent au substrat métallique pouvant être passivé rendant la surface de l'anode électrochimiquement active pour l'oxydation d'ions oxygène présents au niveau de l'interface de l'électrolyte.
  2. Procédé selon la revendication 1, dans lequel le substrat métallique pouvant être passivé comprend au moins un métal choisi à partir de nickel, colbalt, chrome, molybdène, tantale et la série des lanthanides, et leurs alliages ou composés intermétalliques.
  3. Procédé selon la revendication 1, dans lequel le revêtement est formé en appliquant de plus une matière de liaison sensiblement résistante à la cryolite pour lier ensemble les constituants du revêtement et sur le substrat métallique passivable.
  4. Procédé selon la revendication 1, dans lequel le revêtement est obtenu à partir d'un coulis ou d'une suspension contenant une matière colloïdale ou polymère, en particulier au moins une parmi l'alumine, l'oxyde de cérium, la lithine, la magnésie, la silice, la thorine, l'yttria, la zircone, l'oxyde d'étain et l'oxyde de zinc, et des colloïdes contenant des constituants actifs du revêtement ou des précurseurs de celui-ci, tous sous la forme de colloïdes ou de polymères.
  5. Procédé selon la revendication 1, consistant à faire réagir des constituants du précurseur de revêtement entre eux pour former le revêtement, ou à faire réagir au moins un constituant du précurseur de revêtement avec le substrat métallique pouvant être passivé pour former le revêtement.
  6. Procédé selon la revendication 1, dans lequel le précurseur de revêtement est appliqué sur le substrat par des rouleaux, à la brosse ou par pulvérisation.
  7. Procédé selon la revendication 1, consistant à enrober le substrat métallique passivable sur un noyau électroniquement conducteur, et à former une couche d'arrêt à l'oxygène sur le noyau en particulier en oxydant la surface du noyau pour former la couche d'arrêt à l'oxygène, ou en appliquant un précurseur de la couche d'arrêt à l'oxygène sur le noyau et à traiter thermiquement.
  8. Procédé selon la revendication 7, consistant à recouvrir la couche d'arrêt à l'oxygène avec au moins une couche protectrice composée de cuivre ou de cuivre et d'au moins l'un de nickel et de colbalt, et/ou des oxydes de ceux-ci pour protéger la couche d'arrêt à l'oxygène en inhibant sa dissolution dans l'électrolyte.
  9. Procédé selon la revendication 1, pour remettre en état une anode à base de métal exempte de carbone ayant un substrat pouvant être passivé avec un revêtement électrochimiquement actif, quand au moins une partie du revêtement actif est devenu non actif ou usé, ledit procédé consistant à clarifier la surface du substrat avant d'enrober à nouveau ladite surface avec un revêtement appliqué à partir dudit coulis ou de ladite suspension.
  10. Anode à base de métal exempte de carbone d'une cuve pour l'électro-obtention d'aluminium, en particulier par l'électrolyse d'alumine dissoute dans un électrolyte contenant du fluorure, comprenant un substrat métallique électriquement conducteur résistant à haute température, dont la surface devient passive et sensiblement inerte vis-à-vis de l'électrolyte, et un revêtement électrochimiquement actif adhérent à la surface du substrat métallique réalisant et conservant la surface de l'anode conductrice et électrochimiquement active pour l'oxydation d'ions oxygène présents au niveau de l'interface de l'électrolyte, ledit revêtement contenant des constituants électrochimiquement actifs dans un colloïde pouvant être obtenu à partir d'au moins un constituant électrochimiquement actif ou d'un précurseur de celui-ci dans un coulis ou suspension contenant le colloïde.
  11. Anode selon la revendication 10, dans laquelle le substrat métallique pouvant être passivé comprend au moins un métal choisi à partir de nickel, cobalt, chrome, molybdène, tantale et la série des lanthanides, et leurs alliages ou composés intermétalliques.
  12. Anode selon la revendication 11, dans laquelle le substrat métallique pouvant être passivé est du cuivre plaqué de nickel.
  13. Anode selon la revendication 10, dans laquelle le revêtement comprend de plus au moins un électrocatalyseur ou un précurseur de celui-ci pour la formation de gaz oxygène, en particulier un (des) électrocatalyseur(s) choisi(s) à partir d'iridium, de palladium, de platine, de rhodium, de ruthénium, de silicium, d'étain et de zinc, de la série des lanthanides et de mischmétal, et leurs oxydes, mélanges et composés de ceux-ci.
  14. Anode selon la revendication 10, dans laquelle le revêtement comprend de plus une matière de liaison résistant sensiblement à la cryolite pour lier ensemble les constituants du revêtement et sur le substrat métallique pouvant être passivé.
  15. Anode selon la revendication 10, dans laquelle le revêtement est un coulis ou une suspension thermiquement traité contenant au moins un colloïde ou un polymère traité thermiquement choisi à partir d'alumine, d'oxyde de cérium, de lithine, de magnésie, de silice, de thorine, d'yttria, de zircone, d'oxyde d'étain et d'oxyde de zinc colloïdaux ou polymères traités thermiquement, et de colloïdes contenant des constituants actifs du revêtement ou des précurseurs de ceux-ci, tous sous la forme de colloïdes ou de polymères traités thermiquement.
  16. Anode selon la revendication 10, dans laquelle le ou au moins l'un desdits constituants électrochimiquement actifs est choisi à partir du groupe composé d'oxydes, d'oxyfluorures, de phosphures, de carbures et de combinaisons de ceux-ci.
  17. Anode selon la revendication 16, dans laquelle lesdits oxydes comprennent des spinelles et/ou des perovskites.
  18. Anode selon la revendication 17, dans laquelle lesdits spinelles sont des spinelles dopés, non-stoïchiométriques et/ou partiellement substitués, les spinelles dopés contenant des dopants choisis à partir du groupe composé de Ti4+, Zr4+, Sn4+, Fe4+, Hf4+, Mn4+, Fe3+, Ni3+, Co3+, Mn3+, Al3+, Cr3+, Fe2+, Ni2+, Co2+, Mg2+, Mn2+, Cu2+, Zn2+ et Li+.
  19. Anode selon la revendication 18, dans laquelle lesdits spinelles comprennent une ferrite et/ou une chromite, en particulier une ferrite choisie à partir du groupe composé de ferrite de cobalt, manganèse, molybdène, nickel et zinc, et de mélanges de celles-ci, ou une chromite choisie à partir du groupe composé de chromite de fer, cobalt, cuivre, manganèse, béryllium, calcium, strontium, baryum, magnésium, nickel et zinc.
  20. Anode selon la revendication 16, dans laquelle le ou au moins l'un desdits constituants électrochimiquement actifs comprend au moins un lanthanide comme oxyde ou oxyfluorure, en particulier un oxyfluorure de cérium, et ses mélanges.
  21. Anode selon la revendication 10, dans laquelle le ou au moins l'un desdits constituants électrochimiquement actifs comprend au moins un métal choisi à partir de fer, chrome, cuivre et nickel, et ses oxydes, mélanges et composés.
  22. Anode selon la revendication 10, dans laquelle le substrat métallique pouvant être passivé est enrobé sur un noyau électroniquement conducteur recouvert d'une couche d'arrêt à l'oxygène.
  23. Anode selon la revendication 22, dans laquelle la couche d'arrêt à l'oxygène comprend de l'oxyde de chrome ou un oxyde de nickel non stoïchiométrique noir.
  24. Anode selon la revendication 22, dans laquelle la couche d'arrêt à l'oxygène est recouverte d'au moins une couche protectrice composée de cuivre ou de cuivre et d'au moins l'un de nickel et de cobalt, et/ou leurs oxydes pour protéger la couche d'arrêt à l'oxygène en inhibant sa dissolution dans l'électrolyte.
  25. Cuve pour la production d'aluminium par l'électrolyse d'alumine dissoute dans un électrolyte contenant du fluorure, en particulier de la cryolite, ayant au moins une anode à base de métal exempte de carbone comprenant un substrat métallique pouvant être passivé électriquement conducteur et un revêtement conducteur ayant une surface électrochimiquement active selon la revendication 10.
  26. Cuve selon la revendication 25, comprenant au moins une cathode mouillable par l'aluminium.
  27. Cuve selon la revendication 26, qui est dans une configuration de drainage, comprenant au moins une cathode de drainage sur laquelle de l'aluminium est produit et à partir de laquelle l'aluminium s'écoule de façon continue.
  28. Cuve selon la revendication 26, qui est dans une configuration bipolaire et dans laquelle les anodes forment le côté anodique d'au moins une électrode bipolaire et/ou une anode terminale.
  29. Cuve selon la revendication 26, comprenant des moyens pour faire circuler l'électrolyte entre les anodes et les cathodes en vis-à-vis et/ou des moyens pour faciliter la dissolution de l'alumine dans l'électrolyte.
  30. Cuve selon la revendication 26, dans laquelle, pendant le fonctionnement, l'électrolyte est à une température de 750°C à 970°C.
  31. Utilisation de l'anode de la revendication 10 pour la production d'aluminium dans une cuve pour l'électro-obtention d'aluminium par l'électrolyse d'alumine dissoute dans un électrolyte contenant du fluorure, où des ions oxygène dans l'électrolyte sont oxydés et libérés comme oxygène moléculaire sur le revêtement anodique électrochimiquement actif.
  32. Procédé pour produire de l'aluminium dans une cuve telle que définie dans la revendication 26, consistant à oxyder des ions oxygène sur le revêtement anodique électrochimiquement actif de l'anode ou de chaque anode et à produire de l'aluminium sur une cathode.
EP99900110A 1998-01-20 1999-01-19 Anodes metalliques exemptes de carbone pour cellules de production d'aluminium Expired - Lifetime EP1049818B1 (fr)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
IB9800080 1998-01-20
WOPCT/IB98/00080 1998-01-20
US09/126,359 US6365018B1 (en) 1998-07-30 1998-07-30 Surface coated non-carbon metal-based anodes for aluminium production cells
US126206 1998-07-30
US09/126,206 US6077415A (en) 1998-07-30 1998-07-30 Multi-layer non-carbon metal-based anodes for aluminum production cells and method
US09/126,840 US6113758A (en) 1998-07-30 1998-07-30 Porous non-carbon metal-based anodes for aluminium production cells
US126840 1998-07-30
US126359 1998-07-30
PCT/IB1999/000084 WO1999036594A1 (fr) 1998-01-20 1999-01-19 Anodes metalliques exemptes de carbone pour cellules de production d'aluminium

Publications (2)

Publication Number Publication Date
EP1049818A1 EP1049818A1 (fr) 2000-11-08
EP1049818B1 true EP1049818B1 (fr) 2004-12-29

Family

ID=27452016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99900110A Expired - Lifetime EP1049818B1 (fr) 1998-01-20 1999-01-19 Anodes metalliques exemptes de carbone pour cellules de production d'aluminium

Country Status (7)

Country Link
EP (1) EP1049818B1 (fr)
AU (1) AU740270B2 (fr)
CA (1) CA2317800C (fr)
DE (1) DE69922924T2 (fr)
ES (1) ES2230828T3 (fr)
NO (1) NO20003701D0 (fr)
WO (1) WO1999036594A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423195B1 (en) * 1997-06-26 2002-07-23 Alcoa Inc. Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals
US6416649B1 (en) 1997-06-26 2002-07-09 Alcoa Inc. Electrolytic production of high purity aluminum using ceramic inert anodes
US6423204B1 (en) * 1997-06-26 2002-07-23 Alcoa Inc. For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals
EP1190203B1 (fr) * 1999-04-16 2003-03-19 MOLTECH Invent S.A. Revetement de protection de composants exposes a l'usure utilises dans le raffinage du metal fondu
ES2234697T3 (es) * 1999-12-09 2005-07-01 Moltech Invent S.A. Anodos de base metalica para celdas de extraccion electrolitica.
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
WO2007049759A1 (fr) 2005-10-27 2007-05-03 Kyocera Corporation Element en alliage resistant a la chaleur, element en alliage pour une pile a combustible, element de collecte d’energie pour une pile a combustible, empilement de piles et pile a combustible
DE102009016111B4 (de) * 2009-04-03 2011-02-10 Technische Universität Clausthal Druckgusskörper aus einer übereutektischen Aluminium-Silizium-Gusslegierung und Verfahren zu dessen Herstellung
TWI375347B (en) 2009-11-20 2012-10-21 Ind Tech Res Inst Manufacture method of bi-polar plates of fuel cell and bi-polar plates thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541912A (en) * 1983-12-12 1985-09-17 Great Lakes Carbon Corporation Cermet electrode assembly
AU2428988A (en) * 1987-09-02 1989-03-31 Eltech Systems Corporation Non-consumable anode for molten salt electrolysis
EP0633870B1 (fr) * 1992-04-01 1999-11-24 MOLTECH Invent S.A. Prevention de l'oxydation de matieres carbonees ou autres aux temperatures elevees

Also Published As

Publication number Publication date
NO20003701L (no) 2000-07-19
WO1999036594A1 (fr) 1999-07-22
NO20003701D0 (no) 2000-07-19
AU1779899A (en) 1999-08-02
DE69922924T2 (de) 2005-12-15
EP1049818A1 (fr) 2000-11-08
CA2317800A1 (fr) 1999-07-22
CA2317800C (fr) 2008-04-01
AU740270B2 (en) 2001-11-01
ES2230828T3 (es) 2005-05-01
DE69922924D1 (de) 2005-02-03

Similar Documents

Publication Publication Date Title
US6077415A (en) Multi-layer non-carbon metal-based anodes for aluminum production cells and method
EP1109953B1 (fr) Anodes poreuses non carbonees a base de metal pour cellules de production d'aluminium
US6372099B1 (en) Cells for the electrowinning of aluminium having dimensionally stable metal-based anodes
US6248227B1 (en) Slow consumable non-carbon metal-based anodes for aluminium production cells
US6533909B2 (en) Bipolar cell for the production of aluminium with carbon cathodes
EP1049818B1 (fr) Anodes metalliques exemptes de carbone pour cellules de production d'aluminium
EP1102874B1 (fr) Anodes a base d'un alliage nickel-fer pour cellules d'extraction electrolytique de l'aluminium
US6521116B2 (en) Cells for the electrowinning of aluminium having dimensionally stable metal-based anodes
US6103090A (en) Electrocatalytically active non-carbon metal-based anodes for aluminium production cells
US6379526B1 (en) Non-carbon metal-based anodes for aluminium production cells
US6361681B1 (en) Slurry for coating non-carbon metal-based anodes for metal production cells
AU760052B2 (en) Bipolar cell for the production of aluminium with carbon cathodes
US6413406B1 (en) Electrocatalytically active non-carbon metal-based anodes for aluminium production cells
EP1049817B1 (fr) Coulis de revetement d'anodes metalliques exemptes de carbone pour cellules de production d'aluminium
US20030070937A1 (en) Cells for the electrowinning of aluminium having dimensionally stable metal-based anodes
EP1109952B1 (fr) Anodes multicouches non carbonees a base de metal pour cellules de production d'aluminium
AU739732B2 (en) Electrocatalytically active non-carbon metal-based anodes for aluminium production cells
EP1049816A1 (fr) Anodes metalliques exemptes de carbone a activite electrocatalytique pour des cellules electrolytiques de production d'aluminium
CA2341233C (fr) Anodes multicouches non carbonees a base de metal pour cellules produisant de l'aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MOLTECH INVENT S.A.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69922924

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2230828

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071227

Year of fee payment: 10

Ref country code: FR

Payment date: 20070129

Year of fee payment: 9

Ref country code: ES

Payment date: 20080111

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071226

Year of fee payment: 10

Ref country code: DE

Payment date: 20080115

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070119

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090119

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090120