EP1046696B1 - Verfahren zur katalytischen Umwandlung zum Herstellen von mit Isobutan und Isoparaffinen angereichertem Benzin - Google Patents

Verfahren zur katalytischen Umwandlung zum Herstellen von mit Isobutan und Isoparaffinen angereichertem Benzin Download PDF

Info

Publication number
EP1046696B1
EP1046696B1 EP20000108032 EP00108032A EP1046696B1 EP 1046696 B1 EP1046696 B1 EP 1046696B1 EP 20000108032 EP20000108032 EP 20000108032 EP 00108032 A EP00108032 A EP 00108032A EP 1046696 B1 EP1046696 B1 EP 1046696B1
Authority
EP
European Patent Office
Prior art keywords
reaction
reaction zone
zone
catalyst
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20000108032
Other languages
English (en)
French (fr)
Other versions
EP1046696A2 (de
EP1046696A3 (de
Inventor
Youhao Xu
Jiushun Zhang
Yinan Yang
Jun Long
Xieqing Wang
Zaiting Li
Ruichi Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petrochemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN99105904A external-priority patent/CN1076751C/zh
Priority claimed from CN99109193A external-priority patent/CN1081222C/zh
Application filed by Sinopec Research Institute of Petroleum Processing, China Petrochemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Publication of EP1046696A2 publication Critical patent/EP1046696A2/de
Publication of EP1046696A3 publication Critical patent/EP1046696A3/de
Application granted granted Critical
Publication of EP1046696B1 publication Critical patent/EP1046696B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • This invention relates to a process for catalytic, conversion of hydrocarbon feedstock in the absence of added hydrogen. More particularly, the present invention relates to a catalytic conversion process for producing isobutane and isoparaffin-enriched gasoline.
  • the mixture of isoparaffins possessing high octane number, low octane sensitivity, appropriate volatility and clean burning is an ideal blending components for aviation gasoline and motor gasoline.
  • the mixture of isoparaffins can be obtained by propylene polymerization or alkylation reaction of isobutane and olefins.
  • the conventional fluidized catalytic cracking (FCC) technology is used for producing gasoline with a yield of up to 50wt%.
  • FCC fluidized catalytic cracking
  • the phase down of leaded gasoline forced the catalytic cracking technology to go forward to the production of high octane gasoline.
  • the changing market demands have resulted in a great change in technology and catalyst types.
  • the advance in technological development is to increase reaction temperature, shorten reaction time, intensify reaction severity, suppress hydrogen transfer reaction and overcracking reaction and improve the contacting efficiency between feedstock and hot catalyst at the bottom of a riser reactor.
  • catalyst development the catalysts containing USY zeolite supported on an inert or active matrix or containing different typed zeolites have been put into commercial use.
  • FCC technology has been advanced to meet octane blending requirement, whether it is by means of changing in process parameters or using novel catalysts for increasing gasoline octane number, it results in an increase in olefin content of FCC gasoline.
  • FCC liquid petroleum gas (LPG) has an olefin content of up to 70wt%, in which butylenes is several times as much as the yield of isobutane, so it is not fit to be used as feedstock for alkylation.
  • USP5,154,818 discloses a method for the fluidized catalytic cracking of plural hydrocarbon feedstocks in a riser reactor to produce more gasoline of high octane number.
  • the process generally comprises two reaction zones. A relatively light hydrocarbon feedstock contacts with spent catalyst in a first reaction zone located in the bottom of conventional riser where aromatization and oligomerization take place. All of the first reaction zone effluent, the regenerated catalyst and heavy hydrocarbon feedstock are introduced into the second reaction zone where heavy hydrocarbon feedstock is cracked to desired reaction products. The reaction products and spent catalyst then pass through disengager for removal of entrained catalyst before the hydrocarbon vapors pass into a separation system. Spent catalyst passes into stripper and is divided into two parts, one is introduced into regenerator for burning off coke, the other part is recycled to the first reaction zone.
  • USP4,090,948 discloses a catalytic cracking process for producing the desired conversion of hydrocarbon feedstock of inferior quality (having higher contents of basic nitrogen and carbon residue) to obtain higher yields of the desired products in a riser reactor.
  • the process generally comprises contacting the hydrocarbon feedstock containing the highly reactive nitrogen and carbon residue with a recycled spent catalyst in the first reaction zone where the highly reactive nitrogen and carbon residue will deposit on the spent catalyst and then contacting the resultant mixture with freshly regenerated catalyst in the second reaction zone.
  • the reaction products and spent catalyst then pass through disengager for removal of entrained catalyst before the hydrocarbon vapors pass into a separation system.
  • Spent catalyst passes into stripper and is divided into two parts, one is introduced into regenerator for burning off coke and then returned to the second reaction zone, and the other part is recycled without regeneration to the first reaction zone.
  • An object of the present invention is to provide a catalytic conversion process for producing isobutane and isoparaffin-enriched gasoline to meet the requirement for blending components of the RFG, i.e. limiting the olefin content on the premise of maintaining higher gasoline octane number.
  • EP-A-0 369 536 discloses a process for selectively maximizing product production in fluidized catalytic cracking of hydrocarbons.
  • the process provided by the present invention is to contact the preheated hydrocarbon feedstock with hot regenerated catalyst in the lower part of a reactor with the result that hydrocarbon cracking reaction takes place at higher reaction temperature and shorter reaction time, and then the resultant mixture is up-flowed and enters into a suitable reaction environment with the result that isomerization and hydrogen transfer reaction take place at lower reaction temperature and longer reaction time.
  • the reaction products and spent catalyst then pass through disengager for removal of entrained catalyst.
  • the reaction products flow into subsequent separation system. Spent catalyst is stripped with steam, and then flow into the regenerator for regeneration, and thereafter the hot regenerated catalyst is recycled to the lower part of the reactor.
  • the process provided by the present invention employs a reactor to carry on two different reactions under different operating conditions, said reactor is preferably selected from the group consisting of an iso-diameter riser, an iso-linear velocity riser, a multi-cascade riser, a fluidized bed or a combination reactor of an iso-diameter riser and a fluidized bed.
  • olefins produced by catalytic cracking reaction can be selectively converted into isoparaffins and aromatics or isoparaffins and coke under specific reaction conditions and with specific catalysts.
  • the invention is a process comprising: the preheated hydrocarbon feedstock is atomized with injection steam and charged into the bottom of a conventional iso-diameter riser, and then mixed with hot regenerated catalyst with the result that feedstock is vaporized and cracked.
  • the product vapors and the coke deposited catalyst are up-flowed and are mixed with cooled regenerated catalyst with the result that isomerization and hydrogen transfer reaction take place.
  • the reaction vapors and catalyst flow into disengager where entrained catalyst is separated and dropped into the catalyst stripper.
  • the reaction vapors are separated into products in subsequent separation system.
  • Spent catalyst is stripped and introduced into regenerator for regeneration. Regenerated catalyst is divided into two parts, one is recycled into the prelift zone of the riser, and the other part is cooled in catalyst cooler and then recycled into the second reaction zone.
  • this invention is a process comprising: the preheated hydrocarbon feedstock is atomized with injection steam and charged into the bottom of a conventional iso-diameter riser, and then mixed with hot regenerated catalyst with the result that the feedstock is vaporized and cracked.
  • the product vapors and the coke deposited catalyst are up-flowed and are mixed with cooled semi-regenerated catalyst with the result that isomerization and hydrogen transfer reaction take place.
  • the reaction vapors and catalyst flow into disengager where entrained catalyst is separated and dropped into the catalyst stripper.
  • the reaction vapors are separated into products in subsequent separation system.
  • Spent catalyst is stripped and introduced into the primary regenerator for regeneration.
  • Semi-regenerated catalyst is divided into two parts, one flows into the secondary regenerator for regeneration, and then is recycled into the prelift zone of the riser, and the other part is cooled in catalyst cooler and then recycled into the second reaction zone.
  • this invention is a process comprising: the preheated hydrocarbon feedstock is atomized with injection steam and charged into the bottom of the riser in a combination reactor of an iso-diameter riser and a fluidized bed, and then mixed with hot regenerated catalyst with the result that the feedstock is vaporized and cracked.
  • the product vapors and the coke deposited catalyst in the riser flow upward and are mixed with cooled regenerated catalyst with the result that isomerization and hydrogen transfer reaction take place in the fluidizied bed.
  • the reaction vapors and catalyst flow into disengager where entrained catalyst is separated and dropped into the catalyst stripper.
  • the reaction vapors are separated into products in subsequent separation system.
  • Spent catalyst is stripped and introduced into regenerator for regeneration. Regenerated catalyst is divided into two parts, one is recycled into the prelift zone of the riser, and the other part is cooled in catalyst cooler and then recycled into the fluidized bed.
  • this invention comprises that the preheated hydrocarbon feedstock is atomized with injection steam and charged into the bottom of the first reaction zone in a multi-cascade riser, and then mixed with hot regenerated large particle size distribution catalyst containing USY zeolite with the result that feedstock is vaporized and cracked, providing the lifting force to carry the product vapors and the coke deposited catalyst in the first reaction zone into the second reaction zone where the effluents are mixed with the cooled regenerated small particle size distribution catalyst containing rare-earth Y zeolite with the result that isomerization and hydrogen transfer reaction take place.
  • the reaction vapors and catalyst flow into disengager where entrained catalyst is separated and dropped into the catalyst stripper.
  • reaction vapors are separated into products in subsequent separation system.
  • Spent catalyst is stripped and introduced into regenerator for regeneration.
  • Regenerated catalyst is divided into the large particle size distribution catalyst and the small particle size distribution catalyst, the large particle size distribution catalyst is recycled into the prelift zone of the riser, and the small particle size distribution catalyst is cooled in catalyst cooler and then recycled into the second reaction zone.
  • the process of the present invention comprises the steps as follows:
  • the process provided by the present invention employs a reactor to carry on two different reactions under different operating conditions; it is preferably selected from the group consisting of an iso-diameter riser, an iso-linear velocity riser, a multi-cascade riser, a fluidized bed or a combination of an iso-diameter riser and a fluidized bed.
  • the iso-diameter riser or iso-linear velocity riser is divided into a prelift zone, a first reaction zone, a second reaction zone from bottom to top, while the fluidized bed reactor comprises only a first reaction zone and a second reaction zone.
  • the height ratio of the first reaction zone to the second reaction zone is 10 ⁇ 40:90-60.
  • quenching mediums is set up at the bottom of the second reaction zone, and/or a heat remover having a height of 50% ⁇ 90% of that of the second reaction zone is located in the second reaction zone for adjusting the reaction temperature and time in the reaction zone.
  • said quenching medium is generally one or more selected from the group consisting of quenching liquid, cooled regenerated catalyst, cooled semi-regenerated catalyst or fresh catalyst or the mixtures thereof, in which quenching liquid is preferably selected from the group consisting of LPG, naphtha, stabilized gasoline, light cycle oil (LCO), heavy cycle oil (HCO) or water or the mixtures thereof.
  • LPG, naphtha and gasoline having high olefin content can not only act as quenching mediums, but also participate in reaction.
  • the cooled regenerated and semi-regenerated catalysts are obtained by cooling catalyst through catalyst cooler after the primary stage and secondary stage regeneration respectively.
  • said regenerated catalyst refers to catalyst that has a residual carbon content of below 0.1 wt%, more preferably below 0.05wt%
  • said semi-regenerated catalyst refers to catalyst that has a residual carbon content of from 0.1 wt% to 0.9wt%, more preferably from 0.15wt% to 0.7wt%.
  • the process of the present invention is carried out in a combination reactor of an iso-diameter riser and a fluidized bed, wherein the lower iso-diameter riser refers to the first reaction zone, the upper fluidized bed refers to the second reaction zone.
  • One inlet or multi-inlets of quenching mediums is set up at the bottom of the second reaction zone and/or a heat remover having a height of 50% ⁇ 90% of that of the second reaction zone is located in the second reaction zone for adjusting the reaction temperature and time in the reaction zone.
  • said quenching medium is generally one or more selected from the group consisting of quenching liquid, cooled regenerated catalyst , cooled semi-regenerated catalyst or fresh catalyst or the mixtures thereof, in which quenching liquid is preferably selected from the group consisting of LPG, naphtha, stabilized gasoline, light cycle oil (LCO), heavy cycle oil (HCO) or water or the mixtures thereof.
  • LPG, naphtha and gasoline having high olefin content can not only act as quenching mediums, but also participate in reaction.
  • the cooled regenerated and semi-regenerated catalysts are obtained by cooling catalyst through catalyst cooler after the primary stage and secondary stage regeneration respectively.
  • said regenerated catalyst refers to catalyst that has a residual carbon content of below 0.1 wt%, more preferably below 0.05wt%
  • said semi-regenerated catalyst refers to catalyst that has a residual carbon content of from 0.1wt% to 0.9wt%, more preferably from 0.15wt% to 0.7wt%.
  • the riser consists of a prelift zone a, a first reaction zone b, a second reaction zone with enlarged diameter c, the outlet zone with reduced diameter d from bottom to top along the coaxial direction.
  • the end of outlet zone is connected to a horizontal tube e.
  • the conjunct section between the first reaction zone and the second reaction zone is a circular truncated cone whose vertical section isotrapezia vertex angle ⁇ is generally 30° ⁇ 80°.
  • the conjunct section between the second reaction zone and the outlet zone is a circular truncated cone whose vertical section isotrapezia base angle ⁇ is generally 45° ⁇ 85°.
  • the total height of the riser is generally from 10 meters to 60 meters.
  • the diameter of the prelift zone is the same as that of a conventional iso-diameter riser and generally from 0.02 meter to 5 meters.
  • the height of the prelift zone is about 5% ⁇ 10% of the total height of the riser.
  • the function of this zone is to lift regenerated catalyst upward and to improve initial feed and catalyst contacting with the aid of a prelift medium that is selected from steam or dry gas same as that used in a conventional iso-diameter riser reactor.
  • the structure of the first reaction zone of the riser is similar to the lower section of a conventional iso-diameter riser. Its diameter is equal to or greater than that of the prelift zone. The diameter ratio of the former to the latter is generally from 1:1 to 2:1. The height of the first reaction zone is 10% ⁇ 30% of the total height of the riser.
  • the preheated feedstocks are atomized with injection steam and charged into this section, and then mixed with hot regenerated catalyst with result that cracking reaction takes place at higher reaction temperature and C/O ratio and shorter reaction time.
  • the diameter of the second reaction zone is greater than that of the first reaction zone.
  • the diameter ratio of the former to the latter is generally from 1.5:1 to 5:1.
  • the height of the second reaction zone is 30 ⁇ 60% of the total height of the riser.
  • the function of this zone is to reduce the velocity of vapors and catalyst and the reaction temperature in order to suppress cracking reaction and increase isomerization reaction and hydrogen transfer reaction.
  • the method of controlling the second reaction temperature is to inject quenching mediums at the conjunct section between the first reaction zone and the second reaction zone and/or to install a heat remover in the zone.
  • the height of the heat remover is generally from 50% to 90% of that of the second reaction zone.
  • the zone temperature is from about 420°C to about 530°C.
  • the contacting time of vapor and catalyst is generally from about 2 seconds to about 30 seconds.
  • said quenching medium is generally one or more selected from the group consisting of quenching liquid, cooled regenerated catalyst , cooled semi-regenerated catalyst or fresh catalyst or the mixtures thereof, in which quenching liquid is preferably selected from the group consisting of LPG, naphtha, stabilized gasoline, light cycle oil (LCO), heavy cycle oil (HCO) or water or the mixtures thereof LPG, naphtha and gasoline having high olefin content can not only act as quenching mediums, but also participate in reaction.
  • the cooled regenerated and semi-regenerated catalysts are obtained by cooling catalyst through catalyst cooler after the primary stage and secondary stage regeneration respectively.
  • said regenerated catalyst refers to catalyst that has a residual carbon content of below 0.1 wt%, more preferably below 0.05wt%
  • said semi-regenerated catalyst refers to catalyst that has a residual carbon content of from 0.1 wt% to 0.9wt%, more preferably from 0.15wt% to 0.7wt%.
  • the structure of the outlet zone is similar to that of a conventional iso-diameter riser.
  • the diameter ratio of the outlet zone to the first reaction zone is generally 0.8:1 to 1.5:1.
  • the height of this zone is generally 0 ⁇ 20% of total height of the riser.
  • the function of this zone is to increase effluent velocity and to suppress overcracking reaction.
  • One end of the horizontal tube is connected to the outlet zone and the other end is connected to the disengager.
  • one end of the horizontal tube is connected to the second reaction zone and the other end is connected to the disengager.
  • the function of the horizontal tube is to link the outlet zone with the disengager.
  • Feedstocks suitable for the process of the present invention include distillate having different boiling ranges, residue and crude. More specifically, the feedstocks are selected from the group consisting of atmospheric gas oil, naphtha, catalytic gasoline, diesel, vacuum gas oil (VGO), atmospheric residue (AR) or vacuum residue (VR), coker gas oil (CGO), deasphalted oil (DAO), hydrotreated residue, hydrocracked residue, shale oil or the mixtures thereof.
  • the processes of the present invention uses amorphous silica-alumina catalysts and zeolite catalysts with the active components preferably selected from the group consisting of Y, HY, USY or ZSM-5 series or any other zeolites typically employed in the cracking of hydrocarbons with or without rare earth and/or phosphor or the mixtures thereof.
  • the different reaction zones in the processes of the present invention are adaptable for use with the different type catalysts, including large and small particle size distribution catalysts or high and low apparent bulk density catalysts with the active components preferably selected from the group consisting of Y, HY, USY or ZSM-5 series or any other zeolites typically employed in the cracking of hydrocarbons with or without rare earth and/or phosphor or mixtures thereof.
  • Large and small particle size distribution catalysts or high and low apparent bulk density catalysts flow into different reaction zone respectively.
  • the large particle size distribution catalyst with USY zeolite flows into the first reaction zone for increasing cracking reaction
  • the small particle size distribution catalyst with rare earth Y zeolite flows into the second reaction zone for increasing hydrogen transfer reaction.
  • the mixed large and small particle size distribution catalysts are stripped in a stripper and are combusted in a regenerator, and then are separated into large particle size distribution catalyst and small particle size distribution catalyst.
  • the large and small particle size distribution catalyst are partitioned within the range of 30-40 ⁇ m.
  • the high and low apparent bulk density catalyst are partitioned within the range of 0.6 ⁇ 0.7g/cm 3 .
  • Fig.2 shows the schematic flow diagram used to produce isobutane and isoparaffin enriched gasoline in a multi-cascade riser.
  • the shape and size of the apparatus and pipelines are not limited in the attached diagram but depend on specific embodiments.
  • the prelift steam is introduced into prelift zone 2 via conduit 1.
  • Hot regenerated catalyst flow into prelift zone 2 via regenerated catalyst standpipe 16 and is lifted by prelift steam.
  • the preheated feedstock via conduit 4 is mixed with atomized steam via conduit 3 in proportion to form a mixture.
  • the mixture is charged into prelift zone, and then is contacted with hot regenerated catalyst, flowing into the first reaction zone 5 where cracking reaction takes place under certain reaction conditions.
  • the effluent is mixed with quenching mediums via conduit 6, flowing into the second reaction zone 7 with the result that isomerization and hydrogen transfer reaction take place under certain reaction conditions.
  • the reacted effluent flows into outlet zone 8 where the effluent is accelerated, and then passes through disengager 9, where entrained catalyst is separated and dropped into the catalyst stripper 12.
  • Residual catalyst is separated from the reaction vapors in a set of cyclones 10 located in the upper section of the reactor.
  • the reaction vapors pass to subsequent separation system via conduit 11.
  • Spent catalyst is contacted with stripping steam via conduit 13 to remove heavy hydrocarbons on the catalyst.
  • the catalyst flows to the spent catalyst standpipe 14 to the regenerator 15, where the spent catalyst is contacted with air via conduit 17 with the result that catalyst regeneration takes place to burn off coke. Flue gas is discharged from the regenerator via conduit 18.
  • the hot regenerated catalyst is recycled into the bottom of the riser via regenerated catalyst standpipe 16.
  • the example showed that hydrocarbon feedstock was converted to produce isobutane and isoparaffin enriched gasoline in a conventional pilot plant iso-diameter riser in accordance with the present invention.
  • the preheated hydrocarbon feedstock D listed in table 1 was charged into the riser and contacted with hot regenerated catalyst D listed in table 2 in the presence of steam with the result that some reactions took place.
  • the reaction products were separated into isobutane enriched LPG, isoparaffin enriched gasoline and other products.
  • Spent catalyst flowed into regenerator via stripping. After regeneration, the regenerated catalyst was recycled for use.
  • the example showed that hydrocarbon feedstock was converted to produce isobutane and isoparaffin enriched gasoline in a combination reactor of an iso-diameter riser and a fluidized bed in accordance with the present invention
  • the preheated hydrocarbon feedstock D listed in table 1 was charged into the riser and contacted with hot regenerated catalyst D listed in table 2 in the presence of steam with the result that some reactions took place.
  • the reaction products were separated into isobutane enriched LPG, isoparaffin enriched gasoline and other products.
  • Spent catalyst flowed into regenerator via stripping. After regeneration, regenerated catalyst was recycled for use.
  • the Comparative example was conducted in a conventional pilot plant iso-diameter riser reactor.
  • the catalyst and feedstock used were the same as that in example 2.
  • Operating conditions, product slate and gasoline properties were listed in table 5.
  • Table 5 showed that 32.80wt% of LPG was propylene, 7.76wt% of LPG was isobutane, and that the gasoline had an isoparaffin content of 17.30wt%, and an olefin content of 45.30wt%.
  • the example showed that hydrocarbon feedstock was converted to produce isobutane and isoparaffin enriched gasoline in a multi-cascade riser reactor in accordance with the present invention.
  • the total height of the multi-cascade riser is 15 meters in which the height of the prelift zone with a diameter of 0.025 meter is 1.5meters, the height of the first reaction zone with a diameter of 0.025 meter is 4 meters, the height of the second reaction zone with a diameter of 0.1 meter is 6.5 meters, and the height of the outlet zone with a diameter of 0.025 meter is 3 meters.
  • the isotrapezia vertex angle ⁇ of the vertical section of the conjunct section between the first reaction zone and the second reaction zone is about 45°
  • the isotrapezia base angle ⁇ of the vertical section of the conjunct section between the second reaction zone and the outlet zone is about 60°.
  • the preheated hydrocarbon feedstock B listed in table 1 was charged into the riser and contacted with hot regenerated catalyst C listed in table 2 in the presence of steam with the result that some reactions took place.
  • the reaction products were separated into isobutane enriched LPG, isoparaffin enriched gasoline and other products.
  • Spent catalyst flowed into regenerator via stripping. After regeneration, regenerated catalyst was recycled for use.
  • the comparative example was conducted in a conventional pilot plant iso-diameter riser reactor.
  • the catalyst and feedstock used were the same as that in example 3.
  • Operating conditions and product slate were listed in table 6.
  • Gasoline properties were listed in table 7.
  • Table 6 showed that 15.74wt% of LPG was isobutane.
  • Table 7 showed that the gasoline had an isoparaffin content of 11.83wt%, and an olefin content of 56.49wt%.
  • the example showed that hydrocarbon feedstock was converted to produce isobutane and isoparaffin enriched gasoline over different type catalysts in a pilot plant multi-cascade riser reactor in accordance with the present invention.
  • the reactor used in the example was the same as that in example 3.
  • the feedstocks used were the mixture of 80wt% of VGO A and 20wt% of CGO C, and AR D, whose properties were listed in table 1.
  • Operating conditions, catalyst types, product slate and Gasoline properties were listed in table 8.
  • Table 8 showed that about 28 ⁇ 32wt% of LPG was isobutane, and the gasoline had an isoparaffin content of about 33 ⁇ 39wt% and an olefin content of 16.0 ⁇ 27.0wt%.
  • hydrocarbon feedstock was converted to produce isobutane and isoparaffin enriched gasoline in a pilot plant multi-cascade riser reactor wherein gasoline with higher olefin content acted as quenching medium in accordance with the present invention.
  • the reactor, catalyst and feedstock were the same as those used in example 3.
  • the gasoline with higher olefin content acting as quenching medium was that obtained in comparative example 3.
  • the gasoline was injected into the bottom of the second reaction zone, other operating conditions were similar to these of example 2.
  • the example showed that hydrocarbon feedstock was converted to produce isobutane and isoparaffin enriched gasoline in a pilot plant multi-cascade riser reactor in accordance with the present invention.
  • the total height of the multi-cascade riser is 15 meters in which the height of the prelift zone with a diameter of 0.025 meter is 1.5 meters, the height of the first reaction zone with a diameter of 0.025 meter is 4.5 meters, and the height of the second reaction zone with a diameter of 0.05 meter is 9 meters.
  • the isotrapezia vertex angle a of the vertical section of the conjunct section between the first reaction zone and the second reaction zone is about 45°.
  • the example showed that hydrocarbon feedstock was converted to produce isobutane and isoparaffin enriched gasoline in a pilot plant multi-cascade riser reactor in accordance with the present invention.
  • the reactor used was the same as that in example 3.
  • the preheated hydrocarbon feedstock E listed in table 1 was charged into the first reaction zone and contacted with hot regenerated catalyst C listed in table 2 in the presence of steam with the result that cracking reaction took place, then the resultant mixture flowing into the second reaction zone was mixed with cooled regenerated catalyst via cooler.
  • the reaction products were separated into isobutane enriched LPG, isoparaffin enriched gasoline and other products.
  • Spent catalyst flowed into regenerator via stripping. After regeneration, the regenerated catalyst was divided into two parts. one was returned into the bottom of the first reaction zone, and the other part was cooled in catalyst cooler and recycled into the bottom of the second reaction zone for use.
  • the example showed that hydrocarbon feedstock was converted to produce isobutane and isoparaffin enriched gasoline in a pilot plant multi-cascade riser reactor in accordance with the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Claims (19)

  1. Verfahren zur katalytischen Umwandlung von Kohlenwasserstoff-Ausgangsmaterial zur Herstellung von mit Isobutan und Benzin angereichertem Isoparaffin, umfassend
    (a) Inkontaktbringen des Ausgangsmaterials mit heißem regeneriertem Katalysator im unteren Teil eines Reaktors, mit dem Ergebnis, dass eine Krackreaktion stattfindet, wobei die katalytischen Krackreaktionsbedingungen eine Reaktionstemperatur im Bereich von 550°C bis 620°C, eine Reaktionszeit im Bereich von 0,5 Sekunden bis 2,0 Sekunden und ein C/O-Gewichtsverhältnis im Bereich von 3:1 bis 15:1 einschließen;
    (b) nach oben Strömenlassen des Gemisches aus Dämpfen und auf Koks abgeschiedenem Katalysator und Eintretenlassen in eine geeignete Reaktionsumgebung, mit dem Ergebnis, dass eine Isomerisierungs- und Wasserstoffübertragungsreaktion stattfindet, wobei die Isomerisierungs- und Wasserstoffübertragungsreaktionsbedingungen eine Reaktionstemperatur im Bereich von 420°C bis 530°C, eine Reaktionszeit im Bereich von 3 Sekunden bis 30,0 Sekunden und ein C/O-Gewichtsverhältnis im Bereich von 3:1 bis 18:1 einschließen;
    (c) Abtrennen der Reaktionsprodukte und Abstrippen und Regenerieren für Recycling des verbrauchten Katalysators, wobei die Katalysatoren amorphes Siliciumdioxid-Aluminiumoxid-Katalysatoren oder Zeolith-Katalysatoren sind.
  2. Verfahren gemäß Anspruch 1, wobei die katalytischen Krackreaktionsbedingungen eine Reaktionstemperatur im Bereich von 550°C bis 600°C, eine Reaktionszeit im Bereich von 0,8 Sekunden bis 1,5 Sekunden, ein C/O-Gewichtsverhältnis im Bereich von 4:1 bis 12:1 einschließen und die Wasserstoffübertragungsreaktions- und Isomerisierungsreaktionsbedingungen eine Reaktionstemperatur im Bereich von 460°C bis 510°C, eine Reaktionszeit im Bereich von 3 Sekunden bis 15 Sekunden und ein C/O-Gewichtsverhältnis im Bereich von 4:1 bis 15:1 einschließen.
  3. Verfahren gemäß Anspruch 1, wobei die Reaktoren einen Durchströmungskanal mit konstantem Durchmesser, einen Durchströmungskanal mit konstanter linearer Geschindigkeit, einen Mehrfachkaskade-Durchströmungskanal oder eine Wirbelschicht oder einen Kombinationsreaktor mit einem Durchströmungskanal mit konstantem Durchmesser und einer Wirbelschicht einschließen.
  4. Verfahren gemäß Anspruch 3, wobei der Durchströmungskanal mit konstantem Durchmesser oder der Durchströmungskanal mit konstanter linearer Geschwindigkeit in eine Vorhubzone, eine erste Reaktionszone, wo eine katalytische Krackreaktion stattfindet, und eine zweite Reaktionszone, wo von unten nach oben eine Wasserstoffübertragungsreaktion und eine Isomerisierungsreaktion stattfinden, aufgeteilt ist, und die Wirbelschicht in eine erste Reaktionszone, wo eine katalytische Krackreaktion stattfindet, und eine zweite Reaktionszone, wo von unten nach oben eine Wasserstoffübertragungsreaktion und eine Isomerisierungsreaktion stattfinden, aufgeteilt ist, wobei das Höhenverhältnis der ersten Reaktionszone zur zweiten Reaktionszone 10~40:90~60 beträgt.
  5. Verfahren gemäß Anspruch 4, wobei ein Einlass oder mehrere Einlässe für Quenchmedien im unteren Teil der zweiten Reaktionszone angebracht sind und/oder eine Wärmeentfernungsvorrichtung in der zweiten Reaktionszone lokalisiert ist, wobei die Höhe der Wärmeentfernungsvorrichtung 50 %~90 % der Höhe der zweiten Reaktionszone beträgt.
  6. Verfahren gemäß Anspruch 3, wobei der untere Teil des Kombinationsreaktors ein Durchströmungskanal mit konstantem Durchmesser ist, der als die erste Reaktionszone dient, wo eine katalytische Krackreaktion stattfindet, und der obere Teil davon eine Wirbelschicht ist, die als die zweite Reaktionszone dient, wo eine Wasserstoffübertragungsreaktion und eine Isomerisierungsreaktion stattfinden.
  7. Verfahren gemäß Anspruch 6, wobei ein Einlass oder mehrere Einlässe für Quenchmedien im unteren Teil der zweiten Reaktionszone angebracht sind und/oder eine Wärmeentfernungsvorrichtung in der zweiten Reaktionszone lokalisiert ist, wobei die Höhe der Wärmeentfernungsvorrichtung 50 %~90 % der Höhe der zweiten Reaktionszone beträgt.
  8. Verfahren gemäß Anspruch 3, wobei der Mehrfachkaskade-Durchströmungskanalreaktor mit der Höhe von 10 Metern bis 60 Metern aus einer Vorhubzone, einer ersten Reaktionszone, wo eine katalytische Krackreaktion stattfindet, einer zweiten Reaktionszone mit vergrößertem Durchmesser, wo eine Wasserstoffübertragungsreaktion und eine Isomerisierungsreaktion stattfinden, einer Auslasszone mit verringertem Durchmesser von unten nach oben entlang der koaxialen Richtung besteht, und wobei das Ende der Auslasszone mit der Entweichungsvorrichtung mit einem horizontalen Rohr verbunden ist.
  9. Verfahren gemäß Anspruch 8, wobei das Durchmesserverhältnis der ersten Reaktionszone zur Vorhubzone 1~2:1 beträgt und die Höhe der ersten Reaktionszone 10 %~30 % der Höhe des Durchströmungskanals beträgt und der Durchmesser der Vorhubzone 0,02-5 Meter beträgt.
  10. Verfahren gemäß Anspruch 8, wobei das Durchmesserverhältnis der zweiten Reaktionszone zur ersten Reaktionszone 1,5~5,0:1 beträgt und die Höhe der zweiten Reaktionszone 30 %~60 % der Höhe des Durchströmungskanals beträgt.
  11. Verfahren gemäß Anspruch 8, wobei der Verbindungsabschnitt zwischen der ersten Reaktionszone und der zweiten Reaktionszone ein kreisförmiger Kegelstumpf ist, dessen Vertikalschnitt-Isotrapezspitzenwinkel α im Allgemeinen 30°~80° beträgt, und wobei der Verbindungsabschnitt zwischen der zweiten Reaktionszone und der Auslasszone ein kreisförmiger Kegelstumpf ist, dessen Vertikalschnitt-Isotrapezbasiswinkel β im Allgemeinen 45°~85° beträgt.
  12. Verfahren gemäß Anspruch 11, wobei ein Einlass oder mehrere Einlässe der Quenchmedien am Verbindungsabschnitt zwischen der ersten Reaktionszone und der zweiten Reaktionszone angebracht sind und/oder eine Wärmeentfernungsvorrichtung in der zweiten Reaktionszone lokalisiert ist, wobei die Höhe der Wärmeentfernungsvorrichtung 50 %~90 % der Höhe der zweiten Reaktionszone beträgt.
  13. Verfahren gemäß den Ansprüchen 5, 7 oder 12, wobei die Quenchmedien im Allgemeinen aus der Gruppe ausgewählt sind, welche aus Quenchflüssigkeit oder gekühltem regeneriertem Katalysator oder gekühltem halb-regeneriertem Katalysator oder frischem Katalysator oder den Gemischen davon in beliebigem Verhältnis besteht.
  14. Verfahren gemäß Anspruch 13, wobei die Quenchflüssigkeit bevorzugt aus der Gruppe ausgewählt ist, welche aus LPG, Naphtha, stabilisiertem Benzin, leichtem Kreislauföl, schwerem Kreislauföl oder Wasser oder den Gemischen davon in beliebigem Verhältnis besteht.
  15. Verfahren gemäß Anspruch 14, wobei das an LPG, Naphtha und stabilisiertem Benzin angereicherte Olefin an der Umsetzung teilnimmt.
  16. Verfahren gemäß Anspruch 13, wobei die gekühlten regenerierten und halbregenerierten Katalysatoren durch Kühlen des Katalysators durch Katalysatorkühlmittel nach der primären Stufe beziehungsweise der sekundären Stufe der Regeneration erhalten werden.
  17. Verfahren gemäß Anspruch 1, wobei das Kohlenwasserstoff-Ausgangsmaterial bei Normaldruck gewonnene Gasöle, Naphtha, katalytisches Benzin, Diesel, Vakuumgasöl, bei Normaldruck gewonnener Rückstand oder in Vakuum gewonnener Rückstand, Koker-Gasöl, entasphaltiertes Öl, mit Wasserstoff behandelter Rückstand, Hydrokrackungsrückstand, Schieferöl oder die Gemische davon ist.
  18. Verfahren gemäß Anspruch 1, wobei die Katalysatoren Zeolith-Katalysatoren sind, bei welchen die aktiven Komponenten bevorzugt aus der Gruppe ausgewählt sind, welche aus den Reihen Y, HY, USY oder ZSM-5 oder jedweden anderen Zeolithen, die typischerweise beim Kracken von Kohlenwasserstoffen verwendet werden, mit oder ohne Seltene Erden und/oder Phosphor oder den Gemischen davon besteht.
  19. Verfahren gemäß Anspruch 1, 13 oder 16, wobei die Katalysatoren, die jeweils in unterschiedliche Reaktionszonen eintreten, von gleicher Art oder unterschiedlicher Art sein können.
EP20000108032 1999-04-23 2000-04-20 Verfahren zur katalytischen Umwandlung zum Herstellen von mit Isobutan und Isoparaffinen angereichertem Benzin Expired - Lifetime EP1046696B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN99105904A CN1076751C (zh) 1999-04-23 1999-04-23 一种制取异丁烷和富含异构烷烃汽油的催化转化方法
CN99105904 1999-04-23
CN99109193 1999-06-23
CN99109193A CN1081222C (zh) 1999-06-23 1999-06-23 一种降低液化气和汽油中烯烃含量的催化转化方法

Publications (3)

Publication Number Publication Date
EP1046696A2 EP1046696A2 (de) 2000-10-25
EP1046696A3 EP1046696A3 (de) 2001-01-03
EP1046696B1 true EP1046696B1 (de) 2014-06-11

Family

ID=25745015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20000108032 Expired - Lifetime EP1046696B1 (de) 1999-04-23 2000-04-20 Verfahren zur katalytischen Umwandlung zum Herstellen von mit Isobutan und Isoparaffinen angereichertem Benzin

Country Status (2)

Country Link
EP (1) EP1046696B1 (de)
JP (1) JP3996320B2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869521B2 (en) 2002-04-18 2005-03-22 Uop Llc Process and apparatus for upgrading FCC product with additional reactor with thorough mixing
US7169293B2 (en) 1999-08-20 2007-01-30 Uop Llc Controllable space velocity reactor and process
US20030127358A1 (en) * 2002-01-10 2003-07-10 Letzsch Warren S. Deep catalytic cracking process
US6866771B2 (en) 2002-04-18 2005-03-15 Uop Llc Process and apparatus for upgrading FCC product with additional reactor with catalyst recycle
FR2894849B1 (fr) * 2005-12-20 2008-05-16 Inst Francais Du Petrole Nouveau reacteur a deux zones reactionnelles fluidisees avec systeme de separation gaz/solide integre
CN1986505B (zh) * 2005-12-23 2010-04-14 中国石油化工股份有限公司 一种增产低碳烯烃的催化转化方法
JP5879038B2 (ja) * 2008-03-13 2016-03-08 中国石油化工股▲ふん▼有限公司 低品質の原料から軽質燃料を得るための方法
JP5764214B2 (ja) 2010-11-11 2015-08-12 宝珍 石 接触分解方法及び装置
CN102465006B (zh) * 2010-11-11 2014-01-29 石宝珍 一种催化裂化方法及装置
CN102477311A (zh) * 2010-11-28 2012-05-30 石宝珍 一种催化裂化方法及装置
CN102485841B (zh) * 2010-12-01 2014-02-26 石宝珍 一种催化裂化方法及装置
CN102485840B (zh) * 2010-12-01 2014-03-05 石宝珍 一种催化裂化方法及装置
CN102277193B (zh) * 2011-03-18 2014-04-02 青岛京润石化设计研究院有限公司 一种催化裂化方法及装置
CN102391889B (zh) * 2011-10-10 2013-12-18 石宝珍 一种催化转化方法
CN102399579B (zh) * 2011-10-14 2014-03-05 石宝珍 一种催化裂化方法
CA3202492A1 (en) * 2020-12-16 2022-06-23 Dow Global Technologies Llc Systems and methods for producing olefins

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN162877B (de) * 1984-06-13 1988-07-16 Ashland Oil Inc
FR2584732B1 (fr) * 1985-07-10 1988-08-19 Raffinage Cie Francaise Procede et dispositif pour le craquage catalytique de charges d'hydrocarbures, avec controle de la temperature de reaction
FR2608623B1 (fr) * 1986-12-17 1989-10-27 Inst Francais Du Petrole Procede et appareil de craquage catalytique d'une charge hydrocarbonee dans une zone reactionnelle ou circulent des particules de solides sensiblement inertes et des particules catalytiques
US4764268A (en) * 1987-04-27 1988-08-16 Texaco Inc. Fluid catalytic cracking of vacuum gas oil with a refractory fluid quench
FR2625509B1 (fr) * 1987-12-30 1990-06-22 Total France Procede et dispositif de conversion d'hydrocarbures en lit fluidise
CA1327177C (en) * 1988-11-18 1994-02-22 Alan R. Goelzer Process for selectively maximizing product production in fluidized catalytic cracking of hydrocarbons
CA2013626A1 (en) * 1989-05-16 1990-11-16 W. Benedict Johnson Method and apparatus for the fluid catalytic cracking of hydrocarbon feed employing a separable mixture of catalyst and sorbent particles
WO1993000674A1 (en) * 1991-06-25 1993-01-07 Mobil Oil Corporation A process for stripping and regenerating fluidized catalytic cracking catalyst

Also Published As

Publication number Publication date
JP3996320B2 (ja) 2007-10-24
EP1046696A2 (de) 2000-10-25
JP2000336374A (ja) 2000-12-05
EP1046696A3 (de) 2001-01-03

Similar Documents

Publication Publication Date Title
US7678342B1 (en) Riser reactor for fluidized catalytic conversion
US6495028B1 (en) Catalytic conversion process for producing isobutane and isoparaffin-enriched gasoline
EP1205530B1 (de) Katalytisches umwandlungsverfahren zur herstellung von dieselöl und verflüssigtem gas
US7261807B2 (en) Fluid cat cracking with high olefins production
EP1046696B1 (de) Verfahren zur katalytischen Umwandlung zum Herstellen von mit Isobutan und Isoparaffinen angereichertem Benzin
KR101546466B1 (ko) 촉매 전환 공정
KR101895645B1 (ko) 통합된 수소화 분해 및 유동층 접촉 분해 시스템 및 공정
US4764268A (en) Fluid catalytic cracking of vacuum gas oil with a refractory fluid quench
CN101161786B (zh) 一种石油烃类的转化方法
EP2002884A1 (de) Vorrichtung zur katalytischen umwandlung
US7153478B2 (en) Downflow catalytic cracking reactor and its application
JPH06322377A (ja) 高および低コンカーボン成分を含むパラフィンリッチ供給原料を接触的にクラッキングする方法および装置
EP4182415A1 (de) Verfahren zur herstellung petrochemischer produkte unter verwendung von katalytischem cracken einer fraktion mit weniger siedepunkt mit dampf
US5318692A (en) FCC for producing low emission fuels from high hydrogen and low nitrogen and aromatic feeds
US5318695A (en) Fluid cracking process for producing low emissions fuels
CN103664454B (zh) 一种低能耗的费托合成油催化改质生产丙烯的方法
CN1179019C (zh) 采用双反应区反应器的石油烃类催化转化方法
CN113355132B (zh) 一种加氢生成油催化裂解的方法
CN101665713A (zh) 一种冷再生催化剂循环方法及其设备
WO2001000751A1 (fr) Procede de transformation catalytique permettant de reduire la teneur en azote, soufre et olefines du petrole
CN1142250C (zh) 一种同时处理多种石油烃的催化裂化方法
CN1100115C (zh) 降低汽油中烯烃及硫、氮含量的催化转化方法
CN117384670A (zh) 一种生产轻质芳烃的催化转化方法
CN117384671A (zh) 一种烃类生产轻质芳烃的催化转化方法
GB2274653A (en) Catalytic cracking with quenching

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LONG, JUN

Inventor name: ZHANG, JIUSHUN

Inventor name: YANG, YINAN

Inventor name: LI, ZAITING

Inventor name: XU, YOUHAO

Inventor name: ZHANG, RUICHI

Inventor name: WANG, XIEQING

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010525

AKX Designation fees paid

Free format text: DE FR GB NL

17Q First examination report despatched

Effective date: 20030911

17Q First examination report despatched

Effective date: 20030911

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60048611

Country of ref document: DE

Effective date: 20140724

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60048611

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60048611

Country of ref document: DE

Effective date: 20150312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190313

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190412

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190410

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190417

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60048611

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200419

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200419