EP1041264A2 - Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug - Google Patents

Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug Download PDF

Info

Publication number
EP1041264A2
EP1041264A2 EP00106509A EP00106509A EP1041264A2 EP 1041264 A2 EP1041264 A2 EP 1041264A2 EP 00106509 A EP00106509 A EP 00106509A EP 00106509 A EP00106509 A EP 00106509A EP 1041264 A2 EP1041264 A2 EP 1041264A2
Authority
EP
European Patent Office
Prior art keywords
model
physical
hybrid
neural
simulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP00106509A
Other languages
English (en)
French (fr)
Other versions
EP1041264A3 (de
Inventor
Heiko Dr. Konrad
Gerd Krämer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1041264A2 publication Critical patent/EP1041264A2/de
Publication of EP1041264A3 publication Critical patent/EP1041264A3/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1436Hybrid model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the invention relates to a hybrid model for modeling an overall process in a vehicle consisting of at least one physical and one neural sub-model.
  • the filling of cylinders in engines with variable valve train measured with a very delayed air mass sensor. It will therefore expediently from different input variables, which are directly at the inlet be measured and determined with the help of a model.
  • the Filling of the individual cylinders influenced by several manipulated variables, some of them are interdependent or independent.
  • Empirical methods such as Maps.
  • empirical methods are usually imprecise and require a high level Coordination effort.
  • Another possibility are physical functions, at which the process behavior from the consideration of the physical relationships is derived.
  • physical functions are sometimes difficult to create.
  • the overall system and the Dependencies to be known within the system.
  • the effort for the creation of physical models with increasing model complexity disproportionately too.
  • different concepts e.g. Direct injection, electronic valve train, variable valve train, etc.
  • DE 197 06 750 A1 describes a method for controlling the mixture in a Internal combustion engine and a device for performing this method known.
  • the Combustion chamber of the internal combustion engine air mass coming from a Input size determined.
  • the amount of fuel to be supplied in Determined as a function of this input variable.
  • the neural network is used to describe the Control variable for the fuel path depending on the engine operating state and the driver-influenced control variable for the air path.
  • the control variable for the fuel path is exclusive in this embodiment set on the neural network.
  • neural networks are outside the Work area in which the training data are determined, an implausible Can have extrapolation behavior and therefore in safety-critical Processes, e.g. in motor vehicles, are difficult to use.
  • the object of the present invention is to develop a hybrid model for modeling a To specify the overall process in a vehicle, with which physical have difficult to describe processes modeled without the implausible Extrapolation behavior must be accepted.
  • the overall process (for example the filling of the Cylinder) is divided into sub-processes, which are of different sub-models described and then combined into an overall model.
  • the neural model takes over the description of a process part, which is physical is difficult to grasp.
  • the modeling of the air mass filling can be used as a concrete application Specify internal combustion engines, for example with variable valve train. At this Application could determine the basic filling using a physical model become. However, the influence of camshaft spreading could neural network are described. Especially when describing the Influence of camshaft spreading is only possible with a high physical model Create effort.
  • the modeling of the basic model with a physical process description has the advantage that the share of the neural sub-model in the overall model can be deliberately restricted. This ensures that Overall model shows no implausible extrapolation behavior.
  • the merging of the different sub-models can be additive, for example and / or multiplicative.
  • the use of others is also logical or arithmetic links when the Results of the sub-models possible.
  • neural sub-model neural network
  • Continuous adaptation of the network parameters is also optional possible during the operation of the vehicle. For example Series tolerances are recorded and included.
  • hybrid models presented can also be used for other concepts can be reused by, for example, the input quantities of the neural Network can be relearned.
  • both the tax times can be included an electronic valve train and the spread in a motor with variable Model the valve train with the hybrid model presented.
  • Physical models sometimes use different maps or Characteristic curves that usually require a large amount of memory. In particular in the case of complicated processes, physical modeling is a big one Number of maps and characteristic curves required. In the present Overall, the use of a physical-neuronal hybrid model is less Storage space is required because the neural networks require elaborate maps and Characteristic curves can be avoided. Rather, the lesser need Network parameters in neural networks require less memory.
  • the only drawing shows a simple schematic block diagram in which an overall model for modeling the air mass filling at one Internal combustion engine with variable valve timing with a physical model for basic filling and a neural network model for the influence of spreading is described.
  • the basic filling is physical and depending on the speed N, the cylinder stroke (stroke) and the pressure difference D_P and the Suction temperature T_Ans described. These parameters are the physical model as input variables and determine accordingly a map stored in it and some thermodynamic Basic equations the initial quantity of the physical model.
  • the influence of the camshaft spread is determined using the neural network model described, since it is difficult to create a physical model here.
  • input variables for the neural network model serve (Stroke) the spreads of the intake and exhaust valves (E_Spr, A_Spr).
  • E_Spr, A_Spr the spreads of the intake and exhaust valves
  • Cylinder filling are determined and output.
  • This influence becomes multiplicative coupled with the output from the physical model, which leads to the then total determined air mass ML_Mod leads.
  • the proportion of the neuronal Partial model limited to the overall model. In the present case, the restriction is given in Dependence on the initial value of the physical sub-model.
  • a hybrid model can also be used to describe other overall processes such as an electronic valve train, turbocharged engines, direct injection engines or a synchronization control can be used, whereby each Sub-processes describe their own mostly completed processes and at least one sub-process is represented with a neural network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Feedback Control In General (AREA)

Abstract

Die Erfindung betrifft ein Hybridmodell zur Modellierung eines Gesamtprozeßes in einem Fahrzeug bestehend aus zumindest einem physikalischen und einem neuronalen Teilmodell. Um physikalisch schwierig zu beschreibende Prozeße zu modellieren, werden neuronale Netze in der Form eingesetzt, daß ein Prozeßanteil aus dem Gesamtprozeß ausschließlich mit dem physikalischen Modell simuliert wird, ein weiterer Prozeßanteil aus dem Gesamtprozeß ausschließlich mit dem neuronalen Modell simuliert wird und der Gesamtprozeß durch eine Zusammenführung der jeweils separat simulierten Prozesse beschrieben wird.

Description

Die Erfindung betrifft ein Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug bestehend aus je zumindest einem physikalischen und einem neuronalen Teilmodell.
Es ist bekannt, physikalische Zusammenhänge und Abläufe bei Prozessen modellhaft zu beschreiben. Mit den Modellen kann einerseits eine Diagnose vorhandener Sensoren durchgeführt werden. Andererseits können auch nicht meßbare Signale modellhaft erfaßt bzw. vorhandene Sensorik eingespart werden.
Beispielsweise kann die Füllung von Zylindern bei Motoren mit variablen Ventiltrieb über einen Luftmassensensor nur stark verzögert gemessen werden. Sie wird daher sinnvollerweise aus verschiedenen Eingangsgrößen, die direkt am Einlaß gemessen werden, und unter Zuhilfenahme eines Modells bestimmt. Dabei ist die Füllung der einzelnen Zylinder durch mehrere Stellgrößen beeinflußt, die teilweise voneinander abhängig oder auch unabhängig sind.
Eine Möglichkeit zur Modellierung sind empirische Verfahren, wie z.B. Kennfelder. Empirische Verfahren sind jedoch meist ungenau und erfordern einen hohen Abstimmungsaufwand. Eine weitere Möglichkeit sind physikalische Funktionen, bei denen das Prozeßverhalten aus der Betrachtung der physikalischen Zusammenhänge abgeleitet wird. Allerdings sind für mache Prozesse physikalische Funktionen manchmal schwierig zu erstellen. Insbesondere müssen das Gesamtsystem und die Abhängigkeiten innerhalb des Systems bekannt sein. Auch nimmt der Aufwand für die Erstellung physikalischer Modelle mit zunehmender Modellkomplexität überproportional zu. Darüber hinaus sind für verschiedene Konzepte (z.B. Direkteinspritzer, elektronischer Ventiltrieb, variabler Ventiltrieb, etc.) immer neue Modelle zu erstellen.
Aus der DE 197 06 750 A1 ist ein Verfahren zur Gemischsteuerung bei einem Verbrennungsmotor sowie eine Vorrichtung zur Durchführung dieses Verfahrens bekannt. Gemäß dem darin beschriebenen Ausführungsbeispiel wird die in einen Brennraum des Verbrennungsmotors gelangende Luftmasse aus einer Eingangsgröße bestimmt. Ferner wird die zuzuführende Kraftstoffmenge in Abhängigkeit von dieser Eingangsgröße ermittelt. Bei der Ermittlung der Kraftstoffmenge wird ein neuronales Netzwerk verwendet, welches lernfähig ist. Bei dem vorgestellten Verfahren dient das neuronale Netzwerk zur Beschreibung der Steuergröße für den Kraftstoffpfad in Abhängigkeit des Motorbetriebszustandes und der fahrerbeeinflußten Steuergröße für den Luftpfad. Bei der Bildung der Steuergröße für den Kraftstoffpfad wird bei dieser Ausführungsform ausschließlich auf das neuronale Netzwerk gesetzt.
Ein wesentlicher Nachteil von neuronalen Netzen liegt darin, daß sie außerhalb des Arbeitsbereiches, in dem die Trainingsdaten ermittelt werden, ein unplausibles Extrapolationsverhalten aufweisen können und dafür in sicherheitskritischen Prozessen, z.B. bei Kraftfahrzeugen, nur schwer einsetzbar sind.
Aufgabe der vorliegenden Erfindung ist es, ein Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug anzugeben, mit welchem sich physikalisch schwierig zu beschreibende Prozesse modellieren lassen, ohne das unplausible Extrapolationsverhalten in Kauf genommen werden müssen.
Diese Aufgabe wird durch die im Anspruch 1 genannten Merkmale gelöst.
Erfindungswesentlich ist, daß der Gesamtprozeß (beispielsweise die Befüllung der Zylinder) in Teilprozesse aufgeteilt wird, welche von verschiedenen Teilmodellen beschrieben und dann zu einem Gesamtmodell zusammengeführt werden. Vorliegend wird zumindest ein Prozeßanteil mit einem physikalischen Modell und ein Prozeßanteil mit einem neuronalen Model beschrieben. Das neuronale Model übernimmt dabei die Beschreibung eines Prozeßanteils, welcher physikalisch schwierig zu fassen ist.
Als konkrete Anwendung läßt sich die Modellierung der Luftmassenfüllung bei Verbrennungsmotoren, beispielsweise mit variablem Ventiltrieb, angeben. Bei dieser Anwendung könnte die Basisfüllung über ein physikalisches Modell bestimmt werden. Der Einfluß der Nokkenwellenspreitzung hingegen könnte über das neuronale Netzwerk beschrieben werden. Gerade bei der Beschreibung des Einflusses der Nockenwellenspreitzung ist ein physikalisches Modell nur mit hohem Aufwand zu erstellen.
Die Modellierung des Basismodells mit einer physikalischen Prozeßbeschreibung hat den Vorteil, daß der Anteil des neuronalen Teilmodells am Gesamtmodell gezielt beschränkt werden kann. Auf diese Weise wird gewährleistet, daß das Gesamtmodell kein unplausibles Extrapolationsverhalten zeigt.
Bei einer Anwendung des Hybridmodells auf die Beschreibung der Befüllung von Zylindern bei einem Verbrennungsmotor kann die Basisfüllung mit dem physikalischen Modell in Abhängigkeit von Fahrbetriebsbedingungen, wie der Drehzahl, einem Zylinder-Hub und/oder der Druckdifferenz in einem Zylinder beschrieben werden.
Die Zusammenführung der verschiedenen Teilmodelle kann beispielsweise additiv und/oder multiplikativ gewählt werden. Natürlich ist auch die Verwendung anderer logischer oder arithmetischer Verknüpfungen bei einer Zusammenführung der Ergebnisse der Teilmodelle möglich.
Natürlich kann die Belernung des neuronalen Teilmodelles (neuronales Netzwerk) gezielt durch Vorgabe von Lernwerten vor der konkreten Anwendung erstellt werden. Optional ist aber auch eine kontinuierliche Adaption der Netzparameter während des Betriebs des Fahrzeugs möglich. So können beispielsweise Serientoleranzen erfaßt und miteinbezogen werden.
Als Vorteile des Hybridmodelles gegenüber einem rein physikalischen Vollmodell ist eine deutliche Reduzierung des Modellierungsaufwandes anzugeben. Durch die Vermeidung eines neuronalen Vollmodells kann ein (unplausibels) Extrapolationsverhalten ausgeschlossen werden.
Überdies können die aufgestellten Hybridmodelle auch bei anderen Konzepten wiederverwendet werden, indem zum Beispiel die Eingangsgrößen des neuronalen Netzwerkes neu belernt werden. Vorliegend lassen sich sowohl die Steuerzeiten bei einem elektronischen Ventiltrieb und die Spreizung bei einem Motor mit variablem Ventiltrieb mit dem vorgestellten Hybridmodell modellieren.
Physikalische Modelle bedienen sich teilweise verschiedener Kennfelder oder Kennlinien, die in der Regel einen großen Speicherbedarf erfordern. Insbesondere bei komplizierten Prozessen ist für die physikalische Modellierung eine große Anzahl von Kennfeldern und Kennlinien erforderlich. Bei der vorliegenden Verwendung eines physikalisch-neuronalen Hybridmodelles wird insgesamt weniger Speicherplatz benötigt, da mit den neuronalen Netzen aufwendige Kennfelder und Kennlinen vermieden werden können. Vielmehr benötigen die geringeren Netzparameter bei neuronalen Netzwerken einen geringeren Speicherbedarf.
Die vorliegende Erfindung wird anhand eines speziellen Ausführungsbeispiels und mit Bezug auf die einzige nachfolgende Zeichnung näher erläutert.
Die einzige Zeichnung zeigt ein einfaches schematisches Blockdiagramm, bei dem ein Gesamtmodell zur Modellierung der Luftmassenfüllung bei einem Verbrennungsmotor mit variabler Ventilsteuerung mit einem physikalischen Modell für die Basisbefüllung und einem neuronalen Netz-Modell für den Spreitzungseinfluß beschrieben ist. Die Basisfüllung wird physikalisch und in Abhängigkeit von der Drehzahl N, dem Zylinder-Hub (Hub) und der Druckdifferenz D_P sowie der Ansaugtemperatur T_Ans beschrieben. Diese Parameter werden dem physikalischen Modell als Eingangsgrößen zugeführt und bestimmen entsprechend einem darin abgelegten Kennfeld sowie einiger thermodynamischer Grundgleichungen die Ausgangsgröße des physikalischen Modells.
Der Einfluß der Nockenwellenspreizung wird mittels des neuronalen Netzmodells beschrieben, da hier ein physikalisches Modell nur schwer zu erstellen ist. Als Eingangsgrößen für das neuronale Netzmodell dienen neben dem Zylinder-Hub (Hub) die Spreizungen der Einlaß- und der Auslaßventile (E_Spr, A_Spr). Durch das Belernen der Kopplungen des neuronalen Netzes kann am Ausgang des neuronalen Modells der Einfluß der Nockenwellenspreitzung auf die Zylinderbefüllung ermittelt und ausgegeben werden. Dieser Einfluß wird multiplikativ mit dem Ausgang aus dem physikalischen Modell gekoppelt, was zu der dann insgesamt ermittelten Luftmasse ML_Mod führt. Dabei ist der Anteil des neuronalen Teilmodells am Gesamtmodell beschränkt. Die Beschränkung erfolgt vorliegend in Abhängigkeit vom Ausgangswert des physikalischen Teilmodells.
Damit wird gewährleistet, daß das Gesamtmodell kein unplausibles Extrapolationsverhalten zeigt. Versuche haben ergeben, daß sich die mittleren Fehler bei einer Realisierung der Modellierung der Frischluft-Zylinderbefüllung bei Verbrennungsmotoren mit variablen Ventilsteuerungen mit dem physikalisch-neuronalen Hybridmodell deutlich reduzieren lassen.
Natürlich kann ein Hybridmodell auch zur Beschreibung anderer Gesamtprozesse wie eines elektronischen Ventiltriebes, turboaufgeladener Motoren, Direkteinspritzermotoren oder einer Gleichlaufregelung verwendet werden, wobei jeweils Teilprozesse eigene zumeist abgeschlossene Vorgänge beschreiben und zumindest ein Teilprozeß mit einem neuronalen Netzwerk dargestellt wird.

Claims (9)

  1. Hybridmodell zur Modellierung eines Gesamtprozeßes in einem Fahrzeug bestehend aus zumindest einem physikalischen und einem neuronalen Teilmodell,
    dadurch gekennzeichnet,
    daß ein Prozeßanteil aus dem Gesamtprozeß ausschließlich mit dem physikalischen Modell simuliert wird und
    ein weiterer Prozeßanteil aus dem Gesamtprozeß ausschließlich mit dem neuronalen Modell simuliert wird und
    der Gesamtprozeß durch eine Zusammenführung der jeweils separat simulierten Prozesse beschriebenen wird.
  2. Hybridmodell nach Anspruch 1,
    dadurch gekennzeichnet,
    daß ein Basismodell physikalisch simuliert wird.
  3. Hybridmodell nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß eine Modellierung der Luftmassenfüllung bei Verbrennungsmotoren mit variabler Ventilsteuerung durchgeführt wird.
  4. Hybridmodell nach Anspruch 3,
    dadurch gekennzeichnet,
    daß die Basisfüllung mit dem physikalischen Modell und in Abhängigkeit von der Drehzahl, von einem Zylinder-Hub und/oder der Druckdifferenz und/oder der Ansaugtemperatur in einem Zylinder beschrieben wird.
  5. Hybridmodell nach Anspruch 3 oder 4,
    dadurch gekennzeichnet,
    daß der Einfluß der Nockenwellenspreizung mit dem neuronalen Modell simuliert wird.
  6. Hybridmodell nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß bei der Zusammenführung beider Teilmodelle eine aditive oder eine multiplikative Kopplung gewählt wird.
  7. Hybridmodell nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß der Einfluß des neuronalen Modells auf das Gesamtmodell beschränkt ist.
  8. Hybridmodell nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß eine Belernung des neuronalen Modells vor dem Betrieb des Fahrzeugs erfolgt.
  9. Hybridmodell nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß eine Belernung des neuronalen Modells adaptiv während des Betriebes des Fahrzeugs erfolgt.
EP00106509A 1999-04-01 2000-03-25 Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug Ceased EP1041264A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914910A DE19914910A1 (de) 1999-04-01 1999-04-01 Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug
DE19914910 1999-04-01

Publications (2)

Publication Number Publication Date
EP1041264A2 true EP1041264A2 (de) 2000-10-04
EP1041264A3 EP1041264A3 (de) 2002-08-07

Family

ID=7903278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00106509A Ceased EP1041264A3 (de) 1999-04-01 2000-03-25 Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug

Country Status (2)

Country Link
EP (1) EP1041264A3 (de)
DE (1) DE19914910A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253491A2 (de) * 2001-04-24 2002-10-30 Bayer Aktiengesellschaft Hybridmodell und Verfahren zur Bestimmung von mechanischen Eigenschaften und von Verarbeitungseigenschaften eines Spritzgiessformteils
EP1342899A1 (de) * 2000-12-12 2003-09-10 Toyota Jidosha Kabushiki Kaisha Steuerung für brennkraftmaschine
WO2006000474A1 (de) * 2004-06-24 2006-01-05 Siemens Aktiengesellschaft Verfahren zur bestimmung der luftmasse in einem zylinder
FR2876152A1 (fr) * 2004-10-06 2006-04-07 Renault Sas Procede et systeme ameliores d'estimation d'une temperature des gaz d'echappement et moteur a combustion interne equipe d'un tel systeme
DE102004055313A1 (de) * 2004-11-16 2006-05-18 Volkswagen Ag Verfahren und Vorrichtung zur Diagnose oder Verstärkungsadaption von Zylinderdrucksensoren
WO2006114550A1 (fr) * 2005-04-28 2006-11-02 Renault S.A.S Procede de commande d'un moteur de vehicule mettant en œuvre un reseau de neurones

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113538B4 (de) * 2001-03-20 2012-03-01 Bayerische Motoren Werke Aktiengesellschaft Regelvorrichtung und Regelverfahren
DE10203919A1 (de) * 2002-01-31 2003-08-21 Bayerische Motoren Werke Ag Verfahren zur Rekonstruktion messbarer Grössen an einem System mit einer Brennkraftmaschine
DE10237328B4 (de) * 2002-08-14 2006-05-24 Siemens Ag Verfahren zum Regeln des Verbrennungsprozesses einer HCCI-Brennkraftmaschine
AT6293U1 (de) * 2002-12-05 2003-07-25 Avl List Gmbh Verfahren zur regelung bzw. steuerung einer in einem kreisprozess arbeitenden brennkraftmaschine
DE10328015A1 (de) * 2003-06-23 2005-01-13 Volkswagen Ag Virtuelle Lambdasonde für ein Kraftfahrzeug
DE102014000397A1 (de) 2014-01-17 2015-07-23 Fev Gmbh Modellbasierte Zylinderfüllungserfassung für eine Brennkraftmaschine
DE102021204544A1 (de) 2021-05-05 2022-11-10 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines hydraulischen Zylinders einer Arbeitsmaschine
DE102022212907A1 (de) 2022-11-30 2024-06-06 Rheinisch-Westfälische Technische Hochschule Aachen, Körperschaft des öffentlichen Rechts Computerimplementiertes Verfahren und Vorrichtung zur Vorhersage eines Zustandes eines technischen Systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445555A2 (de) * 1990-03-06 1991-09-11 Bayerische Motoren Werke Aktiengesellschaft Regelverfahren zur drehzahlabhängigen, stufenlosen Verstellung der Nockenpreizung
DE19706756A1 (de) 1997-02-20 1998-09-03 Siemens Ag Gradientenverstärker für einen Kernspintomographen und Kernstpintomograph

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4338607B4 (de) * 1993-11-11 2005-10-06 Siemens Ag Verfahren und Vorrichtung zur Führung eines Prozesses in einem geregelten System
DE19547496C2 (de) * 1995-12-19 2003-04-17 Dierk Schroeder Verfahren zur Regelung von Verbrennungsmotoren
US5877954A (en) * 1996-05-03 1999-03-02 Aspen Technology, Inc. Hybrid linear-neural network process control
JPH10122017A (ja) * 1996-10-14 1998-05-12 Yamaha Motor Co Ltd エンジン制御方式
US5714683A (en) * 1996-12-02 1998-02-03 General Motors Corporation Internal combustion engine intake port flow determination
DE19706750A1 (de) * 1997-02-20 1998-08-27 Schroeder Dierk Prof Dr Ing Dr Verfahren zur Gemischsteuerung bei einem Verbrennungsmotor sowie Vorrichtung zu dessen Durchführung
DE19709955C2 (de) * 1997-03-11 2003-10-02 Siemens Ag Verfahren und Einrichtung zum Steuern einer Brennkraftmaschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445555A2 (de) * 1990-03-06 1991-09-11 Bayerische Motoren Werke Aktiengesellschaft Regelverfahren zur drehzahlabhängigen, stufenlosen Verstellung der Nockenpreizung
DE19706756A1 (de) 1997-02-20 1998-09-03 Siemens Ag Gradientenverstärker für einen Kernspintomographen und Kernstpintomograph

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342899A1 (de) * 2000-12-12 2003-09-10 Toyota Jidosha Kabushiki Kaisha Steuerung für brennkraftmaschine
EP1342899A4 (de) * 2000-12-12 2012-04-25 Toyota Motor Co Ltd Steuerung für brennkraftmaschine
EP2527630A3 (de) * 2000-12-12 2014-07-23 Toyota Jidosha Kabushiki Kaisha Steuergerät für eine Brennkraftmaschine mit variablem Ventiltrieb
EP2527631A3 (de) * 2000-12-12 2014-08-27 Toyota Jidosha Kabushiki Kaisha Steuergerät für eine Brennkraftmaschine mit variablem Ventiltrieb
EP2570637A3 (de) * 2000-12-12 2014-07-23 Toyota Jidosha Kabushiki Kaisha Steuergerät für eine Brennkraftmaschine mit variablem Ventiltrieb
EP1253491A2 (de) * 2001-04-24 2002-10-30 Bayer Aktiengesellschaft Hybridmodell und Verfahren zur Bestimmung von mechanischen Eigenschaften und von Verarbeitungseigenschaften eines Spritzgiessformteils
EP1253491B1 (de) * 2001-04-24 2006-08-02 Bayer MaterialScience AG Hybridmodell und Verfahren zur Bestimmung von mechanischen Eigenschaften und von Verarbeitungseigenschaften eines Spritzgiessformteils
US7357127B2 (en) 2004-06-24 2008-04-15 Siemens Aktiengesellschaft Method for determining the air mass in a cylinder
WO2006000474A1 (de) * 2004-06-24 2006-01-05 Siemens Aktiengesellschaft Verfahren zur bestimmung der luftmasse in einem zylinder
US7664593B2 (en) 2004-10-06 2010-02-16 Renault S.A.S. Method and system for estimating exhaust gas temperature and internal combustion engine equipped with such a system
WO2006037926A1 (fr) * 2004-10-06 2006-04-13 Renault S.A.S Procede et systeme ameliores d'estimation d'une temperature des gaz d'echappement et moteur a combustion interne equipe d'un tel systeme
FR2876152A1 (fr) * 2004-10-06 2006-04-07 Renault Sas Procede et systeme ameliores d'estimation d'une temperature des gaz d'echappement et moteur a combustion interne equipe d'un tel systeme
DE102004055313B4 (de) * 2004-11-16 2017-06-22 Volkswagen Ag Verfahren und Vorrichtung zur Diagnose oder Verstärkungsadaption von Zylinderdrucksensoren
DE102004055313A1 (de) * 2004-11-16 2006-05-18 Volkswagen Ag Verfahren und Vorrichtung zur Diagnose oder Verstärkungsadaption von Zylinderdrucksensoren
FR2885175A1 (fr) * 2005-04-28 2006-11-03 Renault Sas Procede de commande d'un moteur de vehicule mettant en oeuvre un reseau de neurones
CN101198783B (zh) * 2005-04-28 2010-10-13 雷诺股份公司 使用神经网络控制车辆发动机的方法
US7774127B2 (en) 2005-04-28 2010-08-10 Renault S.A.S. Method for controlling a motor vehicle using a network of neurones
WO2006114550A1 (fr) * 2005-04-28 2006-11-02 Renault S.A.S Procede de commande d'un moteur de vehicule mettant en œuvre un reseau de neurones

Also Published As

Publication number Publication date
DE19914910A1 (de) 2000-10-26
EP1041264A3 (de) 2002-08-07

Similar Documents

Publication Publication Date Title
DE102007021592B4 (de) Verfahren für die erstellung eines maschinenkennfelds und -modells während eines entwicklungsprozesses einer brennkraftmaschine
EP0170018B1 (de) Verfahren und Vorrichtung zur Eigendiagnose von Stellgliedern
AT520179B1 (de) Prüfstand und Verfahren zur Durchführung eines Prüfversuchs
EP1041264A2 (de) Hybridmodell zur Modellierung eines Gesamtprozesses in einem Fahrzeug
DE102019127482B4 (de) Steuereinrichtung
DE102008001081A1 (de) Verfahren und Motorsteuergerät zum Steuern eines Verbrennungsmotors
WO2013131836A2 (de) Verfahren zur emissionsoptimierung von verbrennungskraftmaschinen
DE102017107271A1 (de) Verfahren zur Ermittlung eines Leitfahrzyklus für Fahrversuche zur Ermittlung von Abgasemissionen von Kraftfahrzeugen
EP3698036A1 (de) Berechnung von abgasemssionen eines kraftfahrzeugs
AT520827B1 (de) Verfahren zum Bestimmen eines Fahrzeugparameters eines Fahrzeugdatensatzes eines Fahrzeugs und Verwendung des Fahrzeugparameters an einem Prüfstand
DE102005019017A1 (de) Verfahren und Vorrichtung zur Fehlerdiagnose für Verbrennungsmotoren
EP1623284B1 (de) Verfahren zur optimierung von fahrzeugen und von motoren zum antrieb solcher fahrzeuge
DE102007020355B4 (de) Motorsteuersystem und Verfahren zur Erkennung einer Fehlfunktion in einem Drehmomentsteuerungspfad
AT515154A2 (de) Verfahren zum Erstellen eines Modell-Ensembles
AT523093A1 (de) Verfahren und System zum Analysieren und/oder Optimieren einer Konfiguration einer Fahrzeuggattung
EP3374618B1 (de) System und verfahren zur kalibrierung einer fahrzeugkomponente
WO2009095333A1 (de) Verfahren zur steuerung einer brennkraftmaschine
EP1273782A2 (de) Verfahren zur Bestimmung von Kennfelddaten zur Kennfeldsteuerung eines Verbrennungsmotors sowie Verfahren zur Steuerung eines Verbrennungsmotors
DE102017106943A1 (de) Verfahren und Anordnung zur Simulation von Fahrversuchen
DE102008004218B4 (de) Verfahren zur Bestimmung der dynamischen Rußemission
DE102015207270A1 (de) Verfahren und Vorrichtung zur Simulationskopplung eines ereignisgesteuerten Controller-Teilsystems und eines Anlagen-Teilsystems
DE10219797B4 (de) Verfahren zur Optimierung eines Modells zur Steuerung einer Brennkraftmaschine
DE102016103643B4 (de) Verfahren und Vorrichtung zur Überprüfung einer Software eines Steuergerätes eines Fahrzeuges
EP3871052A1 (de) Verfahren zur kalibirierung eines technischen systems
DE102023000357B3 (de) Verfahren zum Erzeugen von Testdaten für eine Simulation eines Assistenzsystems eines zumindest teilweise assistiert betriebenen Kraftfahrzeugs, Computerprogrammprodukt, computerlesbares Speichermedium sowie elektronische Recheneinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020829

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20040712

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20060416