EP1029260A1 - Automatic tripping cryo-heat flow switch - Google Patents
Automatic tripping cryo-heat flow switchInfo
- Publication number
- EP1029260A1 EP1029260A1 EP99947238A EP99947238A EP1029260A1 EP 1029260 A1 EP1029260 A1 EP 1029260A1 EP 99947238 A EP99947238 A EP 99947238A EP 99947238 A EP99947238 A EP 99947238A EP 1029260 A1 EP1029260 A1 EP 1029260A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat flow
- hollow cylinder
- inner body
- flow switch
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 125000006850 spacer group Chemical group 0.000 claims abstract description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 239000004677 Nylon Substances 0.000 claims description 2
- 239000004809 Teflon Substances 0.000 claims description 2
- 229920006362 Teflon® Polymers 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 238000001816 cooling Methods 0.000 abstract description 3
- 238000010276 construction Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/46—Arrangements or adaptations of devices for control of environment or living conditions
- B64G1/50—Arrangements or adaptations of devices for control of environment or living conditions for temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/46—Arrangements or adaptations of devices for control of environment or living conditions
- B64G1/50—Arrangements or adaptations of devices for control of environment or living conditions for temperature control
- B64G1/506—Heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/06—Several compression cycles arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F2013/005—Thermal joints
- F28F2013/008—Variable conductance materials; Thermal switches
Definitions
- the invention relates to self-triggering cryogenic heat flow switches, which are used in particular in cooling systems in which redundancy operation is required.
- the object of the invention is to provide a self-triggering cryogenic heat flow switch which, with the simplest possible construction, enables reliable, maintenance-free operation and thus ensures a self-switching connection between the heat sink and the application to be cooled.
- the heat flow switch according to the invention works on the thermal expansion principle. Relative to the initial temperature To and the linear dimensions at this initial temperature, this has a switch-on point Te and a switch-off point Ta, which are defined by the following two relationships:
- the heat sink is connected to the outer hollow cylinder of the heat flow switch.
- the application to be cooled is connected to the inner solid or hollow cylinder.
- the outer hollow cylinder contracts until its inner diameter at the switch-on point reaches the outer diameter of the still warm inner solid or hollow cylinder.
- a heat transfer is produced, whereby the inner solid or hollow cylinder, together with the outer hollow cylinder, cools further down to below the switch-off point and a secure heat contact with low heat transfer resistance is achieved by the compressive stress between the two parts.
- FIG. 2 shows a detail of FIG. 1 in an enlarged view
- Fig. 3 shows an application of the heat flow switch with two refrigerators
- the heat flow switch according to the invention consists of the outer hollow cylinder 1 and the inner body 2. With thin, broken lines it is indicated that the body 2 can also be designed as a hollow cylinder. A uniform annular gap 4 is ensured by the spacers 3. At least three spacers 3 are expediently distributed in the longitudinal grooves 5 at equal intervals on the circumference.
- the spacers 3 are made of an elastic material, such as Nylon or teflon.
- FIG. 3 shows two refrigerators 9 with their drives 8.
- a refrigerator 9 is connected as redundancy.
- the inner bodies 2 of the heat flow switches are each connected to the application 7 to be cooled via the flexible interfaces 6.
- the hollow cylinders 1 are connected to the refrigerators 9 in a heat-conducting manner.
- the essential functional parts of the heat flow switch can be manufactured by any precision mechanics manufacturer with very good reproducibility of their properties.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toxicology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
The invention relates to an automatic tripping cryo-heat flow switch which is especially used in cooling systems in which a redundancy operation is required. The aim of the invention is to produce an automatic tripping cryo-heat flow switch which, with a construction that is as simple as possible, enables a reliable maintenance-free mode of operation, and thus guaranteeing an automatic switching connection between the heat sink and the application to be cooled. According to the invention, an outer hollow cylinder (1) is provided which is connected to the heat sink (9), and an inner body (2) is provided which is coaxially arranged with regard to said hollow cylinder and which is connected to the application (7) to be cooled. When the heat sink (9) is switched off, a concentric annular gap (4) which is fixed by spacers is located between the hollow cylinder (1) and the inner body (2). The linear thermal expansion factor of the outer cylinder (1) is larger than that of the inner body (2).
Description
Selbstauslösender Kryo-WärmestromschalterSelf-triggering cryo heat flow switch
Die Erfindung betrifft selbstauslösende Kryo-Wärmestromschalter, die insbesondere bei Kühlsystemen eingesetzt werden, bei denen ein Redundanz-Betrieb erforderlich ist.The invention relates to self-triggering cryogenic heat flow switches, which are used in particular in cooling systems in which redundancy operation is required.
In der Satellitenkommunikationstechnik werden bereits jetzt und in Zukunft verstärkt wartungsfreie Refrigerator-gekühlte elektronische Systeme (Antennen, HTSL-Filter, Verstärker) eingesetzt, die für eine Lebensdauer von mehreren Jahren ausgelegt werden müssen. Da die Refrigeratoren im Betrieb einem Verschleiß unterliegen, muß, um einen Ausfall des Systems zu vermeiden, mindestens ein weiterer Refrigerator als Redundanz vorhanden sein. Dieser muß während des Betriebs thermisch von der Anwendung entkoppelt sein, da er sonst als parasitäre Wärmebrücke wirkt. Beim Ausfall des kühlenden Refrigerators muß der redundante Refrigerator thermisch mit der Anwendung verbunden werden. Gleichzeitig muß der defekte Refrigerator thermisch von der Anwendung getrennt werden. Das Umschalten auf den redundanten Refrigerator muß möglichst schnell erfolgen, damit sich die Anwendung inzwischen nicht zu stark erwärmt und evtl. sogar zeitweise außer Betrieb gesetzt werden muß. Deshalb ist es günstig den redundanten Kühler unbelastet abzukühlen und erst dann mit der Anwendung zu verbinden, sobald dessen Kaltkopftemperatur die Temperatur der Anwendung unterschreitet.In satellite communication technology, maintenance-free refrigerator-cooled electronic systems (antennas, HTSL filters, amplifiers) are already being used now and in the future, which must be designed for a service life of several years. Since the refrigerators are subject to wear during operation, at least one additional refrigerator must be available as redundancy in order to avoid system failure. This must be thermally decoupled from the application during operation, otherwise it acts as a parasitic thermal bridge. If the cooling refrigerator fails, the redundant refrigerator must be thermally connected to the application. At the same time, the defective refrigerator must be thermally separated from the application. Switching to the redundant refrigerator must be done as quickly as possible so that the application does not become too hot in the meantime and may even have to be temporarily shut down. It is therefore beneficial to cool the redundant cooler without load and to connect it to the application only when its cold head temperature falls below the temperature of the application.
Um dieses Problem zu lösen, werden bisher verschiedene aktiv elektromechanisch oder pneumatisch betätigte Wärmeschalter, die Stand der Technik sind, sowie selbstauslösende unidirektionale Kryo-Wärmerohre (US-PS 4,673,030) oder durch Kryosorption gepumpte Gasspalt-Wärmestromschalter (US-PS 4,771,823) eingesetzt.To solve this problem, various actively electromechanically or pneumatically operated heat switches, which are state of the art, and self-triggering unidirectional cryogenic heat pipes (US Pat. No. 4,673,030) or gas gap heat flow switches (US Pat. No. 4,771,823) pumped by cryosorption have been used to date.
Die aktiven mechanischen Systeme stellen bisher die funktional beste Lösung dar. Sie sind jedoch herstellungstechnisch aufwendig, erfordern eine zusätzliche Steuerungselektronik und haben selbst ein signifikantes Ausfallrisiko.The active mechanical systems have so far been the best functional solution. However, they are complex to manufacture, require additional control electronics and have a significant risk of failure.
Unidirektionale Kryo-Wärmerohre sind noch Gegenstand intensiver Entwicklungsarbeit. Die Herstellung ist sehr aufwendig, da zum Befüllen mit dem Arbeitsstoff entweder Hochdruckoder Kryotechnik erforderlich sind. Bei Umgebungstemperatur stehen sie unter einem hohen Innendruck, was große Rohrwandstärken erforderlich macht. Dadurch haben diese Wärmerohre ein schlechtes Schaltverhältnis und sind auch nach der Trennung des Wärmekontakts noch als parasitäre Wärmebrücken spürbar.Unidirectional cryogenic heat pipes are still the subject of intensive development work. The production is very complex because either high pressure or cryogenics are required to fill with the working fluid. At ambient temperature, they are under high internal pressure, which requires large pipe wall thicknesses. As a result, these heat pipes have a poor switching ratio and can still be felt as parasitic thermal bridges even after the heat contact has been disconnected.
Die Herstellung der durch Kryosorption gepumpten Gasspalt-Wärmestromschalter ist dagegen wesentlich weniger aufwendig. Diese arbeiten ebenfalls selbsttätig ohne eine zusätzliche Steuerung. Zur Umschaltung auf den redundanten Refrigerator müssen jedoch die An-
wendung und der ausgefallene Refrigerator so weit erwärmt werden, daß die Kryo- Sorptionspumpe ausreichend viel Gas desorbiert um den Wärmestromschalter des redundanten Refrigerators zu schließen. Dazu müßte eine HTSL-Anwendung außer Betrieb genommen werden.The production of the gas gap heat flow switch pumped by cryosorption, however, is much less complex. These also work automatically without additional controls. To switch to the redundant refrigerator, however, the and the failed refrigerator are heated so far that the cryosorption pump desorbs sufficient gas to close the heat flow switch of the redundant refrigerator. To do this, an HTSL application would have to be decommissioned.
Aufgabe der Erfindung ist es, einen selbstauslösenden Kryo-Wärmestromschalter zu schaffen, der bei möglichst einfachen Aufbau eine zuverlässige, wartungsfreie Funktionsweise ermöglicht und damit eine selbstschaltende Verbindung zwischen Wärmesenke und zu kühlender Anwendung gewährleistet.The object of the invention is to provide a self-triggering cryogenic heat flow switch which, with the simplest possible construction, enables reliable, maintenance-free operation and thus ensures a self-switching connection between the heat sink and the application to be cooled.
Die Aufgabe wird durch die Merkmale des Hauptanspruches gelöst. Die Unteransprüche enthalten besonders vorteilhafte Ausgestaltungen der Erfindung.The object is solved by the features of the main claim. The subclaims contain particularly advantageous embodiments of the invention.
Der erfindungsgemäße Wärmestromschalter funktioniert nach dem thermischen Ausdehnungsprinzip. Bezogen auf die Ausgangstemperatur To und die Lineardimensionen bei dieser Ausgangstemperatur, hat dieser einen Einschaltpunkt Te und einen Ausschaltpunkt Ta, welche durch die folgenden beiden Beziehungen definiert sind:The heat flow switch according to the invention works on the thermal expansion principle. Relative to the initial temperature To and the linear dimensions at this initial temperature, this has a switch-on point Te and a switch-off point Ta, which are defined by the following two relationships:
Die Wärmesenke ist mit dem äußeren Hohlzylinder des Wärmestromschalters verbunden. Die zu kühlende Anwendung ist mit dem inneren Voll- oder Hohlzylinder verbunden. Bei Abkühlung zieht sich der äußere Hohlzylinder zusammen, bis dessen Innendurchmesser am Einschaltpunkt den Außendurchmesser des noch warmen inneren Voll- oder Hohlzylin- ders erreicht. Ein Wärmeübergang wird hergestellt, wodurch sich der innere Voll- oder Hohlzylinder gemeinsam mit dem äußeren Hohlzylinder weiter bis unter den Ausschaltpunkt abkühlt und durch die Druckspannung zwischen beiden Teilen ein sicherer Wärmekontakt mit geringem Wärmeübergangswiderstand erreicht wird.The heat sink is connected to the outer hollow cylinder of the heat flow switch. The application to be cooled is connected to the inner solid or hollow cylinder. When it cools down, the outer hollow cylinder contracts until its inner diameter at the switch-on point reaches the outer diameter of the still warm inner solid or hollow cylinder. A heat transfer is produced, whereby the inner solid or hollow cylinder, together with the outer hollow cylinder, cools further down to below the switch-off point and a secure heat contact with low heat transfer resistance is achieved by the compressive stress between the two parts.
Bei der Erwärmung des äußeren Hohlzylinders über den Auschaltpunkt wird der Wärmekontakt geöffnet. Bei der weiteren Erwärmung der Wärmesenke ist die Anwendung von dieser thermisch entkoppelt.
Nach der dilatometrischen Bestimmung der Temperaturabhängigkeit der linearen thermischen Ausdehnungskoeffizienten der zum Einsatz vorgesehenen Werkstoffe können diese Wärmestromschalter sehr präzise mit Hilfe der o.g. Beziehungen ausgelegt werden. Wenn die Durchmesser D und d frei wählbar sind, können Einschalt- und Ausschaltpunkt des Wärmestromschalters in weiten Bereichen frei gewählt werden. Liegt einer der Durchmesser fest, kann entweder der Einschalt- oder der Ausschaltpunkt frei gewählt werden.When the outer hollow cylinder is heated above the switch-off point, the thermal contact is opened. When the heat sink is heated further, the application is thermally decoupled from it. After the dilatometric determination of the temperature dependency of the linear thermal expansion coefficients of the materials intended for use, these heat flow switches can be designed very precisely with the help of the above relationships. If the diameters D and d can be freely selected, the switch-on and switch-off points of the heat flow switch can be freely selected in a wide range. If one of the diameters is fixed, either the switch-on or switch-off point can be freely selected.
Die Erfindung wird an nachfolgenden Ausführungsbeispielen näher erläutert.The invention is explained in more detail using the following exemplary embodiments.
Fig. 1 zeigt einen erfindungsgemäß gestalteten Wärmestromschalter1 shows a heat flow switch designed according to the invention
Fig. 2 zeigt eine Einzelheit gemäß Fig. 1 in vergrößerter DarstellungFig. 2 shows a detail of FIG. 1 in an enlarged view
Fig. 3 zeigt eine Anwendung der Wärmestromschalter mit zwei RefrigeratorenFig. 3 shows an application of the heat flow switch with two refrigerators
Der erfindungsgemäße Wärmestromschalter besteht aus dem äußeren Hohlzylinder 1 und dem inneren Köφer 2. Mit dünnen, unterbrochenen Linien ist angedeutet, daß der Köφer 2 auch als Hohlzylinder ausgebildet sein kann. Durch die Abstandshalter 3 wird ein gleichmäßiger Ringspalt 4 gewährleistet. Zweckmäßigerweise sind mindestens drei Abstandshalter 3 in Längsnuten 5 in gleichen Abständen am Umfang verteilt. Die Abstandshalter 3 bestehen aus einem elastischen Material, wie z.B. Nylon oder Teflon.The heat flow switch according to the invention consists of the outer hollow cylinder 1 and the inner body 2. With thin, broken lines it is indicated that the body 2 can also be designed as a hollow cylinder. A uniform annular gap 4 is ensured by the spacers 3. At least three spacers 3 are expediently distributed in the longitudinal grooves 5 at equal intervals on the circumference. The spacers 3 are made of an elastic material, such as Nylon or teflon.
Der Hohlzylinder 1 ist vorteilhaft aus Kupfer hergestellt und besitzt damit einem linearen thermischen Ausdehnungskoeffizienten αD = 17 ppm/K und eine Wärmeleitfähigkeit λ = 401 W/(m*K). Der innere Köφer 2 besteht aus Molybdän mit einem Ausdehnungskoeffizienten α d = 5,1 ppm/K und einer Wärmeleitfähigkeit λ = 138 W/(m*K). Vorstehende Werte beziehen sich auf Umgebungstemperatur.The hollow cylinder 1 is advantageously made of copper and thus has a linear thermal expansion coefficient α D = 17 ppm / K and a thermal conductivity λ = 401 W / (m * K). The inner body 2 consists of molybdenum with an expansion coefficient α d = 5.1 ppm / K and a thermal conductivity λ = 138 W / (m * K). The above values refer to the ambient temperature.
In Fig. 3 sind zwei Refrigeratoren 9 mit ihren Antrieben 8 dargestellt. Wobei ein Refrigerator 9 als Redundanz geschaltet ist. Die inneren Köφer 2 der Wärmestromschalter sind jeweils über die flexiblen Interfaces 6 mit der zu kühlenden Anwendung 7 verbunden. Die Hohlzylinder 1 sind wärmeleitend an den Refrigeratoren 9 angeschlossen.3 shows two refrigerators 9 with their drives 8. A refrigerator 9 is connected as redundancy. The inner bodies 2 of the heat flow switches are each connected to the application 7 to be cooled via the flexible interfaces 6. The hollow cylinders 1 are connected to the refrigerators 9 in a heat-conducting manner.
Die wesentlichen Funktionsteile des Wärmestromschalters können von jedem Präzisionsmechanikhersteller mit sehr guter Reproduzierbarkeit ihrer Eigenschaften gefertigt werden.
The essential functional parts of the heat flow switch can be manufactured by any precision mechanics manufacturer with very good reproducibility of their properties.
Claims
1. Selbstauslösender Kryo-Wärmestromschalter, dadurch gekennzeichnet, daß ein äußerer Hohlzylinder (1), der mit der Wärmesenke (9) verbunden ist, und ein koaxial dazu angeordneter innerer Köφer (2), der mit der zu kühlenden Anwendung (7) verbunden ist, angeordnet sind und daß bei abgeschalteter Wärmesenke (9) zwischen dem Hohlzylinder (1) und dem inneren Köφer (2) ein durch Abstandshalter (3) fixierter konzentrischer Ringspalt (4) vorhanden ist, und daß der lineare thermische Ausdehnungskoeffizient (αD) des äußeren Hohizylinders (1) größer ist, als der lineare thermische Ausdehnungskoeffizent (αd) des inneren Köφers (2).1. Self-triggering cryogenic heat flow switch, characterized in that an outer hollow cylinder (1) which is connected to the heat sink (9), and a coaxially arranged inner body (2) which is connected to the application to be cooled (7) , are arranged and that when the heat sink (9) is switched off between the hollow cylinder (1) and the inner body (2) there is a concentric annular gap (4) fixed by spacers (3), and that the linear thermal expansion coefficient (α D ) of the outer hollow cylinder (1) is larger than the linear coefficient of thermal expansion (αd) of the inner body (2).
2. Selbstauslösender Kryo-Wärmestromschalter nach Anspruch 1 und 2, dadurch gekennzeichnet, daß bezogen auf die Ausgangstemperatur (To) der Einschaltpunkt (Te) und der Ausschaltpunkt (Ta) sowie dem Innendurchmesser (D) des äußeren Hohizylinders (1) und dem Außendurchmesser (d) des inneren Köφers (2) nach den Beziehungen2. Self-triggering cryogenic heat flow switch according to claim 1 and 2, characterized in that based on the starting temperature (To) the switch-on point (Te) and the switch-off point (Ta) and the inner diameter (D) of the outer hollow cylinder (1) and the outer diameter ( d) the inner body (2) according to the relationships
definiert sind.are defined.
3. Selbstauslösender Kryo-Wärmestromschalter nach Anspruch 1, dadurch gekennzeichnet, daß als Abstandshalter (3) Nylon- oder Teflonfilamente eingesetzt werden, die in gleichmäßig am Umfang verteilten Längsnuten (5) fixiert sind.3. Self-triggering cryogenic heat flow switch according to claim 1, characterized in that nylon or teflon filaments are used as spacers (3) which are fixed in longitudinal grooves (5) distributed uniformly on the circumference.
4. Selbstauslösender Kryo-Wärmestromübertrager nach Anspruch 1, dadurch gekennzeichnet, daß der äußere Hohlzylinder (1) aus Kupfer und der innere Köφer (2) aus Molybdän besteht.4. Self-triggering cryogenic heat flow exchanger according to claim 1, characterized in that the outer hollow cylinder (1) made of copper and the inner body (2) consists of molybdenum.
5. Selbstauslösender Kryo-Wärmestromschalter nach Anspruch 1 und 5, dadurch gekennzeichnet, daß der innere Köφer (2) als Hohlzylinder ausgebildet ist.
5. Self-triggering cryogenic heat flow switch according to claim 1 and 5, characterized in that the inner body (2) is designed as a hollow cylinder.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19835305 | 1998-08-05 | ||
DE19835305A DE19835305A1 (en) | 1998-08-05 | 1998-08-05 | Self-triggering cryo heat flow switch |
PCT/DE1999/002232 WO2000008536A1 (en) | 1998-08-05 | 1999-07-16 | Automatic tripping cryo-heat flow switch |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1029260A1 true EP1029260A1 (en) | 2000-08-23 |
Family
ID=7876500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99947238A Withdrawn EP1029260A1 (en) | 1998-08-05 | 1999-07-16 | Automatic tripping cryo-heat flow switch |
Country Status (4)
Country | Link |
---|---|
US (1) | US6305174B1 (en) |
EP (1) | EP1029260A1 (en) |
DE (1) | DE19835305A1 (en) |
WO (1) | WO2000008536A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6397618B1 (en) | 2001-05-30 | 2002-06-04 | International Business Machines Corporation | Cooling system with auxiliary thermal buffer unit for cooling an electronics module |
US6438966B1 (en) * | 2001-06-13 | 2002-08-27 | Applied Superconetics, Inc. | Cryocooler interface sleeve |
EP1568054A2 (en) * | 2002-11-18 | 2005-08-31 | Washington State University | Thermal switch, methods of use and manufacturing methods for same |
JP4641423B2 (en) * | 2004-02-18 | 2011-03-02 | ルネサスエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
US7154369B2 (en) | 2004-06-10 | 2006-12-26 | Raytheon Company | Passive thermal switch |
ES2402071T3 (en) * | 2006-01-18 | 2013-04-26 | Aac Microtec Ab | High conductivity miniaturized thermal / electrical switch |
FR2899374B1 (en) * | 2006-03-30 | 2008-05-30 | Air Liquide | THERMAL SWITCH |
US7752866B2 (en) * | 2007-12-07 | 2010-07-13 | University Of Central Florida Research Foundation, Inc. | Shape memory thermal conduction switch |
US20110005239A1 (en) * | 2009-07-08 | 2011-01-13 | ColdEdge Technologies, Inc. | Thermal interface having improved high-temperature operating range |
US8477500B2 (en) * | 2010-05-25 | 2013-07-02 | General Electric Company | Locking device and method for making the same |
JP5520740B2 (en) * | 2010-08-03 | 2014-06-11 | 株式会社日立製作所 | Cryogenic containment connection structure and cryogenic containment |
NO333598B1 (en) | 2010-08-24 | 2013-07-22 | Norwegian Well Solutions As | Apparatus for cooling electronics in a source tool |
EP2698591A4 (en) * | 2011-04-12 | 2014-11-05 | Ngk Insulators Ltd | Heat flow switch |
DE102011077907B4 (en) | 2011-06-21 | 2013-07-11 | Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. | METHOD FOR PRODUCING PRINTED MAGNETIC FUNCTIONAL ELEMENTS FOR RESISTANCE SENSORS AND PRINTED MAGNETIC FUNCTIONAL ELEMENTS |
DE102011082352A1 (en) * | 2011-09-08 | 2013-03-14 | Siemens Aktiengesellschaft | Apparatus and method for cooling a device |
DE102015215919B4 (en) * | 2015-08-20 | 2017-06-22 | Bruker Biospin Gmbh | Method and device for precooling a cryostat |
US10605052B2 (en) * | 2015-11-19 | 2020-03-31 | Halliburton Energy Services, Inc. | Thermal management system for downhole tools |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3225820A (en) * | 1962-11-01 | 1965-12-28 | Gen Precision Inc | Device for controlling temperature by heat conduction |
US3362467A (en) * | 1965-03-31 | 1968-01-09 | Navy Usa | Variable emitter device |
US3306075A (en) * | 1965-10-04 | 1967-02-28 | Hughes Aircraft Co | Thermal coupling structure for cryogenic refrigeration |
FR1518726A (en) * | 1966-12-29 | 1968-03-29 | Device for the differential thermal expansion of a hollow or partially hollowed solid body with circular cross-section | |
US3430455A (en) * | 1967-04-17 | 1969-03-04 | 500 Inc | Thermal switch for cryogenic apparatus |
US3519067A (en) * | 1967-12-28 | 1970-07-07 | Honeywell Inc | Variable thermal conductance devices |
US3531752A (en) * | 1968-02-09 | 1970-09-29 | Itek Corp | Variable-resistance thermal switch |
DE2115771C3 (en) * | 1971-04-01 | 1974-02-21 | Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen | Protective device |
US3807188A (en) * | 1973-05-11 | 1974-04-30 | Hughes Aircraft Co | Thermal coupling device for cryogenic refrigeration |
JPS5665216A (en) | 1979-10-31 | 1981-06-02 | Toshiba Corp | Heat radiation control unit |
DE3017252C2 (en) * | 1980-05-06 | 1982-06-16 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Device for keeping the internal temperature of bodies constant |
US4673030A (en) | 1980-10-20 | 1987-06-16 | Hughes Aircraft Company | Rechargeable thermal control system |
US4770004A (en) | 1986-06-13 | 1988-09-13 | Hughes Aircraft Company | Cryogenic thermal switch |
US4771823A (en) | 1987-08-20 | 1988-09-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Self-actuating heat switches for redundant refrigeration systems |
DE4126227C2 (en) * | 1991-08-08 | 1994-11-03 | Ant Nachrichtentech | Controllable heat conduction system |
DE4224449C2 (en) * | 1992-07-24 | 1996-06-20 | Daimler Benz Aerospace Ag | Active temperature control using an electrically controllable heat flow controller |
DE4320505A1 (en) * | 1993-06-21 | 1994-12-22 | Hanno Steinke | Device for the independent open-loop and closed-loop control of mechanical and electromechanical equipment |
US5379601A (en) * | 1993-09-15 | 1995-01-10 | International Business Machines Corporation | Temperature actuated switch for cryo-coolers |
JP3265139B2 (en) * | 1994-10-28 | 2002-03-11 | 株式会社東芝 | Cryogenic equipment |
US5682751A (en) * | 1996-06-21 | 1997-11-04 | General Atomics | Demountable thermal coupling and method for cooling a superconductor device |
-
1998
- 1998-08-05 DE DE19835305A patent/DE19835305A1/en not_active Withdrawn
-
1999
- 1999-07-16 EP EP99947238A patent/EP1029260A1/en not_active Withdrawn
- 1999-07-16 WO PCT/DE1999/002232 patent/WO2000008536A1/en not_active Application Discontinuation
- 1999-07-16 US US09/509,848 patent/US6305174B1/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0008536A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE19835305A1 (en) | 2000-02-10 |
US6305174B1 (en) | 2001-10-23 |
WO2000008536A1 (en) | 2000-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1029260A1 (en) | Automatic tripping cryo-heat flow switch | |
DE112007001694B4 (en) | Swivel joint assemblies and a system for their use | |
DE69904004T2 (en) | DEEP TEMPERATURE COOLER WITH A MECHANICALLY FLEXIBLE THERMAL CONNECTION | |
EP1553379A1 (en) | Heat exchanger for industrial equipment | |
DE69005511T2 (en) | Superconducting busbar. | |
DE1601894A1 (en) | Thermal switch for cryogenic equipment | |
DE3700623A1 (en) | THERMOELECTRIC VALVE FOR SWITCHING REFRIGERANT GASES IN DIFFERENT PIPES IN REFRIGERATION SYSTEMS AND REFRIGERATION MACHINES | |
DE102018213497A1 (en) | Means for heat exchange with an elastocaloric element which encloses a fluid line | |
DE3635007C2 (en) | ||
EP0424533A1 (en) | Heat-insulating device for cryogenic objects and method for making a package of cooled radiation screens for such device | |
WO2015014947A1 (en) | Optical device and lithography system | |
DE19958226A1 (en) | Heat exchanger combined with decompression device for cooling circuit has pressure reduction unit for performing heat exchange between high and low pressure coolant or refrigerant | |
DE102017210237A1 (en) | Circuit carrier for an electronic circuit and method for its production | |
DE2805140A1 (en) | SEALING DEVICE FOR A SWIVEL JOINT AND SWIVEL JOINT WITH SUCH A SEALING DEVICE | |
EP1394482B1 (en) | Heat pump system | |
EP0245360B1 (en) | Joule-thomson apparatus with temperature sensitive annular expansion passageway | |
EP1979632B1 (en) | Screw for use in thermally loaded surroundings | |
DE3841635A1 (en) | JOULE-THOMSON COOLING DEVICE | |
EP1485660A1 (en) | Refrigeration plant for parts of an installation, which are to be chilled | |
DE69032604T2 (en) | Cryocooler for superconducting magnets | |
EP1678446B1 (en) | Vacuum device | |
DE10354355A1 (en) | Air conditioning system especially with phase change materials has separate heating and cooling sections with different phase change materials and heated and cooled by a closed circuit liquid system | |
DE1917966A1 (en) | Cold transport device | |
DE202022106923U1 (en) | refrigeration cycle | |
DE3916025A1 (en) | PIPE FREEZER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 20001012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030201 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |