EP1027333A1 - Inhibiteurs de thrombine - Google Patents

Inhibiteurs de thrombine

Info

Publication number
EP1027333A1
EP1027333A1 EP98949536A EP98949536A EP1027333A1 EP 1027333 A1 EP1027333 A1 EP 1027333A1 EP 98949536 A EP98949536 A EP 98949536A EP 98949536 A EP98949536 A EP 98949536A EP 1027333 A1 EP1027333 A1 EP 1027333A1
Authority
EP
European Patent Office
Prior art keywords
mammal
composition
administering
treating
preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98949536A
Other languages
German (de)
English (en)
Other versions
EP1027333A4 (fr
Inventor
Craig Coburn
Adel M. Naylor-Olsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck and Co Inc
Original Assignee
Merck and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9806034.6A external-priority patent/GB9806034D0/en
Application filed by Merck and Co Inc filed Critical Merck and Co Inc
Publication of EP1027333A1 publication Critical patent/EP1027333A1/fr
Publication of EP1027333A4 publication Critical patent/EP1027333A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system

Definitions

  • Thrombin is a serine protease present in blood plasma in the form of a precursor, prothrombin. Thrombin plays a central role in the mechanism of blood coagulation by converting the solution plasma protein, fibrinogen, into insoluble fibrin.
  • European Publication 363 284 describes analogs of peptidase substrates in which the nitrogen atom of the scissile amide group of the substrate peptide has been replaced by hydrogen or a substituted carbonyl moiety.
  • Australian Publication 86245677 also describes peptidase inhibitors having an activated electrophilic ketone moiety such as fluoromethylene ketone or -keto carboxyl derivatives.
  • Thrombin inhibitors described in prior publications contain sidechains of arginine and lysine. These structures show low selectivity for thrombin over other trypsin-like enzymes. Some of them show toxicity of hypotension and liver toxicity.
  • European Publication 601 459 describes sulfonamido heterocyclic thrombin inhibitors, such as N-[4-[(aminoimino- methyl)amino]butyl]-l-[N-(2-naphthalenylsulfonyl)-L-phenylalanyl]-L- prolinamide.
  • WO 94/29336 describes compounds which are useful as thrombin inhibitors.
  • the invention also includes a composition for preventing or treating unstable angina, refractory angina, myocardial infarction, transient ischemic attacks, atrial fibrillation, thrombotic stroke, embolic stroke, deep vein thrombosis, disseminated intravascular coagulation, ocular build up of fibrin, and reocclusion or restenosis of recanalized vessels, in a mammal, comprising a compound of the invention in a pharmaceutically acceptable carrier.
  • These compositions may optionally include anticoagulants, antiplatelet agents, and thrombolytic agents.
  • the invention includes a composition for inhibiting loss of blood platelets, inhibiting formation of blood platelet aggregates, inhibiting formation of fibrin, inhibiting thrombus formation, and inhibiting embolus formation in a mammal, comprising a compound of the invention in a pharmaceutically acceptable carrier.
  • These compositions may optionally include anticoagulants, antiplatelet agents, and thrombolytic agents.
  • the compositions can be added to blood, blood products, or mammalian organs in order to effect the desired inhibitions.
  • the invention also includes the use of a compound of the invention in the manufacture of a medicament for preventing or treating unstable angina, refractory angina, myocardial infarction, transient ischemic attacks, atrial fibrillation, thrombotic stroke, embolic stroke, deep vein thrombosis, disseminated intravascular coagulation, ocular build up of fibrin, and reocclusion or restenosis of recanalized vessels, in a mammal.
  • the invention also includes a method for reducing the thrombogenicity of a surface in a mammal by attaching to the surface, either covalently or noncovalently, a compound of the invention.
  • n O or l
  • R is hydrogen Cl-6 alkyl, arylC ⁇ -6alkylene-,
  • Ci-4alkoxy or CF3; -(CH2)mSR 3 , wherein m is 0-6, or C3-8cycloalkyl;
  • R 3 is Cl-6alkyl, or
  • R4 is arylC ⁇ -6alkylene, wherein aryl is unsubstituted or mono-, di-, tri-, or tetra- substituted with Cl-4 alkyl, hydroxy, Cl-4alkoxy, halogen, amino, or CF3;
  • R 5 is hydrogen
  • Ci- ⁇ alkyl C3-8cycloalkyl, or arylCo- ⁇ alkyl.
  • the compounds have the structure
  • Rl is hydrogen, -CH2OH, CH3, -CH2CH2SCH3, -CH2CH2SO2CH3.
  • R ⁇ is hydrogen
  • Exemplifications also include the pharmaceutically acceptable salts of the above-identified compounds.
  • the compounds of the present invention may have chiral centers and occur as racemates, racemic mixtures and as individual diastereomers, or enantiomers with all isomeric forms being included in the present invention.
  • the compounds of the present invention may also have polymorphic crystalline forms, with all polymorphic crystalline forms being included in the present invention.
  • alkyl is intended to include both branched- and straight-chain saturated aliphatic hydrocarbon groups having, unless otherwise noted, 1-8 carbon atoms (Me is methyl, Et is ethyl, Pr is propyl, Bu is butyl).
  • Alkenyl is intended to include both branched- and straight-chain unsaturated aliphatic hydrocarbon groups having, unless otherwise noted, 1-8 carbon atoms, e.g.
  • Cycloalkyl includes cyclic saturated aliphatic hydrocarbon groups having 3-8 carbon atoms (e.g. "C3- 8cycloalkyl” is intended to include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, and the like).
  • C7-I2 bicyclic alkyl is intended to include bicyclo[2.2.1]heptyl (norbornyl), bicyclo[2.2.2]octyl, l,l,3-trimethyl-bicyclo[2.2.1]heptyl (bornyl), and the like.
  • aryl as used herein except where noted, represents a stable 6- to 10- membered mono- or bicyclic ring system such as phenyl, or naphthyl.
  • the aryl ring can be unsubstituted or substituted with one or more of Ci- 4 lower alkyl; hydroxy; alkoxy; halogen; amino.
  • heteroaryl refers to a 5- to 7- membered unsaturated ring containing 1 or 2 heteroatoms selected from 0, N, or S.
  • Alkoxy represents an alkyl group having 1-8 carbon atoms attached through an oxygen bridge.
  • Halo as used herein, means fluoro, chloro, bromo and iodo.
  • Counterion is used to represent a small, single negatively-charged species, such as chloride, bromide, hydroxide, acetate, trifluroacetate, perchlorate, nitrate, benzoate, maleate, tartrate, hemitartrate, benzene sulfonate, and the like.
  • acetate acetate
  • trifluroacetate perchlorate
  • nitrate acetate
  • benzoate maleate
  • tartrate tartrate
  • hemitartrate benzene sulfonate
  • heterocycle or "heterocyclic ring”, as used herein except where noted, represents a stable 5- to 7-membered mono- or bicyclic or stable 7- to 10-membered bicyclic heterocyclic ring system any ring of which may be saturated or unsaturated, and which consists of carbon atoms and from one to three heteroatoms selected from the group consisting of N, O and S, and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring.
  • heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure.
  • heterocyclic elements include piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolodinyl, 2- oxoazepinyl, azepinyl, pyrrolyl, 4-piperidonyl, pyrrolidinyl, pyrazolyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isoxazolyl, isoxazolidinyl, morpholinyl
  • Formula I in the form of water- or oil-soluble or dispersible products
  • the conventional non-toxic salts or the quaternary ammonium salts which are formed, e.g., from inorganic or organic acids or bases.
  • acid addition salts include acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, methane sulfonate, 2-naphthalenesulfonate, nic
  • Base salts include ammonium salts, alkali metal salts such as sodium and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth.
  • the basic nitrogen- containing groups may be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl and diamyl sulfates
  • long chain halides such as decyl, lauryl, myristyl and steary
  • Anticoagulant therapy is indicated for the treatment and prevention of a variety of thrombotic conditions, particularly coronary artery and cerebrovascular disease. Those experienced in this field are readily aware of the circumstances requiring anticoagulant therapy.
  • patient used herein is taken to mean mammals such as primates, including humans, sheep, horses, cattle, pigs, dogs, cats, rats, and mice.
  • thrombin inhibition is useful not only in the anticoagulant therapy of individuals having thrombotic conditions, but is useful whenever inhibition of blood coagulation is required such as to prevent coagulation of stored whole blood and to prevent coagulation in other biological samples for testing or storage.
  • thrombin inhibitors can be added to or contacted with any medium containing or suspected of containing thrombin and in which it is desired that blood coagulation be inhibited, e.g., when contacting the mammal's blood with material selected from the group consisting of vascular grafts, stents, orthopedic prothesis, cardiac prosthesis, and extracorporeal circulation systems
  • Compounds of the invention are useful for treating or preventing venous thromboembolism (e.g. obstruction or occlusion of a vein by a detached thrombus; obstruction or occlusion of a lung artery by a detached thrombus), cardiogenic thromboembolism (e.g. obstruction or occlusion of the heart by a detached thrombus), arterial thrombosis (e.g. formation of a thrombus within an artery that may cause infarction of tissue supplied by the artery), atherosclerosis (e.g. arteriosclerosis characterized by irregularly distributed lipid deposits) in mammals, and for lowering the propensity of devices that come into contact with blood to clot blood.
  • venous thromboembolism e.g. obstruction or occlusion of a vein by a detached thrombus
  • cardiogenic thromboembolism e.g. obstruction or occlusion of the heart by a detached thrombus
  • Examples of venous thromboembolism which may be treated or prevented with compounds of the invention include obstruction of a vein, obstruction of a lung artery (pulmonary embolism), deep vein thrombosis, thrombosis associated with cancer and cancer chemotherapy, thrombosis inherited with thrombophilic diseases such as Protein C deficiency, Protein S deficiency, antithrombin III deficiency, and Factor V Leiden, and thrombosis resulting from acquired thrombophilic disorders such as systemic lupus erythematosus (inflammatory connective tissue disease). Also with regard to venous thromboembolism, compounds of the invention are useful for maintaining patency of indwelling catheters.
  • cardiogenic thromboembolism examples include thromboembolic stroke (detached thrombus causing neurological affliction related to impaired cerebral blood supply), cardiogenic thromboembolism associated with atrial fibrillation (rapid, irregular twitching of upper heart chamber muscular fibrils), cardiogenic thromboembolism associated with prosthetic heart valves such as mechanical heart valves, and cardiogenic thromboembolism associated with heart disease.
  • arterial thrombosis examples include unstable angina (severe constrictive pain in chest of coronary origin), myocardial infarction (heart muscle cell death resulting from insufficient blood supply), ischemic heart disease (local anemia due to obstruction (such as by arterial narrowing) of blood supply), reocclusion during or after percutaneous transluminal coronary angioplasty, restenosis after percutaneous transluminal coronary angioplasty, occlusion of coronary artery bypass grafts, and occlusive cerebrovascular disease. Also with regard to arterial thrombosis, compounds of the invention are useful for maintaining patency in arteriovenous cannulas.
  • Atherosclerosis examples include arteriosclerosis.
  • devices that come into contact with blood include vascular grafts, stents, orthopedic prosthesis, cardiac prosthesis, and extracorporeal circulation systems
  • the thrombin inhibitors of the invention can be administered in such oral forms as tablets, capsules (each of which includes sustained release or timed release formulations), pills, powders, granules, elixers, tinctures, suspensions, syrups, and emulsions. Likewise, they may be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts. An effective but non-toxic amount of the compound desired can be employed as an anti-aggregation agent. For treating ocular build up of fibrin, the compounds may be administered intraocularly or topically as well as orally or parenterally.
  • the thrombin inhibitors can be administered in the form of a depot injection or implant preparation which may be formulated in such a manner as to permit a sustained release of the active ingredient.
  • the active ingredient can be compressed into pellets or small cylinders and implanted subcutaneously or intramuscularly as depot injections or implants.
  • Implants may employ inert materials such as biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers manufactured by the Dow-Corning Corporation.
  • the thrombin inhibitors can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
  • Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.
  • the thrombin inhibitors may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled.
  • the thrombin inhibitors may also be coupled with soluble polymers as targetable drug carriers.
  • Such polymers can include polyvinlypyrrolidone, pyran copolymer, polyhydroxy-propyl- methacrylamide-phenol, polyhydroxyethyl-aspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues.
  • the thrombin inhibitors may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels.
  • biodegradable polymers useful in achieving controlled release of a drug
  • a drug for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels.
  • the dosage regimen utilizing the thrombin inhibitors is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound or salt thereof employed.
  • An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.
  • Oral dosages of the thrombin inhibitors when used for the indicated effects, will range between about 0.01 mg per kg of body weight per day (mg/kg/day) to about 30 mg/kg/day, preferably 0.025-7.5 mg/kg/day, more preferably 0.1-2.5 mg/kg/day, and most preferably 0.1- 0.5 mg/kg/day (unless specified otherwise, amounts of active ingredients are on free base basis).
  • an 80 kg patient would receive between about 0.8 mg/day and 2.4 g/day, preferably 2-600 mg/day, more preferably 8-200 mg/day, and most preferably 8-40 mg/kg/day.
  • a suitably prepared medicament for once a day administration would thus contain between 0.8 mg and 2.4 g, preferably between 2 mg and 600 mg, more preferably between 8 mg and 200 mg, and most preferably 8 mg and 40 mg, e.g., 8 mg, 10 mg, 20 mg and 40 mg.
  • the thrombin inhibitors may be administered in divided doses of two, three, or four times daily.
  • a suitably prepared medicament would contain between 0.4 mg and 4 g, preferably between 1 mg and 300 mg, more preferably between 4 mg and 100 mg, and most preferably 4 mg and 20 mg, e.g., 4 mg, 5 mg, 10 mg and 20 mg.
  • the patient would receive the active ingredient in quantities sufficient to deliver between 0.025-7.5 mg/kg/day, preferably 0.1-2.5 mg/kg/day, and more preferably 0.1-0.5 mg/kg/day.
  • Such quantities may be administered in a number of suitable ways, e.g. large volumes of low concentrations of active ingredient during one extended period of time or several times a day, low volumes of high concentrations of active ingredient during a short period of time, e.g. once a day.
  • a conventional intravenous formulation may be prepared which contains a concentration of active ingredient of between about 0.01-1.0 mg/ml, e.g.
  • 0.1 mg/ml, 0.3 mg/ml, and 0.6 mg/ml and administered in amounts per day of between 0.01 ml/kg patient weight and 10.0 ml/kg patient weight, e.g. 0.1 ml/kg, 0.2 ml/kg, 0.5 ml/kg.
  • an 80 kg patient receiving 8 ml twice a day of an intravenous formulation having a concentration of active ingredient of 0.5 mg/ml, receives 8 mg of active ingredient per day.
  • Glucuronic acid, L-lactic acid, acetic acid, citric acid or any pharmaceutically acceptable acid/conjugate base with reasonable buffering capacity in the pH range acceptable for intravenous administration may be used as buffers. Consideration should be given to the solubility of the drug in choosing an The choice of appropriate buffer and pH of a formulation, depending on solubility of the drug to be administered, is readily made by a person having ordinary skill in the art.
  • the compounds can also be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in that art.
  • the dosage administration will, or course, be continuous rather than intermittent throughout the dosage regime.
  • thrombin inhibitors are typically administered as active ingredients in admixture with suitable pharmaceutical diluents, excipients or carriers (collectively referred to herein as "carrier” materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixers, syrups and the like, and consistent with convention pharmaceutical practices.
  • carrier suitable pharmaceutical diluents, excipients or carriers
  • the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents and coloring agents can also be incorporated into the mixture.
  • suitable binders, lubricants, disintegrating agents and coloring agents can also be incorporated into the mixture.
  • Suitable binders include starch, gelatin, natural sugars such as glucose or beta- lactose, corn-sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes and the like.
  • Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.
  • Disintegrators include, without limitation, starch methyl cellulose, agar, bentonite, xanthan gum and the like.
  • Typical tablet cores suitable for administration of thrombin inhibitors are comprised of, but not limited to, the following amounts of standard ingredients:
  • Mannitol, microcrystalline cellulose and magnesium stearate may be substituted with alternative pharmaceutically acceptable excipients.
  • the thrombin inhibitors can also be co-administered with suitable anti-platelet agents, including, but not limited to, aspirin and fibrinogen receptor antagonists (e.g. to treat or prevent unstable angina or to prevent reocclusion after angioplasty and restenosis), anticoagulants such as heparin or warfarin, thrombolytic agents such as plasminogen activators or streptokinase to achieve synergistic effects in the treatment of various vascular pathologies, or lipid lowering agents including antihypercholesterolemics (e.g.
  • aspirin and fibrinogen receptor antagonists e.g. to treat or prevent unstable angina or to prevent reocclusion after angioplasty and restenosis
  • anticoagulants such as heparin or warfarin
  • thrombolytic agents such as plasminogen activators or streptokinase to achieve synergistic effects in the treatment of various vascular pathologies
  • lipid lowering agents including antihyperchol
  • HMG CoA reductase inhibitors such as lovastatin, simvastatin, HMG CoA synthase inhibitors, etc.
  • agents that exert an antiatherogenic effect such as but not limited to insulin sensitizers and profibrinolytic agents including but not limited to agents that 1) increase levels and/or activity of one or more of the following proteins: tissue plasminogen activator, urokinase, plasmin, and/or 2) decrease levels and/or activity of one or more of the following proteins: plasminogen activator inhibitor- 1, thrombin activated fibrinolysis inhibitor and fibrinogen.
  • thrombin inhibitors enhance the efficiency of tissue plasminogen activator-mediated thrombolytic reperfusion.
  • Thrombin inhibitors may be administered first following thrombus formation, and tissue plasminogen activator or other plasminogen activator is administered thereafter.
  • Typical doses of thrombin inhibitors of the invention in combination with other suitable anti-platelet agents, anticoagulation agents, or thrombolytic agents may be the same as those doses of thrombin inhibitors administered without coadministration of additional anti-platelet agents, anticoagulation agents, or thrombolytic agents, or may be substantially less that those doses of thrombin inhibitors administered without coadministration of additional anti- platelet agents, anticoagulation agents, or thrombolytic agents, depending on a patient's therapeutic needs.
  • Amide couplings used to form the compounds of this invention are typically performed by the carbodiimide method with reagents such as dicyclohexylcarbodiimide, or l-ethyl-3-(3- dimethylaminopropyl) carbodiimide.
  • reagents such as dicyclohexylcarbodiimide, or l-ethyl-3-(3- dimethylaminopropyl) carbodiimide.
  • Other methods of forming the amide or peptide bond include, but are not limited to the synthetic routes via an acid chloride, azide, mixed anhydride or activated ester.
  • solution phase amide coupling are performed, but solid-phase synthesis by classical Merrifield techniques may be employed instead. The addition and removal of one or more protecting groups is also typical practice.
  • Glycine methyl ester was prepared by the addition of 2.8 mL (20 mmol) of Et3N to 2.5 g (20 mmol) of the amino ester HCl salt in 50 mL of DCM. After stirring for 10 min, 5.0 mL (60 mmol) of pyridine was added followed by 2.85 g (15 mmol) of ⁇ -toluenesulfonyl chloride. The reaction mixture was stirred for 1 h, diluted with 100 mL of DCM then quenched with water. The organic phase was separated and washed with 5% Na2C03 (3 x 10 mL), IN HCl (3 x 10 mL) and brine.
  • 3-1 was prepared in an analogous fashion as described in example 1 starting from 3,4-dichlorobenzensulfonyl chloride and glycine methyl ester.
  • 4-1 was prepared in an analogous fashion as described in example 1 starting from 2-naphthalenesulfonyl chloride and glycine methyl ester.
  • 5-1 was prepared in an analogous fashion as described in example 1 starting from 4-methoxy-2,3,6-trimethylbenzenesulfonyl chloride and glycine methyl ester.
  • 6-1 was prepared in an analogous fashion as described in example 1 starting from ⁇ -toluenesulfonyl chloride and L-serine methyl ester.
  • 10-1 was prepared in an analogous fashion as described in example 1 starting from N- ⁇ -toluenesulfonyl-L-methionine sulfone methyl ester.
  • Glycine methyl ester was prepared by the addition of 1.4 mL (10 mmol) of Et3N to 1.25 g (10 mmol) of the amino ester HCl salt in 25 mL of DCM. After stirring for 10 min, 2.5 mL (30 mmol) of pyridine was added followed by 2.33 g (9.0 mmol) of 3,4-dichloro- ⁇ -toluenesulfonyl chloride 11-1. The reaction mixture was stirred for 5 h, diluted with 100 mL of DCM then quenched with water. The organic phase was separated and washed with 5% Na2C ⁇ 3 (3 x 10 mL), IN HCl (3 x 10 mL) and brine.
  • Activity assays were performed by diluting a stock solution of substrate at least tenfold to a final concentration ⁇ 0.5 K into a solution containing enzyme or enzyme equilibrated with inhibitor. Times required to achieve equilibration between enzyme and inhibitor were determined in control experiments. Initial velocities of product formation in the absence (V 0 ) or presence of inhibitor (Vi) were measured.
  • V 0 /Vi 1 + [I]/Ki (1)
  • the activities shown by this assay indicate that the compounds of the invention are therapeutically useful for treating various conditions in patients suffering from unstable angina, refractory angina, myocardial infarction, transient ischemic attacks, atrial fibrillation, thrombotic stroke, embolic stroke, deep vein thrombosis, disseminated intravascular coagulation, and reocclusion or restenosis of recanalized vessels.
  • mice Male Sprague-Dawley rats (body weights 200-350 grams) were anesthetized with dial-urethane solution (0.1 ml/100 gm body weight i.p.), and a lateral tail vein was cannulated with a 23 gauge needle connected to a 12 inch length of PE50 tubing. The tubing was attached to a 3-way valve by a tubing adapter. Saline (control) or test compound, as appropriate, was administered via the tail vein catheter. A tracheostomy was performed with a 0.75 inch length of PE205 tubing. The right carotid artery is exposed and a 1.3 mm diameter Doppler flow probe was placed on the vessel. Body temperature was maintained at 37°C using a heat lamp.
  • Rats were randomized to continuous intravenous infusions of saline or test compound administered via the tail vein.
  • Test compound was administered at a rate of 10 ⁇ g/kg/min.
  • Treatment infusions were initiated 60 min before the placement of a 3 mm square piece of Whatman No. 1 filter paper saturated with 35% FeCl3 onto the exposed carotid artery distal to the flow probe. Treatment infusions were continued for an additional 90 minutes after the application of FeCl3
  • total infusion duration 150 minutes if thrombotic occlusions did not occur, or were terminated 30 minutes after thrombotic occlusion of the vessel.
  • Time to occlusion was defined as the time from application of FeCl3 to thrombotic occlusion of the vessel.
  • 3 ml blood samples were drawn by cardiac puncture into 0.3 ml of 3.8% sodium citrate.
  • All of the active compound, cellulose, and a portion of the corn starch are mixed and granulated to 10% corn starch paste.
  • the resulting granulation is sieved, dried and blended with the remainder of the corn starch and the magnesium stearate.
  • the resulting granulation is then compressed into tablets containing 25.0, 50.0, and 100.0 mg, respectively, of active ingredient per tablet.
  • compositions of 3 tablets are shown below:
  • Active 34, mannitol and microcrystalline cellulose were sieved through mesh screens of specified size (generally 250 to 750 ⁇ m) and combined in a suitable blender. The mixture was subsequently blended (typically 15 to 30 min) until the drug was uniformly distributed in the resulting dry powder blend. Magnesium stearate was screened and added to the blender, after which a precompression tablet blend was achieved upon additional mixing (typically 2 to 10 min). The precompression tablet blend was then compacted under an applied force, typically ranging from 0.5 to 2.5 metric tons, sufficient to yield tablets of suitable physical strength with acceptable disintegration times (specifications will vary with the size and potency of the compressed tablet). In the case of the 2, 10 and 50 mg potencies, the tablets were dedusted and film-coated with an aqueous dispersion of water-soluble polymers and pigment. Tablet preparation via dry granulation
  • a dry powder blend is compacted under modest forces and remilled to afford granules of specified particle size.
  • the granules are then mixed with magnesium stearate and tabletted as stated above.
  • Intravenous Formulations Intravenous formulations of 34 were prepared according to general intravenous formulation procedures.
  • compositions A-C are as follows:
  • buffer acids such as L-lactic acid, acetic acid, citric acid or any pharmaceutically acceptable acid/conjugate base with reasonable buffering capacity in the pH range acceptable for intravenous administration may be substituted for glucuronic acid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pyridine Compounds (AREA)

Abstract

On décrit un composé qui inhibe la thrombine humaine et qui correspond à la structure générale (I) telle que la structure (II).
EP98949536A 1997-09-30 1998-09-25 Inhibiteurs de thrombine Withdrawn EP1027333A4 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US6053697P 1997-09-30 1997-09-30
US60536P 1997-09-30
GBGB9806034.6A GB9806034D0 (en) 1998-03-20 1998-03-20 Thrombin inhibitors
GB9806034 1998-03-20
PCT/US1998/020174 WO1999016750A1 (fr) 1997-09-30 1998-09-25 Inhibiteurs de thrombine

Publications (2)

Publication Number Publication Date
EP1027333A1 true EP1027333A1 (fr) 2000-08-16
EP1027333A4 EP1027333A4 (fr) 2000-11-08

Family

ID=26313327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98949536A Withdrawn EP1027333A4 (fr) 1997-09-30 1998-09-25 Inhibiteurs de thrombine

Country Status (5)

Country Link
EP (1) EP1027333A4 (fr)
JP (1) JP2001518466A (fr)
AU (1) AU740170B2 (fr)
CA (1) CA2303832A1 (fr)
WO (1) WO1999016750A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7857522B2 (en) * 2007-01-31 2010-12-28 Siemens Industry, Inc. Rolling mill oil film bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19956786A1 (de) * 1999-11-25 2001-05-31 Basf Ag Verfahren zur Herstellung optisch aktiver Amine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4306873A1 (de) * 1993-03-05 1994-09-08 Boehringer Mannheim Gmbh Neue 4-Aminopyridine-Verfahren zu ihrer Herstellung sowie diese Verbindungen enthaltende Arzneimittel
US5668289A (en) * 1996-06-24 1997-09-16 Merck & Co., Inc. Pyridinone thrombin inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2051702T3 (es) * 1986-04-01 1994-07-01 Wako Pure Chem Ind Ltd Derivados peptidicos y metodo para medir la actividad de sustancias fisiologicamente activas usandolos como sustratos.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4306873A1 (de) * 1993-03-05 1994-09-08 Boehringer Mannheim Gmbh Neue 4-Aminopyridine-Verfahren zu ihrer Herstellung sowie diese Verbindungen enthaltende Arzneimittel
US5668289A (en) * 1996-06-24 1997-09-16 Merck & Co., Inc. Pyridinone thrombin inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9916750A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7857522B2 (en) * 2007-01-31 2010-12-28 Siemens Industry, Inc. Rolling mill oil film bearing

Also Published As

Publication number Publication date
AU9583998A (en) 1999-04-23
EP1027333A4 (fr) 2000-11-08
AU740170B2 (en) 2001-11-01
WO1999016750A1 (fr) 1999-04-08
JP2001518466A (ja) 2001-10-16
CA2303832A1 (fr) 1999-04-08

Similar Documents

Publication Publication Date Title
US6093717A (en) Imidazopyridine thrombin inhibitors
US6376499B1 (en) Thrombin inhibitors
AU753479B2 (en) Pyrazinone thrombin inhibitors
AU758237B2 (en) Thrombin inhibitors
US6147078A (en) Pyrazinone thrombin inhibitors
AU762908B2 (en) Thrombin inhibitors
AU740447B2 (en) Thrombin inhibitors
US6087373A (en) Thrombin inhibitors
US6133297A (en) Thrombin inhibitors
US6350745B1 (en) Thrombin inhibitors
AU740170B2 (en) Thrombin inhibitors
AU741766B2 (en) Thrombin inhibitors
US6004976A (en) Thrombin inhibitors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: AL PAYMENT 20000502;LT PAYMENT 20000502;LV PAYMENT 20000502;MK PAYMENT 20000502;RO PAYMENT 20000502;SI PAYMENT 20000502

A4 Supplementary search report drawn up and despatched

Effective date: 20000927

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 07D 213/74 A, 7A 61K 31/44 B

17Q First examination report despatched

Effective date: 20010906

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030625