EP1027141B1 - Ensemble reacteur melangeur et méthode - Google Patents

Ensemble reacteur melangeur et méthode Download PDF

Info

Publication number
EP1027141B1
EP1027141B1 EP98924882A EP98924882A EP1027141B1 EP 1027141 B1 EP1027141 B1 EP 1027141B1 EP 98924882 A EP98924882 A EP 98924882A EP 98924882 A EP98924882 A EP 98924882A EP 1027141 B1 EP1027141 B1 EP 1027141B1
Authority
EP
European Patent Office
Prior art keywords
mixing chamber
baffles
mixing
fluid
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98924882A
Other languages
German (de)
English (en)
Other versions
EP1027141A1 (fr
EP1027141A4 (fr
Inventor
Robert Yant
Piotr Piechuta
Kevin Butler
Mark Piechuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quantum Technologies Inc
Original Assignee
Quantum Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/942,575 external-priority patent/US6036355A/en
Application filed by Quantum Technologies Inc filed Critical Quantum Technologies Inc
Publication of EP1027141A1 publication Critical patent/EP1027141A1/fr
Publication of EP1027141A4 publication Critical patent/EP1027141A4/fr
Application granted granted Critical
Publication of EP1027141B1 publication Critical patent/EP1027141B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0057Oxidation of liquors, e.g. in order to reduce the losses of sulfur compounds, followed by evaporation or combustion if the liquor in question is a black liquor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/72Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices
    • B01F27/724Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with helices or sections of helices with a single helix closely surrounded by a casing

Definitions

  • the present invention relates to a continuous dynamic mixing assembly for mixing first and second fluid materials together and, in particular, to a reactor mixer for oxidizing liquors for use in the paper pulping industry.
  • Oxidized white liquor is typically made by oxidizing reducing compounds found in white liquor such as sodium sulfide, sodium polysulfide and sodium thiosulfate to form an oxidized white liquor having non-reducing compounds such as sodium sulfate therein.
  • a stirred tank of white liquor and either air or oxygen or a combination thereof and an external heat source is a common method of commercially producing white liquor as disclosed in U.S. Patent Nos. 5,500,085 and 5,382,322.
  • the oxidation reaction of sodium sulfide is exothermic and generates a significant amount of heat.
  • a typical stirred tank process used to oxidize sodium sulfide requires additional heat input from an external source and a long residence time in the tank for the oxidation reaction to progress to a beneficial extent.
  • Large equipment is required to hold volumes of white liquor being oxidized.
  • two stirred tanks each about 3.0 meters (10 feet) in diameter and 7.9 meters (26 feet) high are used. Such large tanks require a long residence time, making them inefficient and costly.
  • US Patent No. 2,914,385 discloses a vertically operating elongated contacting apparatus vessel designed to effect countercurrent mixing between descending denser liquids and ascending less dense liquids.
  • the present invention is directed to a continuous dynamic reactor mixing assembly which disperses and dissolves a second fluid, e.g., gas, into a first fluid, e.g., liquid material.
  • the reactor mixer of the invention employs first axially extending baffles and second circumferential baffles along with a unique agitator design to enable very efficient mixing of the first and second fluids.
  • the invention is particularly well suited to conducting chemical reactions in the mixing assembly.
  • the mixing assembly of the present invention may be applied in mixing a wide variety of fluids and one, two, or three-phase mixtures.
  • Some examples include the injection of a gas as a secondary fluid into the mixing chamber which already contains a liquid or liquid/solid material as a primary fluid or injecting a liquid as a secondary fluid into the mixing chamber for dissolution in and reaction with some primary fluid or slurried material within the mixing chamber.
  • the secondary fluid may be introduced into the mixing chamber through insert assemblies which influence its flow rate. Virtually any combination of flowable materials may be introduced through both the insert assemblies and the mixing assembly as a whole.
  • the mixing assembly of the present invention is particularly well suited for conducting chemical reactions which involve the injection of a gas into a material for subsequent dilution and chemical reaction.
  • Solutions which contain oxidizable compounds, such as paper pulp mill white liquor, black liquor, green liquor, and similar solutions are particularly suitable for oxidation reactions within the reactor mixer of the present invention.
  • the patent application entitled “Method of oxidizing White Liquor,” filed July 14, 1997, describes materials that may be oxidized in accordance with the present invention and an overall system for producing a solution of oxidized liquor in which the present reactor mixer may be used.
  • the present invention is directed to a dynamic mixing assembly in accordance with the features of claim 1, comprising a preferably cylindrical mixing chamber having an inner wall which is generally symmetrical about a central (longitudinal) axis.
  • At least one first fluid inlet introduces first fluid material into the mixing chamber.
  • At least one second fluid inlet introduces second fluid material into the mixing chamber.
  • At least one outlet enables fluid to leave the mixing chamber.
  • First or axial baffles extend along the inner wall generally parallel to the axis for disrupting fluid flow generally circumferentially in the mixing chamber.
  • Second or circumferential baffles extend generally transverse to the axis for disrupting fluid flow in a generally axial direction in the mixing chamber.
  • the second baffles are constructed and arranged to segment the mixing chamber axially.
  • a rotatable agitator comprises a cylindrical central portion extending in the mixing chamber along the axis and at least one blade having a twisted orientation on the central portion.
  • the circumferential baffles partition the mixing chamber into at least two axial segments.
  • the axial baffles in one of the segments are offset from the axial baffles in an adjacent one of the segments as viewed in a direction of the axis.
  • a generally annular space is located radially between each blade and the axial baffles.
  • a size of the space is selected to produce the particular residence time of liquid material in the mixing chamber. The space ranges from about .01 to about 0.1 times an inside diameter of the mixing chamber and, in particular, from about .03 to about 0.11 times an inside diameter of the mixing chamber.
  • a ratio of a height of each of the axial baffles to an inside diameter of the mixing chamber ranges from about 0.001 to about 0.40 and, in particular, from about 0.01 to about 0.20.
  • Each blade has a pitch such that there is a generally constant gap between an edge of the blade and edges of the axial baffles, along an entire length of the blade.
  • insert assemblies may each be disposed at a location of a second fluid inlet adjacent the mixing chamber wall for admitting the second fluid into the reactor at a selected flow rate.
  • a variable speed drive may be used that can rotate the agitator in both a clockwise and counterclockwise direction.
  • a preferred embodiment of the mixing assembly of the invention comprises the generally cylindrical mixing chamber having the inner wall which is generally symmetrical about the central axis, the first and second fluid inlets, and outlet. Also included are the axial and circumferential baffles. The circumferential baffles are constructed and arranged to segment the mixing chamber axially. The insert assemblies are each disposed at a location of a second fluid inlet adjacent the mixing chamber wall.
  • the rotatable agitator comprises a central cylindrical hub portion extending in the mixing chamber along the axis and at least one blade having a twisted orientation on the hub portion.
  • Another preferred embodiment of the mixing assembly of the present invention comprises the generally cylindrical mixing chamber having the inner wall which is generally symmetrical about the central axis, the first and second fluid inlets, and outlet. Also included are the axial and circumferential baffles. The circumferential baffles are constructed and arranged to segment the mixing chamber axially. The insert assemblies are each disposed at a location of a second fluid inlet adjacent the mixing chamber wall.
  • the rotatable agitator comprises a central cylindrical hub portion extending in the mixing chamber along the axis and at least one blade having a twisted orientation on the hub portion. Each blade has a pitch such that a generally constant gap is maintained between an edge of the blade and edges of the axial baffles along an entire length of the blade.
  • the generally annular space is located radially between each blade and the axial baffles.
  • a size of the space is selected to produce a particular residence time of liquid material in the mixing chamber.
  • the variable speed drive mechanism capable of both clockwise and counterclockwise rotation of the agitator.
  • the assembly may include a device for pressurizing the liquid.
  • the agitator can produce substantially superatmospheric pressure in the mixing chamber.
  • the reactor mixer of the present invention enables the efficient dispersion and dissolution of different materials into one another.
  • the reactor mixer enables secondary gas to be inlet into the insert assemblies for oxidizing primary liquid material.
  • the present invention enables the oxidation of white liquor solution to occur at least about 16 times faster than in the tank reactor system.
  • the design of the agitator blades and axial and circumferential baffles offer numerous advantages and serve a plurality of purposes.
  • the baffle systems disrupt axial and circumferential fluid flow and enable efficient mixing.
  • a constant gap between the blades and the baffles is maintained upon passing of the blades. Only a small section of any blade is opposite any axial baffle at any one time, which lessens mixing power consumption.
  • the twisted blade design on the central cylindrical portion of the agitator enables the blades to utilize a sweeping action past the inward edges of the axial baffles. Since the blades are twisted, only a small portion of a blade is advantageously opposite an axial baffle at one time by the predetermined space.
  • the sweeping of the blades past the baffles causes a unique mixing action and further lessens mixing power consumption.
  • at least one point on at least one blade edge is separated from at least one point on at least one axial baffle edge by the predetermined gap, which maximizes mixing efficiency.
  • the flow in the mixing chamber can be increased or retarded based upon the speed and rotational direction of the agitator, in view of its unique twisted blade orientation.
  • the circumferential baffles advantageously partition the mixing chamber into one or more axial segments.
  • liquid contacts the circumferential baffles it is directed inwardly toward the agitator, forming a liquid seal in each of the axial segments.
  • the liquid seal prevents gas from traveling unobstructed along the shaft of the mixing device.
  • the present mixer is well suited for conducting chemical reactions, such as oxidation of liquids, in view of its thorough liquid/gas mixing.
  • the reactor is believed to enable the formation of three discrete fluid zones, an inner primarily gas zone around the agitator, a primarily liquid zone radially outward from the gas zone, and a reaction zone between the liquid and gas zone having a combination of liquid and gas.
  • An interaction among the axial baffles, circumferential baffles and agitator enable residence time of fluid (e.g., liquid) in the mixing chamber to be selectively adjusted.
  • fluid e.g., liquid
  • a generally radial spacing between the agitator and axial baffles enables the reaction zone size, and thus the residence time of the liquid, to be selectively adjusted.
  • a method of mixing first and second fluid materials comprises directing the first and second fluid materials into the mixing chamber.
  • the agitator having at least one blade with the twisted orientation on the cylindrical central portion is rotated. Fluid flow is disrupted generally circumferentially in the mixing chamber with the axial baffles. Fluid flow is disrupted in a general direction of the axis with the circumferential baffles.
  • the residence time of liquid material in the mixing chamber may be selectively adjusted based upon the relative construction and arrangement among the agitator, the axial baffles and the circumferential baffles. This may be accomplished by selecting a size of the annular space located radially between the blades and the axial baffles. Alternatively, the residence time of liquid material in the chamber may be increased or decreased as desired by rotating the agitator in a particular direction and at a particular speed.
  • a reactor mixer assembly of the present invention which is for dispersion and dissolution of a secondary fluid material, preferably gas, into a primary fluid material, preferably liquid, is designated generally at 10.
  • the mixing assembly comprises a generally cylindrical mixing vessel shell 12 having a wall 14 with an inner surface which forms a mixing chamber 16 that is generally symmetrical about a central axis X ( Figure 1).
  • At least one first fluid inlet 18 is connected to the shell for introducing the first fluid material into the mixing chamber and at least one outlet 20 is connected to the shell for discharging mixed fluid from the mixing chamber.
  • Second fluid inlets 22 are disposed at a plurality of locations around the mixing chamber for introducing the second fluid material into the first fluid material.
  • First baffles 24 extend axially along the inner wall generally parallel to the axis X.
  • Second circumferential baffles 26 extend generally transverse to the axis X and are constructed and arranged to partition the mixing chamber axially into at least two segments ( e.g ., S 1 and S 2 ).
  • Insert assemblies 28 are disposed at each of the second fluid inlets 22 adjacent the mixing chamber wall.
  • a rotatable agitator 30 comprises a cylindrical central portion 32 extending in the mixing chamber along the axis X and blades 34 that each have a twisted orientation on the central portion of the agitator.
  • the entry pipe 18 communicates with the mixing vessel shell in such a way that primary fluid from the entry pipe enters the mixing chamber 16. Entry pipe 18 is of sufficient size to admit the desired flow rate of primary fluid.
  • the primary fluid may be pumped under pressure at a particular flow rate into the mixing chamber by a pump 35. After the mixing of the primary and secondary fluids, the mixed fluid leaves the mixing chamber via the exit pipe 20.
  • the agitator is driven by an external drive mechanism shown schematically at M and includes a shaft 36 that is coupled to a drive shaft 38 in a manner known to those skilled in the art.
  • the agitator preferably includes a cylindrical hub portion 40 located concentrically around the shaft.
  • the shaft 36 is supported by an appropriate bearing assembly 42 and pillow blocks 44.
  • the mixing vessel shell is supported by suitable supports 46.
  • the rotating shaft is sealed in the mixing vessel by suitable sealing devices 48.
  • the sealing devices 48 are preferably dual-face rotating mechanical seals, although any suitable sealing mechanism may be used.
  • included in the assembly is a removable cover 50, over a maintenance access hole, which is used for shaft removal and other tasks.
  • Secondary fluid enters secondary fluid entry headers 52, only one of which is shown in Figure 1. From headers 52 the secondary fluid enters ports 54, which communicate with the insert assemblies 28. The headers 52 and the ports 54 may have other configurations. The secondary fluid flows into the mixing chamber through the insert assemblies 28. The insert assemblies 28 may be positioned at various locations around the mixing vessel shell 12.
  • the circumferential baffles 26 have an annular shape.
  • the circumferential baffles 26 communicate with the inside wall of the mixing vessel shell 12 and partition the reactor into two or more axial segments. This disrupts the bulk flow of fluid material in the axial direction, causing definite axial segmentation in the mixing chamber and substantially lessening the possibility of fluid flowing axially through the chamber undermixed.
  • the circumferential baffles 26 temporarily force the bulk flow of fluid generally radially into the agitator blades to ensure complete mixing, and to form a unique liquid barrier through which gases cannot pass unobstructed.
  • the axial baffles 24 extend generally radially inwardly from the inner wall of the mixing vessel shell and provide for circumferential mixing within an individual axial segment. As best shown in Fig. 4, the axial baffles in one of the segments S 1 are offset by an angle ⁇ from the axial baffles in an adjacent one of the segments S 2 as viewed in a direction of the axis X. The angle ⁇ ranges from about 0° to about 180° and, in particular, not greater than about 90°.
  • the axial baffles 24 extend substantially the entire length of each axial segment and preferably have a length less than an axial segment.
  • the axial baffles may be circumferentially spaced apart from each other by a central angle ranging from about 0° to about 180°.
  • a ratio of a height H of each of the axial baffles 24 to an inside diameter of the mixing chamber ranges from about 0.001 to about 0.40 and, in particular, from about 0.01 to about 0.20.
  • the mixing chamber is about 51cm (20 inches) in diameter and about 2 metres (6 feet) long, for example.
  • the hub portion of the multibladed agitator extends into the interior of the mixing chamber along the axis X.
  • the shaft 36 extends through the vessel shell 12, the hub portion 40, the bearings 42 and the seals 48.
  • the hub portion may be formed integrally with the shaft, formed separately from the shaft or otherwise omitted.
  • the blades may extend directly from a cylindrical shaft with no hub portion.
  • the shaft 36 is preferably machined so that its outside diameter is less at the bearings 42 than along substantially the balance of the shaft.
  • the blades 34 are advantageously twisted as shown, although other degrees of twist are within the scope of the current invention. It is preferred that the blades extend perpendicular to a tangent to the cylindrical portion as the blades twist, throughout the length of the blades. As shown in Figures 3 and 4, the blades have a pitch such that there is a generally constant gap G between each blade edge B and edges E of the axial baffles along the twist T for the entire length L of the blade.
  • the blade twist T is important in that it lessens momentary power peaks that a blade parallel to the axis X would be prone to, and in that it creates a means to either propel the fluid from the mixing chamber or to retard the flow of fluid from the chamber.
  • the axial length L of each agitator blade ( Figure 3) is preferably approximately equal to that of each axial baffle.
  • FIG. 5 a preferred insert assembly 28 is shown, although other configurations may be used.
  • U.S. Patent No. 5,607,233 describes specific features and effects of insert assemblies that may be suitable in the present invention.
  • An insert sleeve 56 is connected to the vessel shell 12 such as by welding.
  • a shoulder 58 extends from the insert sleeve 56 to allow an end cap 60 of the insert assembly 28 to engage the sleeve 56.
  • An insert 62 communicates with an insert wall 64 which in turn communicates with the end cap 60.
  • the inserts 62 are generally coplanar with the inner surface of the wall 14 but may extend further into the mixing chamber.
  • the inserts 62 can admit different fluids and may be formed from materials so as to adjust their porosity as desired or to have drilled openings of a particular size and number, enabling a wide variety of flow rates of the secondary fluid into the mixing chamber.
  • the inserts 62 are preferably removable.
  • a gasket 66 may be used in conjunction with fasteners 68 to seal the end cap against the insert sleeve 56. Secondary fluid is injected into the insert via the feed pipe 54 which has exterior threads 69 for engaging an interiorly threaded opening 70 in the end cap.
  • the secondary fluid may be a gas, for example, an oxygen-containing gas.
  • the primary fluid may be, for example, liquid material, for example, a liquor solution to be oxidized.
  • Primearily gas is located in an innermost zone B located in an annulus that extends radially outwardly from the hub portion to the outer edges B of the blades.
  • a discrete annular reaction zone C is located radially between the outer liquid material zone A and the inner gas zone B and contains a mixture of liquid and gas.
  • the reaction zone C is located in the generally annular space G radially between the outermost edges of the blades and the edges of the axial baffles.
  • the size of the reaction zone C is selected to produce a particular residence time of liquid material in the mixing chamber. When the size of the reaction zone C is increased, the liquid material will have a longer residence time in the mixing chamber. When the size of the reaction zone C is decreased, the liquid material will have a shorter residence time in the mixing chamber.
  • the relative sizes of the zones A, B and C may be adjusted mechanically or operationally.
  • the size of the space G may be determined when the reactor mixer is designed, by adjusting the size or height of the blades and the height of the axial baffles as well as the inside diameter of the mixing chamber.
  • the space G preferably ranges from about .01 to about 0.1 times the inside diameter of the mixing chamber and, in particular, from about .03 to about 0.11 times the inside diameter of the mixing chamber.
  • the drive M is capable of variable speeds and can rotate the agitator clockwise or counterclockwise. While not wanting to be bound by theory, it is believed that the sizes of the zones are relatively constant or they may vary somewhat.
  • Rotating the agitator assembly 40 clockwise in view of the particular blade pitch and the view of Figures 3 and 4, propels the material out of the reactor, and is the most effective in reasonably gentle oxidation reactions. Clockwise rotation is also desirable when a rapid rate of mixing is required.
  • the size of the reaction zone C may be affected by the directional rotation of the agitator. It is believed that clockwise rotation results in a relatively small reaction zone C. With clockwise rotation, the reaction zone C is believed to decrease in size radially outwardly, compared to counterclockwise rotation, that is, the size of the gas zone B increases.
  • the agitator 40 is rotated counterclockwise, in view of the particular blade pitch and the view of Figures 3 and 4, in such a manner as to retard the bulk flow of liquid through the mixing chamber. It is believed that counterclockwise rotation results in a larger reaction zone C, which is very effective in harsh mixing or harsh oxidation reactions. With counterclockwise rotation, the reaction zone C is believed to increase radially inwardly, that is, the size of the gas zone B decreases.
  • the drive is preferably a variable speed drive that can be operated to rotate the agitator slowly or quickly.
  • Slow rotation of the agitator is believed to increase the size of the reaction zone C and increases the residence time of the liquid material in the mixing chamber.
  • Fast rotation of the agitator is believed to result in a smaller reaction zone C and decreases the residence time of the liquid material in the mixing chamber.
  • first fluid material for example a white liquor solution to be oxidized
  • Second fluid material for example, oxygen-containing gas
  • the agitator 30 rotates at a particular speed and direction depending upon the desired residence time of fluid material in the reactor mixer.
  • the residence time is also adjusted by selecting the size of the annular space G in view of the inside diameter of the mixing chamber and heights of each of the blades and axial baffles. Fluid flow is disrupted generally circumferentially in the mixing chamber by the axial baffles 24. Fluid flow is disrupted in a general direction of the axis by the circumferential baffles 26.
  • the mixed fluid e.g., oxidized white liquor
  • the mixing system can process from 0.4 to 1892 liters per minute (0.1 to 500 gallons per minute) of a pulp mill liquor converting the liquor to an oxidized liquor useful within pulp mill operations.
  • the mixing chamber is capable of containing pressures up to 27.2 atmospheres (400 pounds per square inch gauge). The blade speed depends upon the geometry of the agitator and the degree of mixing required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Claims (39)

  1. Ensemble de mélange dynamique continu (10) comprenant :
    une chambre de mélange (12) d'extension globalement horizontale comportant une paroi intérieure (14), globalement symétrique par rapport à un axe central (X), ladite chambre de mélange étant globalement cylindrique et présentant un diamètre intérieur ;
    au moins une entrée pour premier fluide (18) conçue et disposée pour introduire une matière formant un premier fluide dans ladite chambre de mélange ;
    au moins une entrée pour deuxième fluide (22) conçue et disposée pour introduire une matière formant un deuxième fluide dans ladite chambre de mélange ;
    au moins une sortie (20) permettant d'évacuer : de la chambre de mélange un mélange de ladite matière formant un premier fluide et de ladite matière formant un deuxième fluide ;
    des premiers déflecteurs (24) qui s'étendent le long de la paroi intérieure, globalement parallèlement audit axe, afin de dévier globalement un écoulement circonférentiel de fluide dans ladite chambre de mélange ;
    des deuxièmes déflecteurs (26) qui s'étendent le long de la paroi intérieure, globalement transversalement audit axe, afin de dévier globalement un écoulement axial de fluide dans ladite chambre de mélange ; et
    un agitateur rotatif (30) comprenant une partie centrale qui s'étend dans ladite chambre de mélange, le long dudit axe et au moins une palette (34) qui s'étend à partir de ladite partie centrale, la partie centrale et ladite au moins une palette étant imperméable vis-à-vis de l'écoulement de fluide.
  2. Ensemble de mélange selon la revendication 1, dans lequel ladite partie centrale est cylindrique.
  3. Ensemble de mélange selon la revendication 1, dans lequel ladite chambre (12) est globalement cylindrique.
  4. Ensemble de mélange selon la revendication 1, dans lequel ladite au moins une entrée de premier fluide (18) est conçue et disposée pour introduire une matière formant un liquide dans ladite chambre de mélange (12).
  5. Ensemble de mélange selon la revendication 1, comprenant des ensembles formant des plaques (28), chacun étant disposé à un emplacement de ladite au moins une entrée pour deuxième fluide (22), adjacent à la paroi (14) de chambre de mélange, et présentant soit une porosité particulière, soit des orifices calibrés, à même de recevoir ladite matière formant un deuxième fluide dans ladite chambre de mélange (12) selon un débit choisi.
  6. Ensemble de mélange selon la revendication 1, dans lequel ladite au moins une palette (34) correspond à un pas tel qu'il existe un intervalle globalement constant entre un bord de ladite palette et des bords desdits premiers déflecteurs (24), le long d'une longueur entière de ladite au moins une palette:
  7. Ensemble de mélange selon la revendication 1, dans lequel lesdits deuxièmes déflecteurs (26) divisent ladite chambre de mélange (12) en au moins deux segments axiaux (S1, S2).
  8. Ensemble de mélange selon la revendication 1, dans lequel un espace globalement annulaire (G) se situe radialement entre ladite au moins une palette (34) et lesdits premiers déflecteurs (24).
  9. Ensemble de mélange selon la revendication 8, dans lequel ledit espace (G) représente d'environ un centième à environ un dixième dudit diamètre intérieur de ladite chambre de mélange (12).
  10. Ensemble de mélange selon la revendication 8, dans lequel ledit espace (G) représente de trois centièmes jusqu'à onze centièmes dudit diamètre intérieur de ladite chambre de mélange (12).
  11. Ensemble de mélange selon la revendication 1, pour lequel le rapport de hauteur desdits premiers déflecteurs (24) audit diamètre intérieur de ladite chambre de mélange (12) va d'environ 0,001 à 0,40 environ.
  12. Ensemble de mélange selon la revendication 1, pour lequel le rapport de hauteur de chacun desdits premiers déflecteurs (24) audit diamètre intérieur de ladite chambre de mélange (12) va d'environ 0,01 à 0,20 environ.
  13. Ensemble de mélange selon la revendication 1, comprenant un variateur de vitesse (M) connecté audit agitateur (30) et pouvant faire tourner ledit agitateur (30) dans les sens des aiguilles d'une montre et dans le sens inverse.
  14. Ensemble de mélange selon la revendication 8, dans lequel on choisit l'espace (G) pour qu'il représente d'environ un centième jusqu'à environ un dixième dudit diamètre intérieur de ladite chambre de mélange (12), et pour lequel le rapport de hauteur de chacun desdits premiers déflecteurs (24) audit diamètre intérieur de ladite chambre de mélange va d'environ 0,020 à 0,40 environ.
  15. Ensemble de mélange selon la revendication 7, dans lequel
    ladite partie centrale dudit agitateur rotatif (30) est cylindrique et où ladite au moins une palette (34) s'étend le long d'un arc de ladite partie centrale ;
    dans lequel les premiers déflecteurs (24) de l'un desdits segments (S1) sont décalés circonférentiellement des premiers déflecteurs dans un segment adjacent desdits segments (S2), comme on le voit selon une direction dudit axe.
  16. Ensemble de mélange selon la revendication 1, comprenant
    lesdites entrées pour deuxième fluide (22), disposées au niveau d'une pluralité d'emplacements autour de ladite chambre de mélange (12) ;
    lesdits deuxièmes déflecteurs (26), conçus et disposés pour segmenter la chambre de mélange le long de son axe ;
    des ensembles formants des plaques (28), chacun étant disposé en un emplacement desdites entrées pour deuxième fluide (22) qui est adjacent à la paroi (14) de la chambre de mélange présentant soit une porosité particulière, soit des orifices calibrés, à même de recevoir ladite matière formant un deuxième fluide dans ladite chambre de mélange (12) selon un débit choisi
    et ladite au moins une palette (34) dudit agitateur rotatif (30) s'étendant le long d'un arc de ladite partie formant moyeu.
  17. Ensemble de mélange selon la revendication 16, dans lequel un espace globalement annulaire (G) se trouve entre ladite au moins une palette (34) et lesdits premiers déflecteurs (24), le long d'un rayon.
  18. Ensemble de mélange selon la revendication 1, comprenant :
    le fait que ladite entrée pour premier fluide (18) est une entrée pour liquide permettant d'introduire une matière liquide dans ladite chambre de mélange (12).
  19. Appareil de mélange selon la revendication 18 comprenant un moyen (33') permettant de mettre la matière liquide sous pression.
  20. Appareil de mélange selon la revendication 18, dans lequel ledit agitateur (30) peut produire une pression pratiquement superatmosphérique dans ladite chambre de mélange.
  21. Procédé de mélange d'une matière formant un premier fluide et d'une matière formant un deuxième fluide à l'aide de l'appareil de l'une quelconque des revendications 1 à 20, comprenant :
    le fait de diriger ladite matière formant un premier fluide vers ladite chambre de mélange (12) d'extension globalement horizontale ;
    le fait de diriger la matière formant un deuxième fluide vers ladite chambre de mélange (12) ;
    la mise en rotation dudit agitateur (30) qui comprend ladite partie centrale cylindrique qui s'étend dans ladite chambre de mélange (12) le long dudit axe, et la au moins une palette (34) qui s'étend à partir de ladite partie centrale, la partie centrale et la au moins une palette étant imperméables vis-à-vis de l'écoulement de fluide ;
    le fait de dévier ledit écoulement de fluide globalement circonférentiel dans ladite chambre de mélange grâce auxdits premiers déflecteurs (24) qui s'étendent à partir de la paroi intérieure (14) globalement le long dudit axe ;
    et un moyen d'écoulement (28) disposé adjacent à la paroi (14) de chambre de mélange afin de recevoir une substance gazeuse pendant que ladite matière formant un deuxième fluide entre dans ladite chambre de mélange (12) selon un débit choisi ;
    ladite au moins une entrée pour deuxième fluide (22) comprenant au moins un orifice pour gaz (54) permettant d'introduire la substance gazeuse dans ladite chambre de mélange par le biais de chacun desdits moyens d'écoulement ;
    lesdits deuxièmes déflecteurs (26) divisant ladite chambre de mélange (12) en au moins deux segments axiaux distincts (S1, S2);
    ladite partie centrale dudit agitateur rotatif (30) comprenant une partie cylindrique formant moyeu qui s'étend dans ladite chambre de mélange le long dudit axe, et lesdites palettes d'agitateur (34) s'étendant le long d'arcs de ladite partie formant moyeu, le pas de chacune desdites palettes (34) étant tel qu'un intervalle globalement constant se maintient entre un bord de chacune desdites palettes (34) et les bords desdits premiers déflecteurs (24), le long de la longueur entière de ladite palette (34), un espace globalement annulaire (G) se trouvant radialement entre lesdites palettes (34) et lesdits premiers déflecteurs (24) ;
    et un mécanisme d'entraînement à vitesse variable (M), connecté audit agitateur (30), qui peut faire tourner ledit agitateur dans le sens des aiguilles d'une montre ou dans le sens inverse ;
    le fait de dévier un écoulement de fluide globalement axial grâce auxdits deuxièmes déflecteurs (26) qui s'étendent à partir de la paroi intérieure globalement transversalement audit axe.
  22. Procédé selon la revendication 21, qui comprend le fait d'ajuster un temps de séjour de matière liquide dans ladite chambre de mélange par choix d'une taille d'un espace annulaire (G) situé radialement entre ladite au moins une palette (34) et lesdits premiers déflecteurs (24) et représentant d'environ un centième jusqu'à environ un dixième dudit diamètre intérieur de ladite chambre de mélange (12).
  23. Procédé selon la revendication 21, dans lequel ladite chambre de mélange (12) comprend une matière liquide constituée de l'une ou l'autre d'une matière formant un premier fluide et d'une matière formant un deuxième fluide, comprenant le fait d'accroître un temps de séjour de ladite matière liquide dans ladite chambre de mélange (12) par mise en rotation dudit agitateur (30) dans un sens permettant de retarder l'écoulement de ladite matière liquide.
  24. Procédé selon la revendication 21, dans lequel ladite matière formant un premier fluide comprend une lessive utilisée lors de la réduction de bois en pâte pour produire du papier.
  25. Procédé selon la revendication 24, dans lequel ladite matière formant un premier fluide est une lessive neuve.
  26. Procédé selon la revendication 21, dans lequel ladite matière formant un deuxième fluide comprend un gaz contenant de l'oxygène.
  27. Procédé selon la revendication 21, comprenant la réduction de la consommation de puissance de mélange fondée sur une conception et sur une disposition relatives entre lesdits premiers déflecteurs, lesdits deuxièmes déflecteurs et ledit agitateur.
  28. Procédé selon la revendication 21, dans lequel ladite matière formant un premier fluide est de la lessive noire.
  29. Procédé selon la revendication 21, dans lequel ladite matière formant un premier fluide est de la lessive verte.
  30. Procédé selon la revendication 21, dans lequel ladite matière formant un premier fluide comprend des composés oxydables.
  31. Procédé selon la revendication 21, comprenant le fait de transporter en continu ladite matière formant un premier fluide dans ladite chambre de mélange (12).
  32. Ensemble de mélange selon la revendication 1, comprenant :
    lesdits deuxièmes déflecteurs (26) s'étendant entre lesdits premiers déflecteurs (24) ; et
    ladite au moins une palette (34) dudit agitateur rotatif (30) étant constituée de multiples palettes qui s'étendent vers l'extérieur à partir de ladite partie centrale, chacune desdites palettes s'étendant le long d'une partie axiale différente de ladite partie centrale, par rapport à une palette adjacente auxdites palettes ;
    dans lequel lesdits deuxièmes déflecteurs (26) sont disposés de façon à ce qu'une partie d'au moins un desdits deuxièmes déflecteurs soit alignée, transversalement par rapport audit axe, avec une zone qui s'étend le long dudit axe contenant une extrémité terminale axiale d'une première desdites palettes, et en ce que lesdits deuxièmes déflecteurs (26) divisent ladite chambre de mélange (12) en au moins deux segments axiaux (S1, S2).
    dans lequel ladite première palette (34) s'étend afin d'être confinée le long dudit axe grâce audit deuxième déflecteur (26) selon un premier desdits segments (S1), et une deuxième desdites palettes adjacente, ladite première palette s'étendant afin d'être confinée axialement par ledit deuxième déflecteur (26) dans un deuxième desdits segments (S2), adjacent audit premier segment (S1).
  33. Ensemble de mélange selon la revendication 32, dans lequel ladite partie centrale est cylindrique et où lesdites palettes (34) s'étendent le long d'arcs de ladite partie centrale.
  34. Ensemble de mélange selon la revendication 32, dans lequel ladite chambre de mélange (12) est globalement cylindrique et où un espace globalement annulaire (G) se trouve radialement entre lesdites palettes (34) et lesdits premiers déflecteurs (24), ledit espace (G) étant choisi pour représenter d'environ un centième jusqu'à environ un dixième d'un diamètre intérieur de ladite chambre de mélange (12), et un rapport de hauteur de chacun desdits premiers déflecteurs (24) à un diamètre intérieur de ladite chambre de mélange (12) va d'environ 0,02 jusqu'à 0,40 environ.
  35. Ensemble de mélange selon la revendication 32, comprenant une pluralité d'ensembles formant une plaque poreuse (28), chacune étant disposée en un emplacement de ladite au moins une deuxième entrée (22) adjacente à la paroi (14) de chambre de mélange, lesdits ensembles formant une plaque poreuse (28) présentant soit une porosité particulière soit des orifices calibrés, à même de conduire ledit deuxième fluide dans ladite chambre de mélange (12) selon un débit choisi.
  36. Ensemble de mélange selon la revendication 32, dans lequel les premiers déflecteurs (24) présents dans l'un desdits segments (S1) sont décalés circonférentiellement par rapport aux premiers déflecteurs (24) dans un segment adjacent (S2), comme on le voit en suivant la direction dudit axe.
  37. Ensemble de mélange selon la revendication 32, dans lequel lesdits premiers déflecteurs (24) et lesdits deuxièmes déflecteurs (26) s'étendent vers l'intérieur à partir de ladite paroi intérieure (14) de ladite chambre de mélange (12) transversalement audit axe, lesdits premiers déflecteurs (24) s'étendant vers l'intérieur d'une distance supérieure que ne le font lesdits deuxièmes déflecteurs (26).
  38. Ensemble de mélange selon la revendication 37, dans lequel lesdits deuxièmes déflecteurs (26) ont une forme annulaire et s'étendent le long de ladite paroi intérieure (14) de ladite chambre de mélange (12) sur la circonférence entière de ladite chambre de mélange.
  39. Ensemble de mélange selon la revendication 32, dans lequel ladite zone est contiguë à une extrémité terminale axiale de ladite deuxième palette (34).
EP98924882A 1997-10-01 1998-05-26 Ensemble reacteur melangeur et méthode Expired - Lifetime EP1027141B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/942,575 US6036355A (en) 1997-07-14 1997-10-01 Reactor mixing assembly
US942575 1997-10-01
PCT/US1998/010659 WO1999016539A1 (fr) 1997-10-01 1998-05-26 Ensemble reacteur melangeur

Publications (3)

Publication Number Publication Date
EP1027141A1 EP1027141A1 (fr) 2000-08-16
EP1027141A4 EP1027141A4 (fr) 2004-04-07
EP1027141B1 true EP1027141B1 (fr) 2006-07-26

Family

ID=25478297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98924882A Expired - Lifetime EP1027141B1 (fr) 1997-10-01 1998-05-26 Ensemble reacteur melangeur et méthode

Country Status (3)

Country Link
EP (1) EP1027141B1 (fr)
AU (1) AU7695098A (fr)
WO (1) WO1999016539A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607006B2 (en) * 2001-07-10 2003-08-19 Air Products And Chemicals, Inc. Amplitude attenuation of time-variant properties of fluid streams
JP4734878B2 (ja) * 2004-09-28 2011-07-27 旭硝子株式会社 ガス吸収装置およびガス吸収方法、重合体の製造方法
EP1746073A1 (fr) 2005-07-20 2007-01-24 SOLVAY (Société Anonyme) Procédé de préparation de solides par précipitation, dispersions et solides obtenues et leur utilisation comme additif
AU2007308838B2 (en) 2006-10-25 2014-03-13 Revalesio Corporation Mixing device and output fluids of same
AU2007308840C1 (en) 2006-10-25 2014-09-25 Revalesio Corporation Methods of therapeutic treatment of eyes and other human tissues using an oxygen-enriched solution
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
CN103919804A (zh) 2008-05-01 2014-07-16 利发利希奥公司 治疗消化功能紊乱的组合物和方法
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
EP2566460A4 (fr) 2010-05-07 2015-12-23 Revalesio Corp Compositions et procédés d'amélioration des performances physiologiques et du temps de récupération
JP2013533320A (ja) 2010-08-12 2013-08-22 レバレジオ コーポレイション タウオパチーを治療するための組成物および方法
US9512560B2 (en) * 2014-10-31 2016-12-06 Quantum Technologies, Inc. Short oxygen delignification method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2914385A (en) * 1955-09-02 1959-11-24 Universal Oil Prod Co Contacting apparatus
SE445052C (sv) * 1980-03-13 1987-10-29 Sunds Defibrator Sett och anordning for kontinuerlig inblandning av gas- och/eller vetskeformiga behandlingsmedel i en massasuspension
US4483624A (en) * 1982-08-25 1984-11-20 Freeport Kaolin Company High intensity conditioning mill and method
US5228775A (en) * 1989-05-04 1993-07-20 Blentech Corporation Reversing blender agitators
FI86600C (fi) * 1990-04-04 1992-09-25 Outokumpu Oy Saett att blanda ihop vaetska, fastaemne och gas samt att ur vaetskan samtidigt avskilja gas eller gas och fastaemne.
US5263774A (en) * 1992-03-04 1993-11-23 Kamyr, Inc. Rotor for increasing mixing efficiency in a medium consistency mixer
US5607233A (en) * 1995-01-30 1997-03-04 Quantum Technologies, Inc. Continuous dynamic mixing system

Also Published As

Publication number Publication date
AU7695098A (en) 1999-04-23
EP1027141A1 (fr) 2000-08-16
WO1999016539A1 (fr) 1999-04-08
EP1027141A4 (fr) 2004-04-07

Similar Documents

Publication Publication Date Title
US6036355A (en) Reactor mixing assembly
EP1027141B1 (fr) Ensemble reacteur melangeur et méthode
FI62868B (fi) Saett och anordning foer foerdelning och inblandning av gas oc/eller vaetska i massasuspensioner av hoeg koncentration
EP0594740B1 (fr) Procede et appareil de separation de gaz d'une matiere contenant du gaz
EP0512098B1 (fr) Procede de blanchiment de pate a papier et reacteur
EP0680376B1 (fr) Zone de fluidification annulaire variable pour augmenter l'efficacite de melange dans un melangeur de pate de consistance moyenne
CA1150551A (fr) Methode et dispositif d'apport d'un adjuvant liquide ou gazeux
CA2158522C (fr) Melangeur pour fluides multiphases
CA2140563C (fr) Methode et appareil pour melanger des composes chimiques gazeux a une suspension de fibres
US9339777B2 (en) Method, an apparatus and a rotor for homogenizing a medium
WO1995015811A1 (fr) Melangeur fluidifiant a anneaux concentriques
JPH02501716A (ja) 二重ループ流の発生方法および対応する装置
WO1996023977A1 (fr) Systeme de melange dynamique continu et procedes de fonctionnement de ce systeme
US5174861A (en) Method of bleaching high consistency pulp with ozone
US9512560B2 (en) Short oxygen delignification method
US20160121276A1 (en) Dynamic mixing assembly with improved baffle design
US6193406B1 (en) Method and apparatus for mixing pulp a suspension with a fluid medium with a freely rotatable mixing rotor
CA2937398C (fr) Dispositif de cavitation
GB1559868A (en) Surface aerator for liquids
WO1997046310A1 (fr) Melangeur a hautes turbulences
CN212559537U (zh) 转盘萃取塔
RU2305581C1 (ru) Вихревой центробежный реактор
CA2256594C (fr) Procede et dispositif pour melanger un second milieu a un premier milieu
SU1308372A1 (ru) Перемешивающее устройство
SU1678435A1 (ru) Аппарат с перемешивающим устройством

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FI FR SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PIECHUTA, MARK

Inventor name: BUTLER, KEVIN

Inventor name: PIECHUTA, PIOTR

Inventor name: YANT, ROBERT

A4 Supplementary search report drawn up and despatched

Effective date: 20040225

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 01F 15/00 B

Ipc: 7B 01F 7/24 B

Ipc: 7B 01F 7/08 B

Ipc: 7B 01F 7/16 A

17Q First examination report despatched

Effective date: 20040820

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: REACTOR MIXING ASSEMBLY AND METHOD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FI FR SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070516

Year of fee payment: 10

Ref country code: FI

Payment date: 20070516

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070515

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080526

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080527