EP1025399B1 - Device for injecting steam into flowing water in order to heat the water - Google Patents
Device for injecting steam into flowing water in order to heat the water Download PDFInfo
- Publication number
- EP1025399B1 EP1025399B1 EP98961036A EP98961036A EP1025399B1 EP 1025399 B1 EP1025399 B1 EP 1025399B1 EP 98961036 A EP98961036 A EP 98961036A EP 98961036 A EP98961036 A EP 98961036A EP 1025399 B1 EP1025399 B1 EP 1025399B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- water
- encasing
- nozzle
- entrance port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B3/00—Condensers in which the steam or vapour comes into direct contact with the cooling medium
- F28B3/06—Condensers in which the steam or vapour comes into direct contact with the cooling medium by injecting the steam or vapour into the cooling liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3133—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit characterised by the specific design of the injector
- B01F25/31331—Perforated, multi-opening, with a plurality of holes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/90—Heating or cooling systems
- B01F35/91—Heating or cooling systems using gas or liquid injected into the material, e.g. using liquefied carbon dioxide or steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D1/00—Steam central heating systems
- F24D1/005—Steam central heating systems in combination with systems for domestic water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
- F28C3/06—Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
- F28C3/08—Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/90—Heating or cooling systems
- B01F2035/99—Heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/28—Safety or protection arrangements; Arrangements for preventing malfunction for preventing noise
Definitions
- the invention relates to a device for injecting steam into flowing Water for the purpose of heating the water and a method of regulating an amount of steam.
- the Invention on such an injector as used in connection with a method according to German patent 44 32 464, which is a method for heating heating or process water using steam from the steam network a long-distance pipeline, in which the steam is circulated, Water to be heated is injected, the water to be injected Amount of steam by (outside) temperature-controlled removal of water or Condensate is controlled in the condensate line of the steam network.
- the invention has for its object to provide a device for injecting steam, in which the Injection of steam into the water is particularly quiet or noiseless.
- Another object of the invention is to design the device so that the Steam can be introduced into the water in a variable amount from 0 to 100%, thus the device for outside temperature-dependent heating in building technology can be used.
- the regulations of Heating system regulation and the safety regulations according to DIN 4751 are observed become.
- the regulation of the amount of heat to be transferred should exclusively through a quantity-regulated outflow of water from the System and a resulting post-flow of the equivalent amount of steam respectively. With a transfer heat quantity of 0, the steam must be as static pressure is present on the system.
- a device having the features of claim 1 for injecting steam into flowing Water proposed with a substantially closed housing, one Mixing room inside the housing, in which the steam with the to be heated Water is mixed, in each case a water inlet opening and a water outlet opening in the housing, with the water from the water inlet opening above the mixing room is led to the water outlet opening, a steam room inside of the housing, a steam inlet opening in the housing, the steam from the Steam inlet opening is passed into the steam space, a partition between Steam room and mixing room, with a large number of nozzle holes in the partition designed for accelerated passage of the steam into the mixing room are, and a fine-mesh structure on the facing the mixing room Wall of the partition at least in the area of the nozzle bores to shred the steam bubbles emerging at the nozzle bores, the number of nozzle bores and their cross-section so designed are that in the area of the nozzle bores a flow rate of Steam does not fall below 100 m / s.
- the nozzle bores have a diameter of at most 3 mm, better still at most 2 mm, and optimal results were achieved with a nozzle diameter of about 1.5 mm.
- the mesh size of the fine-mesh structure is also advantageous to have the mesh size of the fine-mesh structure not more than 3 mm, preferably about 2 mm.
- the material of the fine-mesh structure should preferably have a thickness of at most 1 mm about 0.5 mm are particularly advantageous.
- Such a fine-meshed structure can be formed in particular by a fine-meshed stainless steel gauze is arranged in multiple layers over the nozzle bores.
- An overall thickness of fine mesh Structure of at least 5 mm, preferably of at least 15 mm has proven to be beneficial.
- the Partition is at least partially designed as a nozzle tube, which with the Steam inlet port is connected and down into the from the housing defined cavity extends.
- the nozzle bores can in particular be formed spirally on the cylinder wall of the nozzle tube, whereby there is a practically infinitely variable regulation of the amount of steam introduced.
- FIG. 1 One in total with the reference number 100 designated circuit line for heating water, which is completely vented Superheated steam from a steam line via an injector 402 according to the invention 110 of a steam network supplied to a district heating system.
- the steam pipe 110 On the steam pipe 110 are a shut-off valve 104, a manometer 106 and in front of the injector 402 a thermometer 108 is arranged.
- a vent valve 114 on the circuit line arranged.
- the adjoining line section 118 of the Circuit line can be referred to as the flow of building heating and on one after the other are a thermostat switch 120, a sensor 122, a pressure switch 124 and a safety valve 126 are arranged.
- Heat consumers After flowing through the heated heating water through the not shown Heat consumers (radiators) return the heating water via the as a return designating line section 128, at which line section a manometer 130 and then a drain valve 132 are arranged. The cooled heating water is then a circulation pump 134, a Check valve 136 and a throttle valve 138 are returned to injector 402.
- the condensate line branches between the check valve 136 and the throttle valve 138 112, via which the condensate is returned to the district heating network becomes. Seen in the flow direction of the condensate are in the condensate line 112 in series a shut-off valve 140, a motor-operated temperature controller 142, a flow differential pressure regulator 144, a check valve 146 and a further shut-off valve 148 is arranged. Between check valve 146 and shut-off valve 148 there is a manometer 150.
- a heat meter 152 arranged, each in a known manner with one on the line section 118 (flow) and 128 (return) sensors 154 and 156 respectively cooperates.
- Reference number 158 denotes a central regulating or control module, which the operation of the system depending on the outside temperature, cf. Outside sensor 160, controls.
- German patent 44 32 464 Because of further details regarding the structure and functioning of the Appendix is expressly referred to German patent 44 32 464.
- FIG. 2 is a preferred embodiment shows the details of the injector according to the invention.
- the injector 402 according to the invention is in the heating system is installed in the position shown in FIG. 2, ie in an upright position Position.
- Injector 402 includes a generally cylindrical housing 404 with a upper housing half 406 and a lower housing half 408, both housing halves are flanged together by means of flanges 410, 412.
- the housing 404 has a substantially cylindrical cavity 414 and is, with one exception of the openings described below, closed on all sides.
- a water inlet opening 416 is defined at the lower end of the housing 404 About the pipe socket 418 to the line section of the circuit line 100, the Throttle valve 138 leads, is connected.
- Housing 404 is formed laterally radially to the central axis of the housing Water outlet opening 420 is provided, which via a pipe socket 422 to the line piece of the circuit line 100 leading to the vent valve 114 is connected is.
- the opening 420 is located in the upper area of the housing 404, is, however, for the reasons described below, from the upper end of the Cavity 414 spaced.
- a steam inlet opening 424 is formed at the upper end of the housing 404, via an angled pipe socket 426 to the steam line 110 connected.
- a steam pipe section extends from the steam inlet opening 424 down and ends in a welding sleeve 428, which is at the level of the division level ends between the upper and lower housing halves 406 and 408.
- a nozzle tube 430 can be exchanged into the thread via a thread (not shown) Welding socket 428 screwed in.
- the cylindrical nozzle tube 430 runs coaxial to the axis of the cylindrical cavity 414 of the housing 404, is on closed at its lower end and extends to near the lower end cavity 414.
- the nozzle tube 430 has a plurality of small nozzle bores 432 on that spiral in one or more spirals in the cylindrical Shell surface of the nozzle tube are formed and are evenly distributed.
- the nozzle tube 430 is wrapped with a fine-meshed stainless steel gauze 434, this stainless steel gauze arranged in a plurality of layers one above the other and covers the entire area of the nozzle bores 432.
- a vent dome 436 is formed, which is defined by the cavity above the water outlet opening 420.
- the dome bottom of the venting dome 436 is equipped with an automatic steam vent 438 provided.
- the diameter is Nozzle holes 1.5 mm.
- the stainless steel gauze consists of wire with a diameter of 0.5 mm and has a mesh size of 2 mm.
- the winding thickness of the stainless steel gauze is 15 mm.
- the selected nominal size When dimensioning the steam line, the selected nominal size must be used a maximum flow rate of 25 m / s can be maintained.
- the number the nozzle bores and thus the injection cross-section are chosen so that a flow rate of preferably at full steam throughput 130 m / s is not fallen below.
- the flow rate of the to be heated Water is chosen so large that the temperature at the water outlet is the saturation temperature clearly falls short.
- this includes a central cylindrical space 440 over which the Steam enters the housing of the injector and one surrounding room 440 annular space 442 extending from space 440 through nozzle tube 430 (and the extension leading up to the steam inlet opening 424) is separated is, with both spaces exclusively via the nozzle bores 432 with each other stay in contact.
- the water circulates with a constant or variable flow from the water inlet opening 416 via the mixing space 442 to the water outlet opening 420.
- the steam enters from the steam inlet opening 424 Steam chamber 440 and passes through the nozzle bores 432 into the Mixing room 442 where it is heated for the purpose of heating into the flow therein Water is introduced.
- the Steam bubbles can be very small.
- the first phase of crushing is done by the steam passes through the small nozzle holes.
- the second phase the steam accelerated into the gauze coil 434 through the nozzle bores.
- the condensation is the heat transfer completed by steam on the water to be heated.
- the outflow of water is regulated by the Temperature controller 142 in the condensate line 112, so that none on the steam side Control valve for the amount of steam may be used.
- the flow rate in the Nozzle bores a minimum speed even with lower steam throughput, which in the case of the present exemplary embodiment is set at 130 m / s was not undercut.
- the injection cross-section be reduced.
- the cross section of the injection is reduced by the Water level in the nozzle pipe is changed by the regulated water outflow and thus the nozzle holes covered with water for the passage of steam be blocked.
- Air bubbles entering the injector can be located under the vent dome 436 collect and are automatically released into the open via the steam vent 438 dissipated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Water Supply & Treatment (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Nozzles (AREA)
- Commercial Cooking Devices (AREA)
- General Preparation And Processing Of Foods (AREA)
- Physical Water Treatments (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung zum Injektieren von Dampf in strömendes Wasser zum Zwecke des Erhitzens des Wassers und ein Verfahren zum Regeln einer Dampfmenge. Insbesondere bezieht sich die Erfindung auf einen solchen Injektor, wie er im Zusammenhang mit einem Verfahren gemäß deutschem Patent 44 32 464 zum Einsatz kommt, welches ein Verfahren zum Erhitzen von Heiz- bzw. Brauchwasser mittels Dampf aus dem Dampfnetz einer Fernleitung offenbart, bei dem der Dampf in im Kreislauf befindliches, aufzuheizendes Wasser injektiert wird, wobei die in das Wasser zu injektierende Dampfmenge durch (außen-)temperatur-geregeltes Abführen von Wasser bzw. Kondensat in die Kondensatleitung des Dampfnetzes gesteuert wird.The invention relates to a device for injecting steam into flowing Water for the purpose of heating the water and a method of regulating an amount of steam. In particular, the Invention on such an injector, as used in connection with a method according to German patent 44 32 464, which is a method for heating heating or process water using steam from the steam network a long-distance pipeline, in which the steam is circulated, Water to be heated is injected, the water to be injected Amount of steam by (outside) temperature-controlled removal of water or Condensate is controlled in the condensate line of the steam network.
Bei den bekannten Vorrichtungen zum Einführen von Dampf in Wasser ergeben sich in der Praxis schwerwiegende Probleme. Das Einleiten von Dampf in Wasser führt zu sogenannten Wasserschlägen, weil die Dampfblasen vom umgebenen Wasser abgekühlt werden und durch die damit verbundene Änderung des Aggregatzustandes von Dampf auf Wasser eine schlagartige Volumenkontraktion erfolgt. Diese Wasserschläge stellen neben der Geräuschbelästigung aufgrund der entstehenden Druckwellen auch noch eine starke Materialbelastung dar und führen zu vorzeitigen Materialalterungen. Diese Probleme sollen mit der vorliegenden Erfindung vermieden werden.In the known devices for introducing steam into water serious problems in practice. The introduction of steam into water leads to so-called water hammer because the steam bubbles from the surrounding Water can be cooled and the associated change in the Physical state of steam on water a sudden volume contraction he follows. These water strikes pose in addition to noise pollution due to the resulting pressure waves also represent a heavy material load and lead premature material aging. These problems are addressed with the present invention be avoided.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Injektieren von Dampf zu schaffen, bei dem die Injektion von Dampf in das Wasser besonders geräuscharm bzw. geräuschlos erfolgt.The invention has for its object to provide a device for injecting steam, in which the Injection of steam into the water is particularly quiet or noiseless.
Ein weiteres Ziel der Erfindung ist es, die Vorrichtung so auszubilden, daß die Dampfeinleitung in das Wasser mengenvariabel von 0 bis 100% erfolgen kann, damit die Vorrichtung für die außentemperaturabhängige Beheizung in der Gebäudetechnik eingesetzt werden kann. Hierbei sollen auch die Vorschriften der Heizanlagenverordnung und die Sicherheitsbestimmungen nach DIN 4751 eingehalten werden. Die Einregulierung der zu übertragenden Wärmemenge soll ausschließlich durch eine mengenregulierte Abströmung von Wasser aus dem System und eine daraus resultierende Nachströmung der äquivalenten Dampfmenge erfolgen. Bei einer Übertragungswärmemenge von 0 muß der Dampf als statischer Druck auf das System anstehen.Another object of the invention is to design the device so that the Steam can be introduced into the water in a variable amount from 0 to 100%, thus the device for outside temperature-dependent heating in building technology can be used. The regulations of Heating system regulation and the safety regulations according to DIN 4751 are observed become. The regulation of the amount of heat to be transferred should exclusively through a quantity-regulated outflow of water from the System and a resulting post-flow of the equivalent amount of steam respectively. With a transfer heat quantity of 0, the steam must be as static pressure is present on the system.
Erfindungsgemäß wird eine die Merkmale des Anspruchs 1 aufweisende Vorrichtung zum Injektieren von Dampf in strömendes Wasser vorgeschlagen mit einem im wesentlichen geschlossenen Gehäuse, einem Mischraum innerhalb des Gehäuses, in dem der Dampf mit dem zu erhitzenden Wasser vermischt wird, jeweils einer Wassereintrittsöffnung und einer Wasseraustrittsöffnung im Gehäuse, wobei das Wasser von der Wassereintrittsöffnung über den Mischraum zur Wasseraustrittsöffnung geführt ist, einem Dampfraum innerhalb des Gehäuses, einer Dampfeintrittsöffnung im Gehäuse, wobei der Dampf von der Dampfeintrittsöffnung in den Dampfraum geleitet wird, einer Trennwand zwischen Dampfraum und Mischraum, wobei in der Trennwand eine Vielzahl von Düsenbohrungen zum beschleunigten Durchtritt des Dampfes in den Mischraum ausgebildet sind, und einer feinmaschigen Struktur an der dem Mischraum zugewandten Wandung der Trennwand zumindest im Bereich der Düsenbohrungen zum Zerkleinern der an den Düsenbohrungen beschleunigt austretenden Dampfblasen, wobei die Anzahl der Düsenbohrungen und deren Querschnitt so ausgelegt sind, daß im Bereich der Düsenbohrungen eine Strömungsgeschwindigkeit des Dampfes von 100 m/s nicht unterschritten wird.According to the invention a device having the features of claim 1 for injecting steam into flowing Water proposed with a substantially closed housing, one Mixing room inside the housing, in which the steam with the to be heated Water is mixed, in each case a water inlet opening and a water outlet opening in the housing, with the water from the water inlet opening above the mixing room is led to the water outlet opening, a steam room inside of the housing, a steam inlet opening in the housing, the steam from the Steam inlet opening is passed into the steam space, a partition between Steam room and mixing room, with a large number of nozzle holes in the partition designed for accelerated passage of the steam into the mixing room are, and a fine-mesh structure on the facing the mixing room Wall of the partition at least in the area of the nozzle bores to shred the steam bubbles emerging at the nozzle bores, the number of nozzle bores and their cross-section so designed are that in the area of the nozzle bores a flow rate of Steam does not fall below 100 m / s.
Es hat sich gezeigt, daß ein solcher Aufbau geeignet ist, die störenden Wasserschläge und die damit verbundenen Geräusche und Vibrationen jedenfalls auf ein solches Maß zu reduzieren, daß sie nicht mehr als störend empfunden werden. Aufgrund der hohen Ausströmgeschwindigkeit des Dampfes aus den Düsenbohrungen und der anschließenden Zerkleinerung der Dampfbläschen in den feinbohrungen und der anschließenden Zerkleinerung der Dampfbläschen in der feinmaschigen Struktur werden die Dampfbläschen auf ein solches Maß zerkleinert, daß bei ihrem Kollabieren störende Wasserschläge nicht mehr auftreten.It has been shown that such a structure is suitable, the annoying water hammer and the associated noises and vibrations in any case to reduce to such an extent that they are no longer perceived as disturbing. Due to the high outflow speed of the steam from the nozzle bores and the subsequent crushing of the vapor bubbles in the fine bores and the subsequent crushing of the vapor bubbles in the fine mesh Structure, the vapor bubbles are crushed to such a degree, that disturbing water strikes no longer occur when they collapse.
Besonders vorteilhaft hat es sich hierbei erwiesen, wenn die Düsenbohrungen einen Durchmesser von jeweils höchstens 3 mm aufweisen, besser noch höchstens 2 mm, und optimale Resultate wurden erzielt bei einem Düsendurchmesser von etwa 1,5 mm.It has proven particularly advantageous here if the nozzle bores have a diameter of at most 3 mm, better still at most 2 mm, and optimal results were achieved with a nozzle diameter of about 1.5 mm.
Weiterhin ist es vorteilhaft, die Maschenweite der feinmaschigen Struktur auf höchstens 3 mm festzulegen, vorzugsweise auf etwa 2 mm. Das Material der feinmaschigen Struktur sollte vorzugsweise eine Stärke von höchstens 1 mm haben, besonders vorteilhaft sind etwa 0,5 mm. Eine solche feinmaschige Struktur kann insbesondere von einer feinmaschigen Edelstahlgaze gebildet werden, die vielschichtig über den Düsenbohrungen angeordnet ist. Eine Gesamtdicke der feinmaschigen Struktur von mindestens 5 mm, vorzugsweise von mindestens 15 mm hat sich als vorteilhaft erwiesen.It is also advantageous to have the mesh size of the fine-mesh structure not more than 3 mm, preferably about 2 mm. The material of the fine-mesh structure should preferably have a thickness of at most 1 mm about 0.5 mm are particularly advantageous. Such a fine-meshed structure can be formed in particular by a fine-meshed stainless steel gauze is arranged in multiple layers over the nozzle bores. An overall thickness of fine mesh Structure of at least 5 mm, preferably of at least 15 mm has proven to be beneficial.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist vorgesehen, daß im eingebauten Zustand der Vorrichtung die Düsenbohrungen zumindest teilweise in unterschiedlicher Höhe angeordnet sind. Hierdurch kann erreicht werden, daß die Dampfeinleitung mengenvariabel erfolgen kann. Strömt kein Wasser bzw. Kondensat aus dem System ab, so füllt sich der Dampfraum mit Wasser bzw. Kondensat und steigt soweit an, daß sich die Düsenbohrungen vollständig im Wasser bzw. Kondensat befinden, so daß eine Einleitung von Dampf in den Mischraum nicht mehr möglich ist. Demgegenüber strömt dann, wenn die maximale Menge an Wasser bzw. Kondensat abgeleitet wird, die der abströmenden Wassermenge äquivalente Dampfmenge in den Injektor und dieser füllt sich im Bereich der Dampfkammer, nach Verdrängung des Wassers, vollständig mit Dampf, so daß Dampf durch sämtliche Düsenbohrungen strömt und somit die maximale Dampfmenge zugeführt wird. Bei den zwischen der Minimal- und der Maximalleistung liegenden Lastbereichen werden aufgrund des Umstandes, daß die Düsenbohrungen in unterschiedlichen Höhen angeordnet sind, aufgrund des unterschiedlichen Wasserpegels im Dampfraum jeweils eine unterschiedliche Anzahl von Düsenbohrungen freigegeben, wodurch die abgegebene Dampfmenge und somit auch die übertragene Wärmemenge mehr oder weniger stufenlos reguliert werden kann.According to a further aspect of the present invention it is provided that in installed state of the device at least partially in the nozzle bores are arranged at different heights. This can be achieved that the Steam introduction can take place with variable quantities. No water or condensate flows from the system, the steam room fills with water or condensate and rises so far that the nozzle bores are completely in the water or Condensate are located so that an introduction of steam into the mixing room is not is more possible. In contrast, flows when the maximum amount Water or condensate is derived from the outflowing amount of water equivalent amount of steam in the injector and this fills in the area of Steam chamber, after displacement of the water, completely with steam, so that Steam flows through all nozzle bores and thus the maximum amount of steam is fed. In the case of between the minimum and maximum performance lying load ranges are due to the fact that the nozzle bores are arranged at different heights, due to the different Water levels in the steam room each have a different number of nozzle holes released, whereby the amount of steam emitted and thus also the transferred amount of heat can be regulated more or less continuously.
In besonders vorteilhafter Weiterbildung der Erfindung ist vorgesehen, daß die Trennwand zumindest teilweise als Düsenrohr ausgebildet ist, welches mit der Dampfeintrittsöffnung verbunden ist und sich nach unten in den vom Gehäuse definierten Hohlraum erstreckt. Die Düsenbohrungen können hierbei insbesondere spiralförmig auf der Zylinderwandung des Düsenrohres ausgebildet sein, wodurch sich eine praktisch stufenlose Regelung der eingeleiteten Dampfmenge ergibt.In a particularly advantageous development of the invention it is provided that the Partition is at least partially designed as a nozzle tube, which with the Steam inlet port is connected and down into the from the housing defined cavity extends. The nozzle bores can in particular be formed spirally on the cylinder wall of the nozzle tube, whereby there is a practically infinitely variable regulation of the amount of steam introduced.
Weitere vorteilhafte Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der ein bevorzugtes Ausführungsbeispiel der Erfindung anhand der Zeichnung näher beschrieben wird. In der Zeichnung zeigen:
- Fig. 1
- eine Anlage zum Erhitzen von Wasser mittels Dampf aus dem Dampfnetz einer Fernheizung, in der ein erfindungsgemäßer Injektor eingebaut ist, und
- Fig. 2
- eine teilweise geschnittene Seitenansicht eines bevorzugten erfindungsgemäßen Injektors.
- Fig. 1
- a system for heating water by means of steam from the steam network of a district heating system, in which an injector according to the invention is installed, and
- Fig. 2
- a partially sectioned side view of a preferred injector according to the invention.
Zunächst wird auf Fig. 1 Bezug genommen. Einer insgesamt mit der Bezugsziffer
100 bezeichneten Kreislaufleitung für Heizwasser, die vollständig entlüftet ist, wird
über einen erfindungsgemäßen Injektor 402 überhitzter Dampf aus einer Dampfleitung
110 eines Dampfnetzes einer Fernheizung zugeführt. An der Dampfleitung
110 sind vor dem Injektor 402 eine Absperrarmatur 104, ein Manometer 106 und
ein Thermometer 108 angeordnet. First, reference is made to FIG. 1. One in total with the
In Umlaufrichtung des in der Kreislaufleitung 100 befindlichen Wassers bzw. Kondensats
gesehen (die Strömungsrichtung verläuft in der Darstellung gemäß Figur 1
im Uhrzeigersinn) nach dem Injektor 402 ist ein Entlüftungsventil 114 an der Kreislaufleitung
angeordnet. Der sich hieran anschließende Leitungsabschnitt 118 der
Kreislaufleitung kann als Vorlauf der Gebäudeheizung bezeichnet werden und an
ihm sind nacheinander ein Thermostatschalter 120, ein Meßfühler 122, ein Druckschalter
124 und ein Sicherheitsventil 126 angeordnet.In the direction of circulation of the water or condensate located in the
Nach Durchströmen des erhitzten Heizwassers durch die nicht dargestellten
Wärmeverbraucher (Heizkörper) kehrt das Heizwasser über den als Rücklauf zu
bezeichnenden Leitungsabschnitt 128 zurück, wobei an diesem Leitungsabschnitt
ein Manometer 130 und anschließend ein Entleerungsventil 132 angeordnet sind.
Das abgekühlte Heizwasser wird anschließend über eine Umwälzpumpe 134, eine
Rückschlagklappe 136 und ein Drosselventil 138 zum Injektor 402 zurückgeführt.After flowing through the heated heating water through the not shown
Heat consumers (radiators) return the heating water via the as a return
designating
Zwischen der Rückschlagklappe 136 und dem Drosselventil 138 zweigt die Kondensatleitung
112 ab, über die das Kondensat in das Fernheiznetz rückgeleitet
wird. In Strömungsrichtung des Kondensats gesehen sind in der Kondensatleitung
112 hintereinander eine Absperrarmatur 140, ein motorbetriebener Temperaturregler
142, ein Durchfluß-Differenzdruckregler 144, eine Rückschlagklappe 146
und eine weitere Absperrarmatur 148 angeordnet. Zwischen Rückschlagklappe
146 und Absperrarmatur 148 befindet sich ein Manometer 150.The condensate line branches between the
Zwischen dem Leitungsabschnitt 128 und der Umwälzpumpe 134 ist ein Wärmemengenzähler
152 angeordnet, der in bekannter Weise mit je einem am Leitungsabschnitt
118 (Vorlauf) und 128 (Rücklauf) angebrachten Meßfühler 154 bzw. 156
zusammenarbeitet.Between the
Mit der Bezugsziffer 158 ist ein zentrales Regel- bzw. Steuermodul bezeichnet,
welches den Betrieb der Anlage in Abhängigkeit von der Außentemperatur, vgl.
Außenfühler 160, steuert.
Während im Falle des vorstehend beschriebenen Ausführungsbeispiels der Dampf direkt in das Heizwasser eingespeist wird, können in alternativer Weise auch zwei voneinander hydraulisch getrennte Kreisläufe vorgesehen sein, nämlich ein Kondensatkreislauf und ein Heizungskreislauf, wobei beide Kreisläufe durch einen zwischengeschalteten Wärmetauscher thermisch miteinander verbunden sind.While in the case of the embodiment described above, the steam Alternatively, two can be fed directly into the heating water Circuits that are hydraulically separate from one another can be provided, namely a condensate circuit and a heating circuit, both circuits by an intermediate Heat exchangers are thermally interconnected.
Wegen weiterer Details hinsichtlich des Aufbaus und der Funktionsweise der Anlage wird ausdrücklich auf das deutsche Patent 44 32 464 verwiesen.Because of further details regarding the structure and functioning of the Appendix is expressly referred to German patent 44 32 464.
Im folgenden wird auf Fig. 2 Bezug genommen, die ein bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Injektors in seinen Einzelheiten zeigt.In the following reference is made to FIG. 2, which is a preferred embodiment shows the details of the injector according to the invention.
Vorausgeschickt sei, daß der erfindungsgemäße Injektor 402 in der Heizungsanlage
in der in der Fig. 2 dargestellten Stellung eingebaut wird, also in aufrechter
Stellung.It should be said that the
Der Injektor 402 umfaßt ein im wesentlichen zylindrisches Gehäuse 404 mit einer
oberen Gehäusehälfte 406 und einer unteren Gehäusehälfte 408, wobei beide Gehäusehälften
mittels Flanschen 410, 412 zusammengeflanscht sind. Das Gehäuse
404 weist einen im wesentlichen zylindrischen Hohlraum 414 auf und ist, mit Ausnahme
der nachstehend beschriebenen Öffnungen, allseitig geschlossen. Am
unteren Ende des Gehäuses 404 ist eine Wassereintrittsöffnung 416 definiert, die
über den Rohrstutzen 418 an das Leitungsstück der Kreislaufleitung 100, das zum
Drosselventil 138 führt, angeschlossen ist. In der oberen Gehäusehälfte 406 des
Gehäuses 404 ist seitlich eine radial zur Mittelachse des Gehäuses ausgebildete
Wasseraustrittsöffnung 420 vorgesehen, die über einen Rohrstutzen 422 an das
zum Entlüftungsventil 114 führende Leitungsstück der Kreislaufleitung 100 angeschlossen
ist. Die Öffnung 420 befindet sich im oberen Bereich des Gehäuses 404,
ist jedoch, aus den weiter unten geschilderten Gründen, vom oberen Ende des
Hohlraums 414 beabstandet.
Am oberen Ende des Gehäuses 404 ist eine Dampfeintrittsöffnung 424 ausgebildet,
die über einen abgewinkelten Rohrstutzen 426 an die Dampfleitung 110
angeschlossen ist. Ein Dampfrohrabschnitt erstreckt sich von der Dampfeintrittsöffnung
424 nach unten und endet in einer Anschweißmuffe 428, die in Höhe der Teilungsebene
zwischen oberer und unterer Gehäusehälfte 406 bzw. 408 endet.A
Ein Düsenrohr 430 ist über ein nicht dargestelltes Gewinde auswechselbar in die
Anschweißmuffe 428 eingeschraubt. Das zylindrische Düsenrohr 430 verläuft
koaxial zur Achse des zylindrischen Hohlraumes 414 des Gehäuses 404, ist an
seinem unteren Ende geschlossen und erstreckt sich bis nahe dem unteren Ende
des Hohlraums 414. Das Düsenrohr 430 weist eine Vielzahl von kleinen Düsenbohrungen
432 auf, die spiralförmig in einer oder mehreren Spiralen in der zylindrischen
Mantelfläche des Düsenrohrs ausgebildet sind und gleichmäßig verteilt sind.A
Das Düsenrohr 430 ist mit einer feinmaschigen Edeistahlgaze 434 umwickelt,
wobei diese Edelstahlgaze in einer Vielzahl von Schichten übereinanderliegend angeordnet
ist und den gesamten Bereich der Düsenbohrungen 432 abdeckt.The
Am oberen Ende des Gehäuses 404 ist ein Entlüftungsdom 436 ausgebildet, der
durch den Hohlraum oberhalb der Wasseraustrittsöffnung 420 definiert ist. Der
Klöpperboden des Entlüftungsdoms 436 ist mit einem automatischen Dampfentlüfter
438 versehen.At the upper end of the
Im Falle des bevorzugten Ausführungsbeispiels beträgt der Durchmesser der Düsenbohrungen 1,5 mm. Die Edelstahlgaze besteht aus Draht von 0,5 mm Durchmesser und hat eine Maschenweite von 2 mm. Die Wicklungsstärke der Edelstahlgaze beträgt 15 mm.In the case of the preferred embodiment, the diameter is Nozzle holes 1.5 mm. The stainless steel gauze consists of wire with a diameter of 0.5 mm and has a mesh size of 2 mm. The winding thickness of the stainless steel gauze is 15 mm.
Bei der Dimensionierung der Dampfleitung muß bei der ausgewählten Nennweite eine maximale Strömungsgeschwindigkeit von 25 m/s eingehalten werden. Die Anzahl der Düsenbohrungen und damit der Injektions-Querschnitt werden so gewählt, daß bei vollem Dampfdurchsatz eine Strömungsgeschwindigkeit von vorzugsweise 130 m/s nicht unterschritten wird. Die Durchflußmenge des zu beheizenden Wassers wird so groß gewählt, daß die Temperatur beim Wasseraustritt die Sättigungstemperatur deutlich unterschreitet.When dimensioning the steam line, the selected nominal size must be used a maximum flow rate of 25 m / s can be maintained. The number the nozzle bores and thus the injection cross-section are chosen so that a flow rate of preferably at full steam throughput 130 m / s is not fallen below. The flow rate of the to be heated Water is chosen so large that the temperature at the water outlet is the saturation temperature clearly falls short.
Aus dem vorstehend beschriebenen Aufbau des erfindungsgemäßen Injektors ergibt
sich, daß dieser einen zentralen zylindrischen Raum 440 umfaßt, über den der
Dampf in das Gehäuse des Injektors eintritt, sowie einen den Raum 440 umgebenden
ringförmigen Raum 442, der vom Raum 440 durch das Düsenrohr 430 (und
dessen nach oben zur Dampfeintrittsöffnung 424 führenden Verlängerung) abgetrennt
ist, wobei beide Räume ausschließlich über die Düsenbohrungen 432 miteinander
in Verbindung stehen.From the structure of the injector according to the invention described above results
that this includes a central
Im Betrieb zirkuliert das Wasser mit einem konstanten oder variablen Mengenstrom
von der Wassereintrittsöffnfung 416 über den Mischraum 442 zur Wasseraustrittsöffnung
420. Der Dampf tritt von der Dampfeintrittsöffnung 424 in den
Dampfraum 440 ein und gelangt durch die Düsenbohrungen 432 hindurch in den
Mischraum 442, wo er zum Zwecke des Aufheizens in das hierin strömende
Wasser eingeleitet wird.During operation, the water circulates with a constant or variable flow
from the water inlet opening 416 via the mixing
Um den Dampf geräuschlos in das Wasser injektieren zu können, müssen die
Dampfbläschen sehr klein sein. Die erste Phase der Zerkleinerung erfolgt, indem
der Dampf die kleinen Düsenbohrungen passiert. In der zweiten Phase tritt der in
den Düsenbohrungen beschleunigte Dampf in die Gazewicklung 434 ein. Beim
Aufprall auf die feinmaschige Struktur werden die Dampfbläschen mehrfach geteilt
und erreichen damit eine Größe, die beim anschließenden Kondensieren allenfalls
ein Siedegeräusch entstehen läßt. Mit der Kondensation ist der Wärmeübergang
von Dampf auf das zu beheizende Wasser abgeschlossen. In order to be able to inject the steam into the water silently, the
Steam bubbles can be very small. The first phase of crushing is done by
the steam passes through the small nozzle holes. In the second phase the
steam accelerated into the
In den Injektor kann nur diejenige Dampfmenge einströmen, die der abströmenden
Wassermenge entspricht. Die Abströmung des Wasser erfolgt geregelt durch den
Temperaturregler 142 in der Kondensatleitung 112, so daß dampfseitig keine
Regelarmatur für die Dampfmenge eingesetzt werden darf.Only the amount of steam that flows out can flow into the injector
Corresponds to the amount of water. The outflow of water is regulated by the
Um die beschriebene Dampfbläschenzerkleinerung im gesamten Lastbereich zwischen 0 und 100% zu gewährleisten, darf die Strömungsgeschwindigkeit in den Düsenbohrungen auch bei geringerem Dampfdurchsatz eine Minimalgeschwindigkeit, die im Falle des vorliegenden Ausführungsbeispiels mit 130 m/s festgesetzt wurde, nicht unterschreiten. Mit der Reduzierung der Dampfmenge muß zwecks Konstanthaltung der Strömungsgeschwindigkeit daher auch der Injektions-Querschnitt reduziert werden. Der lnjektionsquerschnitt wird reduziert, indem der Wasserstand im Düsenrohr durch die geregelte Wasserabströmung verändert wird und damit die mit Wasser abgedeckten Düsenbohrungen für den Dampfdurchgang versperrt werden.The described vapor bubble shredding in the entire load range To guarantee between 0 and 100%, the flow rate in the Nozzle bores a minimum speed even with lower steam throughput, which in the case of the present exemplary embodiment is set at 130 m / s was not undercut. With the reduction in the amount of steam has to be Keeping the flow rate constant therefore also the injection cross-section be reduced. The cross section of the injection is reduced by the Water level in the nozzle pipe is changed by the regulated water outflow and thus the nozzle holes covered with water for the passage of steam be blocked.
Für den gesamten Lastbereich werden zwei Grenzfälle definiert:
- Wasserstau im gesamten Düsenrohr, alle Bohrungen sind mit Wasser bedeckt, es kann somit kein Dampf durch die Düsenbohrungen strömen, es strömt kein Wasser aus dem System ab, die entnommene Wärmemenge ist gleich null.
- Im gesamten Düsenrohr befindet sich Dampf, alle Düsenbohrungen sind freigegeben, es strömt die der abströmenden Wassermenge äquivalente Dampfmenge, die Wärmemenge entspricht der Maximalleistung im Auslegungszustand.
- Water build-up in the entire nozzle tube, all holes are covered with water, so no steam can flow through the nozzle holes, no water flows out of the system, the amount of heat withdrawn is zero.
- There is steam in the entire nozzle tube, all nozzle bores are cleared, the amount of steam equivalent to the amount of water flowing out flows, the amount of heat corresponds to the maximum output in the design state.
Alle anderen Lastpunkte liegen zwischen den beschriebenen Grenzen. All other load points lie between the described limits.
Für den Fall, daß mit dem Dampf vermischt Luft in den Injektor eintritt, ist eine
Trennung der beiden Gase erst nach der Kondensation des Dampfes möglich. Die
in den Injektor eintretenden Luftbläschen können sich unter dem Entlüftungsdom
436 sammeln und werden über den Dampfentlüfter 438 automatisch ins Freie
abgeführt. In the event that air mixed with the steam enters the injector, one is
Separation of the two gases is only possible after the condensation of the steam. The
Air bubbles entering the injector can be located under the vent dome
436 collect and are automatically released into the open via the
- 100100
- KreislaufleitungCircuit line
- 104104
- AbsperrarmaturShut-off
- 106106
- Manometermanometer
- 108108
- Thermometerthermometer
- 110110
- Dampfleitungsteam line
- 112112
- Kondensatleitungcondensate line
- 114114
- Entlüftungsventilvent valve
- 118118
- Leitungsabschnittline section
- 120120
- Thermostatschalterthermostat switch
- 122122
- Meßfühlerprobe
- 124124
- Druckschalterpressure switch
- 126126
- Sicherheitsventilsafety valve
- 128128
- Leitungsabschnittline section
- 130130
- Manometermanometer
- 132132
- Entleerungsventildrain valve
- 134134
- Umwälzpumpecirculating pump
- 136136
- Rückschlagklappecheck valve
- 138138
- Drosselventilthrottle valve
- 140140
- AbsperrarmaturShut-off
- 142142
- Temperaturreglerthermostat
- 144144
- Durchfluß-DifferenzdruckreglerFlow Differential Pressure Regulator
- 146146
- Rückschlagklappecheck valve
- 148148
- AbsperrarmaturShut-off
- 150150
- Manometermanometer
- 152152
- WärmemengenzählerHeat meters
- 154154
- Meßfühlerprobe
- 156156
- Meßfühlerprobe
- 158158
- Regel- bzw. SteuermodulControl module
- 160160
- Außenfühleroutdoor sensor
- 402402
- Injektorinjector
- 404404
- Gehäusecasing
- 406406
- obere Gehäusehälfteupper half of the housing
- 408408
- untere Gehäusehälftelower case half
- 410410
- Flanschflange
- 412412
- Flanschflange
- 414414
- Hohlraumcavity
- 416416
- WassereintrittsöffnungWater inlet opening
- 418418
- Rohrstutzenpipe socket
- 420420
- WasseraustrittsöffnungWater outlet
- 422422
- Rohrstutzenpipe socket
- 424424
- DampfeintrittsöffnungSteam inlet opening
- 426426
- Rohrstutzenpipe socket
- 428428
- Anschweißmuffesocked
- 430430
- Düsenrohrnozzle tube
- 432432
- Düsenbohrungennozzle bores
- 434434
- EdelstahlgazeStainless steel mesh
- 436436
- Entlüftungsdomvent dome
- 438438
- Dampfentlüftersteam vent
- 440440
- Dampfraumsteam room
- 442442
- Mischraummixing room
Claims (16)
- Apparatus for the injection of steam into flowing water in order to heat up water, includinga) a essentially closed encasing (404),b) a mixer chamber (442) within the encasing (404), wherein the steam is mixed with the water to be heated,c) a water entrance port (416) and a water outlet port (420) in the encasing (404), with the water being conducted from the water entrance port (416) via the mixer chamber (442) to the water outlet port (420),d) a steam space (440) within the encasing,e) a steam entrance port (424) in the encasing (404), with the steam being guided from the steam entrance port (424) into the steam space (440),
characterised in thatf) a partition wall (430) is provided between steam space (440) and mixer chamber (442), which partition wall (430) being fitted with a large number of nozzle bores (432) for accelerated steam diffusion into the mixer chamber (442), andg) a fine-meshed structure (434) at the partition wall (430) facing the mixer chamber (442) at least in the nozzle bore (432) area in order to reduce in size steam bubbles which emerge in an accelerated manner at the nozzle bores,h1) the number of nozzle bores (432) and their cross-section are dimensioned in such a manner that in the nozzle bore area the flow velocity of steam is never bottom than 100 m/sec,
and/orh2) in the installed state of the apparatus the nozzle bores (432) are at least partially arranged at different heights. - Apparatus according to claim 1 characterised in that the nozzle bores (432) have a diameter each of a max. 3 mm, preferably max. 2 mm, in particular approx. 1.5 ± 0.1 mm.
- Apparatus according to claims 1 or 2 characterised in that the mesh width of the fine-meshed structure (434) is max. 3 mm, preferably approx. 2 mm.
- Apparatus according to one of the preceding claims, characterised in that the material of the fine-meshed structure (434) has a thickness of max. 1 mm, preferably of approx. 0.5 mm.
- Apparatus according to one of the preceding claims characterised in that the fine-meshed structure (434) is a refined steel gauze.
- Apparatus according to one of the preceding claims characterised in that the fine-meshed structure (434) has a thickness, measured vertically to the partition wall level, of min. 5 mm, preferably of min. 15 mm.
- Apparatus according to one of the preceding claims characterised in that the water entrance port (416) is arranged at a bottom section of the encasing (404) and the water outlet port (420) as well as the steam entrance port (424) at an top section of the encasing (404) and the partition wall (430) stretches from an top section of the encasing downward to a bottom section.
- Apparatus according to one of the preceding claims characterised in that the steam entrance port (424) is connected to a nozzle tube (430) which defines the partition wall.
- Apparatus according to claim 7 und 8 characterised in that the encasing (404) defines a long stretched-out hollow space (414) at whose top end the steam entrance port (424) is located to which the downward stretching nozzle tube (430) is joined, if need be by interconnecting another piece of tubing, and in that the water outlet port (420) is arranged laterally at a top section of the encasing (404).
- Apparatus according to one of the preceding claims characterised in that a venting device (436, 438) is provided above the water outlet port.
- Apparatus according to one of the preceding claims characterised in that the nozzle bores (432) arranged spirally on the cylinder wall of a nozzle tube (430).
- Apparatus according to one of the preceding claims characterised in that the water outlet port (420) is arranged above the nozzle bore (432).
- A controlling method for a steam volume that is admitted into a water circulation for the purpose of heating up the latter, consisting of a steam injector, an essentially closed encasing (404), a mixer chamber (442) within the encasing (404), wherein the steam is mixed with the water to be heated, a water entrance port (416) and a water outlet port (420) in the encasing (404), wherein the water is guided from the water entrance port (416) via the mixer chamber (442) to the water outlet port (420), a steam space (440) within the encasing, a steam entrance port (424) in the encasing (404), with the steam being guided from the steam entrance port (424) into the steam space (440), and a partition wall (430) between steam space (440) and mixer chamber (442) provided with steam ports (432), characterised in that the steam volume that is admitted to the water to be heated is equivalent to an outflowing water volume, is controlled from the steam space into the mixer chamber via an injection cross-section, by varying the cross-section of the steam ports by means of the water level inside the steam space (440, as determined by the controlled water discharge.
- Method according to claim 13 characterised in that, upon covering of all steam ports with water, there is no steam flow through the nozzle bores, whereby no water drains from the system and the abstracted amount of heat is zero.
- Method according to claim 13 characterised in that the steam penetrates through all steam ports when there is steam in the entire nozzle tube, with the outflowing water volume being equivalent to the steam volume and the amount of heat corresponding to the maximum performance in the design state.
- Method according to one of the claims 13 to 15, with the steam flow velocity in the injector being constant.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29719007U DE29719007U1 (en) | 1997-10-24 | 1997-10-24 | Device for injecting steam into flowing water for the purpose of heating the water |
DE29719007U | 1997-10-24 | ||
PCT/DE1998/003120 WO1999022178A1 (en) | 1997-10-24 | 1998-10-23 | Device for injecting steam into flowing water in order to heat the water |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1025399A1 EP1025399A1 (en) | 2000-08-09 |
EP1025399B1 true EP1025399B1 (en) | 2002-04-10 |
Family
ID=8047757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98961036A Revoked EP1025399B1 (en) | 1997-10-24 | 1998-10-23 | Device for injecting steam into flowing water in order to heat the water |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1025399B1 (en) |
AT (1) | ATE216054T1 (en) |
AU (1) | AU1661799A (en) |
DE (2) | DE29719007U1 (en) |
WO (1) | WO1999022178A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20007262U1 (en) | 2000-04-19 | 2000-08-03 | Petrick & Wolf Energietechnik Gmbh, 02979 Neuwiese | Steam injector |
US9207017B2 (en) | 2012-04-23 | 2015-12-08 | Hydro-Thermal Corporation | Fluid diffusing nozzle design |
CN103256588A (en) * | 2013-05-24 | 2013-08-21 | 张家港十方电力科技有限公司 | Steam heater |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997032113A1 (en) * | 1994-08-29 | 1997-09-04 | Ranotor Utvecklings Ab | Steam engine plant comprising a condenser system |
DE4432464C2 (en) | 1994-09-12 | 1996-08-08 | Ecf En Consulting Gmbh | Process and installation for heating water using steam from the steam network of a district heating system |
-
1997
- 1997-10-24 DE DE29719007U patent/DE29719007U1/en not_active Expired - Lifetime
-
1998
- 1998-10-23 AT AT98961036T patent/ATE216054T1/en not_active IP Right Cessation
- 1998-10-23 DE DE59803776T patent/DE59803776D1/en not_active Expired - Lifetime
- 1998-10-23 EP EP98961036A patent/EP1025399B1/en not_active Revoked
- 1998-10-23 WO PCT/DE1998/003120 patent/WO1999022178A1/en not_active Application Discontinuation
- 1998-10-23 AU AU16617/99A patent/AU1661799A/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO1999022178A1 (en) | 1999-05-06 |
AU1661799A (en) | 1999-05-17 |
EP1025399A1 (en) | 2000-08-09 |
DE59803776D1 (en) | 2002-05-16 |
DE29719007U1 (en) | 1999-02-25 |
ATE216054T1 (en) | 2002-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69409825T2 (en) | CORE REACTOR WITH EMERGENCY COOLING SYSTEM AND METHOD FOR COOLING | |
DE19538236A1 (en) | Heating roller | |
DE3123875A1 (en) | Consumer centre for regional heating systems | |
DE3622139C2 (en) | ||
EP1025399B1 (en) | Device for injecting steam into flowing water in order to heat the water | |
DE4304972C2 (en) | Steam conversion valve | |
DE1792139A1 (en) | Multi-stage flash evaporator for the distillation of sea water or the like. | |
CH692823A5 (en) | Stratified storage array. | |
EP1157755B1 (en) | Nozzle manifold for the cooling or descaling of metallic elongated material, in particular of rolling stock | |
WO2001081832A1 (en) | Steam injector | |
EP1158259A2 (en) | Stratified heat storage | |
DE3005643C2 (en) | Emergency feed system for a steam generator | |
EP3409654B1 (en) | Device for the treatment of organic materials | |
EP1249662B1 (en) | Steam generator | |
EP0020872B1 (en) | Hot-water heating or preparation system with an adjustable jet pump, and jet pump therefor | |
EP1063401B1 (en) | Apparatus and method for separating gas from liquid | |
DE4305694A1 (en) | Distribution unit for heating or cooling systems working with a fluid heat transfer medium | |
DE69824497T2 (en) | Device for regulating the movement of solid particles in fluidized beds | |
DE3508145C2 (en) | ||
EP0072020B1 (en) | Open condenser | |
EP0049503B1 (en) | Hot-water heating plant with heat pump and heat buffer | |
DE2432431A1 (en) | Ejector jet mixing chains - on central heating systems to optimise pressure and temp. for recycle mixing | |
DE69803828T2 (en) | Water-controlled hot water generator | |
DE69204524T2 (en) | Emergency cooling storage for nuclear reactor. | |
DE351823C (en) | Method and device for regulating the surface temperature in heating elements operated with steam-air mixtures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000420 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20011004 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR |
|
REF | Corresponds to: |
Ref document number: 216054 Country of ref document: AT Date of ref document: 20020415 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59803776 Country of ref document: DE Date of ref document: 20020516 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021015 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20021031 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021114 Year of fee payment: 5 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: HELMUT BAELZ GMBH Effective date: 20030110 |
|
R26 | Opposition filed (corrected) |
Opponent name: HELMUT BAELZ GMBH Effective date: 20030110 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031023 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20040124 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20040205 |