EP0072020B1 - Open condenser - Google Patents

Open condenser Download PDF

Info

Publication number
EP0072020B1
EP0072020B1 EP82107213A EP82107213A EP0072020B1 EP 0072020 B1 EP0072020 B1 EP 0072020B1 EP 82107213 A EP82107213 A EP 82107213A EP 82107213 A EP82107213 A EP 82107213A EP 0072020 B1 EP0072020 B1 EP 0072020B1
Authority
EP
European Patent Office
Prior art keywords
steam
heat exchange
liquid
elements
columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82107213A
Other languages
German (de)
French (fr)
Other versions
EP0072020A1 (en
Inventor
Karl-Wilhelm Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6139111&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0072020(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0072020A1 publication Critical patent/EP0072020A1/en
Application granted granted Critical
Publication of EP0072020B1 publication Critical patent/EP0072020B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B3/00Condensers in which the steam or vapour comes into direct contact with the cooling medium
    • F28B3/06Condensers in which the steam or vapour comes into direct contact with the cooling medium by injecting the steam or vapour into the cooling liquid

Definitions

  • the invention relates to a method for low-noise introduction of large amounts of steam into a flowing liquid for heating it, in which the steam is passed through heat exchange elements of a heat exchanger, in which the liquid, at least at the outlet end of the heat exchange element or elements, is guided essentially axially parallel to the latter is. Furthermore, the invention relates to a device for performing this method with a heat exchanger having heat exchange elements, in which the liquid is guided in the aforementioned manner.
  • a method for heating water by means of water vapor in which the water vapor is passed through an open tube bundle, past which the liquid to be heated flows parallel to the axis.
  • the device provided for this purpose is operated or is dimensioned with regard to the length and the diameter of the tubes such that all of the water vapor is completely relaxed and condensed at the end of the tube bundle at the latest.
  • the invention is therefore based on the object of finding a method of the type mentioned which operates with less noise and has a considerably larger control range with stable operation, and to provide a device for carrying out this method, the outlay in terms of apparatus being comparatively low.
  • this object is achieved according to the invention in that the steam and the liquid are exposed to such temperature and flow conditions that the emerging steam in the form of connected, stable steam columns connected to the heat exchange elements into the liquid parallel to the flow reaches in.
  • a device for carrying out this method is characterized according to the invention in that the heat exchange surface and the openings of the heat exchange element (s) are designed in such a way that the emerging steam in the form of continuous, stable steam columns connected to the heat exchange elements into the liquid parallel to the liquid Flow into it.
  • the principle of complete condensation within a tube bundle flowed around by the medium to be heated is deliberately deviated here by introducing the steam in the form of a coherent, stable steam column - but not in the form of small bubbles - parallel to the flow of the medium to be heated.
  • the interface which forms between the steam column and this medium outside the tube bundle thus acts as a heat exchange surface without a partition, the steam column surprisingly dissolving after a certain distance without condensation and thus without making a lot of noise.
  • heat exchange surfaces for example the tube bundle
  • the heat exchange surfaces can be kept relatively small, since part of the heat exchange surfaces is formed by the interface between the steam column and the medium to be heated.
  • Both direct current and counter-current operation are possible.
  • the disadvantage of countercurrent operation compared to direct current operation that the condensate admixed has to be cooled with relatively warmer liquid, is offset by the advantage of the larger average temperature difference in countercurrent. If necessary, the advantages or disadvantages predominate can be calculated.
  • the heat exchange elements can be cylindrical or box-shaped. A forced redirection of the liquid flow can be carried out within the bundle.
  • the steam In order to achieve high performance, the steam must be introduced into a flowing liquid. Normally, a pump and corresponding guide elements around the heat exchange elements (often identical to the housing) are required. But it can also be a convection flow should be sufficient. Since the state in which the steam column emerges vertically upwards or downwards is the most stable, a vertical arrangement of the heat exchange elements is preferred. In the case of very long heat exchange elements, support against one another may be necessary in order to prevent the individual elements from hitting or sagging. A screen mesh can also perform this task.
  • An inner chamfer or outer chamfer is particularly useful for thick-walled pipes.
  • the largest control range and the greatest steam output can be achieved with vertical installation and steam guidance from top to bottom.
  • the device can be produced inexpensively from standard pipeline parts; they are also available in stainless steel quality.
  • the tube sheets can be made from standard flanges on NC machines. If necessary, the apparatus can also be inserted into a corresponding piping system without its own housing.
  • the open tube bundle condenser as is shown schematically in FIG. 1, essentially consists of a plug-in tube bundle 1 which projects into a housing 2.
  • the upper part of the apparatus is very similar to a classic heat exchanger.
  • the liquid enters or exits through the connector 4 attached to the side of the housing.
  • the main difference occurs in the lower area of the apparatus.
  • the tubes 3 do not end in a tube sheet 5 as above, but open out freely.
  • Steam is fed through the nozzle 7. If the liquid enters at 4 and exits the nozzle 6, there is direct current operation, it enters at 6 and exits at 4, counter-current operation. Regardless of whether the operation is carried out in cocurrent or countercurrent operation, very stable steam columns 8 can protrude from the tubes 3 into the liquid at low temperature differences between liquid and steam.
  • Vertical tube bundles 1 are preferred.
  • a particularly compact steam column is obtained when steam is introduced from top to bottom; in the opposite case, the steam column is drawn out longer.
  • the pipes 3 can run out bluntly; in order to generate as little eddy as possible, it can be advantageous to chamfer the pipes inside or outside.
  • FIG. 2 shows a tube bundle 1 with a different design.
  • flat chambers are present here.
  • support fabrics to improve the mechanical stability or baffles to divert the flow around the tubes; they are not drawn here.
  • the flow around the tubes should run largely parallel and with little swirl to the tubes. Since the pressure differences inside and outside the flat chamber are very small, the wall thickness can be very low.
  • FIGS. 3 and 4 Typical applications are shown in FIGS. 3 and 4. The same features have the same reference numerals in both figures.
  • the steam heater 20 is operated in countercurrent, in FIG. 4 in cocurrent for heating an agitator tank 21.
  • the water 22 in the heating jacket 23 of the agitator tank 21 is circulated through pipes 24 through the centrifugal pump 25 and conveyed through the heater 20.
  • the cascade temperature control 26 opens the valve 27 and steam 28 flows into the heater 20.
  • a pressure control 29 keeps the pressure in the system constant by discharging excess condensate (possibly also cooling water) via valve 30. If the product temperature in the agitator tank 21 is to be lowered, the temperature control 26 closes the steam valve 27 and opens the cooling water valve 31.
  • the housing also made of stainless steel, had a nominal width of 100.
  • a 10 m3 agitator tank was heated by means of pressurized water heating circuits by introducing 400 kg of water vapor / h.
  • the water circulation was around 25 m 3 / h, the water temperature before steam introduction 25 ° C, the maxi times allowed water circulation temperature was 130 ° C, the water pressure at the entrance to the heater 4.2 bar, the steam pressure 5 bar.
  • the noise level during operation was 70 dBA. It was not measurably increased by the introduction of steam.
  • a noise level of 98 dBA is measured at the beginning of the heating process and a noise level of 80 dBA is still measured at the end of the heating process.
  • Another advantage of the heater according to the invention is the relatively low pressure drop on the liquid side and the very large steam control ratio.
  • the pressure loss without steam input was less than 0.1 bar; with conventional warmers it is 0.6 bar.
  • the permissible steam control ratio is 1: 7, in special versions up to 1:60.
  • the steam input varied between 0 and 400 kg / h; the steam control ratio is practically infinite. Via an enlarged valve, steam input of 1200 kg / h was achieved without the noise increasing. The upper limit of performance has not yet been reached.
  • FIGS. 5 and 6 Another form of the device according to the invention is shown in FIGS. 5 and 6.
  • This is a flat chamber bundle 40, similar to that in Fig. 2, in a rectangular housing 41.
  • the steam enters laterally through the flange 42 and the liquid flows through the housing 41 in cocurrent from top 43 to bottom 44 or in countercurrent from 44 after 43.
  • the steam enters the cage 45 at the flange 42; this has the function of carrying the flat chamber heat exchanger elements 46 and of ensuring the steam distribution.
  • Rings 44 are installed within the flat chambers 46, which are intended to prevent the flat chambers from being pressed together, but to allow steam to pass through.
  • Rings 48 are in turn to ensure a minimum distance between the flat chambers 46 between the flat chambers 46.
  • Knobs 49 on the outside of the flat chambers also have the same function. In addition, these knobs 49 still serve to improve the heat transfer.
  • the flat chambers and the rings are pressed together with the yoke 50.
  • a tube condenser can also be operated for heating without forced circulation. Cooler liquid is drawn in through the openings 61 at the bottom of the housing 62, into which the heat exchange elements 63 open at the top extend, by steam injection via the flange 60. There is a convection flow.
  • stable steam columns can be formed, which extend upwards into the liquid from the heat exchange elements 63.
  • steam and liquid flows should always be routed in parallel near the ends of the heat exchange elements. The steam should flow into the liquid as vertically as possible. In the case of a horizontal steam column, the end of the column is bent upward due to the lower vapor density, steam bubbles being torn out of the columns and being able to cavitate, at least in the case of large steam outputs and thus long steam columns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

Die Erfindung betrifft ein Verfahren zum geräuscharmen Einbringen grosser Dampfmengen in eine strömende Flüssigkeit zu deren Erwärmung, bei dem der Dampf durch Wärmeaustauschelemente eines Wärmetauschers geführt wird, in denen die Flüssigkeit zumindest am Austrittsende des bzw. der Wärmeaustauschelemente im wesentlichen achsparallel zu diesem bzw. diesen geführt ist. Ferner bezieht sich die Erfindung auf eine Vorrichtung zur Durchführung dieses Verfahrens mit einem Wärmeaustauschelemente aufweisenden Wärmetauscher, in dem die Flüssigkeit in vorgenannter Weise geführt ist.The invention relates to a method for low-noise introduction of large amounts of steam into a flowing liquid for heating it, in which the steam is passed through heat exchange elements of a heat exchanger, in which the liquid, at least at the outlet end of the heat exchange element or elements, is guided essentially axially parallel to the latter is. Furthermore, the invention relates to a device for performing this method with a heat exchanger having heat exchange elements, in which the liquid is guided in the aforementioned manner.

Nach der DE-A Nr. 2439562 ist ein Verfahren zum Aufheizen von Wasser mittels Wasserdampf bekannt, bei dem der Wasserdampf durch ein offenes Rohrbündel geleitet wird, an dem vorbei die zu erwärmende Flüssigkeit achsparallel strömt. Die dafür vorgesehene Vorrichtung wird so betrieben bzw. ist hinsichtlich der Länge und der Durchmesser der Rohre so bemessen, dass der gesamte Wasserdampf spätestens am Ende des Rohrbündels vollständig entspannt und kondensiert ist.According to DE-A No. 2439562, a method for heating water by means of water vapor is known, in which the water vapor is passed through an open tube bundle, past which the liquid to be heated flows parallel to the axis. The device provided for this purpose is operated or is dimensioned with regard to the length and the diameter of the tubes such that all of the water vapor is completely relaxed and condensed at the end of the tube bundle at the latest.

Dieses Verfahren bzw. der dafür vorgesehene Wärmetauscher hatzwar eine geringere Geräuschbildung als Vorrichtungen, bei denen der Dampf in Form vieler kleiner Dampfbläschen in die zu erwärmende Flüssigkeit eingebracht wird. Nichtsdestoweniger ist die Kondensation beim vorbekannten Wärmetauscher immer noch mit erheblicher Geräuschbelästigung verbunden. Ausserdem ist der Regelbereich aufgrund der vorgegebenen Länge der Wärmeaustauschrohre naturgemäss beschränkt. Schliesslich ist der bauliche Aufwand erheblich, denn die Abkühlung des Dampfs innerhalb der Wärmeaustauschrohre verlangt entsprechend grosse Rohrlängen.This method and the heat exchanger provided for it have less noise than devices in which the steam is introduced into the liquid to be heated in the form of many small steam bubbles. Nevertheless, the condensation in the known heat exchanger is still associated with considerable noise pollution. In addition, the control range is naturally limited due to the specified length of the heat exchange tubes. Finally, the construction effort is considerable, because the cooling of the steam inside the heat exchange tubes requires correspondingly large tube lengths.

Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu finden, das geräuscharmer arbeitet und einen erheblich grösseren Regelbereich bei stabilem Arbeiten hat, sowie eine Vorrichtung zur Durchführung dieses Verfahrens bereitzustellen, deren apparativer Aufwand verhältnismässig gering ist.The invention is therefore based on the object of finding a method of the type mentioned which operates with less noise and has a considerably larger control range with stable operation, and to provide a device for carrying out this method, the outlay in terms of apparatus being comparatively low.

Soweit es das Verfahren betrifft, wird diese Aufgabe erfindungsgemäss dadurch gelöst, dass der Dampf und die Flüssigkeit solchen Temperatur-und Strömungsbedingungen ausgesetzt werden, dass der austretende Dampf in Form von sich an die Wärmeaustauschelemente anschliessenden, zusammenhängenden, stabilen Dampfsäulen in die Flüssigkeit parallel zur Strömung hineinreicht.As far as the method is concerned, this object is achieved according to the invention in that the steam and the liquid are exposed to such temperature and flow conditions that the emerging steam in the form of connected, stable steam columns connected to the heat exchange elements into the liquid parallel to the flow reaches in.

Eine Vorrichtung zur Durchführung dieses Verfahrens ist erfindungsgemäss dadurch gekennzeichnet, dass die Wärmeaustauschfläche und die Öffnungen des bzw. der Wärmeaustauschelemente(s) so ausgebildet sind, dass der austretende Dampf in Form von sich an die Wärmeaustauschelemente anschliessenden, zusammenhängenden stabilen Dampfsäulen in die Flüssigkeit parallel zur Strömung hineinreicht.A device for carrying out this method is characterized according to the invention in that the heat exchange surface and the openings of the heat exchange element (s) are designed in such a way that the emerging steam in the form of continuous, stable steam columns connected to the heat exchange elements into the liquid parallel to the liquid Flow into it.

Im Vergleich zum Stand der Technik wird hier bewusstvom Prinzip der vollständigen Kondensation innerhalb eines vom zu erwärmenden Medium umströmten Rohrbündels dadurch abgewichen, dass der Dampf in Form einer zusammenhängenden stabilen Dampfsäule- nicht jedoch in Form kleiner Bläschen - parallel zur Strömung des aufzuwärmenden Mediums eingeführt wird. Die sich zwischen Dampfsäule und diesem Medium ausserhalb des Rohrbündels bildende Grenzfläche wirkt somit als trennwandlose Wärmeaustauschfläche, wobei sich die Dampfsäule überraschenderweise ohne Kondensationsschläge und damit ohne grosse Geräuschbildung nach einer gewissen Strecke auflöst.In comparison to the prior art, the principle of complete condensation within a tube bundle flowed around by the medium to be heated is deliberately deviated here by introducing the steam in the form of a coherent, stable steam column - but not in the form of small bubbles - parallel to the flow of the medium to be heated. The interface which forms between the steam column and this medium outside the tube bundle thus acts as a heat exchange surface without a partition, the steam column surprisingly dissolving after a certain distance without condensation and thus without making a lot of noise.

Bei wechselnden Betriebsbedingungen folgt die Länge der Dampfsäule und damit die direkte Kondensationsfläche in einfacher Weise diesen Änderungen, ohne dass hierdurch die Stabilität der Dampfsäulen leidet. Hierdurch ergibt sich eine ausgezeichnete Regelcharakteristik, ohne dass es hierzu bewegter Teile bedarf.With changing operating conditions, the length of the steam column and thus the direct condensation surface follows these changes in a simple manner, without the stability of the steam columns suffering as a result. This results in an excellent control characteristic without the need for moving parts.

Ein weiterer Vorteil besteht darin, dass die apparativen Wärmeaustauschflächen, beispielsweise die Rohrbündel, relativ klein gehalten werden können, da ein Teil der Wärmeaustauschflächen durch die Grenzfläche zwischen Dampfsäule und zu erwärmendem Medium gebildet wird. Dabei ist sowohl Gleichstrombetrieb als auch Gegenstrombetrieb möglich. Dem Nachteil des Gegenstrombetriebs gegenüber dem Gleichstrombetrieb, dass wegen des beigemischten Kondensats mit relativ wärmerer Flüssigkeit gekühlt werden muss, steht der Vorteil der bei Gegenstrom grösseren mittleren Temperaturdifferenz gegenüber. Ob die Vor- oder Nachteile überwiegen, kann im Bedarfsfall rechnerisch ermittelt werden.Another advantage is that the heat exchange surfaces, for example the tube bundle, can be kept relatively small, since part of the heat exchange surfaces is formed by the interface between the steam column and the medium to be heated. Both direct current and counter-current operation are possible. The disadvantage of countercurrent operation compared to direct current operation, that the condensate admixed has to be cooled with relatively warmer liquid, is offset by the advantage of the larger average temperature difference in countercurrent. If necessary, the advantages or disadvantages predominate can be calculated.

Bei geraden Rohren lässt sich eine besonders grosse Packungsdichte erzielen, was ein grosses Verhältnis von Dampfaustrittsflächen zur Querschnittsfläche der strömenden Flüssigkeit ergibt. Dabei stellen sich bezogen auf den Apparatequerschnitt hohe Werte für die direkte Kondensationsfläche zwischen Dampf und Flüssigkeit und damit für die Kondensationsleistung ein.In the case of straight tubes, a particularly high packing density can be achieved, which results in a large ratio of steam exit areas to the cross-sectional area of the flowing liquid. In relation to the cross-section of the apparatus, high values are set for the direct condensation surface between steam and liquid and thus for the condensation performance.

Bei der Ausbildung des offenen Kondensators können je nach Bedarf hinsichtlich Material und Geometrie die verschiedensten Forderungen erfüllt werden. Die Wärmetauschelemente können zylindrisch oder kastenförmig sein. Innerhalb des Bündels kann eine Zwangsumlenkung der Flüssigkeitsströmung vorgenommen werden. Es ist prinzipiell auch möglich, die Flüssigkeit durch die Wärmetauschelemente zu schicken und den Dampf um die Elemente herum zu führen; durch die mit Flüssigkeit beschickten Austauschelemente kann so auch eine Führung des Dampfes erreichtwerden; in diesem Fall treten die Dampfsäulen aus dem Mantelbereich aus und werden von entsprechenden Flüssigkeitssäulen aus den Wärmetauschelementen umgeben.When designing the open capacitor, a wide variety of requirements can be met depending on the material and geometry. The heat exchange elements can be cylindrical or box-shaped. A forced redirection of the liquid flow can be carried out within the bundle. In principle, it is also possible to send the liquid through the heat exchange elements and to guide the steam around the elements; guidance of the steam can thus also be achieved by means of the exchange elements charged with liquid; in this case the steam columns emerge from the jacket area and are surrounded by corresponding liquid columns from the heat exchange elements.

Um eine hohe Leistung zu erreichen, muss der Dampf in eine strömende Flüssigkeit eingeleitet werden. Normalerweisesind dazu eine Pumpe und entsprechende Leitelemente um die Wärmetauschelemente (vielfach identisch mit den Gehäuse) erforderlich. Es kann aber auch eine Konvektionsströmung ausreichend sein. Da der Zustand, wo die Dampfsäule senkrecht nach oben bzw. nach unten austritt, am stabilsten ist, wird eine senkrechte Anordnung der Wärmetauschelemente bevorzugt. Bei sehr langen Wärmetauschelementen kann ein Abstützen gegeneinander erforderlich werden, um ein Aneinanderschlagen oder Durchhängen der einzelnen Elemente zu vermeiden. Auch ein Siebgewebe kann diese Aufgabe übernehmen.In order to achieve high performance, the steam must be introduced into a flowing liquid. Normally, a pump and corresponding guide elements around the heat exchange elements (often identical to the housing) are required. But it can also be a convection flow should be sufficient. Since the state in which the steam column emerges vertically upwards or downwards is the most stable, a vertical arrangement of the heat exchange elements is preferred. In the case of very long heat exchange elements, support against one another may be necessary in order to prevent the individual elements from hitting or sagging. A screen mesh can also perform this task.

Um eine wirbelarme Strömung an den Enden der Wärmetauschelemente zu erreichen, ist es zweckmässig, die Enden anzufasen. Besonders bei dickwandigen Rohren ist eine Innenfase oder Aussenfase zweckmässig.In order to achieve a low-eddy flow at the ends of the heat exchange elements, it is advisable to chamfer the ends. An inner chamfer or outer chamfer is particularly useful for thick-walled pipes.

Der grösste Regelbereich und die grösste Dampfleistung lassen sich bei senkrechtem Einbau und einer Dampfführung von oben nach unten erzielen.The largest control range and the greatest steam output can be achieved with vertical installation and steam guidance from top to bottom.

Die Vorrichtung lässt sich kostengünstig aus Normrohrleitungsteilen herstellen; sie sind auch in Edelstahlqualität verfügbar. Die Rohrböden können aus Normflanschen auf NC-Maschinen hergestellt werden. Der Apparat kann gegebenenfalls auch ohne eigenes Gehäuse in ein entsprechendes Rohrleitungssystem eingeschoben werden.The device can be produced inexpensively from standard pipeline parts; they are also available in stainless steel quality. The tube sheets can be made from standard flanges on NC machines. If necessary, the apparatus can also be inserted into a corresponding piping system without its own housing.

Die Erfindung ist in der Zeichnung dargestellt und im folgenden weiter beschrieben. Es zeigen:

  • Fig. einseitig offener Rohrbündelkondensator;
  • Fig. 2 einseitig offener Flachkammerkondensator;
  • Fig. 3 Dampfanwärmer im Gegenstrombetrieb;
  • Fig. 4 Dampfanwärmer im Gleichstrombetrieb;
  • Fig. 5 eckiger Flachkammerkondensator;
  • Fig. 6 Schnitt durch den oberen Teil des Einsatzes eines Kondensators nach Fig. 5;
  • Fig. 7 offener Rohrbündelkondensator in einem Behälter.
The invention is illustrated in the drawing and further described below. Show it:
  • Fig. One-sided open tube condenser;
  • 2 flat chamber capacitor open on one side;
  • Fig. 3 steam heater in counterflow operation;
  • Fig. 4 steam heater in DC operation;
  • Fig. 5 angular flat chamber capacitor;
  • 6 shows a section through the upper part of the use of a capacitor according to FIG. 5;
  • Fig. 7 open tube condenser in a container.

Der offene Rohrbündelkondensator, wie er in Fig. 1 schematisch dargestellt ist, besteht im wesentlichen aus einem Einsteckrohrbündel 1, das in ein Gehäuse 2 ragt. Der obere Teil des Apparates hat grosse Ähnlichkeit mit einem klassischen Wärmetauscher. In den Raum um die Rohre 3 tritt durch den seitlich am Gehäuse angebrachten Stutzen 4 die Flüssigkeit ein oder aus. Der wesentliche Unterschied tritt am unteren Bereich des Apparates auf. Die Rohre 3 enden nicht wie oben in einem Rohrboden 5, sondern münden frei. Dampf wird über den Stutzen 7 eingespeist. Tritt die Flüssigkeit bei 4 ein und bei dem Stutzen 6 aus, herrscht Gleichstrombetrieb, tritt sie bei 6 ein und bei 4 aus, Gegenstrombetrieb. Unabhängig davon, ob im Gleich- oder Gegenstrombetrieb gefahren wird, können bei geringen Temperaturdifferenzen zwischen Flüssigkeit und Dampf aus den Rohren 3 recht stabile Dampfsäulen 8 in die Flüssigkeit ragen.The open tube bundle condenser, as is shown schematically in FIG. 1, essentially consists of a plug-in tube bundle 1 which projects into a housing 2. The upper part of the apparatus is very similar to a classic heat exchanger. In the space around the pipes 3, the liquid enters or exits through the connector 4 attached to the side of the housing. The main difference occurs in the lower area of the apparatus. The tubes 3 do not end in a tube sheet 5 as above, but open out freely. Steam is fed through the nozzle 7. If the liquid enters at 4 and exits the nozzle 6, there is direct current operation, it enters at 6 and exits at 4, counter-current operation. Regardless of whether the operation is carried out in cocurrent or countercurrent operation, very stable steam columns 8 can protrude from the tubes 3 into the liquid at low temperature differences between liquid and steam.

Senkrecht stehende Rohrbündel 1 sind bevorzugt. Eine besonders kompakte Dampfsäule erhält man bei einem Dampfeintrag von oben nach unten; im umgekehrten Fall wird die Dampfsäule stärker in die Länge gezogen.Vertical tube bundles 1 are preferred. A particularly compact steam column is obtained when steam is introduced from top to bottom; in the opposite case, the steam column is drawn out longer.

Die Rohre 3 können stumpf auslaufen;um möglichst wenig Wirbel zu erzeugen, kann es vorteilhaft sein, die Rohre innen oder aussen anzufasen.The pipes 3 can run out bluntly; in order to generate as little eddy as possible, it can be advantageous to chamfer the pipes inside or outside.

Fig. 2 zeigt ein anders ausgebildetes Rohrbündel 1. Anstelle gerader zylindrischer Rohre wie in Fig. 1 sind hier Flachkammern vorhanden. Bei einem längeren inneren Rohrbündel kann es sinnvoll sein, Stützgewebe zur Verbesserung der mechanischen Stabilität zu verwenden oder Schikanen zur Umlenkung der Strömung um die Rohre; sie sind hier nicht gezeichnet. Zum Ende des Rohrbündels hin sollte jedoch die Strömung um die Rohre weitgehend parallel und wirbelarm zu den Rohren verlaufen. Da die Druckunterschiede innerhalb und ausserhalb der Flachkammer sehr gering sind, kann die Wanddicke sehr niedrig sein.FIG. 2 shows a tube bundle 1 with a different design. Instead of straight cylindrical tubes as in FIG. 1, flat chambers are present here. In the case of a longer inner tube bundle, it may make sense to use support fabrics to improve the mechanical stability or baffles to divert the flow around the tubes; they are not drawn here. At the end of the tube bundle, however, the flow around the tubes should run largely parallel and with little swirl to the tubes. Since the pressure differences inside and outside the flat chamber are very small, the wall thickness can be very low.

Typische Anwendungsfälle sind in den Fig. 3 und 4 dargestellt. Gleiche Merkmale tragen in beiden Figuren gleiche Bezugszeichen. ln Fig. 3 wird der Dampfanwärmer 20 im Gegenstrom, in Fig. 4 im Gleichstrom zur Beheizung eines Rührwerksbehälters 21 betrieben. Das Wasser 22 im Heizmantel 23 des Rührwerksbehälters 21 wird über Rohrleitungen 24 durch die Kreiselpumpe 25 umgewälzt und dabei durch den Anwärmer 20 gefördert. Zur Temperaturerhöhung öffnet die Kaskadentemperaturregelung 26 das Ventil 27, und Dampf 28 strömt in den Anwärmer 20 ein. Eine Druckhalteregelung 29 hält den Druck im System konstant, indem sie überschüssiges Kondensat (evtl. auch Kühlwasser) über das Ventil 30 ausschleust. Soll die Produkttemperatur im Rührwerksbehälter 21 gesenkt werden, so schiiesst die Temperaturregelung 26 das Dampfventil 27 und öffnet das Kühlwasserventil 31.Typical applications are shown in FIGS. 3 and 4. The same features have the same reference numerals in both figures. 3, the steam heater 20 is operated in countercurrent, in FIG. 4 in cocurrent for heating an agitator tank 21. The water 22 in the heating jacket 23 of the agitator tank 21 is circulated through pipes 24 through the centrifugal pump 25 and conveyed through the heater 20. To increase the temperature, the cascade temperature control 26 opens the valve 27 and steam 28 flows into the heater 20. A pressure control 29 keeps the pressure in the system constant by discharging excess condensate (possibly also cooling water) via valve 30. If the product temperature in the agitator tank 21 is to be lowered, the temperature control 26 closes the steam valve 27 and opens the cooling water valve 31.

Mit dem beschriebenen Anwärmen wird eine Geräuschbildung beim Einleiten von Dampf in Flüssigkeit praktisch vermieden, da es mit diesen Apparaten möglich ist, die sonst übliche Blasenbildung mit unvermeidlicher Kavitation zu unterdrücken. Durch die Abkühlung des Dampfes in den Wärmetauschelementen wird die Dampfgeschwindigkeit erheblich reduziert, bzw. es tritt zu Beginn eines Aufheizvorgangs ohnehin nur Kondensat aus den Rohrenden aus. Aber auch dann, wenn der Dampf noch nicht innerhalb des Rohrs kondensiert und Dampfsäulen 8 in die Flüssigkeit hineinreichen, bildet sich ein stabiler stationärer Zustand ohne Kavitationsschläge aus. Aus diesen Gründen sollen die Rohre 3 des Rohrbündels 2 eine hohe Wärmeleitung haben; Kunststoffrohre, die gelegentlich auch zur Lärmminderung vorgeschlagen worden sind, wären weniger geeignet. Gerade, gleich lange Rohre haben sich am besten bewährt. Ein Anwärmer, wie in Fig. 1 dargestellt, wurde beispielsweise mit 132 Röhrchen aus Edelstahl bestückt; die Wanddicke eines Röhrchens betrug 1 mm, der Durchmesser 6 mm und die Länge 800 mm. Das Gehäuse, ebenfalls aus Edelstahl, hatte die Nennweite 100. Mit einem solchen Anwärmer wurde ein 10 m3-Rührwerksbehälter über Druckwasserheizkreisläufe durch Eintrag von 400 kg Wasserdampf/h aufgeheizt. Die Wasserumlaufmenge lag bei ca. 25 m3/h, die Wassertemperatur vor der Dampfeinleitung 25°C, die maximal zugelassene Wasserumlauftemperatur betrug 130° C, der Wasserüberdruck am Eingang zum Anwärmer 4,2 bar, der Dampfüberdruck 5 bar. Der Lärmpegel im Betrieb lag bei 70 dBA. Durch die Dampfeinleitung wurde er nicht messbar erhöht. Dagegen werden mit einem Dampfstrahler üblicher Bauart und etwa vergleichbarer Leistung zu Beginn des Heizvorganges ein Lärmpegel von 98 dBA und am Ende des Aufheizvorgangs immer noch ein Lärmpegel von 80 dBA gemessen. Vorteilhaft bei dem erfindungsgemässen Anwärmer ist auch noch der relativ geringe flüssigkeitsseitige Druckverlust und das sehr grosse Dampfregelverhältnis. Bei dem oben beschriebenen Anwärmer betrug der Druckverlust ohne Dampfeintrag weniger als 0,1 bar; bei konventionelle Anwärmern liegt er bei 0,6 bar. Das zulässige Dampfregelverhältnis beträgt nach Herstellerangaben 1 :7, in Spezialausführungen bis 1:60. In dem oben beschriebenen Fall variierte der Dampfeintrag zwischen 0 und 400 kg/h; das Dampfregelverhältnis ist also praktisch unendlich. Über ein vergrössertes Ventil wurde auch ein Dampfeintrag von 1200 kg/h erreicht, ohne dass der Lärm angestiegen ist. Es ist damit noch nicht die Obergrenze der Leistung erreicht worden.With the heating described, noise generation when introducing steam into liquid is practically avoided, since it is possible with these apparatuses to suppress the otherwise usual bubble formation with inevitable cavitation. By cooling the steam in the heat exchange elements, the steam speed is considerably reduced, or at the beginning of a heating process only condensate emerges from the pipe ends anyway. But even if the steam has not yet condensed inside the tube and steam columns 8 extend into the liquid, a stable, stationary state is formed without cavitation impacts. For these reasons, the tubes 3 of the tube bundle 2 should have high heat conduction; Plastic pipes, which have occasionally been proposed for noise reduction, would be less suitable. Straight, equally long pipes have proven their worth best. A heater, as shown in Fig. 1, was equipped with, for example, 132 stainless steel tubes; the wall thickness of a tube was 1 mm, the diameter 6 mm and the length 800 mm. The housing, also made of stainless steel, had a nominal width of 100. With such a heater, a 10 m3 agitator tank was heated by means of pressurized water heating circuits by introducing 400 kg of water vapor / h. The water circulation was around 25 m 3 / h, the water temperature before steam introduction 25 ° C, the maxi times allowed water circulation temperature was 130 ° C, the water pressure at the entrance to the heater 4.2 bar, the steam pressure 5 bar. The noise level during operation was 70 dBA. It was not measurably increased by the introduction of steam. On the other hand, with a steam jet of a conventional design and roughly comparable output, a noise level of 98 dBA is measured at the beginning of the heating process and a noise level of 80 dBA is still measured at the end of the heating process. Another advantage of the heater according to the invention is the relatively low pressure drop on the liquid side and the very large steam control ratio. In the heater described above, the pressure loss without steam input was less than 0.1 bar; with conventional warmers it is 0.6 bar. According to the manufacturer, the permissible steam control ratio is 1: 7, in special versions up to 1:60. In the case described above, the steam input varied between 0 and 400 kg / h; the steam control ratio is practically infinite. Via an enlarged valve, steam input of 1200 kg / h was achieved without the noise increasing. The upper limit of performance has not yet been reached.

In den Fig. 5 und 6 ist eine andere Form der erfindungsgemässen Vorrichtung dargestellt. Es handeltsich dabei um ein Flachkammerbündel 40, ähnlich wie in Fig. 2, in einem rechteckigen Gehäuse 41. Der Dampf tritt seitlich durch den Flansch 42 ein und die Flüssigkeit durchströmt das Gehäuse 41 im Gleichstrom von oben 43 nach unten 44 bzw. im Gegenstrom von 44 nach 43.Another form of the device according to the invention is shown in FIGS. 5 and 6. This is a flat chamber bundle 40, similar to that in Fig. 2, in a rectangular housing 41. The steam enters laterally through the flange 42 and the liquid flows through the housing 41 in cocurrent from top 43 to bottom 44 or in countercurrent from 44 after 43.

Einzelheiten der Wärmetauschelemente sind in Fig. 6 im Schnitt dargestellt. Der Dampf tritt beim Flansch 42 in den Käfig 45 ein; dieser hat die Funktion, die Flachkammerwärmetauscherelemente 46 zu tragen und für die Dampfverteilu ng zu sorgen. Innerhalb der Flachkammern 46 sind Ringe 44 eingebaut, die ein Zusammenpressen der Flachkammern verhindern sollen, aber den Durchtritt von Dampf ermöglichen. Zwischen den Flachkammern 46 sind wiederum Ringe 48 um einen Mindestabstand zwischen den Flachkammern 46 zu gewährleisten. Die selbe Funktion haben auch Noppen 49 aussen an den Flachkammern. Darüber hinaus dienen diese Noppen 49 noch der Verbesserung des Wärmeübergangs. Mit dem Joch 50 werden die Flachkammern und die Ringe zusammengepresst.Details of the heat exchange elements are shown in section in Fig. 6. The steam enters the cage 45 at the flange 42; this has the function of carrying the flat chamber heat exchanger elements 46 and of ensuring the steam distribution. Rings 44 are installed within the flat chambers 46, which are intended to prevent the flat chambers from being pressed together, but to allow steam to pass through. Rings 48 are in turn to ensure a minimum distance between the flat chambers 46 between the flat chambers 46. Knobs 49 on the outside of the flat chambers also have the same function. In addition, these knobs 49 still serve to improve the heat transfer. The flat chambers and the rings are pressed together with the yoke 50.

Nach Fig. 7 kann ein Rohrbündelkondensator auch zum Anwärmen ohne Zwangsumwälzung betrieben werden. Durch Dampfeinspeisung über den Flansch 60 wird kühlere Flüssigkeit durch die Öffnungen 61 unten an dem Gehäuse 62, in das die oben offenen Wärmetauschelemente 63 reichen, angesaugt. Es kommt zu einer Konvektionsströmung. Auch hier können sich stabile Dampfsäulen bilden, die von den Wärmetauschelementen 63 ausgehend nach oben in die Flüssigkeit reichen. Um eine Wirbelbildung zu vermeiden, wodurch Blasen aus den Dampfsäulen herausgerissen werden könnten, sollten in der Nähe der Enden der Wärmetauschelemente Dampf und Flüssigkeitsströme grundsätzlich parallel geführt werden. Der Dampf sollte möglichst senkrecht in die Flüssigkeit strömen. Bei einer waagerechten Dampfsäule wird das Ende der Säule aufgrund der geringeren Dampfdichte nach oben weggebogen, wobei zumindest bei grossen Dampfleistungen und damit langen Dampfsäulen Dampfblasen aus den Säulen herausgerissen werden und kavitieren können.According to FIG. 7, a tube condenser can also be operated for heating without forced circulation. Cooler liquid is drawn in through the openings 61 at the bottom of the housing 62, into which the heat exchange elements 63 open at the top extend, by steam injection via the flange 60. There is a convection flow. Here, too, stable steam columns can be formed, which extend upwards into the liquid from the heat exchange elements 63. In order to avoid the formation of eddies, which could tear bubbles out of the steam columns, steam and liquid flows should always be routed in parallel near the ends of the heat exchange elements. The steam should flow into the liquid as vertically as possible. In the case of a horizontal steam column, the end of the column is bent upward due to the lower vapor density, steam bubbles being torn out of the columns and being able to cavitate, at least in the case of large steam outputs and thus long steam columns.

Claims (3)

1. Method for the low-noise introduction of large quantities of steam into a flowing liquid in order to heat the latter, wherein the steam is conducted through heat exchange elements of a heat exchanger wherein the liquid at least at the outlet end of the heat exchange element or elements is conducted substantially axially parallel to said element or elements, characterised in that the steam and the liquid are subjected to such temperature and flow conditions that the issuing steam extends into the liquid parallel to the flow and in the form of coherent stable columns of steam extending downstream from the heat exchange elements.
2. Apparatus for carrying out the method according to Claim 1, with a heat exchanger which has heat exchange elements and in which the liquid at least at the outlet end of the heat exchange element or elements is conducted substantially axially parallel to the said element or elements, characterised in that the heat exchange surface and the openings of the heat exchange element or elements (3, 46, 63) are so constructed that the issuing steam extends into the liquid parallel to the flow and in the form of coherent stable columns of steam (8) extending downstream from the heat exchange elements (3, 46, 63).
3. Apparatus according to Claim 2, characterised in that the steam columns (8) extend vertically into the liquid.
EP82107213A 1981-08-12 1982-08-10 Open condenser Expired EP0072020B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813131785 DE3131785A1 (en) 1981-08-12 1981-08-12 OPEN CAPACITOR
DE3131785 1981-08-12

Publications (2)

Publication Number Publication Date
EP0072020A1 EP0072020A1 (en) 1983-02-16
EP0072020B1 true EP0072020B1 (en) 1985-01-16

Family

ID=6139111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82107213A Expired EP0072020B1 (en) 1981-08-12 1982-08-10 Open condenser

Country Status (2)

Country Link
EP (1) EP0072020B1 (en)
DE (2) DE3131785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105387515A (en) * 2015-12-22 2016-03-09 杨金伟 Pressureless smart hot water supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222606B (en) * 2015-09-22 2017-03-29 江苏中圣压力容器装备制造有限公司 A kind of efficient flashed vapour(BOG)After-condenser

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE711432C (en) * 1938-07-22 1941-10-01 Karl Meienberg Surface capacitor
DE1451129A1 (en) * 1964-09-03 1969-05-14 Brown Boveri Krupp Reaktor Process for the simultaneous cooling of mixtures of condensable vapors and non-condensable gases
DE2102744A1 (en) * 1971-01-21 1972-08-03 Fritz Voltz Sohn Heat exchanger - with flattened oval heat transfer tubes
DE2336632C3 (en) * 1973-07-18 1978-03-23 Metallgesellschaft Ag, 6000 Frankfurt Heat exchange device
DE2439562A1 (en) * 1974-08-17 1976-02-26 Bayer Ag Steam condensate heated heat exchanger - has expansion pipes delivering expanded condensate directly into water to be heated
DE2511763A1 (en) * 1975-03-18 1976-10-07 Mueller Ruediger E Dipl Ing Steam condensation by blowdown into water as small bubbles - created by water sucked into steam flow by ejector effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105387515A (en) * 2015-12-22 2016-03-09 杨金伟 Pressureless smart hot water supply system

Also Published As

Publication number Publication date
EP0072020A1 (en) 1983-02-16
DE3131785A1 (en) 1983-03-03
DE3261959D1 (en) 1985-02-28

Similar Documents

Publication Publication Date Title
DE1501620A1 (en) Improvements from heat exchangers
DE2532978C3 (en) Heat transfer system
DE2512233A1 (en) Hot water boiler with calorifier - has economiser using intermediate water moving in counterflow as heat transfer medium (NL220976)
EP0160161A1 (en) Heat exchanger for cooling gases
DE2722288A1 (en) PLATE-SHAPED EVAPORATOR
DE69300289T2 (en) Device for cleaning exhaust gases.
EP0072020B1 (en) Open condenser
DE3208467A1 (en) CONVECTION HEATER FOR HEATING FLUIDA, E.g. A SLAVE OR THE LIKE
DE1767207A1 (en) Distillation plant
DE3636491C2 (en) Wort boiling device
DE1792139A1 (en) Multi-stage flash evaporator for the distillation of sea water or the like.
DE8429525U1 (en) DEVICE FOR EXCHANGING THE WARMTH BETWEEN TWO GASES LEADING IN A CROSS FLOW
EP0084846B1 (en) Heat exchanger for operating a boiler installation for superheated steam
DE8109822U1 (en) APPARATUS FOR WARMING UP A LIQUID
DE3121297C2 (en) Device for regulating the temperature of a corrosive gas, in particular synthesis gas
DE3014831C2 (en)
EP1059486B1 (en) Method and steam generator for recovering heat from hot process gases
DE1619703B2 (en) Discontinuous desublimator and method of operating the same
DE19503506C2 (en) Device for using heat and / or liquid quantities from gas and liquid flows on steam generators
DE3920321C2 (en)
DE29503589U1 (en) Evaporator
EP1025399B1 (en) Device for injecting steam into flowing water in order to heat the water
DE3818819C2 (en) Heat transfer device
DE2256633A1 (en) STEAM GENERATOR
DE2121473A1 (en) Tubular heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19830811

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19850116

REF Corresponds to:

Ref document number: 3261959

Country of ref document: DE

Date of ref document: 19850228

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: STOLCO STOLTENBERG-LERCHE & CO. KG

Effective date: 19851016

NLR1 Nl: opposition has been filed with the epo

Opponent name: STOLCO STOLTENBERG-LERCHE & CO. KG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860831

Year of fee payment: 5

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 19870301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870831

Ref country code: CH

Effective date: 19870831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910624

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: DA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950717

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010704

Year of fee payment: 20