EP1019550A1 - Verfahren zur materialflussbestimmung und -steuerung von stranggegossenen brammen - Google Patents

Verfahren zur materialflussbestimmung und -steuerung von stranggegossenen brammen

Info

Publication number
EP1019550A1
EP1019550A1 EP98958181A EP98958181A EP1019550A1 EP 1019550 A1 EP1019550 A1 EP 1019550A1 EP 98958181 A EP98958181 A EP 98958181A EP 98958181 A EP98958181 A EP 98958181A EP 1019550 A1 EP1019550 A1 EP 1019550A1
Authority
EP
European Patent Office
Prior art keywords
slab
temperature
material flow
determining
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP98958181A
Other languages
German (de)
English (en)
French (fr)
Inventor
Wilfried Modrow
Uwe Quittmann
Wolfgang Sauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7845173&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1019550(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1019550A1 publication Critical patent/EP1019550A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/466Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a non-continuous process, i.e. the cast being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/005Control of time interval or spacing between workpieces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Definitions

  • the invention relates to a method for material flow determination and control of continuously cast slabs, in particular steel slabs by means of temperature tracking and optimization on their transport route between the continuous casting plant and the rolling mill.
  • the solidified slab leaving the caster goes through different transport and process routes, each of which leads to different slab temperature profiles. Depending on whether the slab is transported with or without thermal insulation on a roller table, whether one or more slabs are stored in the stack, whether it is an open one
  • the convective mixing of the amount of heat contained in the slab and the time-dependent heat emission of the inhomogeneously cooling slab to the respective surrounding medium is calculated using a mathematical-physical model and the result of the calculation, possibly together with the measured surface temperature of the slab, is used to control the material flow in an existing slab tracking system
  • a preferred embodiment of the method according to the invention provides that the two-dimensional finite element method is used to calculate the mathematical-physical model. Finite-element calculation methods allow the simulation of a wide variety of processes; it serves to support constructive developments, processing, sales and, in the present case, also the future system operator. The method is often used in design to identify and minimize possible risks through structural mechanical analyzes.
  • Simulations based on finite element calculations are often requested by plant operators in the project phase and are included in the contract for the supply of the plant as a fixed part of the contract.
  • the two-dimensional finite element method, the finite difference method or a software with formulas derived from off-line studies are used to calculate the mathematical-physical model.
  • a universal commercial finite element package can be used in offline studies. This is probably too big and slow online. Therefore, a method (this can also be a finite element method or the finite difference method) should be used, ie programmed, which is specially adapted to the slab geometry (rectangular) and is therefore fast enough.
  • the online procedure can be checked with the offline finite element package.
  • the temperature-dependent material value density p, the specific heat c P ⁇ , the thermal conductivity ⁇ and scale properties are preferably used as physical parameters of the slab.
  • the invention advantageously enables by means of the mathematical-physical model, preferably with a finite element simulation or finite element simulation.
  • the mean slab temperatures can be estimated later by measuring the surface temperature.
  • the result of the method according to the invention can be used to make statements as to how many hours a specified mean slab temperature is maintained in the finishing line; statements can be made about the entire temperature spectrum in the slab tracking system. It has been shown that the method according to the invention and the one described
  • the method is very flexible to use and is suitable for solving the problem according to the invention, for enabling the economical and safe material flow between the continuous casting plant and the rolling mill.
  • the invention can replace the previous control of the slabs based on experience and empirical values.
  • the systems no longer need to be oversized for safety reasons; because with the method according to the invention it is now possible to determine and master the actual conditions in the material flow between the continuous casting plant and the rolling mill.
  • the simulation can be broken down as follows:
  • the solidification of the slab in the strand is simulated in the holding pit in order to generate a realistic input temperature profile for the slabs.
  • the material density, specific heat and thermal conductivity are temperature-dependent.
  • a convective heat exchange also takes place in the liquid phase, but this was not modeled.
  • the thermal conductivity was increased by a factor of 100 compared to the solid phase.
  • An important boundary condition is the different water cooling in the areas of the primary and secondary cooling zones.
  • the temperature range of possible surface temperatures is divided into sections of different heat transfer types (stable film evaporation, unstable area, burn-out point, etc.) because different approaches for the heat transfer value apply to these areas.
  • the transition value also depends on the material value of the surface of the cooling body, which in the present case applies in particular to heavily scaled surfaces where the material values of scale are to be used.
  • the simulation of the slab stack begins with the introduction of the first slab into the holding pit. After that, the next slab is stacked on the previous one every 60 seconds their own weight the curvature of the top hot slab
  • the corresponding elements of this slab are activated and the finite element simulation is already carried out for this slab in the holding pit.
  • the second slab follows and the elements of the slab two are activated. This procedure proceeds analogously until the storage of the last cold slab Now the simulation of the entire slab stack in the holding pit begins.
  • the essential boundary conditions here are also the heat transfer coefficients between the slab surfaces and the surrounding area. With the exception of the lower contact surface, the surface of the
  • the air convection is calculated with special functions, because the heat transfer values of different strengths result for the horizontal and vertical surfaces. At high temperatures, these are still small compared to the heat transfer values of the radiation, but at low temperatures they become dominant. Furthermore, the ambient temperature is calculated by the Wide hall area or the walls of the holding pit on These can be seen from a representative stack but only in a certain solid angle section, in the other solid angle sections there are neighboring stacks that have a similar temperature
  • the bottom horizontal surface of the stack is in contact with the hall floor.You could include the hall floor yourself in the Fmite element calculation.You can also simply model the hall floor as a semi-infinite body, which constantly remains at its initial temperature, at which one then time-dependent heat transfer value exists
  • the temperature profile can now be determined over the cross section of the slab or the stack of slabs Reintegration into the material flow between the caster and the rolling mill for a steel slab should have an average slab temperature between 500 and 600 ° C.
  • the first slab still has the temperature profile corresponding to the exit from the caster.
  • the end of the stacking process it can be seen that there is a more homogeneous temperature distribution in the stack if the floor is properly insulated.
  • the top slab in the stack loses a relatively large amount of heat in the first hour when the cold slab is laid on, and the bottom slab in the stack cools down considerably over a very short period of time until the floor has an insulating effect.
  • the method according to the invention enables economical and safe control of the individual slabs between the continuous casting plant and the rolling mill.
  • Control measurements on the surface of the slab taking into account the values obtained by the calculation model, make it easy to deduce the amount of heat and the temperature profile of the slab, provided the corresponding boundary conditions are included. In this way, it can be determined at any location between the continuous casting plant and the rolling mill, and in particular in storage locations, which amount of heat can be allocated to the respective slab and which
  • the invention provides the technician involved in the implementation with a means of optimally designing the system so that it is economical to manufacture and operate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Feedback Control In General (AREA)
EP98958181A 1997-10-02 1998-09-22 Verfahren zur materialflussbestimmung und -steuerung von stranggegossenen brammen Ceased EP1019550A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19744815A DE19744815C1 (de) 1997-10-02 1997-10-02 Verfahren zur Materialflußbestimmung und -steuerung von stranggegossenen Brammen
DE19744815 1997-10-02
PCT/DE1998/002915 WO1999018246A1 (de) 1997-10-02 1998-09-22 Verfahren zur materialflussbestimmung und -steuerung von stranggegossenen brammen

Publications (1)

Publication Number Publication Date
EP1019550A1 true EP1019550A1 (de) 2000-07-19

Family

ID=7845173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98958181A Ceased EP1019550A1 (de) 1997-10-02 1998-09-22 Verfahren zur materialflussbestimmung und -steuerung von stranggegossenen brammen

Country Status (10)

Country Link
EP (1) EP1019550A1 (zh)
JP (1) JP2001519474A (zh)
KR (1) KR20010072534A (zh)
CN (1) CN1094983C (zh)
AU (1) AU1432899A (zh)
BR (1) BR9812707A (zh)
CA (1) CA2305401A1 (zh)
DE (1) DE19744815C1 (zh)
TW (1) TW409083B (zh)
WO (1) WO1999018246A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372950C (zh) * 2004-05-28 2008-03-05 上海宝信软件股份有限公司 一种控制带钢温度的方法
CN100371097C (zh) * 2005-05-26 2008-02-27 上海宝信软件股份有限公司 多料流跟踪的控制方法
DE102011077322A1 (de) * 2011-06-09 2012-12-13 Sms Siemag Ag Verfahren zur Verarbeitung eines stranggegossenen Materials
CN102393722B (zh) * 2011-11-14 2013-01-09 北京首钢自动化信息技术有限公司 一种用于轧钢厂物料信息化管理的监控方法
CN102416456B (zh) * 2011-12-14 2013-12-04 武汉钢铁(集团)公司 板坯连铸二次冷却控制系统与方法
US9716399B2 (en) * 2014-05-07 2017-07-25 Fairchild Korea Semiconductor Ltd. Vehicle charger
EP3017887B1 (en) * 2014-11-04 2021-05-19 Primetals Technologies Italy S.R.L. Method for minimizing the global production cost of long metal products

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3901582A1 (de) * 1989-01-20 1990-08-02 Schloemann Siemag Ag Stranggiessanlage
DE19508476A1 (de) * 1995-03-09 1996-09-12 Siemens Ag Leitsystem für eine Anlage der Grundstoff- oder der verarbeitenden Industrie o. ä.
DE19545101C2 (de) * 1995-12-04 2001-10-04 Siemag Transplan Gmbh Verfahren und Vorrichtung zum Abkühlen von Hütten- und Walzwerkserzeugnissen
DE19603233C1 (de) * 1996-01-30 1997-03-13 Wick Hans Joachim Dr Ing Verfahren zur Bestimmung des Temperaturprofils im Nutzgut bei Prozessen der Metallindustrie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9918246A1 *

Also Published As

Publication number Publication date
CN1272887A (zh) 2000-11-08
BR9812707A (pt) 2000-08-22
WO1999018246A1 (de) 1999-04-15
JP2001519474A (ja) 2001-10-23
CN1094983C (zh) 2002-11-27
CA2305401A1 (en) 1999-04-15
TW409083B (en) 2000-10-21
KR20010072534A (ko) 2001-07-31
AU1432899A (en) 1999-04-27
DE19744815C1 (de) 1999-03-11

Similar Documents

Publication Publication Date Title
EP1289691B1 (de) Verfahren zum stranggiessen eines metallstranges
EP3184202B1 (de) Verfahren zum stranggiessen eines metallstranges
DE69736208T2 (de) Verfahren und Vorrichtung zur Herstellung von heizgewalztem Stahlband
WO2005068109A1 (de) Verfahren und einrichtung zum bestimmen der lage der sumpfspitze im giessstrang beim stranggiessen von flüssigen metallen, insbesondere von flüssigen stahlwerkstoffen
EP1444059A1 (de) Steuerverfahren für eine einer kühlstrecke vorgeordnete fertigstrasse zum walzen von metall-warmband
DE19612420C2 (de) Verfahren und Einrichtung zur Steuerung der Kühlung eines Stranges in einer Stranggießanlage
EP2094410A1 (de) Verfahren zur nachverfolgung des physikalischen zustands eines warmblechs oder warmbands im rahmen der steuerung einer grobblechwalzstrasse zur bearbeitung eines warmblechs oder warmbands
DE3016142A1 (de) Regelverfahren und -system fuer einen brammenwaermofen
DE102016207692A1 (de) Vorrichtung und Verfahren zum Steuern der Liefertemperatur eines Warmwalz-Fertigwalzwerks
DE1752549A1 (de) Verfahren und Vorrichtung zum Kuehlen von gewalzten Metallstreifen
DE4417808C2 (de) Verfahren zum Stranggießen eines Metallstranges
DE19744815C1 (de) Verfahren zur Materialflußbestimmung und -steuerung von stranggegossenen Brammen
DE102019208736A1 (de) Verfahren zum Gießen eines Gießstrangs in einer Stranggießanlage
DE112011104849B4 (de) Verfahren zur Regelung einer Temperatur eines Strangs durch das Positionieren einer verfahrbaren Kühldüse in einer Strangführung einer Stranggießanlage
EP1111074B1 (de) Verfahren und Vorrichtung zum Abkühlen von warmgewalzten Profilen
EP0943382A1 (de) Verfahren und Vorrichtung zur Kontrolle des Wärmestromes einer Kokille beim Stranggiessen von Brammen
DE102009048567B4 (de) Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage
WO2014063671A1 (de) Verfahren zur thermomechanischen behandlung von warmgewalzten profilen
DE19717615A1 (de) Verfahren und Einrichtung zur Kühlung von Metallen in einem Hüttenwerk
DE102022203248A1 (de) Verfahren zum Herstellen eines Metallproduktes
DE19603233C1 (de) Verfahren zur Bestimmung des Temperaturprofils im Nutzgut bei Prozessen der Metallindustrie
DE2808771A1 (de) Verfahren zum regeln eines erwaermungsofens fuer stahlbloecke
EP0266302A1 (de) Kühlaggregat und Verfahren zum Abkühlen walzwarmen Walzguts, mit/ohne Direktpatentieren, in Druckwasser
CN111199119B (zh) 连铸异形坯坯头温度模拟方法
DE102021213238A1 (de) Verfahren zum Herstellen eines Gießstrangs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 20010412

APAB Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20040707

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE