EP1018597B1 - Charged two or four stroke internal-combustion engine - Google Patents

Charged two or four stroke internal-combustion engine Download PDF

Info

Publication number
EP1018597B1
EP1018597B1 EP00400004A EP00400004A EP1018597B1 EP 1018597 B1 EP1018597 B1 EP 1018597B1 EP 00400004 A EP00400004 A EP 00400004A EP 00400004 A EP00400004 A EP 00400004A EP 1018597 B1 EP1018597 B1 EP 1018597B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
compressor
piston
engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00400004A
Other languages
German (de)
French (fr)
Other versions
EP1018597A1 (en
Inventor
Daniel Drecq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9900093A external-priority patent/FR2788306B1/en
Application filed by Individual filed Critical Individual
Publication of EP1018597A1 publication Critical patent/EP1018597A1/en
Application granted granted Critical
Publication of EP1018597B1 publication Critical patent/EP1018597B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/20Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with pumping-cylinder axis arranged at an angle to working-cylinder axis, e.g. at an angle of 90 degrees
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/06Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Definitions

  • the present invention relates to a compressed engine with two or four-stroke internal combustion with one or several cylinders, and operating by admission of fuel mixture or by admission of fresh air with direct or indirect injection of fuel.
  • the invention applies equally well to the gasoline engine equipped spark plugs, to the diesel engine whose ignition is obtained by compression.
  • the mixing inlet lights open substantially at the same time as the exhaust lights, so that about 20% of the mixture is directly discharged to the exhaust, causing high fuel consumption and pollution atmospheric.
  • the main advantage of this engine is its low cost, but the new anti-pollution standards condemn, ultimately, this type engine.
  • Another known engine is the loop-scan type, which works with a volumetric compressor, for example of the type Roots, to facilitate the introduction of the fuel mixture into the cylinder and generate supercharging at low pressure.
  • This engine features also a pipe of admission of the mixture and a pipe exhaust pipes, both of which open lights in the lower part of the cylinder.
  • the mixture fuel is admitted into the cylinder from the compressor, with a orientation such that the mixture undergoes rotational movement looping ascending, like a looping, in the cylinder, while the burned gases from the previous cycle are removed by the exhaust lights.
  • the particular arrangement of the lights intake and exhaust makes it possible not to send directly to the exhaust part of the admitted mixture, which reduces at a time consumption and pollution of the environment.
  • Yet another known engine is of the "uniflow" type which also works with a volumetric compressor.
  • This engine has an intake pipe connected upstream to the compressor and downstream to an intake crown that leads through a plurality lights in the lower part of the cylinder, with an orientation such that the mixture is introduced with a large rotational movement.
  • the burnt gases are evacuated at the top of the cylinder through one or several exhaust valves.
  • This type of engine allows check the filling of the cylinder and the possible recycling of the gases burned to achieve cleaner combustion. Otherwise, when this type of engine runs on diesel, the introduction of air in the lower part of the cylinder makes it possible to obtain a very strong movement of rotation of the air, which is necessary to obtain a good performance.
  • This engine makes it possible to consume even less fuel than the loop scanning motor and also reduces polluting emissions to the outside.
  • these last two types of motor have a cost superior to the crankcase transfer motor because they have more of organs, in particular the compressor, and in addition, for the engine uniflow, a valve control.
  • the compressors Roots type have low efficiency, for example an engine two-stroke single cylinder having a displacement of one liter and one power of 55kW, consume 17kW to drive the compressor.
  • a Roots compressor does not operate beyond a pressure above 1.2 bar.
  • WO-A-9 318 287 discloses an engine according to the preamble of claim 1.
  • the object of the invention is to propose a compressed engine to internal combustion with two or four strokes, for example Loop sweep, uniflow or valve, or four-stroke to which improves performance and reduces polluting emissions.
  • the subject of the invention is a combustion engine internal device according to claim 1.
  • the angle of the dihedron whose edge is formed by the axis of the crankshaft and whose two half-planes extend respectively to the eccentric and the crankpin, is of the order of 90 ° to obtain a phase shift between the top dead centers (TDC) of the engine piston and compressor piston associated with the same cylinder, phase shift which ensures maximum pressure in the chamber compression prior to admitting the fuel mixture or fresh air in the combustion chamber.
  • TDC top dead centers
  • the displacement of the compressor is of the order of the size of the cylinder, but with a compressor piston having a diameter significantly greater than the diameter of the engine piston, to obtain a low compression stroke of the piston of compressor in the compression chamber.
  • the chamber of compression is two stages located on either side of the piston of compressor, a first stage being supplied with a fuel mixture or fresh air through a first non-return valve or valve, and connected by a discharge pipe provided with a second non-return valve or a valve, on the second floor which communicates with the cylinder by an intake manifold possibly equipped with a third valve anti-return or a valve.
  • a compressor with two stages allows to obtain a higher boost pressure in the cylinder.
  • the volumetric ratio of the cylinder may be reduced so as not to reach maximum pressure of combustion which is incompatible with the mechanical strength of the cylinder.
  • the engine equipped with this two-stage compressor will work similarly to the known supercharging system of type hyperbar.
  • the two-stroke engine of the invention can also be equipped with a device for recovering energy from puffs Exhaust and partial recirculation of exhaust gas providing an additional volume communicating with the cylinder to through means of closing and opening, whose movements are controlled synchronously or out of phase with those of the piston in the cylinder, so that during the relaxation phase, the flue gases compress the air in the additional volume penetrating at least partially, that this mixture air and gas burned be trapped under pressure, then that mixture is admitted into the cylinder during the compression phase.
  • said additional volume is again filled with fresh air in from the compressor.
  • the sealing means and mentioned above comprise two rotary shutters, for example rotary bushels with several lanes, interconnected by the additional volume, one of the shutters being associated with the compressor and the other shutter at the exhaust of the cylinder.
  • the two rotary shutters are arranged way that the following operations occur: in a first time, when the engine piston is in the vicinity of its TDC, a airflow from the compressor passes through the lower shutter associated with the compressor, sweeps the additional volume, crosses the upper shutter associated with the exhaust and escapes to the outside by an exhaust manifold; in a second time, from about half of the expansion stroke of the engine piston, on the one hand, the upper shutter communicates the cylinder with the additional volume to fill it with an air and gas mixture burned under pressure, and secondly, the cylinder communicates with the exhaust; in a third time, the upper shutter trap the mixture of air and gas burned in the additional volume; in one fourth time, the air coming from the compressor is admitted into the cylinder, and in a fifth time, at the beginning of the race of compression of the engine piston, the mixture entrapped and under pressure is admitted into the cylinder.
  • the upper shutter is associated with at least one exhaust valve located at the top of the cylinder and the lower shutter is connected to the cylinder by a pipe arranged in the lower part of the cylinder, so that the additional volume is set under pressure by its upper end by means of flue gases from the exhaust valve through the shutter higher, and is emptied into the cylinder by its lower end to through the lower shutter.
  • the upper shutter is connected to the cylinder by a pipe arranged at the bottom of the cylinder and the lower shutter is interposed on the discharge pipe between the two stages of the compressor, so that the volume additional amount is pressurized using the flue gases from of the cylinder through the upper obturator and be emptied into the cylinder by the pipe connected to the upper shutter.
  • the intake pipe towards the cylinder and / or the pipe of discharge of the two-stage compressor is cooled by all means appropriate.
  • the two-stroke engine may be of the loop scan type, in which the fuel mixture or the fresh air is admitted from the compressor through an intake manifold opening through lights at the bottom of the cylinder with an orientation such that the mixture or the air is introduced with an upward rotating movement in a loop, while the flue gases of the previous cycle are discharged by exhaust lights also arranged in the lower part of the cylinder.
  • the two-stroke engine can still be of the uniflow type, in which the fuel mixture or the air is admitted in the lower part of the cylinder through intake lights distributed at the base of the cylinder and fed by a ring itself connected to the compressor, then that the burned gases from the previous cycle are discharged through one or several exhaust valves provided at the top of the cylinder.
  • the two or four stroke engine can be of the type to exhaust and intake valves, in which the valves are at the top of the cylinder and the intake valve (s) are powered by the compressor.
  • the invention also applies to a multi-type motor cylinders, in which the compressors associated with each cylinder are alternately arranged on each face of the housing cylinder.
  • Figures 1 to 9 show various variants useful for understanding the invention applied to an internal combustion engine 1 single cylinder to two time and loop scan.
  • the 1 comprises a cylinder 1 defined between the cylinder block 2 and the cylinder head 3 of the engine.
  • the breech 3 has a recess 3a in upper part of cylinder 1 to define a combustion chamber because the proposed representation is that of a gasoline engine.
  • the invention can be applied equally well to a diesel engine with direct injection or indirect.
  • a piston of engine 4 which defines a combustion chamber 5 inside the cylinder 1 between the cylinder head 3 and the piston 4.
  • the engine piston 4 is provided at its periphery with sealing segments 6 shown on the Figure 1.
  • a rod 7 is articulated by its small end 7a to the piston 4 and by its connecting rod head 7b at the crankpin 8 of a crankshaft 9.
  • An eccentric 10 is mounted on the crankshaft 9 and articulated on a rod 11 which is rigidly fixed in the center of a compressor piston 12 in the form of a disc.
  • the piston of compressor 12 has at its periphery a spherical border 12a provided with a sealing segment 13 also with a spherical edge, which is immobilized in rotation with respect to the compressor piston, in a position such that the slot of the segment 13 is not placed in lower part of the housing 2.
  • the compressor piston 12 moves alternatively by tilting inside the chamber of compression 14a of a single-stage compressor 14 attached to the housing 2.
  • the compression chamber 14a of the compressor 14 is supplied with fuel mixture or fresh air through a suction pipe 15 equipped with a non-return suction valve 15a.
  • the fuel mixture or the pressurized fresh air is discharged from the compressor 14 to a intake pipe 16 provided with a non-return check valve 16a.
  • the intake pipe 16 opens at the bottom of the cylinder 1 by a plurality of lights 17 which have an orientation such that that the mixture or air under pressure is introduced with a movement of ascending rotation in a loop in the cylinder in the manner of a looping.
  • the cylinder 1 is further provided with one or more pipes exhaust 18 which open at the bottom of the cylinder, substantially at the same level as the intake ports 17.
  • the eccentric 10 is shifted by one angle ⁇ of the order of 90 ° with respect to the crankpin 8, in the direction of rotation of the crankshaft, as indicated by the arrow F, so that the TDC of the engine piston 4 is 180 ° out of phase with the TDC of the compressor piston 12.
  • the axis of the rod 11 of the compressor 14 is shifted by a distance d relative to the axis of the connecting rod 7 of the engine piston 4.
  • the cylinder capacity of the cylinder 1 is substantially of the same order of magnitude than the compressor's capacity 14, but the piston of compressor 12 has a diameter much greater than that of the engine piston 4, so that the compression stroke c of the piston compressor 12 is relatively low.
  • the intake pipe 16 may be provided with a heat exchanger 19, conveying a refrigerant, for example water, or fresh air can be blown for a motor to air cooling, for cooling the air leaving the compressor 14, which makes it possible to increase the air mass admitted into the cylinder 1, especially as the compression of air in the compressor 14 releases a large amount of heat.
  • a refrigerant for example water
  • fresh air can be blown for a motor to air cooling, for cooling the air leaving the compressor 14, which makes it possible to increase the air mass admitted into the cylinder 1, especially as the compression of air in the compressor 14 releases a large amount of heat.
  • the cooling of the intake pipe 16 is optional.
  • crankpin 8 of the crankshaft 9 is provided opposite to the small end 7b a counterweight 20 which serves as a counterweight.
  • the engine piston is at the end of compression, at its PMH, while the compressor piston 12 is at its PMB, that is to say in its rightmost position in Figure 2A.
  • the engine piston descends, as shown in the figure 2B, after a rotation of about 90 ° of the crankshaft 9, which causes simultaneously the tilting of the compressor piston 12 around its upper portion, thus generating a first compression in the compression chamber 14a.
  • the engine piston 4 arrives at his PMB, simultaneously discovering the tubing exhaust 18 and the intake ports 17, after a rotation additional 90 ° of the crankshaft 9.
  • the piston of 12 compressor rocking around its lower portion to reach its leftmost maximum compression position in the chamber compression 14a, which causes the admission of air or carburetted mixture under pressure in the combustion chamber 5, thus flushing the exhaust gases and filling the cylinder.
  • the engine piston is shown in FIG. of its compression phase, after an additional rotation of 90 ° crankshaft, which closes both the exhaust and the intake and causes the compressor piston 12 to tilt around its upper portion, and thus a first relaxation of the chamber of compression 14a, the fresh air or the fuel mixture being sucked by the suction pipe 15, because of the depression thus generated in room 14a.
  • the eccentric 10 is formed by a disc mounted eccentrically on the shaft of crankshaft 9.
  • This compressor piston 112 also has at its periphery a sealing segment and comprises at its center a rod 121 rigidly attached to the compressor piston 112 and articulated to its free end to the rod 11 of connection with the eccentric 10.
  • the rod 121 is guided in translation by a guide sleeve 122 which is connected to the casing 2 by a vertical partition 123.
  • the sleeve 122 can be equipped internally with a sealing ring crossed by the rod 121, or alternatively a sealing bellows S can be connected between the rod 121 and said vertical partition 123, which eliminates any risk of oil passing between the crankcase and the compressor.
  • FIGS. 5 to 7 it can be seen that the cylinder 1 as well as the compressor 14 are provided with cooling fins 21.
  • a spark plug 22 At the top of the cylinder 1 is arranged a spark plug 22.
  • the motor M1 is constituted here of a first block which forms the cylinder 1, a second block which forms the casing 2 and a third block that forms the compressor 14.
  • the compressor piston 112 in the form of rigid disk can be replaced by a membrane deformable 212 whose periphery is fixed between the second and third blocks mentioned above.
  • a corrugation 212a may be provided in the vicinity of its periphery, as shown in Figure 6A.
  • the rod 121 connects the center of the deformable membrane 212 to an articulated cross member 124 whose free ends slide in a groove 125 provided in the casing 2 and are each connected to two arms 111, which extend from on either side of the axis of the compressor 14.
  • the connecting rod the eccentric is thus formed by the whole of the crossbar 124 and two arms 111.
  • the two arms 111 of the link are each mounted on a disk 10 which is respectively mounted eccentrically on the shaft 9 of the crankshaft between the side wall of the housing 2 and an arm of the crank pin 8.
  • Needle roller bearings 22 to 24 are respectively provided at the free ends of the cross member 124, between each link arm 111 and the eccentric disc 10, and at the level of the shaft 9. However, if the rotation is slow enough, these bearings can be replaced by ball bearings or by slip rings.
  • the axis of the piston of compressor is centered on the axis of the engine piston, unlike the variant of the tilting compressor piston of Figures 1 to 3.
  • the operating cycle of this engine including the piston of compressor is mounted with a tie rod, is substantially the same as that of the tilting piston engine.
  • the cross member 124 moves in rectilinear translation in the grooves 125, which causes the displacement of the rod 121 which causes a deformation of the membrane 212.
  • the 4 engine piston is at its PMH, and the diaphragm is deformed into bending to the right towards the crankshaft.
  • the engine piston is halfway through its relaxation phase, and the membrane 212 is in a substantially flat, vertical position.
  • the engine piston 4 is at its PMB, and the diaphragm 212 is deformed in flexion to the left, opposite the crankshaft.
  • the engine piston 4 is halfway in its upward stroke of compression, and membrane 212 is again in a flat position, at rest.
  • the motor shown in FIGS. comprises a cylinder 1 having a diameter of about 42 mm and a useful stroke of 38 mm for the engine piston 4, and a compressor 14 having a diameter of 80 mm, with a useful stroke of about 8.5 mm for the compressor piston 212.
  • the variant illustrated in Figure 8 differs from the variant represented in FIG. 4, essentially by the fact that compressor 14 has a two-stage compression chamber 14a and 14b.
  • the first stage 14b is formed between the partition 123 and the compressor piston 112, while the second stage 14a is formed on the other side of the compressor piston 112.
  • the first stage 14b comprises in the upper part a suction pipe 115 provided with a check valve 115a.
  • This first stage 14b is crossed by the rod 121 of the compressor piston 112.
  • an intermediate discharge pipe 130 which communicates in the lower part of the second stage 14a of the compressor 14.
  • This intermediate discharge pipe 130 is provided with a check valve 130a and a cooling system 19.
  • the second stage 14a of the compressor 14 communicates in the upper part with the intake manifold 16, similarly to the compressor single stage described in Figures 1 to 7.
  • valves 115a, 130a and 16a of the compressor 14 and the valves 118a and 217 of the motor can be advantageously replaced by mechanically or electronically controlled valves or hydroelectronics, which can be managed by a calculator digital technology, in order to drive on demand all the motor parameters, to know the compression ratio in the compressor and / or in the engine cylinder, as well as the relaxation rates.
  • Figure 8 shows a compressor piston 112 in hard plane disk shape, it could just as easily be replaced by a deformable membrane similar to that shown on the Figures 5 and 6.
  • the piston compressor 112 moves to the right, to compress the first stage 14b of the compression chamber, which causes the backflow of air through line 130 to the second floor 14a.
  • the compressor piston 112 moves to the left, causing an overcompression of the air contained in the second stage 14a, which can go back through the pipe 130, because of the non-return valve 130a, and thus escapes to the intake pipe 16 to a pressure higher than that which would be obtained with a compressor mono-floor.
  • a depression is generated in the first stage 14b, which causes the suction of the air from the suction tubing 115.
  • the motor of FIG. 8 is equipped with a device of energy recovery from exhaust puffs and partial recirculation of the exhaust gas, the principle of which is described in detail in the French patent application No. 98-07835 of 22 June 1998 belonging to the present applicant.
  • An additional volume 40 which may have any suitable shape, communicates in the lower part with a pipe 41 which leads to a rotary shutter 42, for example, a bushel turning three tracks, which is interposed on the discharge pipe 130 mentioned above, downstream of the valve 130a. Additional volume 40 communicates also, in the upper part, with a pipe 43 which leads to a second upper rotary shutter 44, for example a bushel three-way, the latter communicating, on the one hand, by a duct 45 in the lower part of the cylinder 1, and, on the other hand, by a pipe 46, with an exhaust manifold (not shown) connected to the exhaust pipe 18 above.
  • a pipe 41 which leads to a rotary shutter 42, for example, a bushel turning three tracks, which is interposed on the discharge pipe 130 mentioned above, downstream of the valve 130a. Additional volume 40 communicates also, in the upper part, with a pipe 43 which leads to a second upper rotary shutter 44, for example a bushel three-way, the latter communicating, on the one hand,
  • the lower bushel 42 communicates the first stage 14b of the compressor 14 with the line 41, while closing the passage to the second floor 14a, while the bushel upper 44 communicates line 43 with the pipe exhaust 46, while closing the passage to the pipe 45 which opens at the bottom of the cylinder 1.
  • the air compressed by the compressor piston 112 in the first stage 14b is evacuated to the exhaust, by sweeping the additional volume 40, the the remainder of the mixture of air and flue gases in this volume 40 thus being evacuated to the outside and replaced by fresh air.
  • bushels 42 and 44 close off all communication, the rotation of the bushels being able to be enslaved to the rotation of the crankshaft 9, or controlled by a central unit of electronic management.
  • the engine piston 4 When the engine piston 4 arrives substantially at the end of relaxation, the engine piston 4 discovers the opening of the pipe 45 and the combustion gases under pressure in the cylinder 1 then escape through this pipe 45 and pass through the shutter 44 to the additional volume 40, the upper shutter 44 being in a closed position of the exhaust pipe 46. Simultaneously, the shutter 42 closes the passage of the pipe 41, so that the flue gases compress the air that is in the additional volume 40 and enter it partially.
  • the engine piston 40 also discovers the exhaust manifold 18, to evacuate the rest of the flue gases, which are driven out by the fresh air under pressure introduced by the intake ports 17 and coming from the second stage 14a of the compressor, under the compression action exerted by the compressor piston 112 which moves to the left.
  • the upper bushel 44 closes any communication and the lower bushel 42 opens the passage between the first and second stages of the compressor, while now closed the passage to Line 41, so that the mixture under pressure air and flue gas, which was in the volume additional 40 is trapped there.
  • the scan of cylinder 1 is ends and the latter begins to fill with fresh air to the high pressure delivered by the compressor 14.
  • the compressor piston 112 When the compression phase begins in the cylinder, the compressor piston 112 represses the compressed air in the first stage 14b to the second stage 14a, through the lower bushel 42 which keeps open the communication of Line 130, while now closed the passage to Line 41. Simultaneously, the upper bushel 44 opens the passage between the additional volume 40 and the cylinder 1, while keeping the passage towards the exhaust pipe 46, so that the air and gas mixture burned that is trapped in volume 40 can escape through pipes 43 and 45 in the cylinder 1, which achieves both a supercharging in cylinder 1 and a recovery of energy from exhaust puffs.
  • exhaust manifold 18 and line 45 are closed by the engine piston 4 and the bushels 44 and 42 are move progressively towards the position that puts in communication the first stage 14b of the compressor with the exhaust 46.
  • the bi-stage compressor 14 presents less effective than in the case of Figure 8, because part of the compression stroke of the first stage 14b of the compressor 14 is used to scan the additional volume 40.
  • the three variants shown respectively in FIGS. 12 correspond to the variants represented in FIGS. 1, 4 and 8 of FIG. looped motor. In these circumstances, the operation of the uniflow M2 motor will be described only once for all of these three variants.
  • intake duct 16 opens on an annular ring 117 surrounding the lower part of the cylinder 1, said ring 117 having a plurality of lights (not shown) that partially open cylinder 1 with an orientation such that air is introduced in the cylinder with a large rotational movement.
  • the exhaust pipe 118 is provided at the top of the cylinder 1 and has at least one valve 118a which is controlled by all adapted way.
  • the one or more 118a exhaust valves are closed, as well as the lights which are blocked by the piston body of the engine. end of expansion of the engine piston 4, the exhaust valve or valves 118a open, to evacuate the burnt gases, and the engine piston 4 discovers the lights of the intake crown 117, so that the compressed air coming from the compressor 14 flushes up the gases burned towards the exhaust. The filling of the cylinder 1 in combustion air continues until the beginning of compression of the piston motor 4, as long as the intake lights remain uncovered by the engine piston 4.
  • the motor M2 is also equipped with a device for recovering energy from puffs exhaust and partial recycling of the exhaust gas.
  • This device comprises an additional volume 140 which is formed by a adapted section pipe communicating at both ends with a rotary shutter 142, 144 which can be constituted by a bushel rotating several ways.
  • the upper bushel 144 communicates, in addition, with the exhaust pipe 118, downstream of the exhaust valve (s) 118a provided at the top of the cylinder 1, and with two other pipes 145 and 146 which end to an exhaust manifold, not shown.
  • the lower bushel 142 communicates, moreover, with a pipe 141 which opens at the bottom of the cylinder 1, above of the intake ring 117, and with the intake pipe 16.
  • the rotary movements of the bushels 142, 144 are linked by in all appropriate ways, known to those skilled in the art and therefore not described, to the rotary motion of the crankshaft 9, in ratio 1/1 or different from 1/1, phased or out of phase with the movement of the crankshaft.
  • the positions of the two stages 14a and 14b of the compressor 14 are reversed relative to the piston of compressor 112.
  • the inlet pipe 16 communicates with the stage 14b which is located between the compressor piston 112 and the vertical wall 123, while the first stage 14a located on the side of the compressor piston 112 opposite the crankshaft 9, is supplied with air through the suction line 115.
  • the operation the compressor 14 is reversed, and the crankpin 8 of the crankshaft must be out of phase with an angle ⁇ of approximately 90 ° with respect to the eccentric 10, in the direction of rotation F of the crankshaft 9.
  • valve 118a or the exhaust valves that are eventually provided are closed as well as bushels 142 and 144.
  • the 118a exhaust valves open and top shutter 144 rotates, for example in the same direction as the crankshaft 9, to make communicate the exhaust pipe 118 with the pipe 140 forming the additional volume.
  • the lower bushel 142a also turned the same amount in the same direction but this did not brought no communication of pipelines. It results that a puff of gas burned under pressure is repressed via the exhaust pipe 118 in the pipe 140, which compresses the air in it while introducing a portion of gas burned, corresponding to the angular period of transfer.
  • FIGS. 14 and 15 show the application of the invention to an M3 engine of the two-stroke single-cylinder type and to exhaust and intake valves.
  • Figures 14 and 15 show two variants that correspond to the variants of FIGS. 10 and 11 of the motor M2 of the type uniflow.
  • the only difference, which is common to both variants, is in that the intake pipe 16 opens at the top of the cylinder 1 where is provided one or more intake valves 217.
  • the operation of this type of engine is similar to the previous ones.
  • an M4 compressor motor is shown two-stage that can be used both for a two-stroke engine than for a four-stroke engine.
  • the elements of this M4 engine which identical to those of the engines previously described, bear the same reference numbers.
  • Figures 18 to 25 show the different phases of the cycle of operation of a four-stroke M4 engine of the type to exhaust and intake valves and single stage compressor comprising a tilting compressor piston.
  • the M4 engine may include one or more cylinders. The four-stroke engine operation will now be described in reference to Figures 18 to 25.
  • the engine piston 4 is at the end of compression, at its PMH, while the compressor piston 12 is at its PMB, that is, in its rightmost position in Figure 18.
  • the intake valve 217 and the exhaust valve 118a are closed, as well as the suction valve 15a and the flap of repression 16a.
  • the angular phase shift between the crankpin 8 and the eccentric 10 is of the order of 90 °, but this phase shift is more precisely calculated according to the efficiency of the compressor and filling rate of the cylinder.
  • the position shown in Figure 18 corresponds to the ignition of the fuel mixture in the chamber of combustion.
  • the chamber 14a of the compressor 14 is filled with fresh air, while the pipeline intake is filled with compressed hot air.
  • crankshaft 9 As illustrated in FIG. 18, the rotation of the crankshaft 9 is done clockwise, illustrated by the arrow F.
  • the chamber of combustion 5 is filled with flue gases that are starting to escape by the exhaust manifold 118, as illustrated by the arrow F2, to following the opening of the exhaust valve 118a which is moves in its lower position as shown in Figure 19.
  • the intake valve 15a remains closed, but the discharge valve 16a opens, allowing compressed air to be forced back into the chamber of compressor 14a to the inlet pipe 16 which already contains compressed air.
  • supercharged air is obtained in the intake duct 16, as illustrated by the arrow F1.
  • the engine piston 4 arrives at its PMB, as illustrated in Figure 20 after rotation of approximately 30 ° additional clockwise as indicated by the arrow F.
  • the compressor piston 12 has finished tilting around its lower portion to reach its position of leftmost maximum compression in the chamber of compression 14a.
  • the inlet valve 15a remains closed and the flap of backflow 16a remains open to finish overcompressing the air in the intake duct 16, as indicated by the arrow F1.
  • the flue gases continue to escape through the tubing exhaust 118, in the direction of the arrow F2.
  • the engine piston 4 during its phase of compression of the combustion chamber, just repress the burnt gases to the exhaust manifold 118.
  • the crankshaft turned about 160 ° further.
  • the compressor piston 12 has tilted around its upper portion, then around its lower portion, to reach a detent position of the compression chamber 14a.
  • the suction valve 15a is open and the discharge valve 16a is closed, to suck air fresh, as indicated by the arrow F3 in the compression chamber 14a.
  • Figure 22 shows the end of the compression stroke of the engine piston 4, for which the crankshaft 9 has made a 360 ° rotation from its initial position shown in the figure 18. In this position, the suction valve 15a has closed, and the two valves 217 and 118a remain open.
  • the arrow F4 indicates the admission of compressed hot air into the combustion chamber.
  • the position of Figure 22 illustrates the second cycle time at four time.
  • the crankshaft 9 has rotated by one twenty additional degrees, to begin the phase of 4.
  • the valve exhaust 118a has closed, but the intake valve remains opened.
  • the discharge valve 16a also opens to push back the fresh air contained in the compression chamber 14a in the intake duct 16, as indicated by the arrow F1.
  • the combustion chamber 5 was filled with hot compressed air from, on the one hand, compressed air contained in the pipe 16 and, on the other hand, the compressed air contained in the compression chamber 14a and discharged by the compressor piston 12, since the discharge valve 16a has remained open. We have thus obtained a double filling of the combustion chamber 5.
  • the different engines of the invention may be equipped with injectors, for direct injection or indirect use of gasoline or diesel, or work with blends starburés.
  • a four-motor M is shown cylinders 1 in line, comprising four compressors 14 of the single-stage type tilting compressor piston, whose rods 11 are offset from the axis of the respective cylinder, the compressors 14 being arranged alternately on each lateral face of the cylinder block 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Supercharger (AREA)
  • Compressor (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

La présente invention concerne un moteur compressé à combustion interne à deux ou à quatre temps, comportant un ou plusieurs cylindres, et fonctionnant par admission de mélange carburé ou par admission d'air frais avec injection directe ou indirecte de carburant. L'invention s'applique aussi bien au moteur à essence équipé de bougies d'allumage, qu'au moteur diesel dont l'allumage est obtenu par compression.The present invention relates to a compressed engine with two or four-stroke internal combustion with one or several cylinders, and operating by admission of fuel mixture or by admission of fresh air with direct or indirect injection of fuel. The invention applies equally well to the gasoline engine equipped spark plugs, to the diesel engine whose ignition is obtained by compression.

Bien que l'invention soit décrite dans la suite plus particulièrement en référence à un moteur monocylindre pour le moteur à deux temps, qui est bien adapté pour toutes les applications des petits moteurs industriels destinés à la motoculture, aux outils de jardin, aux tondeuses à gazon, aux tronçonneuses, aux débroussailleuses ou analogues, l'invention n'y est nullement limitée et elle s'applique également aux moteurs à plusieurs cylindres à deux ou à quatre temps, en ligne ou en V.Although the invention is described in the following more particularly with reference to a single-cylinder engine for the engine two-stroke, which is well suited for all small applications industrial engines intended for the motoculture, garden tools, lawn mowers, chainsaws, brush cutters or the invention is in no way limited and applies also to multi-cylinder engines with two or four strokes, online or in V.

On connaít déjà un moteur monocylindre à deux temps qui fonctionne par aspiration naturelle dans le cylindre d'un mélange carburé qui transite par le carter du cylindre. Ce moteur comporte une canalisation d'admission du mélange air/carburant et une canalisation d'échappement des gaz brûlés, qui débouchent toutes les deux par des lumières en partie basse du cylindre, au voisinage du Point Mort Bas (PMB). Le mélange carburé provenant du carburateur est aspiré dans le carter au travers d'un clapet, lors de la phase ascendante du piston qui engendre une dépression dans le carter, puis est refoulé vers le cylindre, lors de la phase descendante du piston engendrant une surpression dans le carter. Lors de la phase descendante du piston, les lumières d'admission du mélange s'ouvrent sensiblement en même temps que les lumières d'échappement, de sorte qu'environ 20 % du mélange est directement évacué vers l'échappement, ce qui provoque une consommation élevée en carburant et une forte pollution atmosphérique. L'avantage principal de ce moteur est son faible coût, mais les nouvelles normes antipollution condamnent, à terme, ce type de moteur. We already know a two-stroke single-cylinder engine that works by natural aspiration in the cylinder of a mixture carburetor that passes through the cylinder housing. This engine has a intake pipe of the air / fuel mixture and a pipe exhaust gases, both of which emerge through lights in the lower part of the cylinder, in the vicinity of the Low Dead Point (PMB). The carbureted mixture from the carburetor is sucked into the casing through a valve, during the ascending phase of the piston which causes a depression in the crankcase, then is pushed back towards the cylinder, during the downward phase of the piston generating a overpressure in the crankcase. During the downward phase of the piston, the mixing inlet lights open substantially at the same time as the exhaust lights, so that about 20% of the mixture is directly discharged to the exhaust, causing high fuel consumption and pollution atmospheric. The main advantage of this engine is its low cost, but the new anti-pollution standards condemn, ultimately, this type engine.

Un autre moteur connu est du type à balayage en boucle, qui fonctionne avec un compresseur volumétrique, par exemple du type Roots, pour faciliter l'introduction du mélange carburé dans le cylindre et engendrer une suralimentation à basse pression. Ce moteur comporte également une canalisation d'admission du mélange et une canalisation d'échappement, les canalisations débouchant toutes les deux par des lumières en partie basse du cylindre. Dans ce moteur, le mélange carburé est admis dans le cylindre à partir du compresseur, avec une orientation telle que le mélange subisse un mouvement de rotation ascendant en boucle, à la manière d'un looping, dans le cylindre, pendant que les gaz brûlés du cycle précédent sont évacués par les lumières d'échappement. L'agencement particulier des lumières d'admission et d'échappement permet de ne pas envoyer directement vers l'échappement une partie du mélange admis, ce qui réduit à la fois la consommation et la pollution de l'environnement.Another known engine is the loop-scan type, which works with a volumetric compressor, for example of the type Roots, to facilitate the introduction of the fuel mixture into the cylinder and generate supercharging at low pressure. This engine features also a pipe of admission of the mixture and a pipe exhaust pipes, both of which open lights in the lower part of the cylinder. In this engine, the mixture fuel is admitted into the cylinder from the compressor, with a orientation such that the mixture undergoes rotational movement looping ascending, like a looping, in the cylinder, while the burned gases from the previous cycle are removed by the exhaust lights. The particular arrangement of the lights intake and exhaust makes it possible not to send directly to the exhaust part of the admitted mixture, which reduces at a time consumption and pollution of the environment.

Encore un autre moteur connu est du type "uniflow" qui fonctionne également avec un compresseur volumétrique. Ce moteur comporte une canalisation d'admission reliée en amont au compresseur et en aval à une couronne d'admission qui débouche par une pluralité de lumières en partie basse du cylindre, avec une orientation telle que le mélange soit introduit avec un mouvement de rotation important. Les gaz brûlés sont évacués en partie haute du cylindre à travers une ou plusieurs soupapes d'échappement. Ce type de moteur permet de contrôler le remplissage du cylindre et le recyclage éventuel des gaz brûlés, pour obtenir une combustion moins polluante. Par ailleurs, lorsque ce type de moteur fonctionne en diesel, l'introduction de l'air en partie basse du cylindre permet d'obtenir un très fort mouvement de rotation de l'air, ce qui est nécessaire pour obtenir un bon rendement. Ce moteur permet de consommer encore moins de carburant que le moteur à balayage en boucle et permet également de réduire les émissions polluantes vers l'extérieur.Yet another known engine is of the "uniflow" type which also works with a volumetric compressor. This engine has an intake pipe connected upstream to the compressor and downstream to an intake crown that leads through a plurality lights in the lower part of the cylinder, with an orientation such that the mixture is introduced with a large rotational movement. The burnt gases are evacuated at the top of the cylinder through one or several exhaust valves. This type of engine allows check the filling of the cylinder and the possible recycling of the gases burned to achieve cleaner combustion. Otherwise, when this type of engine runs on diesel, the introduction of air in the lower part of the cylinder makes it possible to obtain a very strong movement of rotation of the air, which is necessary to obtain a good performance. This engine makes it possible to consume even less fuel than the loop scanning motor and also reduces polluting emissions to the outside.

Toutefois, ces deux derniers types de moteur ont un coût bien supérieur au moteur à transfert par le carter, car ils comportent plus d'organes, notamment le compresseur, et en outre, pour le moteur uniflow, une commande de soupape. En outre, les compresseurs de type Roots ont un faible rendement, par exemple un moteur monocylindre à deux temps ayant une cylindrée d'un litre et une puissance de 55kW , consommera 17kW pour entraíner le compresseur. Au surplus, un compresseur Roots ne fonctionne pas au-delà d'une pression supérieure à 1,2 bars.However, these last two types of motor have a cost superior to the crankcase transfer motor because they have more of organs, in particular the compressor, and in addition, for the engine uniflow, a valve control. In addition, the compressors Roots type have low efficiency, for example an engine two-stroke single cylinder having a displacement of one liter and one power of 55kW, consume 17kW to drive the compressor. In addition, a Roots compressor does not operate beyond a pressure above 1.2 bar.

On connaít enfin le moteur à soupapes d'échappement et d'admission, qui permet d'obtenir les plus faibles consommations et les émissions polluantes les plus réduites, mais ce moteur est également le plus coûteux car il nécessite de commander à la fois les soupapes d'échappement et d'admission. Le rendement de ce moteur est meilleur car la commande de l'ouverture et de la fermeture des soupapes par des organes extérieurs au cylindre, permet d'utiliser toute la course du piston, alors qu'avec les moteurs précédents où l'admission s'effectue par des lumières, une partie de la course de compression et de la course de détente est perdue.Finally, we know the engine with exhaust valves and of admission, which makes it possible to obtain the lowest consumption and pollutant emissions, but this engine is also the more expensive because it requires to control both the valves exhaust and intake. The efficiency of this engine is better because the control of the opening and closing of the valves by external parts to the cylinder, allows to use the whole race of the piston, whereas with the previous engines where the admission takes place by lights, a part of the compression stroke and the race relaxing is lost.

WO-A-9 318 287 divulgue un moteur conforme au préambule de la revendication 1.WO-A-9 318 287 discloses an engine according to the preamble of claim 1.

Le but de l'invention est de proposer un moteur compressé à combustion interne à deux ou à quatre temps, par exemple du type à balayage en boucle, uniflow ou à soupapes, ou à quatre temps à soupapes, qui permette d'améliorer le rendement et de réduire les émissions polluantes.The object of the invention is to propose a compressed engine to internal combustion with two or four strokes, for example Loop sweep, uniflow or valve, or four-stroke to which improves performance and reduces polluting emissions.

A cet effet, l'invention a pour objet un moteur à combustion interne selon la revendication 1.For this purpose, the subject of the invention is a combustion engine internal device according to claim 1.

Selon l'invention, l'angle du dièdre, dont l'arête est formée par l'axe du vilebrequin et dont les deux demi-plans s'étendent respectivement vers l'excentrique et le maneton, est de l'ordre de 90° pour obtenir un déphasage entre les points morts hauts (PMH) du piston de moteur et du piston de compresseur associés au même cylindre, déphasage qui assure une pression maximale dans la chambre de compression avant l'admission du mélange carburé ou de l'air frais dans la chambre de combustion.According to the invention, the angle of the dihedron, whose edge is formed by the axis of the crankshaft and whose two half-planes extend respectively to the eccentric and the crankpin, is of the order of 90 ° to obtain a phase shift between the top dead centers (TDC) of the engine piston and compressor piston associated with the same cylinder, phase shift which ensures maximum pressure in the chamber compression prior to admitting the fuel mixture or fresh air in the combustion chamber.

Dans ce cas, lorsque l'étage de la chambre de compression, qui communique directement avec le cylindre, est situé entre le piston de compresseur et le vilebrequin, le maneton est déphasé en avance par rapport à l'excentrique dans le sens de rotation du vilebrequin, et inversement, lorsque l'étage précité est situé du côté du piston de compresseur opposé au vilebrequin, l'excentrique est déphasé en avance par rapport au maneton dans le sens de rotation du vilebrequin.In this case, when the stage of the compression chamber, which communicates directly with the cylinder, is located between the piston of compressor and the crankshaft, the crankpin is out of phase in advance by relative to the eccentric in the direction of rotation of the crankshaft, and conversely, when the aforementioned stage is located on the piston side of compressor opposite the crankshaft, the eccentric is out of phase in advance with respect to the crankpin in the direction of rotation of the crankshaft.

Avantageusement, la cylindrée du compresseur est de l'ordre de grandeur de celle du cylindre, mais avec un piston de compresseur ayant un diamètre nettement supérieur au diamètre du piston de moteur, pour obtenir une faible course de compression du piston de compresseur dans la chambre de compression. Advantageously, the displacement of the compressor is of the order of the size of the cylinder, but with a compressor piston having a diameter significantly greater than the diameter of the engine piston, to obtain a low compression stroke of the piston of compressor in the compression chamber.

Dans un mode de réalisation particulier, la chambre de compression est à deux étages situés de part et d'autre du piston de compresseur, un premier étage étant alimenté en mélange carburé ou en air frais par un premier clapet anti-retour ou une soupape, et relié par une tubulure de refoulement munie d'un deuxième clapet anti-retour ou une soupape, au deuxième étage qui communique avec le cylindre par une tubulure d'admission éventuellement munie d'un troisième clapet anti-retour ou une soupape. L'utilisation d'un compresseur à deux étages permet d'obtenir une pression de suralimentation supérieure dans le cylindre. Toutefois, dans ce cas, le rapport volumétrique du cylindre pourra être diminué de façon à ne pas atteindre une pression maximale de combustion qui soit incompatible avec la résistance mécanique du cylindre. Le moteur équipé de ce compresseur bi-étages fonctionnera de manière analogue au système de suralimentation connu de type hyperbar.In a particular embodiment, the chamber of compression is two stages located on either side of the piston of compressor, a first stage being supplied with a fuel mixture or fresh air through a first non-return valve or valve, and connected by a discharge pipe provided with a second non-return valve or a valve, on the second floor which communicates with the cylinder by an intake manifold possibly equipped with a third valve anti-return or a valve. The use of a compressor with two stages allows to obtain a higher boost pressure in the cylinder. However, in this case, the volumetric ratio of the cylinder may be reduced so as not to reach maximum pressure of combustion which is incompatible with the mechanical strength of the cylinder. The engine equipped with this two-stage compressor will work similarly to the known supercharging system of type hyperbar.

Le moteur à deux temps de l'invention peut également être équipé d'un dispositif de récupération de l'énergie des bouffées d'échappement et de recirculation partielle de gaz d'échappement en prévoyant un volume additionnel communiquant avec le cylindre à travers des moyens d'obturation et d'ouverture, dont les mouvements sont commandés de façon synchrone ou déphasable avec ceux du piston de moteur dans le cylindre, de façon que, lors de la phase de détente, les gaz brûlés compriment l'air se trouvant dans le volume additionnel en y pénétrant au moins partiellement, que ce mélange air et gaz brûlés y soit piégé sous pression, puis que ce mélange soit admis dans le cylindre lors de la phase de compression.The two-stroke engine of the invention can also be equipped with a device for recovering energy from puffs Exhaust and partial recirculation of exhaust gas providing an additional volume communicating with the cylinder to through means of closing and opening, whose movements are controlled synchronously or out of phase with those of the piston in the cylinder, so that during the relaxation phase, the flue gases compress the air in the additional volume penetrating at least partially, that this mixture air and gas burned be trapped under pressure, then that mixture is admitted into the cylinder during the compression phase.

Avantageusement, après que le mélange air et gaz brûlés préalablement piégé dans le volume additionnel, ait été admis dans le cylindre, ledit volume additionnel est à nouveau rempli d'air frais en provenance du compresseur.Advantageously, after the mixture of air and gas burned previously trapped in the additional volume, was admitted into the cylinder, said additional volume is again filled with fresh air in from the compressor.

Selon une autre caractéristique, les moyens d'obturation et d'ouverture précités comportent deux obturateurs rotatifs, par exemple des boisseaux tournants à plusieurs voies, reliés entre eux par le volume additionnel, l'un des obturateurs étant associé au compresseur et l'autre obturateur à l'échappement du cylindre.According to another characteristic, the sealing means and mentioned above comprise two rotary shutters, for example rotary bushels with several lanes, interconnected by the additional volume, one of the shutters being associated with the compressor and the other shutter at the exhaust of the cylinder.

De préférence, les deux obturateurs rotatifs sont agencés de façon que se produisent les opérations suivantes : dans un premier temps, lorsque le piston de moteur est au voisinage de son PMH, un flux d'air en provenance du compresseur traverse l'obturateur inférieur associé au compresseur, balaye le volume additionnel, traverse l'obturateur supérieur associé à l'échappement et s'échappe vers l'extérieur par un collecteur d'échappement ; dans un deuxième temps, à partir d'environ la moitié de la course de détente du piston de moteur, d'une part, l'obturateur supérieur met en communication le cylindre avec le volume additionnel pour le remplir d'un mélange air et gaz brûlés sous pression, et d'autre part, le cylindre communique avec l'échappement ; dans un troisième temps, l'obturateur supérieur piège le mélange air et gaz brûlés dans le volume additionnel ; dans un quatrième temps, l'air en provenance du compresseur est admis dans le cylindre, et dans un cinquième temps, au début de la course de compression du piston de moteur, le mélange piégé et sous pression est admis dans le cylindre.Preferably, the two rotary shutters are arranged way that the following operations occur: in a first time, when the engine piston is in the vicinity of its TDC, a airflow from the compressor passes through the lower shutter associated with the compressor, sweeps the additional volume, crosses the upper shutter associated with the exhaust and escapes to the outside by an exhaust manifold; in a second time, from about half of the expansion stroke of the engine piston, on the one hand, the upper shutter communicates the cylinder with the additional volume to fill it with an air and gas mixture burned under pressure, and secondly, the cylinder communicates with the exhaust; in a third time, the upper shutter trap the mixture of air and gas burned in the additional volume; in one fourth time, the air coming from the compressor is admitted into the cylinder, and in a fifth time, at the beginning of the race of compression of the engine piston, the mixture entrapped and under pressure is admitted into the cylinder.

Dans une première variante, l'obturateur supérieur est associé à au moins une soupape d'échappement située au sommet du cylindre et l'obturateur inférieur est relié au cylindre par une canalisation disposée en partie basse du cylindre, de sorte que le volume additionnel soit mis sous pression par son extrémité supérieure au moyen des gaz brûlés provenant de la soupape d'échappement à travers l'obturateur supérieur, et soit vidé dans le cylindre par son extrémité inférieure à travers l'obturateur inférieur.In a first variant, the upper shutter is associated with at least one exhaust valve located at the top of the cylinder and the lower shutter is connected to the cylinder by a pipe arranged in the lower part of the cylinder, so that the additional volume is set under pressure by its upper end by means of flue gases from the exhaust valve through the shutter higher, and is emptied into the cylinder by its lower end to through the lower shutter.

Dans une deuxième variante, l'obturateur supérieur est relié au cylindre par une canalisation disposée en partie basse du cylindre et l'obturateur inférieur est intercalé sur la canalisation de refoulement entre les deux étages du compresseur, de sorte que le volume additionnel soit mis sous pression au moyen des gaz brûlés provenant du cylindre à travers l'obturateur supérieur et soit vidé dans le cylindre par la canalisation reliée à l'obturateur supérieur.In a second variant, the upper shutter is connected to the cylinder by a pipe arranged at the bottom of the cylinder and the lower shutter is interposed on the discharge pipe between the two stages of the compressor, so that the volume additional amount is pressurized using the flue gases from of the cylinder through the upper obturator and be emptied into the cylinder by the pipe connected to the upper shutter.

Avantageusement, pour les moteurs deux ou quatre temps, la canalisation d'admission vers le cylindre et/ou la canalisation de refoulement du compresseur bi-étages est refroidie par tous moyens appropriés.Advantageously, for two or four stroke engines, the intake pipe towards the cylinder and / or the pipe of discharge of the two-stage compressor is cooled by all means appropriate.

Le moteur à deux temps peut être du type à balayage en boucle, dans lequel le mélange carburé ou l'air frais est admis à partir du compresseur par une tubulure d'admission débouchant par des lumières en partie basse du cylindre avec une orientation telle que le mélange ou l'air soit introduit avec un mouvement de rotation ascendant en boucle, pendant que les gaz brûlés du cycle précédent sont évacués par des lumières d'échappement disposées également en partie basse du cylindre.The two-stroke engine may be of the loop scan type, in which the fuel mixture or the fresh air is admitted from the compressor through an intake manifold opening through lights at the bottom of the cylinder with an orientation such that the mixture or the air is introduced with an upward rotating movement in a loop, while the flue gases of the previous cycle are discharged by exhaust lights also arranged in the lower part of the cylinder.

Le moteur à deux temps peut encore être du type uniflow, dans lequel le mélange carburé ou l'air est admis en partie basse du cylindre à travers des lumières d'admission réparties à la base du cylindre et alimentées par une couronne elle-même reliée au compresseur, alors que les gaz brûlés du cycle précédent sont évacués à travers une ou plusieurs soupapes d'échappement prévues au sommet du cylindre.The two-stroke engine can still be of the uniflow type, in which the fuel mixture or the air is admitted in the lower part of the cylinder through intake lights distributed at the base of the cylinder and fed by a ring itself connected to the compressor, then that the burned gases from the previous cycle are discharged through one or several exhaust valves provided at the top of the cylinder.

Enfin, le moteur à deux ou quatre temps peut être du type à soupapes d'échappement et d'admission, dans lequel les soupapes sont situées au sommet du cylindre et la ou les soupapes d'admission sont alimentées par le compresseur.Finally, the two or four stroke engine can be of the type to exhaust and intake valves, in which the valves are at the top of the cylinder and the intake valve (s) are powered by the compressor.

L'invention s'applique également à un moteur du type à plusieurs cylindres en ligne, dans lequel les compresseurs associés à chaque cylindre sont disposés alternativement sur chaque face du carter cylindre.The invention also applies to a multi-type motor cylinders, in which the compressors associated with each cylinder are alternately arranged on each face of the housing cylinder.

Pour mieux faire comprendre l'objet de l'invention, on va en décrire maintenant, à titre d'exemples purement illustratifs et non limitatifs, plusieurs modes de réalisation représentés sur le dessin annexé.To better understand the object of the invention, we will describe now, as purely illustrative and non-illustrative examples restrictive, several embodiments shown in the drawing Annex.

Sur ce dessin :

  • la figure 1 est une vue schématique en coupe verticale d'un premier mode de réalisation utile à la compréhension du moteur de l'invention, du type à deux temps à balayage en boucle, à compresseur mono-étage et à piston de compresseur basculant avec un agrandissement partiel de ce dernier ;
  • les figures 2A à 2D sont des vues partielles analogues à la figure 1 et en coupe verticale suivant la ligne II sur la figure 3, représentant respectivement le piston de moteur à son PMH, en cours de détente, à son PMB et en cours de compression, pour un moteur à deux temps ;
  • la figure 3 est une vue en coupe suivant la ligne III de la figure 2A ;
  • la figure 4 est une vue analogue à la figure 1, mais suivant une variante dans laquelle le piston de compresseur est à déplacement linéaire, avec un agrandissement partiel de ce dernier ;
  • les figures 5A à 5D sont des vues analogues aux figures 2A à 2D et en coupe verticale suivant la ligne V sur la figure 6A, mais représentant une autre variante selon l'invention, dans laquelle le piston de compresseur est une membrane déformable et le cylindre est équipé d'une bougie d'allumage ;
  • les figures 6A à 6D sont des vues en coupe suivant la ligne VI des figures 5A à 5D respectivement, avec un agrandissement partiel de ladite membrane sur la figure 6A ;
  • la figure 7 est une vue en coupe suivant la ligne VII de la figure 5A ;
  • la figure 8 est une vue analogue à la figure 4, mais représentant un moteur à deux temps à compresseur bi-étages ;
  • la figure 9 est une vue analogue à la figure 8, mais représentant le moteur à deux temps équipé, en outre, d'un système de recirculation partielle des gaz d'échappement ;
  • les figures 10 et 11 sont des vues analogues respectivement aux figures 1 et 4, mais représentent un deuxième mode de réalisation du moteur à deux temps utile à la compréhension de l'invention du type uniflow ;
  • la figure 12 est une vue analogue à la figure 11, mais représentant le moteur à deux temps équipé d'un compresseur bi-étages ;
  • la figure 13 est une vue analogue à la figure 12, mais représentant le moteur à deux temps équipé, en outre, d'un système de récupération de l'énergie des bouffées d'échappement :
  • les figures 14 et 15 sont des vues analogues aux figures 1 et 4 respectivement, mais représentent un troisième mode de réalisation du moteur à deux temps utile à la compréhension de l'invention, du type à soupapes d'échappement et d'admission ;
  • la figure 16 est une vue schématique de dessus d'un moteur à quatre cylindres en ligne utile à la compréhension de l'invention ;
  • la figure 17 est une vue analogue à la figure 15, mais représentant un moteur à quatre temps équipé d'un compresseur bi-étages ;
  • les figures 18 à 25 sont des vues partielles et en coupe, analogues à la figure 14, représentant un moteur à quatre temps au cours des différentes phases successives de son cycle.
On this drawing :
  • FIG. 1 is a diagrammatic view in vertical section of a first embodiment useful for understanding the motor of the invention, of the two-stroke type with loop scanning, single-stage compressor and tilting compressor piston with a partial enlargement of the latter;
  • FIGS. 2A to 2D are partial views analogous to FIG. 1 and in vertical section along the line II in FIG. 3, respectively representing the engine piston at its TDC, being released, at its PMB and being compressed , for a two-stroke engine;
  • Figure 3 is a sectional view along the line III of Figure 2A;
  • Figure 4 is a view similar to Figure 1, but in a variant in which the compressor piston is linear displacement, with a partial enlargement of the latter;
  • FIGS. 5A to 5D are views similar to FIGS. 2A to 2D and in vertical section along the line V in FIG. 6A, but representing another variant according to the invention, in which the compressor piston is a deformable membrane and the cylinder is equipped with a spark plug;
  • Figs. 6A to 6D are sectional views taken along the line VI of Figs. 5A to 5D respectively, with partial enlargement of said membrane in Fig. 6A;
  • Figure 7 is a sectional view along the line VII of Figure 5A;
  • Figure 8 is a view similar to Figure 4, but showing a two-stage compressor two-stage compressor;
  • Figure 9 is a view similar to Figure 8, but showing the two-stroke engine further equipped with a partial recirculation system of the exhaust gas;
  • Figures 10 and 11 are views similar respectively to Figures 1 and 4, but show a second embodiment of the two-stroke engine useful for understanding the invention of the uniflow type;
  • Figure 12 is a view similar to Figure 11, but showing the two-stroke engine equipped with a two-stage compressor;
  • FIG. 13 is a view similar to FIG. 12, but showing the two-stroke engine further equipped with an energy recovery system for the exhaust puffs:
  • Figures 14 and 15 are views similar to Figures 1 and 4 respectively, but show a third embodiment of the two-stroke engine useful for understanding the invention, the type of exhaust valves and intake;
  • Figure 16 is a schematic top view of a four-cylinder in-line engine useful for understanding the invention;
  • Figure 17 is a view similar to Figure 15, but showing a four-stroke engine equipped with a two-stage compressor;
  • Figures 18 to 25 are partial views in section, similar to Figure 14, showing a four-stroke engine during the various successive phases of its cycle.

Pour un souci de clarté, dans toutes les figures, les éléments identiques ou analogues porteront les mêmes chiffres de référence.For the sake of clarity, in all the figures, the elements identical or similar will bear the same reference numbers.

Les figures 1 à 9 représentent diverses variantes utiles à la compréhension de l'invention appliquées à un moteur à combustion interne 1 monocylindre à deux temps et à balayage en boucle.Figures 1 to 9 show various variants useful for understanding the invention applied to an internal combustion engine 1 single cylinder to two time and loop scan.

Dans la première variante représentée sur les figures 1 à 3, le moteur 1 comporte un cylindre 1 défini entre le carter cylindre 2 et la culasse 3 du moteur. La culasse 3 comporte un évidemment 3a en partie haute du cylindre 1 pour définir une chambre de combustion, car la représentation proposée est celle d'un moteur à essence. L'invention peut s'appliquer tout aussi bien à un moteur diesel à injection directe ou indirecte.In the first variant shown in FIGS. 1 to 3, the 1 comprises a cylinder 1 defined between the cylinder block 2 and the cylinder head 3 of the engine. The breech 3 has a recess 3a in upper part of cylinder 1 to define a combustion chamber because the proposed representation is that of a gasoline engine. The invention can be applied equally well to a diesel engine with direct injection or indirect.

Dans le cylindre 1, se déplace alternativement un piston de moteur 4 qui définit une chambre de combustion 5 à l'intérieur du cylindre 1 entre la culasse 3 et le piston 4. Le piston de moteur 4 est muni à sa périphérie de segments d'étanchéité 6 représentés sur la figure 1. Une bielle 7 est articulée par son pied de bielle 7a au piston 4 et par sa tête de bielle 7b au maneton 8 d'un vilebrequin 9.In the cylinder 1, a piston of engine 4 which defines a combustion chamber 5 inside the cylinder 1 between the cylinder head 3 and the piston 4. The engine piston 4 is provided at its periphery with sealing segments 6 shown on the Figure 1. A rod 7 is articulated by its small end 7a to the piston 4 and by its connecting rod head 7b at the crankpin 8 of a crankshaft 9.

Un excentrique 10 est monté sur l'arbre de vilebrequin 9 et articulé sur une biellette 11 qui est rigidement fixée au centre d'un piston de compresseur 12 en forme de disque. Le piston de compresseur 12 présente à sa périphérie une bordure sphérique 12a munie d'un segment d'étanchéité 13 à bordure également sphérique, qui est immobilisé en rotation par rapport au piston de compresseur, dans une position telle que la fente du segment 13 ne soit pas placée en partie basse du carter 2. Le piston de compresseur 12 se déplace alternativement par basculement à l'intérieur de la chambre de compression 14a d'un compresseur mono-étage 14 attaché au carter 2. La chambre de compression 14a du compresseur 14 est alimentée en mélange carburé ou en air frais par une canalisation d'aspiration 15 munie d'un clapet d'aspiration anti-retour 15a. Le mélange carburé ou l'air frais sous pression est refoulé à partir du compresseur 14 vers une canalisation d'admission 16 munie d'un clapet de refoulement anti-retour 16a. La canalisation d'admission 16 débouche en partie basse du cylindre 1 par une pluralité de lumières 17 qui ont une orientation telle que le mélange ou l'air sous pression soit introduit avec un mouvement de rotation ascendant en boucle dans le cylindre à la manière d'un looping. Le cylindre 1 est muni, en outre, d'une ou plusieurs tubulures d'échappement 18 qui débouchent en partie basse du cylindre, sensiblement au même niveau que les lumières d'admission 17.An eccentric 10 is mounted on the crankshaft 9 and articulated on a rod 11 which is rigidly fixed in the center of a compressor piston 12 in the form of a disc. The piston of compressor 12 has at its periphery a spherical border 12a provided with a sealing segment 13 also with a spherical edge, which is immobilized in rotation with respect to the compressor piston, in a position such that the slot of the segment 13 is not placed in lower part of the housing 2. The compressor piston 12 moves alternatively by tilting inside the chamber of compression 14a of a single-stage compressor 14 attached to the housing 2. The compression chamber 14a of the compressor 14 is supplied with fuel mixture or fresh air through a suction pipe 15 equipped with a non-return suction valve 15a. The fuel mixture or the pressurized fresh air is discharged from the compressor 14 to a intake pipe 16 provided with a non-return check valve 16a. The intake pipe 16 opens at the bottom of the cylinder 1 by a plurality of lights 17 which have an orientation such that that the mixture or air under pressure is introduced with a movement of ascending rotation in a loop in the cylinder in the manner of a looping. The cylinder 1 is further provided with one or more pipes exhaust 18 which open at the bottom of the cylinder, substantially at the same level as the intake ports 17.

Comme visible sur la figure 1, l'excentrique 10 est décalé d'un angle  de l'ordre de 90° par rapport au maneton 8, dans le sens de rotation du vilebrequin, comme indiqué par la flèche F, de façon que le PMH du piston de moteur 4 soit déphasé de 180° par rapport au PMH du piston de compresseur 12. En se référant à la figure 3, on voit que l'axe de la biellette 11 du compresseur 14 est décalé d'une distance d par rapport à l'axe de la bielle 7 du piston de moteur 4.As can be seen in FIG. 1, the eccentric 10 is shifted by one angle  of the order of 90 ° with respect to the crankpin 8, in the direction of rotation of the crankshaft, as indicated by the arrow F, so that the TDC of the engine piston 4 is 180 ° out of phase with the TDC of the compressor piston 12. Referring to FIG. the axis of the rod 11 of the compressor 14 is shifted by a distance d relative to the axis of the connecting rod 7 of the engine piston 4.

La cylindrée du cylindre 1 est sensiblement du même ordre de grandeur que la cylindrée du compresseur 14, mais le piston de compresseur 12 présente un diamètre nettement supérieur à celui du piston de moteur 4, de façon que la course de compression c du piston de compresseur 12 soit relativement faible.The cylinder capacity of the cylinder 1 is substantially of the same order of magnitude than the compressor's capacity 14, but the piston of compressor 12 has a diameter much greater than that of the engine piston 4, so that the compression stroke c of the piston compressor 12 is relatively low.

Enfin, la canalisation d'admission 16 peut être munie d'un échangeur de chaleur 19, véhiculant un réfrigérant, par exemple de l'eau, ou bien de l'air frais peut être soufflé pour un moteur à refroidissement à air, pour refroidir l'air en sortie du compresseur 14, ce qui permet d'augmenter la masse d'air admise dans le cylindre 1, d'autant plus que la compression de l'air dans le compresseur 14 dégage une grande quantité de chaleur. Toutefois, le refroidissement de la canalisation d'admission 16 est optionnel. Finally, the intake pipe 16 may be provided with a heat exchanger 19, conveying a refrigerant, for example water, or fresh air can be blown for a motor to air cooling, for cooling the air leaving the compressor 14, which makes it possible to increase the air mass admitted into the cylinder 1, especially as the compression of air in the compressor 14 releases a large amount of heat. However, the cooling of the intake pipe 16 is optional.

En se référant maintenant aux figures 2 et 3, on voit que le maneton 8 du vilebrequin 9 est muni à l'opposé de la tête de bielle 7b d'une masselotte 20 qui sert de contrepoids.Referring now to Figures 2 and 3, we see that the crankpin 8 of the crankshaft 9 is provided opposite to the small end 7b a counterweight 20 which serves as a counterweight.

On a indiqué par des traits interrompus sur la figure 1 les positions du PMH et du PMB du piston de moteur 4.We have indicated by broken lines in FIG. PMH and PMB positions of the engine piston 4.

On a également indiqué, en traits mixtes sur la figure 1, le trajet de l'excentrique 10 et le trajet du maneton 8.It is also indicated, in phantom in Figure 1, the path of the eccentric 10 and the path of the crankpin 8.

On va maintenant décrire le fonctionnement de ce moteur en référence aux figures 2A à 2D.We will now describe the operation of this engine in reference to Figures 2A to 2D.

Sur la figure 2A, le piston de moteur est en fin de compression, à son PMH, alors que le piston de compresseur 12 est à son PMB, c'est-à-dire dans sa position la plus à droite sur la figure 2A. En cours de détente, sous l'action de la combustion des gaz dans la chambre de combustion 5, le piston de moteur descend, comme illustré sur la figure 2B, après une rotation d'environ 90° du vilebrequin 9, ce qui provoque simultanément le basculement du piston de compresseur 12 autour de sa portion supérieure, engendrant ainsi une première compression dans la chambre de compression 14a. En fin de détente, le piston de moteur 4 arrive à son PMB, découvrant simultanément la tubulure d'échappement 18 et les lumières d'admission 17, après une rotation supplémentaire de 90° du vilebrequin 9. Simultanément, le piston de compresseur 12 bascule autour de sa portion inférieure pour atteindre sa position de compression maximale la plus à gauche dans la chambre de compression 14a, ce qui provoque l'admission de l'air ou du mélange carburé sous pression dans la chambre de combustion 5, chassant ainsi les gaz brûlés vers l'échappement et remplissant le cylindre. Sur la figure 2D, on a représenté le piston de moteur au cours de sa phase de compression, après une rotation supplémentaire de 90° du vilebrequin, ce qui obture à la fois l'échappement et l'admission et provoque le basculement du piston de compresseur 12 autour de sa portion supérieure, et ainsi une première détente de la chambre de compression 14a, l'air frais ou le mélange carburé étant aspiré par la canalisation d'aspiration 15, en raison de la dépression ainsi engendrée dans la chambre 14a. Enfin, lorsque le piston de moteur 4 arrive à son PMH illustré à la figure 2A, après une rotation supplémentaire de 90° du vilebrequin 9, le piston de compresseur 12 bascule autour de sa portion inférieure, pour le ramener vers sa position la plus à droite, l'air frais ou le mélange carburé continuant ainsi à être aspiré dans la chambre de compression 14a. Le cycle de fonctionnement qui vient d'être décrit est ainsi répété successivement.In FIG. 2A, the engine piston is at the end of compression, at its PMH, while the compressor piston 12 is at its PMB, that is to say in its rightmost position in Figure 2A. Being relaxation, under the action of the combustion of gases in the chamber of combustion 5, the engine piston descends, as shown in the figure 2B, after a rotation of about 90 ° of the crankshaft 9, which causes simultaneously the tilting of the compressor piston 12 around its upper portion, thus generating a first compression in the compression chamber 14a. At the end of relaxation, the engine piston 4 arrives at his PMB, simultaneously discovering the tubing exhaust 18 and the intake ports 17, after a rotation additional 90 ° of the crankshaft 9. Simultaneously, the piston of 12 compressor rocking around its lower portion to reach its leftmost maximum compression position in the chamber compression 14a, which causes the admission of air or carburetted mixture under pressure in the combustion chamber 5, thus flushing the exhaust gases and filling the cylinder. In FIG. 2D, the engine piston is shown in FIG. of its compression phase, after an additional rotation of 90 ° crankshaft, which closes both the exhaust and the intake and causes the compressor piston 12 to tilt around its upper portion, and thus a first relaxation of the chamber of compression 14a, the fresh air or the fuel mixture being sucked by the suction pipe 15, because of the depression thus generated in room 14a. Finally, when the engine piston 4 arrives at its TDC shown in Figure 2A, after an additional 90 ° rotation of the crankshaft 9, the compressor piston 12 tilts around its lower portion, to bring it back to its rightmost position, fresh air or fuel mixture thus continuing to be sucked into the compression chamber 14a. The cycle of operation that comes to be described is thus repeated successively.

Comme visible sur les figures 2A à 2D, l'excentrique 10 est formé par un disque monté de manière excentrée sur l'arbre de vilebrequin 9.As shown in FIGS. 2A to 2D, the eccentric 10 is formed by a disc mounted eccentrically on the shaft of crankshaft 9.

Toutefois, en raison du basculement alternatif du piston de compresseur 12, il y a des risques que l'huile contenue dans le carter passe dans la chambre de compression 14a, provoquant une consommation d'huile et une pollution de l'environnement du fait que l'huile est ainsi évacuée vers l'extérieur.However, because of the alternative tilting of the piston of compressor 12, there is a risk that the oil contained in the crankcase passes into the compression chamber 14a, causing a oil consumption and pollution of the environment because the oil is thus evacuated to the outside.

Cet inconvénient est supprimé dans la variante illustrée sur les figures 4 à 7, où le piston de compresseur basculant 12 est remplacé par un piston de compresseur 112 illustré sur la figure 4 qui se déplace alternativement en translation linéaire dans la chambre de compression 14a.This disadvantage is removed in the variant illustrated on the Figures 4 to 7, where the swinging compressor piston 12 is replaced by a compressor piston 112 shown in Figure 4 which moves alternatively in linear translation in the compression chamber 14a.

Ce piston de compresseur 112 présente également à sa périphérie un segment d'étanchéité et comporte en son centre une tige 121 rigidement fixée au piston de compresseur 112 et articulée à son extrémité libre à la biellette 11 de liaison avec l'excentrique 10. La tige 121 est guidée en translation par un manchon de guidage 122 qui se raccorde au carter 2 par une cloison verticale 123. Le manchon 122 peut être équipé intérieurement d'une bague d'étanchéité traversée par la tige 121, ou bien en variante un soufflet d'étanchéité S peut être relié entre la tige 121 et ladite cloison verticale 123, ce qui supprime tout risque de passage d'huile entre le carter et le compresseur.This compressor piston 112 also has at its periphery a sealing segment and comprises at its center a rod 121 rigidly attached to the compressor piston 112 and articulated to its free end to the rod 11 of connection with the eccentric 10. The rod 121 is guided in translation by a guide sleeve 122 which is connected to the casing 2 by a vertical partition 123. The sleeve 122 can be equipped internally with a sealing ring crossed by the rod 121, or alternatively a sealing bellows S can be connected between the rod 121 and said vertical partition 123, which eliminates any risk of oil passing between the crankcase and the compressor.

Sur les figures 5 à 7, on voit que le cylindre 1 ainsi que le compresseur 14 sont munis d'ailettes de refroidissement 21.In FIGS. 5 to 7, it can be seen that the cylinder 1 as well as the compressor 14 are provided with cooling fins 21.

Au sommet du cylindre 1, est agencée une bougie d'allumage 22.At the top of the cylinder 1 is arranged a spark plug 22.

Le moteur M1 est constitué ici d'un premier bloc qui forme le cylindre 1, d'un deuxième bloc qui forme le carter 2 et d'un troisième bloc qui forme le compresseur 14. De ce fait, le piston de compresseur 112 en forme de disque rigide peut être remplacé par une membrane déformable 212 dont la périphérie est fixée entre les deuxième et troisième blocs précités. Pour faciliter la déformation de membrane 212, une ondulation 212a peut être prévue au voisinage de sa périphérie, comme visible sur la figure 6A.The motor M1 is constituted here of a first block which forms the cylinder 1, a second block which forms the casing 2 and a third block that forms the compressor 14. As a result, the compressor piston 112 in the form of rigid disk can be replaced by a membrane deformable 212 whose periphery is fixed between the second and third blocks mentioned above. To facilitate membrane deformation 212, a corrugation 212a may be provided in the vicinity of its periphery, as shown in Figure 6A.

Comme mieux visible sur les figures 6A à 6D, la tige 121 relie le centre de la membrane déformable 212 à une traverse articulée 124 dont les extrémités libres coulissent dans une rainure 125 prévue dans le carter 2 et sont reliées chacune à deux bras 111, qui s'étendent de part et d'autre de l'axe du compresseur 14. La biellette de liaison à l'excentrique est ainsi formée par l'ensemble de la traverse 124 et des deux bras 111. Les deux bras 111 de la biellette sont montés chacun sur un disque 10 qui est respectivement monté de manière excentrique sur l'arbre 9 du vilebrequin entre la paroi latérale du carter 2 et un bras du maneton 8. Des roulements à aiguilles 22 à 24 sont respectivement prévus au niveau des extrémités libres de la traverse 124, entre chaque bras 111 de biellette et le disque excentrique 10, et au niveau de l'arbre de vilebrequin 9. Toutefois, si la rotation est suffisamment lente, ces roulements peuvent être remplacés par des roulements à billes ou par des bagues de glissement.As best seen in FIGS. 6A to 6D, the rod 121 connects the center of the deformable membrane 212 to an articulated cross member 124 whose free ends slide in a groove 125 provided in the casing 2 and are each connected to two arms 111, which extend from on either side of the axis of the compressor 14. The connecting rod the eccentric is thus formed by the whole of the crossbar 124 and two arms 111. The two arms 111 of the link are each mounted on a disk 10 which is respectively mounted eccentrically on the shaft 9 of the crankshaft between the side wall of the housing 2 and an arm of the crank pin 8. Needle roller bearings 22 to 24 are respectively provided at the free ends of the cross member 124, between each link arm 111 and the eccentric disc 10, and at the level of the shaft 9. However, if the rotation is slow enough, these bearings can be replaced by ball bearings or by slip rings.

Comme visible sur la figure 7, dans ce cas, l'axe du piston de compresseur est centré sur l'axe du piston de moteur, contrairement à la variante du piston de compresseur basculant des figures 1 à 3.As can be seen in FIG. 7, in this case, the axis of the piston of compressor is centered on the axis of the engine piston, unlike the variant of the tilting compressor piston of Figures 1 to 3.

Le cycle de fonctionnement de ce moteur dont le piston de compresseur est monté avec une biellette à crosse, est sensiblement le même que celui du moteur à piston basculant. Lors de la rotation du vilebrequin 9, la traverse 124 se déplace en translation rectiligne dans les rainures 125, ce qui provoque le déplacement de la tige 121 qui engendre une déformation de la membrane 212. Sur la figure 5A, le piston de moteur 4 est à son PMH, et la membrane est déformée en flexion vers la droite en direction du vilebrequin. Sur la figure 5B, le piston de moteur est à mi-course dans sa phase de détente, et la membrane 212 est dans une position sensiblement plane, verticale. Sur la figure 5C, le piston de moteur 4 est à son PMB, et la membrane 212 est déformée en flexion vers la gauche, à l'opposé du vilebrequin. Enfin, sur la figure 5D, le piston de moteur 4 est à mi-chemin dans sa course ascendante de compression, et la membrane 212 est à nouveau dans une position plane, au repos. The operating cycle of this engine including the piston of compressor is mounted with a tie rod, is substantially the same as that of the tilting piston engine. When rotating the crankshaft 9, the cross member 124 moves in rectilinear translation in the grooves 125, which causes the displacement of the rod 121 which causes a deformation of the membrane 212. In FIG. 5A, the 4 engine piston is at its PMH, and the diaphragm is deformed into bending to the right towards the crankshaft. In Figure 5B, the engine piston is halfway through its relaxation phase, and the membrane 212 is in a substantially flat, vertical position. Sure 5C, the engine piston 4 is at its PMB, and the diaphragm 212 is deformed in flexion to the left, opposite the crankshaft. Finally, in FIG. 5D, the engine piston 4 is halfway in its upward stroke of compression, and membrane 212 is again in a flat position, at rest.

A titre d'exemple, le moteur représenté sur les figures 5 à 7 comporte un cylindre 1 ayant un diamètre d'environ 42 mm et une course utile de 38 mm pour le piston de moteur 4, et un compresseur 14 ayant un diamètre de 80 mm, avec une course utile d'environ 8,5 mm pour le piston de compresseur 212.By way of example, the motor shown in FIGS. comprises a cylinder 1 having a diameter of about 42 mm and a useful stroke of 38 mm for the engine piston 4, and a compressor 14 having a diameter of 80 mm, with a useful stroke of about 8.5 mm for the compressor piston 212.

La variante illustrée sur la figure 8 se distingue de la variante représentée sur la figure 4, essentiellement par le fait que le compresseur 14 comporte une chambre de compression à deux étages 14a et 14b. Le premier étage 14b est formé entre la cloison 123 et le piston de compresseur 112, alors que le deuxième étage 14a est formé de l'autre côté du piston de compresseur 112. Le premier étage 14b comporte en partie haute une tubulure d'aspiration 115 munie d'un clapet anti-retour 115a. Ce premier étage 14b est traversé par la tige 121 du piston de compresseur 112. En partie basse du premier étage 14b, est prévue une canalisation de refoulement intermédiaire 130 qui communique en partie basse du deuxième étage 14a du compresseur 14. Cette canalisation de refoulement intermédiaire 130 est munie d'un clapet anti-retour 130a et d'un système de refroidissement 19. Le deuxième étage 14a du compresseur 14 communique en partie haute avec la tubulure d'admission 16, de manière analogue au compresseur mono-étage décrit sur les figures 1 à 7.The variant illustrated in Figure 8 differs from the variant represented in FIG. 4, essentially by the fact that compressor 14 has a two-stage compression chamber 14a and 14b. The first stage 14b is formed between the partition 123 and the compressor piston 112, while the second stage 14a is formed on the other side of the compressor piston 112. The first stage 14b comprises in the upper part a suction pipe 115 provided with a check valve 115a. This first stage 14b is crossed by the rod 121 of the compressor piston 112. In the lower part of the first stage 14b, there is provided an intermediate discharge pipe 130 which communicates in the lower part of the second stage 14a of the compressor 14. This intermediate discharge pipe 130 is provided with a check valve 130a and a cooling system 19. The second stage 14a of the compressor 14 communicates in the upper part with the intake manifold 16, similarly to the compressor single stage described in Figures 1 to 7.

Les différents clapets 115a, 130a et 16a du compresseur 14 et les clapets 118a et 217 du moteur, peuvent être avantageusement remplacés par des soupapes à commande mécanique ou électronique ou hydro-électronique, qui peuvent être gérées par un calculateur numérique, afin de piloter à la demande tous les paramètres moteurs, à savoir le taux de compression dans le compresseur et/ou dans le cylindre moteur, ainsi que les taux de détente.The different valves 115a, 130a and 16a of the compressor 14 and the valves 118a and 217 of the motor, can be advantageously replaced by mechanically or electronically controlled valves or hydroelectronics, which can be managed by a calculator digital technology, in order to drive on demand all the motor parameters, to know the compression ratio in the compressor and / or in the engine cylinder, as well as the relaxation rates.

Bien que la figure 8 représente un piston de compresseur 112 en forme de disque plan rigide, il pourrait tout aussi bien être remplacé par une membrane déformable analogue à celle représentée sur les figures 5 et 6.Although Figure 8 shows a compressor piston 112 in hard plane disk shape, it could just as easily be replaced by a deformable membrane similar to that shown on the Figures 5 and 6.

Lors de la phase de compression du piston de moteur 4, le piston de compresseur 112 se déplace vers la droite, pour comprimer le premier étage 14b de la chambre de compression, ce qui provoque le refoulement de l'air, via la canalisation 130, vers le deuxième étage 14a. Lors de la phase descendante de détente du piston de moteur 4, le piston de compresseur 112 se déplace vers la gauche, ce qui provoque une surcompression de l'air contenu dans le deuxième étage 14a, qui ne peut revenir en arrière par la canalisation 130, en raison du clapet anti-retour 130a, et s'échappe donc vers la canalisation d'admission 16 à une pression supérieure à celle qui serait obtenue avec un compresseur mono-étage. Simultanément, une dépression est engendrée dans le premier étage 14b, ce qui provoque l'aspiration de l'air à partir de la tubulure d'aspiration 115.During the compression phase of the engine piston 4, the piston compressor 112 moves to the right, to compress the first stage 14b of the compression chamber, which causes the backflow of air through line 130 to the second floor 14a. During the descending phase of relaxation of the engine piston 4, the compressor piston 112 moves to the left, causing an overcompression of the air contained in the second stage 14a, which can go back through the pipe 130, because of the non-return valve 130a, and thus escapes to the intake pipe 16 to a pressure higher than that which would be obtained with a compressor mono-floor. Simultaneously, a depression is generated in the first stage 14b, which causes the suction of the air from the suction tubing 115.

Sur la figure 8, on a indiqué en c la course du piston de compresseur 112.In FIG. 8, the stroke of the compressor piston 112 has been indicated in c .

Sur la figure 9, le moteur de la figure 8 est équipé d'un dispositif de récupération de l'énergie des bouffées d'échappement et de recirculation partielle des gaz d'échappement, dont le principe est décrit en détail dans la demande de brevet français n° 98-07835 du 22 juin 1998 appartenant au présent demandeur.In FIG. 9, the motor of FIG. 8 is equipped with a device of energy recovery from exhaust puffs and partial recirculation of the exhaust gas, the principle of which is described in detail in the French patent application No. 98-07835 of 22 June 1998 belonging to the present applicant.

Un volume additionnel 40, qui peut avoir toute forme appropriée, communique en partie basse avec une canalisation 41 qui débouche sur un obturateur rotatif 42, par exemple, un boisseau tournant à trois voies, qui est intercalé sur la canalisation de refoulement 130 précitée, en aval du clapet 130a. Le volume additionnel 40 communique également, en partie haute, avec une canalisation 43 qui débouche sur un deuxième obturateur rotatif supérieur 44, par exemple un boisseau tournant à trois voies, ce dernier communiquant, d'une part, par une canalisation 45 en partie basse du cylindre 1, et, d'autre part, par une canalisation 46, avec un collecteur d'échappement (non représenté) relié à la tubulure d'échappement 18 précitée.An additional volume 40, which may have any suitable shape, communicates in the lower part with a pipe 41 which leads to a rotary shutter 42, for example, a bushel turning three tracks, which is interposed on the discharge pipe 130 mentioned above, downstream of the valve 130a. Additional volume 40 communicates also, in the upper part, with a pipe 43 which leads to a second upper rotary shutter 44, for example a bushel three-way, the latter communicating, on the one hand, by a duct 45 in the lower part of the cylinder 1, and, on the other hand, by a pipe 46, with an exhaust manifold (not shown) connected to the exhaust pipe 18 above.

On va maintenant décrire le fonctionnement du moteur illustré sur la figure 9.We will now describe the operation of the illustrated engine in Figure 9.

Lorsque le piston de moteur 4 arrive au voisinage de son PMH, en phase de compression, le boisseau inférieur 42 fait communiquer le premier étage 14b du compresseur 14 avec la canalisation 41, tout en obturant le passage vers le deuxième étage 14a, alors que le boisseau supérieur 44 fait communiquer la canalisation 43 avec la canalisation d'échappement 46, tout en obturant le passage vers la canalisation 45 qui débouche en partie basse du cylindre 1. Il en résulte que l'air comprimé par le piston de compresseur 112 dans le premier étage 14b est évacué vers l'échappement, en balayant le volume additionnel 40, le reliquat du mélange air et gaz brûlés se trouvant dans ce volume 40 étant ainsi évacué vers l'extérieur et remplacé par de l'air frais.When the engine piston 4 arrives near its TDC, in the compression phase, the lower bushel 42 communicates the first stage 14b of the compressor 14 with the line 41, while closing the passage to the second floor 14a, while the bushel upper 44 communicates line 43 with the pipe exhaust 46, while closing the passage to the pipe 45 which opens at the bottom of the cylinder 1. As a result, the air compressed by the compressor piston 112 in the first stage 14b is evacuated to the exhaust, by sweeping the additional volume 40, the the remainder of the mixture of air and flue gases in this volume 40 thus being evacuated to the outside and replaced by fresh air.

Puis, au début de la phase de détente du piston de moteur 4, représentée sur la figure 9, les boisseaux 42 et 44 obturent toute communication, la rotation des boisseaux pouvant être asservie à la rotation du vilebrequin 9, ou bien commandée par une unité centrale de gestion électronique.Then, at the beginning of the relaxation phase of the engine piston 4, shown in FIG. 9, bushels 42 and 44 close off all communication, the rotation of the bushels being able to be enslaved to the rotation of the crankshaft 9, or controlled by a central unit of electronic management.

Lorsque le piston de moteur 4 arrive sensiblement en fin de détente, le piston de moteur 4 découvre l'ouverture de la canalisation 45 et les gaz en combustion se trouvant sous pression dans le cylindre 1 s'échappent alors par cette canalisation 45 et traversent l'obturateur 44 jusqu'au volume additionnel 40, l'obturateur supérieur 44 étant dans une position d'obturation de la canalisation d'échappement 46. Simultanément, l'obturateur 42 ferme le passage de la canalisation 41, de sorte que les gaz brûlés compriment l'air qui se trouve dans le volume additionnel 40 et y pénètrent partiellement.When the engine piston 4 arrives substantially at the end of relaxation, the engine piston 4 discovers the opening of the pipe 45 and the combustion gases under pressure in the cylinder 1 then escape through this pipe 45 and pass through the shutter 44 to the additional volume 40, the upper shutter 44 being in a closed position of the exhaust pipe 46. Simultaneously, the shutter 42 closes the passage of the pipe 41, so that the flue gases compress the air that is in the additional volume 40 and enter it partially.

Simultanément, ou peu après l'ouverture de la canalisation 45, le piston de moteur 40 découvre également la tubulure d'échappement 18, pour évacuer le reste des gaz brûlés, qui sont chassés par l'air frais sous pression introduit par les lumières d'admission 17 et provenant du deuxième étage 14a du compresseur, sous l'action de compression exercée par le piston de compresseur 112 qui se déplace vers la gauche. Lorsque le piston de moteur 4 arrive à son PMB, le boisseau supérieur 44 obture toute communication et le boisseau inférieur 42 ouvre le passage entre le premier et le deuxième étage du compresseur, tout en maintenant fermé le passage vers la canalisation 41, de sorte que le mélange sous pression air et gaz brûlés, qui se trouvait dans le volume additionnel 40 y est ainsi piégé. Au PMB, le balayage du cylindre 1 se termine et ce dernier commence à se remplir d'air frais à la haute pression délivrée par le compresseur 14.Simultaneously, or shortly after the opening of Line 45, the engine piston 40 also discovers the exhaust manifold 18, to evacuate the rest of the flue gases, which are driven out by the fresh air under pressure introduced by the intake ports 17 and coming from the second stage 14a of the compressor, under the compression action exerted by the compressor piston 112 which moves to the left. When the engine piston 4 reaches its PMB, the upper bushel 44 closes any communication and the lower bushel 42 opens the passage between the first and second stages of the compressor, while now closed the passage to Line 41, so that the mixture under pressure air and flue gas, which was in the volume additional 40 is trapped there. At PMB, the scan of cylinder 1 is ends and the latter begins to fill with fresh air to the high pressure delivered by the compressor 14.

Lorsque la phase de compression commence dans le cylindre, le piston de compresseur 112 refoule l'air comprimé dans le premier étage 14b vers le deuxième étage 14a, à travers le boisseau inférieur 42 qui maintient ouverte la communication de la canalisation 130, tout en maintenant fermé le passage vers la canalisation 41. Simultanément, le boisseau supérieur 44 ouvre le passage entre le volume additionnel 40 et le cylindre 1, tout en maintenant fermé le passage vers la canalisation d'échappement 46, de sorte que le mélange air et gaz brûlés qui est piégé dans le volume 40 peut s'échapper par les canalisations 43 et 45 dans le cylindre 1, ce qui réalise à la fois une suralimentation dans le cylindre 1 et une récupération de l'énergie des bouffées d'échappement.When the compression phase begins in the cylinder, the compressor piston 112 represses the compressed air in the first stage 14b to the second stage 14a, through the lower bushel 42 which keeps open the communication of Line 130, while now closed the passage to Line 41. Simultaneously, the upper bushel 44 opens the passage between the additional volume 40 and the cylinder 1, while keeping the passage towards the exhaust pipe 46, so that the air and gas mixture burned that is trapped in volume 40 can escape through pipes 43 and 45 in the cylinder 1, which achieves both a supercharging in cylinder 1 and a recovery of energy from exhaust puffs.

Lorsque le piston de moteur 4 dépasse environ la mi-course de sa phase ascendante, la tubulure d'échappement 18 et la canalisation 45 sont obturées par le piston de moteur 4 et les boisseaux 44 et 42 se déplacent progressivement vers la position qui met en communication le premier étage 14b du compresseur avec l'échappement 46.When the engine piston 4 exceeds approximately halfway its ascending phase, exhaust manifold 18 and line 45 are closed by the engine piston 4 and the bushels 44 and 42 are move progressively towards the position that puts in communication the first stage 14b of the compressor with the exhaust 46.

On notera que, dans ce cas, le compresseur bi-étages 14 présente une efficacité moindre que dans le cas de la figure 8, car une partie de la course de compression du premier étage 14b du compresseur 14 est utilisée pour balayer le volume additionnel 40.Note that, in this case, the bi-stage compressor 14 presents less effective than in the case of Figure 8, because part of the compression stroke of the first stage 14b of the compressor 14 is used to scan the additional volume 40.

On va maintenant décrire l'application de l'invention à un moteur monocylindre à deux temps du type uniflow M2, en référence aux figures 10 à 13.We will now describe the application of the invention to an engine single-cylinder two-stroke type uniflow M2, with reference to Figures 10 to 13.

Les trois variantes représentées respectivement aux figures 10 à 12 correspondent aux variantes représentées sur les figures 1, 4 et 8 du moteur à balayage en boucle. Dans ces conditions, le fonctionnement du moteur uniflow M2 sera décrit une seule fois pour l'ensemble de ces trois variantes.The three variants shown respectively in FIGS. 12 correspond to the variants represented in FIGS. 1, 4 and 8 of FIG. looped motor. In these circumstances, the operation of the uniflow M2 motor will be described only once for all of these three variants.

Dans un moteur uniflow, tel que représenté sur la figure 10, la canalisation d'admission 16 débouche sur une couronne annulaire 117 entourant la partie basse du cylindre 1, ladite couronne 117 présentant une pluralité de lumières (non représentées) qui débouchent en partie basse du cylindre 1 avec une orientation telle que l'air soit introduit dans le cylindre avec un mouvement de rotation important. La canalisation d'échappement 118 est prévue au sommet du cylindre 1 et comporte au moins une soupape 118a qui est commandée par tout moyen adapté.In a uniflow motor, as shown in FIG. intake duct 16 opens on an annular ring 117 surrounding the lower part of the cylinder 1, said ring 117 having a plurality of lights (not shown) that partially open cylinder 1 with an orientation such that air is introduced in the cylinder with a large rotational movement. The exhaust pipe 118 is provided at the top of the cylinder 1 and has at least one valve 118a which is controlled by all adapted way.

Lorsque le piston de moteur 4 se trouve à son PMH, la ou les soupapes d'échappement 118a sont fermées, ainsi que les lumières d'admission qui sont bouchées par le corps du piston de moteur 4. En fin de détente du piston de moteur 4, la ou les soupapes d'échappement 118a s'ouvrent, pour évacuer les gaz brûlés, et le piston de moteur 4 découvre les lumières de la couronne d'admission 117, de sorte que l'air comprimé provenant du compresseur 14 chasse vers le haut les gaz brûlés en direction de l'échappement. Le remplissage du cylindre 1 en air comburant se poursuit jusqu'en début de compression du piston de moteur 4, tant que les lumières d'admission restent découvertes par le piston de moteur 4.When the engine piston 4 is at its TDC, the one or more 118a exhaust valves are closed, as well as the lights which are blocked by the piston body of the engine. end of expansion of the engine piston 4, the exhaust valve or valves 118a open, to evacuate the burnt gases, and the engine piston 4 discovers the lights of the intake crown 117, so that the compressed air coming from the compressor 14 flushes up the gases burned towards the exhaust. The filling of the cylinder 1 in combustion air continues until the beginning of compression of the piston motor 4, as long as the intake lights remain uncovered by the engine piston 4.

Dans la variante de la figure 13, le moteur M2 est également équipé d'un dispositif de récupération de l'énergie des bouffées d'échappement et de recyclage partiel des gaz d'échappement. Ce dispositif comporte un volume additionnel 140 qui est formé par une canalisation de section adaptée communiquant à ses deux extrémités avec un obturateur rotatif 142, 144 qui peut être constitué par un boisseau tournant à plusieurs voies. Le boisseau supérieur 144 communique, en outre, avec la canalisation d'échappement 118, en aval de la ou des soupapes d'échappement 118a prévues au sommet du cylindre 1, et avec deux autres canalisations 145 et 146 qui aboutissent à un collecteur d'échappement non représenté.In the variant of FIG. 13, the motor M2 is also equipped with a device for recovering energy from puffs exhaust and partial recycling of the exhaust gas. This device comprises an additional volume 140 which is formed by a adapted section pipe communicating at both ends with a rotary shutter 142, 144 which can be constituted by a bushel rotating several ways. The upper bushel 144 communicates, in addition, with the exhaust pipe 118, downstream of the exhaust valve (s) 118a provided at the top of the cylinder 1, and with two other pipes 145 and 146 which end to an exhaust manifold, not shown.

Le boisseau inférieur 142 communique, en outre, avec une canalisation 141 qui débouche en partie basse du cylindre 1, au-dessus de la couronne d'admission 117, et avec la canalisation d'admission 16.The lower bushel 142 communicates, moreover, with a pipe 141 which opens at the bottom of the cylinder 1, above of the intake ring 117, and with the intake pipe 16.

Les mouvements rotatifs des boisseaux 142, 144 sont liés de toutes façons appropriées, connues de l'homme du métier et donc non décrites, au mouvement rotatif du vilebrequin 9, en rapport 1/1 ou différent de 1/1, phasé ou déphasable par rapport au mouvement du vilebrequin.The rotary movements of the bushels 142, 144 are linked by in all appropriate ways, known to those skilled in the art and therefore not described, to the rotary motion of the crankshaft 9, in ratio 1/1 or different from 1/1, phased or out of phase with the movement of the crankshaft.

En outre, sur la figure 13, les positions des deux étages 14a et 14b du compresseur 14 sont inversées par rapport au piston de compresseur 112. En effet, la canalisation d'admission 16 communique avec l'étage 14b qui est situé entre le piston de compresseur 112 et la paroi verticale 123, alors que le premier étage 14a situé du côté du piston de compresseur 112 opposé au vilebrequin 9, est alimenté en air frais via la canalisation d'aspiration 115. De ce fait, le fonctionnement du compresseur 14 est inversé, et le maneton 8 du vilebrequin doit être déphasé d'un angle  d'environ 90° par rapport à l'excentrique 10, dans le sens de rotation F du vilebrequin 9.In addition, in FIG. 13, the positions of the two stages 14a and 14b of the compressor 14 are reversed relative to the piston of compressor 112. Indeed, the inlet pipe 16 communicates with the stage 14b which is located between the compressor piston 112 and the vertical wall 123, while the first stage 14a located on the side of the compressor piston 112 opposite the crankshaft 9, is supplied with air through the suction line 115. As a result, the operation the compressor 14 is reversed, and the crankpin 8 of the crankshaft must be out of phase with an angle  of approximately 90 ° with respect to the eccentric 10, in the direction of rotation F of the crankshaft 9.

Lorsque le piston de moteur 4 est à son PMH, la soupape 118a ou les soupapes d'échappement qui sont éventuellement prévues, sont fermées ainsi que les boisseaux 142 et 144.When the engine piston 4 is at its TDC, the valve 118a or the exhaust valves that are eventually provided, are closed as well as bushels 142 and 144.

Au cours de la phase de détente du piston de moteur 4, la ou les soupapes d'échappement 118a s'ouvrent et l'obturateur supérieur 144 pivote, par exemple dans le même sens que le vilebrequin 9, pour faire communiquer la canalisation d'échappement 118 avec la canalisation 140 formant le volume additionnel. Le boisseau inférieur 142 a également tourné de la même quantité dans le même sens, mais cela n'a amené aucune mise en communication de canalisations. Il en résulte qu'une bouffée de gaz brûlés sous pression est refoulée via la canalisation d'échappement 118 dans la canalisation 140, ce qui comprime l'air s'y trouvant, tout en y introduisant une portion de gaz brûlés, correspondant à la période angulaire de transfert.During the expansion phase of the engine piston 4, the 118a exhaust valves open and top shutter 144 rotates, for example in the same direction as the crankshaft 9, to make communicate the exhaust pipe 118 with the pipe 140 forming the additional volume. The lower bushel 142a also turned the same amount in the same direction but this did not brought no communication of pipelines. It results that a puff of gas burned under pressure is repressed via the exhaust pipe 118 in the pipe 140, which compresses the air in it while introducing a portion of gas burned, corresponding to the angular period of transfer.

Lorsque le piston de moteur 4 atteint une position intermédiaire entre la canalisation 141 et la couronne d'admission 117, la ou les soupapes d'échappement 118a sont toujours ouvertes, mais le boisseau 144 ayant tourné met en communication les canalisations 118 et 145, tout en fermant le passage vers la canalisation 140 ; le boisseau inférieur 142 a également tourné, mais sans réaliser de mise en communication. Il en résulte que le mélange air/gaz brûlés, qui a été introduit précédemment sous pression (environ 3,5 bars à pleine charge) dans la canalisation 140, y est piégé et que les gaz brûlés s'échappent par la canalisation 145 vers le collecteur d'échappement.When the engine piston 4 reaches an intermediate position between the line 141 and the intake ring 117, the 118a exhaust valves are still open, but the bushel 144 having turned puts into communication the pipes 118 and 145, while closing the passage to the line 140; the bushel lower 142 also turned, but without realizing communication. As a result, the air / gas mixture burned, which was previously introduced under pressure (about 3.5 bar at full load) in Line 140, is trapped there and that the burned gases escape through line 145 to the exhaust manifold.

Lorsque le piston de moteur 4 arrive à son PMB, l'obturateur supérieur 144, bien qu'ayant continué à tourner, maintient la communication entre les canalisations 118 et 145 ; l'obturateur inférieur 142 a également tourné, mais sans réaliser de mise en communication ; les lumières de la couronne d'admission 117 sont démasquées. Il en résulte que l'air en provenance de l'étage 14b du compresseur 14 exécute un balayage qui évacue les gaz brûlés à travers la ou les soupapes d'échappement 118a et le cylindre 1 se remplit d'air à la pression relativement élevée du compresseur 14. Le mélange air/gaz brûlés est toujours piégé sous pression dans la canalisation 140. When the engine piston 4 reaches its PMB, the shutter 144, although having continued to rotate, maintains the communication between the pipes 118 and 145; shutter lower 142 also turned, but without realizing communication; the lights of the intake crown 117 are unmasked. As a result, the air coming from floor 14b of compressor 14 runs a sweep that vents the gases burned through the exhaust valve 118a and the cylinder 1 fills with air at the relatively high pressure of the compressor 14. The mixture Air / flue gas is still trapped under pressure in Line 140.

Lorsque le piston de moteur 4 commence sa phase de compression, il vient obturer les lumières de la couronne d'admission 117 et affleure au niveau de la canalisation 141 ; l'obturateur 142 ayant continué à tourner, les canalisations 118 et 145 peuvent être toujours communicantes, mais cela est sans effet car la ou les soupapes d'échappement 118a sont refermées ; le boisseau inférieur 142 met en communication la canalisation 141 avec la canalisation 140. Il en résulte que le mélange air/gaz brûlés, qui était piégé sous pression dans cette canalisation 140, s'échappe et remplit sous pression le cylindre 1. Cela réalise à la fois une suralimentation du cylindre et une recirculation partielle des gaz brûlés, opération connue sous le nom de EGR (Exhaust Gas Recirculation), et qui a pour effet de diminuer les émissions d'oxyde d'azote à bas régime.When the engine piston 4 begins its phase of compression, it closes the lights of the crown of admission 117 and outcropping at Line 141; the shutter 142 having continued to turn, pipes 118 and 145 may still be communicating, but this is ineffective because the valve or valves exhaust 118a are closed; the lower bushel 142 sets communication channel 141 with line 140. In results that the air / gas mixture burned, which was trapped under pressure in this pipe 140, escapes and fills the cylinder 1 under pressure. This achieves both a supercharging of the cylinder and a partial recirculation of flue gases, known as Exhaust Gas Recirculation (EGR), which has the effect of reducing Nitrogen oxide emissions at low speed.

Lorsque le piston de moteur 4 poursuit sa compression, jusqu'à obturer la canalisation 141, la ou les soupapes d'échappement 118a restent fermées, et les boisseaux 142, 144 pivotent dans une position où toutes les communications sont interdites.When the engine piston 4 continues its compression, until close the line 141, the exhaust valve 118a remain closed, and the bushels 142, 144 pivot in a position where all communications are prohibited.

Lorsque le piston de moteur 4 arrive sensiblement en fin de compression, la ou les soupapes d'échappement 118a restent fermées, mais le boisseau supérieur 144 met en communication la canalisation 140 avec la canalisation 146 ; le boisseau inférieur 142 met en communication la canalisation 140 avec la canalisation d'admission 16. Il en résulte que l'air frais, provenant du compresseur 14, emprunte les canalisations 16, 140 et 146 pour évacuer le mélange résiduel air/gaz brûlés se trouvant dans la canalisation 140 vers l'extérieur.When the engine piston 4 arrives substantially at the end of compression, the exhaust valve 118a remains closed, but the upper bushel 144 ports the pipeline 140 with line 146; the lower bushel 142 sets communicating the pipe 140 with the intake pipe 16. As a result, the fresh air from the compressor 14 flows through the pipes 16, 140 and 146 for evacuating the residual air / gas mixture burned in line 140 to the outside.

Lorsque le piston de moteur atteint le PMH, le cycle est prêt à recommencer.When the engine piston reaches the TDC, the cycle is ready to restart.

Sur les figures 14 et 15, on a représenté l'application de l'invention à un moteur M3 du type monocylindre à deux temps et à soupapes d'échappement et d'admission.FIGS. 14 and 15 show the application of the invention to an M3 engine of the two-stroke single-cylinder type and to exhaust and intake valves.

Les figures 14 et 15 représentent deux variantes qui correspondent aux variantes des figures 10 et 11 du moteur M2 du type uniflow.Figures 14 and 15 show two variants that correspond to the variants of FIGS. 10 and 11 of the motor M2 of the type uniflow.

La seule différence, qui est commune aux deux variantes, réside dans le fait que la canalisation d'admission 16 débouche au sommet du cylindre 1 où est prévue une ou plusieurs soupapes d'admission 217. Le fonctionnement de ce type de moteur est analogue aux précédents.The only difference, which is common to both variants, is in that the intake pipe 16 opens at the top of the cylinder 1 where is provided one or more intake valves 217. The operation of this type of engine is similar to the previous ones.

Bien que les deux variantes des figures 14 et 15 comportent un compresseur mono-étage, on pourrait également prévoir un compresseur bi-étages (voir moteur du type représenté sur la figure 17) et/ou un dispositif de recirculation partielle des gaz d'échappement, sans sortir du cadre de l'invention.Although both variants of Figures 14 and 15 have a mono-stage compressor, one could also provide a two-stage compressor (see engine of the type shown in FIG. 17) and / or a device for partial recirculation of the exhaust gases, without departing from the scope of the invention.

Sur la figure 17, on a représenté un moteur M4 à compresseur bi-étages qui peut être utilisé aussi bien pour un moteur à deux temps que pour un moteur à quatre temps. Les éléments de ce moteur M4, qui sont identiques à ceux des moteurs précédemment décrits, portent les mêmes chiffres de référence.In FIG. 17, an M4 compressor motor is shown two-stage that can be used both for a two-stroke engine than for a four-stroke engine. The elements of this M4 engine, which identical to those of the engines previously described, bear the same reference numbers.

Sur les figures 18 à 25, on a représenté les différentes phases du cycle de fonctionnement d'un moteur à quatre temps M4 du type à soupapes d'échappement et d'admission et à compresseur mono-étage comportant un piston de compresseur basculant. Bien entendu, le moteur M4 peut comporter un ou plusieurs cylindres. Le fonctionnement du moteur à quatre temps va maintenant être décrit en référence aux figures 18 à 25.Figures 18 to 25 show the different phases of the cycle of operation of a four-stroke M4 engine of the type to exhaust and intake valves and single stage compressor comprising a tilting compressor piston. Of course, the M4 engine may include one or more cylinders. The four-stroke engine operation will now be described in reference to Figures 18 to 25.

.Sur la figure 18, le piston de moteur 4 est en fin de compression, à son PMH, alors que le piston de compresseur 12 est à son PMB, c'est-à-dire dans sa position la plus à droite sur la figure 18. Dans cette position, la soupape d'admission 217 et la soupape d'échappement 118a sont fermées, ainsi que le clapet d'aspiration 15a et le clapet de refoulement 16a. Le déphasage angulaire entre le maneton 8 et l'excentrique 10 est de l'ordre de 90°, mais ce déphasage est plus précisément calculé en fonction du rendement du compresseur et du taux de remplissage du cylindre. La position illustrée sur la figure 18 correspond à l'allumage du mélange carburé dans la chambre de combustion.In FIG. 18, the engine piston 4 is at the end of compression, at its PMH, while the compressor piston 12 is at its PMB, that is, in its rightmost position in Figure 18. In this position, the intake valve 217 and the exhaust valve 118a are closed, as well as the suction valve 15a and the flap of repression 16a. The angular phase shift between the crankpin 8 and the eccentric 10 is of the order of 90 °, but this phase shift is more precisely calculated according to the efficiency of the compressor and filling rate of the cylinder. The position shown in Figure 18 corresponds to the ignition of the fuel mixture in the chamber of combustion.

Pour la position illustrée sur la figure 18, la chambre 14a du compresseur 14 est remplie d'air frais, alors que la canalisation d'admission est remplie d'air chaud comprimé.For the position illustrated in FIG. 18, the chamber 14a of the compressor 14 is filled with fresh air, while the pipeline intake is filled with compressed hot air.

En cours de détente, sous l'action de la combustion des gaz dans la chambre de combustion 5, le piston de moteur descend, comme illustré sur la figure 19, après une rotation d'environ 150° du vilebrequin 9, ce qui provoque simultanément le basculement du piston de compresseur 12 autour de sa portion supérieure, puis un début de basculement autour de sa portion inférieure, engendrant ainsi une première compression dans la chambre de compression 14a.During relaxation, under the action of the combustion of gases in the combustion chamber 5, the engine piston goes down, as illustrated in FIG. 19, after a rotation of about 150.degree. crankshaft 9, which simultaneously causes the tilting of the piston of compressor 12 around its upper portion and then a start of tilting around its lower portion, thus generating a first compression in the compression chamber 14a.

Comme illustré sur la figure 18, la rotation du vilebrequin 9 s'effectue dans le sens horaire, illustrée par la flèche F.As illustrated in FIG. 18, the rotation of the crankshaft 9 is done clockwise, illustrated by the arrow F.

Dans la position illustrée sur la figure 19, la chambre de combustion 5 est remplie de gaz brûlés qui commencent à s'échapper par la tubulure d'échappement 118, comme illustré par la flèche F2, à la suite de l'ouverture de la soupape d'échappement 118a qui se déplace dans sa position basse comme illustré sur la figure 19. Le clapet d'admission 15a reste fermé, mais le clapet de refoulement 16a s'ouvre, ce qui permet de refouler l'air comprimé dans la chambre de compresseur 14a vers la canalisation d'admission 16 qui contient déjà de l'air comprimé. Ainsi, on obtient de l'air surcomprimé dans la canalisation d'admission 16, comme illustré par la flèche F1.In the position illustrated in Figure 19, the chamber of combustion 5 is filled with flue gases that are starting to escape by the exhaust manifold 118, as illustrated by the arrow F2, to following the opening of the exhaust valve 118a which is moves in its lower position as shown in Figure 19. The intake valve 15a remains closed, but the discharge valve 16a opens, allowing compressed air to be forced back into the chamber of compressor 14a to the inlet pipe 16 which already contains compressed air. Thus, supercharged air is obtained in the intake duct 16, as illustrated by the arrow F1.

En fin de détente, le piston de moteur 4 arrive à son PMB, comme illustré sur la figure 20 après rotation d'environ 30° supplémentaires dans le sens horaire comme indiqué par la flèche F. Dans cette position, le piston de compresseur 12 a terminé de basculer autour de sa portion inférieure pour atteindre sa position de compression maximale la plus à gauche dans la chambre de compression 14a. Le clapet d'admission 15a reste fermé et le clapet de refoulement 16a reste ouvert pour finir de surcomprimer l'air dans la canalisation d'admission 16, comme indiqué par la flèche F1. Dans cette position, les gaz brûlés continuent à s'échapper par la tubulure d'échappement 118, dans la direction de la flèche F2. On a ici atteint le premier temps du cycle à quatre temps du moteur M4.At the end of relaxation, the engine piston 4 arrives at its PMB, as illustrated in Figure 20 after rotation of approximately 30 ° additional clockwise as indicated by the arrow F. In this position, the compressor piston 12 has finished tilting around its lower portion to reach its position of leftmost maximum compression in the chamber of compression 14a. The inlet valve 15a remains closed and the flap of backflow 16a remains open to finish overcompressing the air in the intake duct 16, as indicated by the arrow F1. In this position, the flue gases continue to escape through the tubing exhaust 118, in the direction of the arrow F2. We have reached here the first stage of the four-stroke cycle of the M4 engine.

Lors de la rotation ultérieure du vilebrequin 9, comme illustré sur la figure 21, le piston de moteur 4 au cours de sa phase de compression de la chambre de combustion, vient refouler les gaz brûlés vers la tubulure d'échappement 118. Dans la position illustrée sur la figure 21, le vilebrequin a tourné d'environ 160° supplémentaires. Dans cette position, le piston de compresseur 12 a basculé autour de sa portion supérieure, puis autour de sa portion inférieure, pour atteindre une position de détente de la chambre de compression 14a. Au cours de la phase de détente du compresseur 14, le clapet d'aspiration 15a est ouvert et le clapet de refoulement 16a est fermé, pour aspirer de l'air frais, comme indiqué par la flèche F3 dans la chambre de compression 14a. Simultanément, la soupape d'admission 217 s'ouvre pour admettre l'air comprimé dans la chambre de combustion comme illustré par la flèche F4 et chasser ainsi le reste des gaz brûlés vers la tubulure d'échappement. La figure 22 montre la fin de la course de compression du piston de moteur 4, pour laquelle le vilebrequin 9 a effectué une rotation de 360° par rapport à sa position initiale illustrée sur la figure 18. Dans cette position, le clapet d'aspiration 15a s'est fermé, et les deux soupapes 217 et 118a restent ouvertes. La flèche F4 indique l'admission de l'air chaud comprimé dans la chambre de combustion. La position de la figure 22 illustre le deuxième temps du cycle à quatre temps.During the subsequent rotation of the crankshaft 9, as illustrated in FIG. 21, the engine piston 4 during its phase of compression of the combustion chamber, just repress the burnt gases to the exhaust manifold 118. In the position illustrated on the Figure 21, the crankshaft turned about 160 ° further. In this position, the compressor piston 12 has tilted around its upper portion, then around its lower portion, to reach a detent position of the compression chamber 14a. During the expansion phase of the compressor 14, the suction valve 15a is open and the discharge valve 16a is closed, to suck air fresh, as indicated by the arrow F3 in the compression chamber 14a. At the same time, the intake valve 217 opens to admit compressed air in the combustion chamber as illustrated by the arrow F4 and drive the rest of the flue gas to the tubing exhaust. Figure 22 shows the end of the compression stroke of the engine piston 4, for which the crankshaft 9 has made a 360 ° rotation from its initial position shown in the figure 18. In this position, the suction valve 15a has closed, and the two valves 217 and 118a remain open. The arrow F4 indicates the admission of compressed hot air into the combustion chamber. The position of Figure 22 illustrates the second cycle time at four time.

Pour passer à la figure 23, le vilebrequin 9 a pivoté d'une vingtaine de degrés supplémentaires, pour commencer la phase de détente du piston de moteur 4. Dans cette position, la soupape d'échappement 118a s'est refermée, mais la soupape d'admission reste ouverte. Le clapet de refoulement 16a s'ouvre également pour refouler l'air frais contenu dans la chambre de compression 14a dans la canalisation d'admission 16, comme indiqué par la flèche F1. Lorsque le piston de moteur 4 atteint son PMB comme illustré sur la figure 24, c'est-à-dire lors du troisième temps du cycle à quatre temps, la chambre de combustion 5 a été remplie d'air comprimé chaud provenant, d'une part, de l'air comprimé contenu dans la canalisation d'admission 16 et, d'autre part, de l'air comprimé contenu dans la chambre de compression 14a et refoulé par le piston de compresseur 12, étant donné que le clapet de refoulement 16a est resté ouvert. On a ainsi obtenu un double remplissage de la chambre de combustion 5.To go to FIG. 23, the crankshaft 9 has rotated by one twenty additional degrees, to begin the phase of 4. In this position, the valve exhaust 118a has closed, but the intake valve remains opened. The discharge valve 16a also opens to push back the fresh air contained in the compression chamber 14a in the intake duct 16, as indicated by the arrow F1. When the engine piston 4 reaches its PMB as illustrated in FIG. 24, that is to say at the third stage of the four-stroke cycle, the combustion chamber 5 was filled with hot compressed air from, on the one hand, compressed air contained in the pipe 16 and, on the other hand, the compressed air contained in the compression chamber 14a and discharged by the compressor piston 12, since the discharge valve 16a has remained open. We have thus obtained a double filling of the combustion chamber 5.

Sur la figure 25, on a représenté la rotation supplémentaire du vilebrequin 9 d'environ 30°. Dans cette position, les deux soupapes 217 et 118a sont fermées et on obtient un début de compression de l'air contenu dans la chambre de combustion 5. Le clapet de refoulement 16a est également fermé, mais le clapet d'admission 15a est ouvert pour admettre à nouveau de l'air frais dans la chambre de compression 14a. Au plus tard en fin de course de compression du piston de moteur 4, le carburant peut être injecté dans la chambre de combustion 5. Puis, le piston de moteur 4 atteint son PMH, comme illustré sur la figure 18.In FIG. 25, the additional rotation of the crankshaft 9 about 30 °. In this position, the two valves 217 and 118a are closed and we get a start of air compression contained in the combustion chamber 5. The discharge valve 16a is also closed, but the inlet valve 15a is open to admit fresh air back into the compression chamber 14a. At the latest at the end of the compression stroke of the engine piston 4, the fuel can be injected into the combustion chamber 5. Then, the engine piston 4 reaches its TDC, as illustrated in FIG. 18.

Bien que cela ne soit pas représenté, les différents moteurs de l'invention peuvent être équipés d'injecteurs, pour l'injection directe ou indirecte d'essence ou de diesel, ou bien fonctionner avec des mélanges précarburés.Although this is not represented, the different engines of the invention may be equipped with injectors, for direct injection or indirect use of gasoline or diesel, or work with blends précarburés.

Enfin, sur la figure 16, on a représenté un moteur M à quatre cylindres 1 en ligne, comportant quatre compresseurs 14 du type mono-étage à piston de compresseur basculant, dont les biellettes 11 sont représentées désaxées par rapport à l'axe du cylindre respectif, les compresseurs 14 étant disposés alternativement sur chaque face latérale du carter cylindre 2.Finally, in FIG. 16, a four-motor M is shown cylinders 1 in line, comprising four compressors 14 of the single-stage type tilting compressor piston, whose rods 11 are offset from the axis of the respective cylinder, the compressors 14 being arranged alternately on each lateral face of the cylinder block 2.

Bien entendu, l'invention s'applique également à tous types de moteurs, mono ou poly-cylindres, en ligne ou en V.Of course, the invention also applies to all types of motors, mono or poly-cylinders, in line or in V.

Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particulier, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is quite obvious that it is not not limited and includes all technical equivalents described means as well as their combinations if these enter in the context of the invention.

Claims (15)

  1. Two-stroke or four-stroke internal combustion engine (M, M1, M2, M3, M4), operating by admitting a carburated mixture or by admitting fresh air with the direct or indirect injection of fuel, the engine having at least one cylinder (1) defining a variable-volume combustion chamber (5) in which an engine piston (4). coupled by a connecting rod (7) to the wrist pin (8) of a crankshaft (9) executes a reciprocating movement, and a compressor (14) associated with each cylinder in order to supercharge the cylinder with carburated mixture or with fresh air, said compressor (14) including at least one stage, in the compression chamber (14a, 14b) of which there moves a compressor piston (12, 112, 212) which is coupled to the crankshaft (9) by a link rod (11, 111) articulated to an eccentric (10), said eccentric being mounted on the shaft of said crankshaft (9), the compressor piston (112, 212) being secured at its centre to a rod (121) articulated to the link rod (111) for connection to the eccentric (10), said rod being guided in translation in a direction which intersects the axis of the cylinder (1), the compressor piston being a deformable diaphragm (212) connected at its periphery to the side wall of the compression chamber, the angle between the axis of the cylinder and the axis of the compression chamber being of 90°, characterized in that the angle () of the dihedron, the solid angle of intersection of which is formed by the axis of the crankshaft (9) and the two half-planes of which extend one towards the eccentric (10) and the other towards the wrist pin (8), is of the order of 90° so as to obtain a phase shift of 180° between the top dead centre (PMH) positions of the engine piston (4) and of the compressor piston (12, 112, 212) which are associated with the same cylinder, which phase shift ensures that the pressure in the compression chamber (14a, 14b) is at its maximum before the carburated mixture or the fresh air is admitted into the combustion chamber (5).
  2. Engine according to Claim 1, characterized in that when the stage (14b) of the compression chamber which communicates directly with the cylinder (1) is located between the compressor piston (112, 212) and the crankshaft (9), the wrist pin (8) has a phase shift in advance of the eccentric (10) in the direction of rotation (F) of the crankshaft and, conversely, when the aforementioned stage (14a) is on the opposite side of the compressor piston (12, 112, 212) to the crankshaft, the eccentric has a phase shift in advance of the wrist pin in the direction of rotation of the crankshaft.
  3. Engine according to either of Claims 1 and 2, characterized in that the cylinder capacity of the compressor (14) is of the order of magnitude of that of the cylinder (1), but with a compressor piston (12, 112, 212) which has a diameter markedly greater than the diameter of the engine piston (4), so that the compressor piston has a short compression stroke (C) in the compression chamber.
  4. Engine according to one of Claims 1 to 3, characterized in that said diaphragm has an undulation (212a) at its periphery, to make it easier to deform.
  5. Engine according to one of Claims 1 to 4, characterized in that the compression chamber has two stages (14a, 14b) located one on each side of the compressor piston (112, 212), a first stage (14a or 14b) being supplied with carburated mixture or with fresh air by a first nonreturn valve (115a) or a valve, and connected by a delivery duct (130) fitted with a second nonreturn valve (130a) or a valve to the second stage (14b or 14a) which communicates with the cylinder (1) via an inlet duct (16) possibly fitted with a third nonreturn valve (16a) or a valve.
  6. Two-stroke internal combustion engine according to one of Claims 1 to 5, characterized in that it is equipped with an additional volume (40, 140) communicating with the cylinder (1) through closure and opening means (42, 44; 142, 144), the movements of which are controlled either in synchronism or with a phase shift with respect to those of the engine piston (4) in the cylinder so that during the expansion phase, the burnt gases compress the air in the additional volume and at least partially enter it, so that this air and burnt gases mixture is trapped under pressure therein, and then so that this mixture is admitted into the cylinder during the compression phase.
  7. Engine according to Claim 6, characterized in that after the air and burnt gases mixture previously trapped in the additional volume (40, 140) has been admitted into the cylinder (1), said additional volume is once again filled with fresh air from the compressor (14).
  8. Engine according to Claim 6 or 7, characterized in that the aforementioned closure and opening means comprise two rotary shutters (42, 44; 142, 144), for example multi-way rotary spools, connected to each other by the additional volume (40, 140), one (42, 142) of the shutters being associated with the compressor (14), and the other shutter (44, 144) being associated with the exhaust from the cylinder (1).
  9. Engine according to Claim 8, characterized in that the two rotary shutters are arranged in such a way that the following operations take place: in a first phase, when the engine piston (4) is near its PMH, a flow of air from the compressor (14) passes through the lower shutter (42, 142) associated with the compressor, sweeps through the additional volume (40, 140), passes through the upper shutter (44, 144) associated with the exhaust and is exhausted to the outside via an exhaust manifold; in a second phase, from about halfway through the expansion stroke of the engine piston, on the one hand, the upper shutter (44, 144) places the cylinder (1) in communication with the additional volume so as to fill it with a pressurized mixture of air and burnt gases and, on the other hand, the cylinder communicates with the exhaust; in a third phase, the upper shutter traps the air and burnt gases mixture in the additional volume; in a fourth phase, air from the compressor (14) is admitted into the cylinder and, in a fifth phase, at the start of the engine piston compression stroke, the trapped and pressurized mixture is admitted into the cylinder.
  10. Engine according to Claims 9, characterized in that the upper shutter (44) is connected to the cylinder (1) by a pipe (45) arranged towards the bottom of the cylinder and the lower shutter (42) is fitted on the delivery pipe (130) between the two stages (14a, 14b) of the compressor (14) so that the additional volume (40) is pressurized by means of the burnt gases from the cylinder (1) through the upper shutter (44) and is emptied into the cylinder through the pipe (45) connected to the upper shutter.
  11. Engine according to Claim 9, characterized in that the upper shutter (144) is associated with at least one exhaust valve (118a) located at the top of the cylinder (1) and the lower shutter (142) is connected to the cylinder (1) by a pipe (141) arranged towards the bottom of the cylinder so that the additional volume (140) is pressurized via its upper end by the burnt gases from the exhaust valve (118a) through the upper shutter (144) and is emptied into the cylinder via its lower end through the lower shutter (142).
  12. Engine according to one of Claims 1 to 10, characterized in that it is of loop scavenging type (M1), in which the carburated mixture or the fresh air is admitted from the compressor (14) through an inlet duct (16) opening via ports (17) into the lower part of the cylinder (1) with an orientation such that the mixture or the air is introduced with a looping upward rotating movement, while the burnt gases from the previous cycle are discharged through exhaust ports (8) also arranged towards the bottom of the cylinder.
  13. Engine according to one of Claims 1 to 9 and 11, characterized in that it is of the uniflow type (M2), in which the carburated mixture or the air is admitted towards the bottom of the cylinder (1) through inlet ports distributed at the base of the cylinder and supplied by a ring (117), itself connected to the compressor (14), while the burnt gases from the previous cycle are discharged through one or more exhaust valves (118a) located at the top of the cylinder.
  14. Two-stroke internal combustion engine according to one of Claims 1 to 9 and 11, or four-stroke internal combustion engine according to one of Claims 1 to 5, characterized in that it is of the type with exhaust and inlet valves (M3, M4), in which the valves (118a, 217) are located at the top of the cylinder (1) and the inlet valve or valves (217) are supplied by the compressor (14).
  15. Engine according to one of Claims 1 to 14, characterized in that it is of the type with several in-line cylinders (M), in which the compressors (14) associated with each cylinder (1) are arranged alternately on each face of the crankcase (2).
EP00400004A 1999-01-07 2000-01-04 Charged two or four stroke internal-combustion engine Expired - Lifetime EP1018597B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9900093A FR2788306B1 (en) 1999-01-07 1999-01-07 TWO-STROKE INTERNAL COMBUSTION COMPRESSOR ENGINE
FR9900093 1999-01-07
FR9911162 1999-09-07
FR9911162A FR2788307B1 (en) 1999-01-07 1999-09-07 TWO- OR FOUR-TIME INTERNAL COMBUSTION COMPRESSOR ENGINE

Publications (2)

Publication Number Publication Date
EP1018597A1 EP1018597A1 (en) 2000-07-12
EP1018597B1 true EP1018597B1 (en) 2005-03-30

Family

ID=26234754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00400004A Expired - Lifetime EP1018597B1 (en) 1999-01-07 2000-01-04 Charged two or four stroke internal-combustion engine

Country Status (11)

Country Link
US (1) US6352057B1 (en)
EP (1) EP1018597B1 (en)
JP (1) JP2003516490A (en)
KR (1) KR20010089789A (en)
CN (1) CN1175172C (en)
AR (1) AR022211A1 (en)
AT (1) ATE292236T1 (en)
BR (1) BR0007418A (en)
DE (1) DE60018996D1 (en)
FR (1) FR2788307B1 (en)
WO (1) WO2000040845A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5988165A (en) 1997-10-01 1999-11-23 Invacare Corporation Apparatus and method for forming oxygen-enriched gas and compression thereof for high-pressure mobile storage utilization
FR2833647A1 (en) 2001-12-17 2003-06-20 Daniel Drecq Two stroke/four stroke internal combustion engine for use in lawn mowers, generates supercharging pressure by compression chamber and transmits through inlet pipe to reach maximum value in engine cylinder
US6748909B2 (en) 1999-01-07 2004-06-15 Daniel Drecq Internal combustion engine driving a compressor
HRP20000632A2 (en) * 2000-09-22 2002-04-30 Paut Dražen Two-stroke cycle for internal combustion engines
JP3726678B2 (en) * 2000-12-15 2005-12-14 日産自動車株式会社 Crank mechanism of a multi-link reciprocating internal combustion engine
US6688853B1 (en) * 2001-01-08 2004-02-10 Honeywell International Inc. Control valve for regulating flow between two chambers relative to another chamber
DE10159508A1 (en) * 2001-12-04 2003-06-18 Pierburg Gmbh Fuel injection device
JP2003232233A (en) * 2001-12-06 2003-08-22 Nissan Motor Co Ltd Control device of internal combustion engine
SK12512002A3 (en) * 2002-09-02 2004-05-04 Miloš Kopecký Hydraulic pump with its own drive unit
US8062003B2 (en) * 2005-09-21 2011-11-22 Invacare Corporation System and method for providing oxygen
US7412949B1 (en) 2007-03-14 2008-08-19 James A. Cillessen Dual head piston engine
FR2933449B1 (en) * 2008-07-03 2010-07-30 Inst Francais Du Petrole PROCESS FOR IMPROVING THE VAPORIZATION OF A UTLISE FUEL FOR AN INTERNAL COMBUSTION ENGINE, IN PARTICULAR DIRECT INJECTION, IN PARTICULAR SELF-LIGHTING AND ESPECIALLY DIESEL TYPE
EP2467578A1 (en) * 2009-08-17 2012-06-27 Invacare Corporation Compressor
BR112012020479B1 (en) * 2010-02-17 2021-06-01 Primavis S.R.L TWO-STROKE ENGINE WITH LOW CONSUMPTION AND LOW EMISSIONS
JP5758711B2 (en) * 2011-06-20 2015-08-05 廣海 礒崎 engine
US9399988B2 (en) * 2012-02-02 2016-07-26 General Electric Company Variable capacity compressor and refrigerator
EP2809949A4 (en) 2012-02-03 2015-12-09 Invacare Corp Pumping device
CN102678265A (en) * 2012-05-07 2012-09-19 上海交通大学 Connected type mechanical supercharging two-stroke internal combustion engine of air intake system
CN102691570A (en) * 2012-05-07 2012-09-26 上海交通大学 Opposed mechanical supercharging two-stroke internal combustion engine
CN102678264A (en) * 2012-05-07 2012-09-19 上海交通大学 Independent mechanical supercharging two-stroke internal-combustion engine for air intake system
CN102678266A (en) * 2012-05-07 2012-09-19 上海交通大学 Intake system-connected mechanical supercharged four-stroke internal combustion engine
CN102678267A (en) * 2012-05-07 2012-09-19 上海交通大学 Gas inlet system independent type mechanical supercharged four-stroke internal combustion engine
US9938967B2 (en) * 2014-10-29 2018-04-10 Emerson Climate Technologies, Inc. Reciprocating compressor system
CN104989523B (en) * 2015-08-03 2018-02-27 湖州新奥利吸附材料有限公司 A kind of internal combustion engine
FR3064300A1 (en) * 2017-03-23 2018-09-28 New Times TWO-TIME EXPLOSION ENGINE
JP6295487B1 (en) * 2017-10-24 2018-03-20 正裕 井尻 Internal combustion engine
CN112771260B (en) * 2018-07-11 2022-11-29 海佩尔泰克方案股份责任有限公司 Two-stroke internal combustion engine and associated actuation method
WO2020026037A1 (en) * 2018-08-02 2020-02-06 Mousaviasl Esmaeil Two strokes x-shaped engine
SE543468C2 (en) * 2019-08-01 2021-03-02 Fredrik Gustafsson Two Stroke High Performance Piston Pump Engine
CN112044205B (en) * 2020-08-14 2021-10-01 中材株洲水泥有限责任公司 Prevent blockking up grog cement manufacture line exhaust treatment device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2542707A (en) * 1948-03-15 1951-02-20 Ricardo Internal-combustion engine operating on the two-stroke cycle with compression ignition
US2609802A (en) * 1948-10-01 1952-09-09 Schnurle Two-stroke cycle internal-combustion engine
DE808297C (en) * 1949-02-27 1951-07-12 Kloeckner Humboldt Deutz Ag Slot-controlled two-stroke engine with flushing pump
DE807566C (en) * 1949-07-30 1951-07-02 Kloeckner Humboldt Deutz Ag Two-stroke internal combustion engine
US2726646A (en) * 1952-02-07 1955-12-13 Robert B Black Gaseous fluid operated prime mover with rotary sleeve valve assembly
AT313458B (en) * 1971-12-14 1974-02-25 Jenbacher Werke Ag Motor compressors
US4974554A (en) * 1989-08-17 1990-12-04 Emery Lloyd H Compound rod, sleeve and offset crankshaft assembly
US5299537A (en) * 1992-03-11 1994-04-05 Thompson Ransom S Metered induction two cycle engine
DE4236899A1 (en) * 1992-10-31 1994-05-05 Mtu Friedrichshafen Gmbh Multi-cylinder two-stroke engine - has intake slots in cylinder liners, and discharge valves in cylinder heads
GB2287766B (en) * 1994-03-18 1998-01-28 Yoshiki Kogyo Kk Apparatus for mutual conversion between circular motion and reciprocal motion

Also Published As

Publication number Publication date
KR20010089789A (en) 2001-10-08
WO2000040845A3 (en) 2002-10-31
BR0007418A (en) 2001-10-16
ATE292236T1 (en) 2005-04-15
FR2788307A1 (en) 2000-07-13
US6352057B1 (en) 2002-03-05
WO2000040845A2 (en) 2000-07-13
DE60018996D1 (en) 2005-05-04
JP2003516490A (en) 2003-05-13
FR2788307B1 (en) 2001-03-09
EP1018597A1 (en) 2000-07-12
AR022211A1 (en) 2002-09-04
CN1377442A (en) 2002-10-30
CN1175172C (en) 2004-11-10

Similar Documents

Publication Publication Date Title
EP1018597B1 (en) Charged two or four stroke internal-combustion engine
EP1201892B1 (en) Five stroke internal combustion engine
EP1084334B1 (en) Erfahren
WO2003036087A2 (en) Controlling kinematics of three-stroke or five-stroke heat engine piston stroke
EP0384492B1 (en) Control process for two-stroke internal-combustion engines
WO1979000757A1 (en) Improvements in two-stroke engines enhancing the combustion and allowing a reduction of pollution
EP1090216B1 (en) Two-stroke internal combustion engine provided with a supercharging device and exhaust gas partial recycling
EP0704017B1 (en) Fuel-air mixture feed device for a two-stroke internal combustion engine
EP0358655B1 (en) Process and device for equipping a post-filling two-stroke engine
EP0220223B1 (en) Two-stroke engine with controlled valves
FR2788306A1 (en) Two- or four-stroke i.c. engine incorporates piston compressor connected to crankshaft by arm and cam giving 90-degree difference in engine and compressor piston phases
FR2957631A1 (en) Engine element for petrol engine of vehicle, has intake hole in communication with intake pipe, where positions of engine piston in cylinder are defined such that inner volume in one of positions of piston is less that of other position
BE1008009A3 (en) Distribution process for internal combustion engine and device forimplementing this process
FR2833647A1 (en) Two stroke/four stroke internal combustion engine for use in lawn mowers, generates supercharging pressure by compression chamber and transmits through inlet pipe to reach maximum value in engine cylinder
FR2810077A1 (en) Two stroke internal combustion engine includes gas transfer from beneath one cylinder to above second cylinder, recovering excess pressure
WO1986000374A1 (en) Method for improving the operation of a two-stroke internal combustion engine
FR2768177A1 (en) Four stroke, single valve, fuel injection IC engine
EP1378641A2 (en) Low pollution two stroke and four stroke engine with scavenging and supercharging
FR2883036A1 (en) Rotating heat engine e.g. petrol engine, has rotor rotating in stator, where stator has air inlet orifice, exhaust gas evacuation orifice, and explosion chamber for explosion of air-petrol mixture which leads to rotating movement of rotor
FR2531139A1 (en) Control device for a gas circuit of a combustion chamber
MXPA01006884A (en) Compressed two-stroke or four-stroke internal combustion engine
FR2739412A1 (en) Ported piston two stroke IC-engine
BE421316A (en)
BE356902A (en)
WO1988005861A1 (en) Method for igniting by compression a gaseous mixture in an internal combustion engine, and engine implementing such method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000916

111L Licence recorded

Free format text: 20001023 0100 SOCIETE D'APPLICATIONS ENTROPOLOGIQUES MOTEURS, SOCIETE ANONYME

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030725

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20050330

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60018996

Country of ref document: DE

Date of ref document: 20050504

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050907

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050330

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1030445

Country of ref document: HK

BERE Be: lapsed

Owner name: DRECQ, DANIEL

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070129

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131