EP1007620A1 - Savons a base de detergents synthetiques contenant des sulfates d'ester de polyglycol d'acide gras - Google Patents

Savons a base de detergents synthetiques contenant des sulfates d'ester de polyglycol d'acide gras

Info

Publication number
EP1007620A1
EP1007620A1 EP98948836A EP98948836A EP1007620A1 EP 1007620 A1 EP1007620 A1 EP 1007620A1 EP 98948836 A EP98948836 A EP 98948836A EP 98948836 A EP98948836 A EP 98948836A EP 1007620 A1 EP1007620 A1 EP 1007620A1
Authority
EP
European Patent Office
Prior art keywords
carbon atoms
fatty acid
acid
alkyl
syndet soaps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98948836A
Other languages
German (de)
English (en)
Inventor
Werner Seipel
Bernd Fabry
Hermann Hensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19736906A external-priority patent/DE19736906A1/de
Priority claimed from DE19741911A external-priority patent/DE19741911C1/de
Priority claimed from DE1998106496 external-priority patent/DE19806496C2/de
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1007620A1 publication Critical patent/EP1007620A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/006Detergents in the form of bars or tablets containing mainly surfactants, but no builders, e.g. syndet bar
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/24Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
    • C07C67/26Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran with an oxirane ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2615Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen the other compounds containing carboxylic acid, ester or anhydride groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2669Non-metals or compounds thereof
    • C08G65/2672Nitrogen or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/16Sulfonic acids or sulfuric acid esters; Salts thereof derived from divalent or polyvalent alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/523Carboxylic alkylolamides, or dialkylolamides, or hydroxycarboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain one hydroxy group per alkyl group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Definitions

  • the invention relates to fatty acid-free syndet soaps containing fatty acid polyglycol ester sulfates and starch.
  • the soap bars obtainable according to the teaching of the prior art do not always develop a sufficient amount of foam, and also foam consistency and in particular the feeling on the skin leave something to be desired. If free fatty acids are also used as refatting agents, severe corrosion problems can also occur in the manufacturing plants.
  • the object of the invention was therefore to provide bar soaps that are free from the disadvantages described. In this context, particular attention had to be paid to the fact that new bar soap compositions must also be able to be produced on an industrial scale, ie that the compositions have, for example, sufficient but not too high deformability and do not tend to form cracks during drying.
  • the invention relates to syndet soaps containing
  • bar soaps with improved foaming power and optimized skin feel can be produced in the absence of fatty acids or fatty acid salts if fatty acid polyglycol ester sulfates are used as the main surfactant component, preferably in anhydrous form, and starch is used as the builder.
  • the invention includes the knowledge that the mixtures are also outstandingly suitable for the industrial production of bar soaps, i.e. they are stable when stored in the air, are not hygrospcopic, deformable, but not too hard, and show no cracking when dried.
  • mixtures of fatty acid polyglycol ester sulfates with alkyl and / or alkenyl oligoglycosides, fatty acid N-alkyl polyhydroxyalkylamides, monoglyceride ether sulfates, betaines and the like are used as surfactant components.
  • Fatty acid polyglycol ester sulfates which form component (a) and preferably follow formula (I),
  • R 1 CO is a linear or branched, saturated or unsaturated acyl radical having 6 to 22 carbon atoms
  • x is an average of 1 to 3
  • AO is a CH2CH2O-, CH 2 CH (CH 3 ) 0- and / or CH ( CH 3 ) CH 2 0 radical
  • X represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium, are known anionic surfactants and are prepared by sulfation of the corresponding fatty acid polyglycol ester. These in turn are based on the relevant preparative methods of organic chemistry available.
  • ethylene oxide, propylene oxide or a mixture thereof - in random or block distribution - is added to the corresponding fatty acids, this reaction being acid-catalyzed, but preferably in the presence of bases, such as, for example, sodium methylate or calcined hydrotalcite.
  • bases such as, for example, sodium methylate or calcined hydrotalcite.
  • the intermediates can also be prepared by esterifying the fatty acids with an appropriate alkylene glycol.
  • the sulfation of the fatty acid polyglycol esters can be carried out in a manner known per se with chlorosulfonic acid or preferably gaseous sulfur trioxide, the molar ratio between fatty acid polyglycol ester and sulfating agent being in the range from 1: 0.95 to 1: 1, 2, preferably 1: 1 to 1: 1 , 1 and the reaction temperature can be 30 to 80 and preferably 50 to 60 ° C. It is also possible to undersulfate the fatty acid polyglycol esters, ie to use significantly fewer sulfating agents than would be stoichiometrically required for complete conversion.
  • fatty acid polyglycol ester to sulfating agent 1: 0.5 to 1: 0.95
  • mixtures of fatty acid polyglycol ester sulfates and fatty acid polyglycol esters are obtained, which are also advantageous for a whole series of applications.
  • Typical examples of suitable starting materials are the addition products of 1 to 3 moles of ethylene oxide and / or propylene oxide, but preferably the adducts with 1 mole of ethylene oxide or 1 mole of propylene oxide with caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, Palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures, which are then sulfated and neutralized as described above.
  • Fatty acid polyglycol ester sulfates of the formula (I) are preferably used in which R 1 CO stands for an acyl radical having 12 to 18 carbon atoms, x for an average of 1 or 2, AO for a CH ⁇ C ⁇ O group and X for sodium or ammonium, such as for example lauric acid + 1 EO sulfate sodium salt, lauric acid + 1 EO sulfate ammonium salt, coconut fatty acid + 1EO sulfate sodium salt, coconut fatty acid + 1EO sulfate ammonium salt, tallow fatty acid + 1 EO sulfate sodium salt, tallow fatty acid + 1 EO sulfate ammonium salt and mixtures thereof.
  • R 1 CO stands for an acyl radical having 12 to 18 carbon atoms
  • x for an average of 1 or 2
  • AO for a CH ⁇ C ⁇ O group
  • X for sodium or ammonium, such as for example lauric acid + 1
  • Alkyl and alkenyl oligoglycosides which may be included as optional surfactants, are known nonionic surfactants which follow the formula (II),
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, those alkyl and / or alkenyl oligoglycosides are preferred whose degree of oligomerization is less than 1.7 and is in particular between 1.2 and 1.4.
  • the alkyl or alkenyl radical R 2 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms.
  • Typical examples are butanol, capro alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • the alkyl or alkenyl radical R 2 can also be derived from primary alcohols having 12 to 22, preferably 12 to 14, carbon atoms.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and their technical mixtures, as described above, which can be obtained as described above.
  • Alkyl oligoglucosides based on hydrogenated Ci2 / i4 coconut alcohol with a DP of 1 to 3 are preferred.
  • Fatty acid N-alkylpolyhydroxyalkylamides which may also be included as optional surfactants, are nonionic surfactants which follow the formula (III)
  • the fatty acid N-alkyl polyhydroxyalkylamides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the fatty acid N-alkylpolyhydroxyalkylamides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the preferred fatty acid N-alkyl polyhydroxyalkylamides are therefore fatty acid N-alkylglucamides, as represented by the formula (IV):
  • the fatty acid N-alkylpolyhydroxyalkylamides used are preferably glucamides of the formula (IV) in which R 4 is methyl and R 3 CO is the acyl radical of caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid , Elaidic acid, petroselinic acid, linoleic acid, linolenic acid, arachic acid, gadoleic acid, behenic acid or erucic acid or their technical mixtures.
  • Fatty acid N-alkylglucamides of the formula (IV) which are obtained by reductive amination of glucose with methylamine and subsequent acylation with lauric acid or Ci2 / i4 coconut fatty acid or a corresponding derivative are particularly preferred.
  • the polyhydroxyalkylamides can also be derived from maltose and palatinose.
  • Monoglyceride sulfates and monoglyceride ether sulfates which may be included as further anionic surfactants, are known substances which can be obtained by the relevant methods of preparative organic chemistry.
  • the usual starting point for their preparation is triglycerides, which, if appropriate after transesterification to the monoglycerides, are subsequently sulfated and neutralized. It is also possible to react the partial glycerides with suitable sulfating agents, preferably gaseous sulfur trioxide or chlorosulfonic acid [cf. EP-B1 0561825, EP-B1 0561999 (Henkel)].
  • the neutralized substances can - if desired - be subjected to ultrafiltration in order to reduce the electrolyte content to a desired level [DE-A1 4204700 (Henkel)].
  • Overviews of the chemistry of the monoglyceride sulfates are, for example, by AKBiswas et al. in J.Am.Oil.Chem.Soc. 37, 171 (1960) and FUAhmed J.Am.Oil.Chem. Soc. 67, 8 (1990).
  • the monoglyceride (ether) sulfates to be used in accordance with the invention follow the formula (V),
  • R 5 CO stands for a linear or branched acyl radical with 6 to 22 carbon atoms, x, y and z in total for 0 or for numbers from 1 to 30, preferably 2 to 10, and X stands for an alkali or alkaline earth metal.
  • Typical examples of monoglyceride (ether) sulfates suitable for the purposes of the invention are the reaction products of lauric acid monoglyceride, coconut fatty acid monoglyceride, palmitic acid monoglyceride, stearic acid monoglyceride, oleic acid monoglyceride and tallow fatty acid monoglyceride as well as their ethylene oxide adducts or their form of sulfuric acid with sulfuric acid trioxide.
  • Monoglyceride sulfates of the formula (V) are preferably used in which R 5 CO represents a linear acyl radical having 8 to 18 carbon atoms.
  • the monoglyceride (ether) sulfates are preferably used as dry granules or powders, which can be obtained, for example, by drying aqueous pastes in a flash dryer.
  • Betaines which can also be used as representatives of the amphoteric or zwitterionic surfactants, are known substances which are predominantly prepared by carboxyalkylation, preferably carboxymethylation, of aminic compounds.
  • the starting materials are preferably condensed with halocarboxylic acids or their salts, in particular with sodium chloroacetate, one mol of salt being formed per mole of betaine.
  • unsaturated carboxylic acids such as acrylic acid
  • R 6 for alkyl and / or alkenyl radicals with 6 to 22 carbon atoms
  • R 7 for hydrogen or alkyl radicals with 1 to 4 carbon atoms
  • R 8 for alkyl radicals with 1 to 4 carbon atoms
  • n for numbers from 1 to 6
  • X for a Alkali and / or alkaline earth metal or ammonium.
  • Typical examples are the carboxymethylation products of hexylmethylamine, hexyldimethylamine, octyldimethylamine, Removal cyldimethylamin, dodecylmethylamine, dodecyldimethylamine, Dodecylethylmethylamin, Ci2 / i4-Kokosal- kyldimethylamin, myristyldimethylamine, Cetyidimethylamin, stearyldimethylamine, Stearylethylmethyl- amine, oleyl dimethyl amine, Ci6 / 18 tallow alkyl dimethyl amine, and their technical Mixtures.
  • Carboxyalkylation products of amidoamines which follow the formula (VII) are also suitable,
  • R 9 CO represents an aliphatic acyl radical having 6 to 22 carbon atoms and 0 or 1 to 3 double bonds
  • m represents numbers from 1 to 3
  • R 7 , R 8 , n and X have the meanings given above.
  • Typical examples are reaction products of fatty acids with 6 to 22 carbon atoms, namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, gadacholeic acid, araeleinic acid , Behenic acid and erucic acid and their technical mixtures, with N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-diethylaminoethylamine and N, N-diethy
  • wheat and / or maize starch is particularly preferred, which can be used untreated or in a digested, ie partially hydrolyzed or acid-digested form.
  • Untreated starch has the advantage that it is present in the bar soaps in the form of small, solid grains which, when used, have a gentle abrasive effect and improve the feeling on the skin.
  • Hydrolyzed starch leads to products with better deformability and homogeneity.
  • compounds are made from fatty acid polyglycol ester sulfates and starch by subjecting aqueous slurries of the two components to drying with superheated steam.
  • the syndet soaps according to the invention can also contain anionic, nonionic, cationic and / or amphoteric or zwitterionic surfactants in minor amounts as constituents.
  • anionic surfactants are alkylbenzenesulfonates, alkanesulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerol ether sulfates, hydroxymixed ether sulfates and monosuccinate sulfates, fatty acid amide sulfates, fatty acid amide sulfates, fatty acid amide sulfates, fatty acid amide sulfate, sulfate amide sulfate, fatty acid amide
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, protein hydrolyzates (especially vegetable products based on wheat) and polyol fatty acid sorbate esters, sugar ester, polysorbate sorbate esters, sugar ester.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of cationic surfactants are quaternary ammonium compounds and ester quats, in particular quaternized fatty acid trialkanolamine ester salts.
  • Further typical examples of amphoteric or zwitterionic surfactants are imidazoline betaines, amino propionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • Syndet soaps with a particularly beneficial skin feel and creamy foam contain the ingredients in the following amounts:
  • syndet soaps have the following composition:
  • fatty acid N-alkylpolyhydroxyalkylamides preferably fatty acid N-alkylglucamides, monoglyceride (ether) sulfates, preferably coconut fatty acid monoglyceride sulfate and betaines.
  • fatty alcohols and polyethylene glycol ethers are fatty alcohols and polyethylene glycol ethers.
  • suitable fatty alcohols are lauryl alcohol, myristyl alcohol, cetearyl alcohol, stearyl alcohol and isostearyl alcohol.
  • Suitable polyethylene glycol ethers are those which have an average molecular weight in the range from 5,000 to 20,000 daltons.
  • the syndet soaps according to the invention are practically free of free fatty acids or fatty acid salts, ie the content of these substances is below 0.5% by weight. Nevertheless, when used, the soaps provide a surprisingly high amount of a particularly creamy foam and also convey a very pleasant feeling on the skin. Auxiliaries and additives
  • the syndet soaps can contain oil additives, emulsifiers, superfatting agents, stabilizers, consistency agents, thickeners, polymers, silicone compounds, biogenic agents, preservatives, hydrotropes, solubilizers, perfume oils, dyes and the like as further auxiliaries and additives.
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • polyol and especially polyglycerol esters such as e.g. Polyglycerol polyricinoleate, polyglycerol poly-12-hydroxystearate or polyglycerol dimerate. Mixtures of compounds from several of these classes of substances are also suitable;
  • partial esters based on linear, branched, unsaturated or saturated C6 / 22 fatty acids, ricinoleic acid as well as 12-hydroxystearic acid and glycerin, polyglycerin, pentaerythritol, dipenta- erythritol, sugar alcohols (eg sorbitol), alkyl glucosides (eg methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (eg cellulose);
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols, glycerol mono- and diesters and sorbitan mono- and diesters of fatty acids or with castor oil are known, commercially available products. These are mixtures of homologs, the middle of which Degree of alkoxylation corresponds to the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate with which the addition reaction is carried out.
  • Ci2 / i8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE-PS 20 24 051 as refatting agents for cosmetic preparations.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • the main consistency factors are fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, polysaccha de, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, furthermore higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, (for example Carbopole® from Goodrich or Synthalene ® from Sigma),
  • Polyacrylamides polyvinyl alcohol and polyvinyl pyrrolidone, surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaerythritol or trimethylol propane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides, and electrolytes such as sodium chloride and ammonium chloride.
  • surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaerythritol or trimethylol propane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides, and electrolytes such as sodium chloride and ammonium chloride.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethyl cellulose, which is available from Amerchol under the name Polymer JR 400®, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® ( BASF), condensation products of polyglycols and amines, quaternized collagen polypeptides such as lauryldimonium hydroxy propyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers such as amidomethicones, copolymers of adipic acid and dimethylaminohydroxypropyidiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethylthoniumdi
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and esters thereof, uncrosslinked and polyol-crosslinked polyacrylic acids, acrylamidopropyl / Acrylate copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, vinyl pyrrolidone / dimethylaminoethyl methacrylate / vinyl caprolactam and etherified ter
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Typical examples of fats are glycerides, waxes include Beeswax, carnauba wax, candelilla wax, montan wax, paraffin wax or micro waxes, optionally in combination with hydrophilic waxes, e.g. Cetylstearyl alcohol or partial glycerides in question.
  • Metal salts of fatty acids such as e.g.
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamins.
  • Alcohols such as ethanol, isopropyl alcohol or polyols can be used as hydrotropes and transparency agents.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups. Typical examples are • glycerin;
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides in particular those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Sugar alcohols with 5 to 12 carbon atoms such as sorbitol or mannitol,
  • Aminosugars such as glucamine.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methyl phenyl glycinate, allyl cyclohexyl propylate pylate allylpropionate,
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals with 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehy
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • compositions and properties of bar soaps (quantities as% by weight)
  • the syndet soaps have a very pleasant feeling on the skin (++ / +++) and develop a large amount of creamy friction foam (++ / +++). They show no tendency to absorb water (-) or crack after drying (-), but they are extremely malleable (++ / +++).
  • the skin feel and foaming power of the Combibar formulation are only average (+), the pieces are comparatively difficult to deform (+) and show both a tendency to crack (+) and water absorption (+).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne de nouveaux savons à base de détergents synthétiques, qui contiennent comme constituants tensioactifs des sulfates d'ester de polyglycol d'acide gras, et comme adjuvant de lavage, de l'amidon. Ces produits se caractérisent en ce qu'ils présentent une mousse crémeuse particulièrement abondante et procurent une sensation optimisée au niveau de la peau.
EP98948836A 1997-08-25 1998-08-17 Savons a base de detergents synthetiques contenant des sulfates d'ester de polyglycol d'acide gras Withdrawn EP1007620A1 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE19736906A DE19736906A1 (de) 1997-08-25 1997-08-25 Verfahren zur Herstellung von sulfatierten Fettsäurealkylenglykolestern
DE19736906 1997-08-25
DE19741911A DE19741911C1 (de) 1997-09-25 1997-09-25 Stark schäumende Detergensgemische
DE19741911 1997-09-25
DE1998106496 DE19806496C2 (de) 1998-02-17 1998-02-17 Syndetseifen
DE19806496 1998-02-17
PCT/EP1998/005189 WO1999010468A1 (fr) 1997-08-25 1998-08-17 Savons a base de detergents synthetiques contenant des sulfates d'ester de polyglycol d'acide gras

Publications (1)

Publication Number Publication Date
EP1007620A1 true EP1007620A1 (fr) 2000-06-14

Family

ID=27217680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98948836A Withdrawn EP1007620A1 (fr) 1997-08-25 1998-08-17 Savons a base de detergents synthetiques contenant des sulfates d'ester de polyglycol d'acide gras

Country Status (3)

Country Link
EP (1) EP1007620A1 (fr)
JP (1) JP2001514306A (fr)
WO (1) WO1999010468A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845456A1 (de) 1998-10-02 2000-04-06 Cognis Deutschland Gmbh Syndetstückseifen
DE19937295C2 (de) * 1999-08-06 2002-11-21 Cognis Deutschland Gmbh Syndetseifen
DE19949002A1 (de) * 1999-10-11 2001-04-19 Anton Huebner Gmbh & Co Kg Syndet-Grundmasse und Syndet-Waschstück
JP2002129192A (ja) * 2000-10-26 2002-05-09 Japan Natural Laboratory Co Ltd 透明固形洗浄剤組成物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD274049A1 (de) * 1988-07-11 1989-12-06 Buna Chem Werke Veb Reinigungsmittel fuer heimelektronikgeraete
ES2123760T3 (es) * 1993-01-19 1999-01-16 Unilever Nv Composiciones de jabon en barra que contiene silicona.
BR9708853A (pt) * 1996-04-24 1999-04-13 Unilever Nv Composição em barra

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9910468A1 *

Also Published As

Publication number Publication date
WO1999010468A1 (fr) 1999-03-04
JP2001514306A (ja) 2001-09-11

Similar Documents

Publication Publication Date Title
WO2000045788A1 (fr) Melanges detergents
EP0941060B1 (fr) Preparations cosmetiques
EP1002032B1 (fr) Melanges detergents contenant des esters quaternaires, de la chitosane et/ou des derives de chitosane et des hydrolysats de proteine
WO1999009944A1 (fr) Dispersions aqueuses de lustre nacre
CH716229B1 (de) Mittel mit alkoxylierten Fettsäurealkylestern.
WO2000022084A1 (fr) Pains de savon
EP1117758B1 (fr) Detergent synthetique sous forme de pains de savon
EP1007620A1 (fr) Savons a base de detergents synthetiques contenant des sulfates d'ester de polyglycol d'acide gras
EP1007619A1 (fr) Savonnettes contenant des sulfates d'ester de polyglycol d'acide gras
DE19806496C2 (de) Syndetseifen
DE19806494C2 (de) Stückseifen
WO1998050006A1 (fr) Agents de traitement pour les cheveux
DE19641277C2 (de) Syndetseifen
DE19937295C2 (de) Syndetseifen
DE10014998A1 (de) Flüssigseifen
DE10015000A1 (de) Syndetseifen
WO1999010463A1 (fr) Detergents aqueux pour laver la vaisselle a la main
WO1997020916A1 (fr) Savons en detergents synthetiques
EP1000135B1 (fr) Concentres de lustre perlaire aqueux
WO2006021257A1 (fr) Masse savonneuse preformee, coloree comprenant un detergent synthetique et presentant pour moitie un detergent synthetique
DE19810888A1 (de) Wäßrige Perlglanzdispersionen
WO2002077140A1 (fr) Produits de vaisselle manuelle
WO2001072946A1 (fr) Pains de savon
DE19813045A1 (de) Wäßrige Handgeschirrspülmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030303