EP1004538B1 - High-rigidity elevator car floor - Google Patents

High-rigidity elevator car floor Download PDF

Info

Publication number
EP1004538B1
EP1004538B1 EP99123386A EP99123386A EP1004538B1 EP 1004538 B1 EP1004538 B1 EP 1004538B1 EP 99123386 A EP99123386 A EP 99123386A EP 99123386 A EP99123386 A EP 99123386A EP 1004538 B1 EP1004538 B1 EP 1004538B1
Authority
EP
European Patent Office
Prior art keywords
slats
car floor
elevator car
cover plate
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99123386A
Other languages
German (de)
French (fr)
Other versions
EP1004538A1 (en
Inventor
Urs Baumgartner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP99123386A priority Critical patent/EP1004538B1/en
Publication of EP1004538A1 publication Critical patent/EP1004538A1/en
Application granted granted Critical
Publication of EP1004538B1 publication Critical patent/EP1004538B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/0226Constructional features, e.g. walls assembly, decorative panels, comfort equipment, thermal or sound insulation

Definitions

  • the present invention relates to elevator car floors in composite structure, also sandwich construction called in cabins of passenger or Cargo lifts are used.
  • Such cabins are Usually installed in so-called cabin frames, the in turn led to mounted in lift shafts rails and moved by drive machines via wire ropes up and down become.
  • An elevator cabin floor usually has the function that Weight of the cabin superstructure with walls, canopy, Cabin doors and various fittings as well as the entire maximum payload and, most of the time via suitable Vibration isolation elements, in the cabin frame initiate. It is important that the entire floor is even under eccentric load does not exceed certain limits deformed, that means bent or twisted. As well important is that he is not affected by spurious vibrations like them mainly from the drive via the suspension cables to the cab be transferred to impermissibly strong intrinsic bending vibrations can be stimulated. This will be on safest due to high bending stiffness of the soil in all Directions resulting in the highest possible bending natural frequency reached.
  • EP 0 566 424 B1 describes an embodiment of an elevator cabin floor in which the required properties are to be achieved by using a composite structure principle (sandwich principle).
  • a core made of wood, cardboard or thermoplastic foam is glued in substantially between an upper cover plate designed as a composite layer and a similar lower base plate.
  • cover plate which forms the cabin floor surface, against concentrated to small areas loads; are inserted between strips of the core material supporting webs. So that subsequent cabin parts, such as, for example, cabin walls or door sleepers can be fixed to this floor, the described composite structural panel is enclosed by a steel frame.
  • EP 0 700 860 A1 also discloses one in the form of a composite structure built elevator cabin floor in which on one Base plate acting as a pressure sensor layer, an elastic Intermediate layer and a floor layer are constructed.
  • the base plate as well as the floor layer form one each independent composite structure, consisting of one each Core layer and two outer layers.
  • core layers are so-called honeycomb structures used.
  • Honeycomb structures consist of a multiplicity of mutually parallel, upright thin metal or plastic strips, the so deformed and at defined intervals laterally with each other are glued that they have a honeycomb-shaped core Form cavities. This core is in each case between two outer layers glued in, taking the distance between them determined and by transmission of shear stresses between the Outer layers the required flexural rigidity of the composite structure guaranteed.
  • the present invention is an elevator car floor construction according to claim 1, based on the composite structure or sandwich construction, which meets all the requirements listed above for an elevator car floor in an ideal manner.
  • the construction consists essentially of a base and a cover plate of tensile and pressure-resistant material with the highest possible modulus of elasticity, as well as an intermediate composite structure core, which, in contrast to previously known versions of wood, foam, etc., from a kind Grating exists.
  • This is composed of a plurality of perpendicular intersecting upstanding lamellae, each of which run a number parallel to the longitudinal and the transverse edge of the floor with mutually equal distances and which are connected at their intersection points respectively with the base and the cover plate.
  • the length and width of this grate core correspond to the dimensions of the cabin floor.
  • a cabin floor optimized according to this principle exhibits optimum rigidity in all directions, given a given material specification and given limits in terms of installation height and weight, combined with a maximum possible bending natural frequency.
  • the all-round support of the cover plate along the square panels of the grid also gives it the important ability to absorb high loads concentrated on small areas without permanent deformation.
  • the base and the cover plate as well as the Slats of the wire grid core made of sheet steel, on the one hand the strength-technical requirement for a material with high elastic modulus and minimum creep, and on the other hand, the construction is all relevant Fire protection requirements.
  • a significant advantage is also that in this way the entire ground with conventional Metal processing technology can be produced.
  • the required mutual connection of the composite structure components is carried out in a suitable manner so that the grating louvers are welded at their intersection points by means of "hole welding" with the cover and the base plate, which are referred to below as the cover and base plate.
  • This welding takes place from the outside of the two sheets forth by pre-punched holes whose position coincides with the crossing points of the grating louvers.
  • the mutual multiple crossover of the right angles mutually extending slats of the grating is characterized allows the slats at all crossing points with at right angles to their longitudinal axis punched slots are provided whose width of the slat material thickness corresponds, and in the longitudinal slats of above and at the transverse from below each to the reach half slat height.
  • This can be the transverse lamellae at all points of intersection so in insert the longitudinal ones that all the slats open same level and the above described Form grid.
  • the side walls of the cabin floor are made by bending the according to pre-cut cover sheet produced what the Manufacturing process simplified.
  • Another advantage of the inventive construction is that the mentioned side walls of the cabin floor with the ends of the slats of the grate core through Welding are rigidly connected, causing a high strong, rigid mounting option for components such as Threshold, door frame and cabin walls on these side walls results.
  • Fig. 1 shows a preferred embodiment of the inventive elevator cabin floor.
  • the floor is made entirely of sheet steel by means of bending and welding. It consists essentially of the cover plate 1 with gebogenem door sill support 6, the base plate 2 and the lying between the cover and base plate grate core 3 of intersecting longitudinal and transverse lamellae 4.5. Also visible are components that fulfill lift-specific functions, such as the side wall profiles 7, stiffeners 8 for the door sill support and support sections 13 with fastening threads for serving as a connection between the cabin floor and cabin frame insulation elements (not visible). In the area of Fig. 1, where the base plate 2 is shown as partially removed, you can see the construction of the grate core 3. This is shown in more detail in Fig.
  • the cross blades 5 in the longitudinal slats 4 are inserted.
  • the thickness of the lamellae of the lattice core and their mutual distances are variable depending on soil load, cover plate thickness and overall height and are optimized by means of FEM calculations.
  • slot-shaped holes 9 the position of each coincides with a crossing point of the slats of the grate core.
  • Corresponding holes are also present in the cover plate. Through these holes 9, as shown in Figure 3, by means of hole welding, the cover plate 1 and the base plate 2 with the grate core 3 rigidly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Types And Forms Of Lifts (AREA)
  • Body Structure For Vehicles (AREA)
  • Laminated Bodies (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Abstract

A lightweight floor panel for a lift cabin has a metal base panel (1) and a metal top panel (2) with a metal grid structure (4) clamped in between. The grid structure is made from metal strips with slots to clip together with the strips at right angles to the panels. The grid is welded at the crossing points, and to the panels, via holes (9) in the panels to form a self supporting structure. The edges of the floor are formed by turned down edges of the top panel welded to the sides of the structure.

Description

Die vorliegende Erfindung bezieht sich auf Aufzugs-Kabinenböden in Verbundstrukturbauweise, auch Sandwich-Bauweise genannt, die in Kabinen von Personen- oder Lastenaufzügen zur Anwendung kommen. Solche Kabinen sind üblicherweise in sogenannten Kabinenrahmen eingebaut, die ihrerseits an in Liftschächten befestigten Schienen geführt und von Antriebsmaschinen über Drahtseile auf- und ab bewegt werden.The present invention relates to elevator car floors in composite structure, also sandwich construction called in cabins of passenger or Cargo lifts are used. Such cabins are Usually installed in so-called cabin frames, the in turn led to mounted in lift shafts rails and moved by drive machines via wire ropes up and down become.

Ein Aufzugs-Kabinenboden hat normalerweise die Funktion, das Gewicht des Kabinenoberbaus mit Wänden, Kabinendach, Kabinentüren und diversen Einbauten sowie auch die gesamte maximale Nutzlast aufzunehmen und, meistens über geeignete Schwingungsisolationselemente, in den Kabinenrahmen einzuleiten. Dabei ist wichtig, dass der gesamte Boden sich auch unter exzentrischer Last nicht über gewisse Grenzen deformiert, das heisst sich durchbiegt oder verdreht. Ebenso wichtig ist, dass er nicht durch Störschwingungen, wie sie hauptsächlich vom Antrieb über die Tragseile auf die Kabine übertragen werden, zu unzulässig starken Eigen-Biegeschwingungen angeregt werden kann. Dies wird am sichersten durch hohe Biege-Steifigkeit des Bodens in allen Richtungen mit daraus resultierend höchstmöglicher Biege-Eigenfrequenz erreicht. Eine weitere Anforderung an einen solchen Kabinenboden ist, dass seine Oberfläche, die meist durch ein Stahlblech gebildet wird, unter hohen, auf kleine Flächen konzentrierte Lasten (z.B. durch Transporteinrichtungen mit relativ kleinen Rädern) nicht bleibende Verformungen erleidet. Ausserdem soll ein solcher Kabinenboden eine möglichst geringe Masse sowie eine minimale Bauhöhe aufweisen. Vorschriften gewisser europäischer Länder schreiben zudem vor, dass Aufzugskabinen nur minimalste Mengen an Materialien enthalten dürfen, die nicht als "nicht brennbar" klassiert sind.An elevator cabin floor usually has the function that Weight of the cabin superstructure with walls, canopy, Cabin doors and various fittings as well as the entire maximum payload and, most of the time via suitable Vibration isolation elements, in the cabin frame initiate. It is important that the entire floor is even under eccentric load does not exceed certain limits deformed, that means bent or twisted. As well important is that he is not affected by spurious vibrations like them mainly from the drive via the suspension cables to the cab be transferred to impermissibly strong intrinsic bending vibrations can be stimulated. This will be on safest due to high bending stiffness of the soil in all Directions resulting in the highest possible bending natural frequency reached. Another request to one Such cabin floor is that its surface, mostly is formed by a steel sheet, under high, on small Areas of concentrated loads (e.g., by means of transport with relatively small wheels) non-permanent deformations suffers. In addition, should such a cabin floor a lowest possible mass and a minimum height respectively. Rules of certain European countries also stipulate that elevator cabins only minimal May contain quantities of materials that are not "not combustible "are classified.

Bekannt sind zwei grundsätzliche Konstruktionsprinzipien, von denen das eine als Profilrahmenbauweise und das andere als Verbundstrukturbauweise zu bezeichnen sind. Es existieren auch Profilrahmenkonstruktionen mit auf- oder eingelegten Stahl- oder Faserholzplatten. Die erwähnten Anforderungen werden von den bekannten Ausführungen jedoch nur teilweise erfüllt.
EP 0 566 424 B1 beschreibt eine Ausführung eines Aufzugs-Kabinenbodens, bei der die geforderten Eigenschaften durch Anwendung eines Verbundstruktur-Prinzips (Sandwich-Prinzip) erreicht werden sollen. Dabei wird im wesentlichen zwischen einer als Verbundschicht ausgeführten oberen Deckplatte und einer gleichartigen unteren Grundplatte ein Kern aus Holz, Karton oder thermoplastischem Schaum eingeklebt. Um genügende Widerstandsfestigkeit der Deckplatte, die den Kabinenbodenfläche bildet, gegen auf kleine Flächen konzentrierte Lasten zu erreichen; sind zwischen Streifen des Kernmaterials Stützstege eingelegt. Damit an diesem Boden anschliessende Kabinenteile, wie z.B. Kabinenwände oder Türschwellen fixiert werden können, ist die beschriebene Verbundstrukturplatte von einem Stahlrahmen umschlossen.
Two basic design principles are known, one of which is to be referred to as a profile frame construction and the other as a composite structural design. There are also profile frame constructions with mounted or inserted steel or pulpwood panels. However, the mentioned requirements are only partially met by the known embodiments.
EP 0 566 424 B1 describes an embodiment of an elevator cabin floor in which the required properties are to be achieved by using a composite structure principle (sandwich principle). In this case, a core made of wood, cardboard or thermoplastic foam is glued in substantially between an upper cover plate designed as a composite layer and a similar lower base plate. In order to achieve sufficient resistance of the cover plate, which forms the cabin floor surface, against concentrated to small areas loads; are inserted between strips of the core material supporting webs. So that subsequent cabin parts, such as, for example, cabin walls or door sleepers can be fixed to this floor, the described composite structural panel is enclosed by a steel frame.

EP 0 700 860 A1 offenbart einen ebenfalls in Form einer Verbundstruktur aufgebauten Aufzugs-Kabinenboden, bei dem auf einer Basisplatte eine als Drucksensor wirkende Schicht, eine elastische Zwischenschicht und eine Fussbodenschicht aufgebaut sind. Die Basisplatte wie auch die Fussbodenschicht bilden je eine eigenständige Verbundstruktur, bestehend aus jeweils einer Kernschicht und zwei Aussenschichten. Als Kernschichten werden sogenannte Honigwabenstrukturen verwendet. Honigwabenstrukturen bestehen aus einer Vielzahl von parallel zueinander angeordneten, hochkant stehenden, dünnen Metall- oder Kunststoffstreifen, die so verformt und in definierte Abständen seitlich miteinander verklebt sind, dass sie einen Kern mit honigwabenförmigen Hohlräumen bilden. Dieser Kern ist jeweils zwischen zwei Aussenschichten eingeklebt, wobei er den Abstand zwischen diesen bestimmt und durch Übertragung von Schubspannungen zwischen den Aussenschichten die erforderliche Biegesteifigkeit der Verbundstruktur gewährleistet.EP 0 700 860 A1 also discloses one in the form of a composite structure built elevator cabin floor in which on one Base plate acting as a pressure sensor layer, an elastic Intermediate layer and a floor layer are constructed. The base plate as well as the floor layer form one each independent composite structure, consisting of one each Core layer and two outer layers. As core layers are so-called honeycomb structures used. Honeycomb structures consist of a multiplicity of mutually parallel, upright thin metal or plastic strips, the so deformed and at defined intervals laterally with each other are glued that they have a honeycomb-shaped core Form cavities. This core is in each case between two outer layers glued in, taking the distance between them determined and by transmission of shear stresses between the Outer layers the required flexural rigidity of the composite structure guaranteed.

Die Lösung gemäss EP 0 566 424 B1 wie auch diejenige nach EP 0 700 860 A1 weisen gewisse Nachteile auf.
Wegen der Art der verwendeten Materialien und/oder wegen der Klebeverbindungen können mit diesen Konstruktionen gewisse Brandschutzvorschriften nicht erfüllt werden. Ausserdem können bei Dauerbelastung Kriechvorgänge in Kernmaterial und/oder in den Klebeverbindungen stattfinden, was zu bleibender Verformung des Bodens mit gravierenden Folgen für die Funktionsfähigkeit von in die Kabine integrierten Baugruppen, wie Türen, Klappen oder Wandverkleidungselementen führen kann. Ein weiterer Nachteil von solchen geklebten Verbundstrukturen ist, dass der Hersteller neben den Einrichtungen zur Metallverarbeitung auch eine Infrastruktur für einwandfreie Klebetechnik inklusive geeignete Pressen genügender Grösse zur Verfügung haben muss.
Im Falle von Verbundstrukturen mit Honigwabenstrukturkernen sind sogar sogar sehr komplexe Spezial-Fertigungsanlagen erforderlich. Gegenstand der vorliegenden Erfindung ist eine Aufzugs-Kabinenboden-Konstruktion gemäss Anspruch 1, basierend auf der Verbundstruktur- oder Sandwich-Bauweise, die alle oben aufgeführten Anforderungen an einen Aufzugs-Kabinenboden in idealer Weise erfüllt.
Die Konstruktion besteht im wesentlichen aus je einer Grund- und einer Deckplatte aus zug- und druckfestem Material mit möglichst hohem Elastizitätsmodul, sowie einem dazwischenliegenden Verbundstruktur-Kern, der, im Unterschied zu bisher bekannten Ausführungen aus Holz, Schaumstoff, etc., aus einer Art Gitterrost besteht. Dieser ist aufgebaut aus einer Vielzahl von rechtwinklig sich kreuzenden, hochkant stehenden Lamellen, von denen je eine Anzahl parallel zur Längs- und zur Querkante des Bodens mit untereinander gleichen Abständen verlaufen und die an ihren Kreuzungspunkten jeweils mit der Grund- und der Deckplatte verbunden sind. Länge und Breite dieses Gitterrostkerns entsprechen den Abmessungen des Kabinenbodens. Ein nach diesem Prinzip hergestellter, mit Hilfe von FEM-Berechnungen optimierter Kabinenboden weist, bei gegebener Materialspezifikation und gegebenen Limiten in bezug auf Einbauhöhe und Gewicht, optimale Steifigkeit in allen Richtungen auf, verbunden mit einer, höchstmöglichen Biege-Eigenfrequenz. Die entlang der quadratischen Felder des Gitterrosts erfolgende Rundumabstützung der Deckplatte verleiht dieser ausserdem die wichtige Fähigkeit, auf kleine Flächen konzentrierte hohe Belastungen ohne bleibende Verformung aufzunehmen.
The solution according to EP 0 566 424 B1 as well as that according to EP 0 700 860 A1 have certain disadvantages.
Because of the nature of the materials used and / or because of the adhesive bonds, certain fire protection regulations can not be met with these constructions. In addition, under continuous load creep in nuclear material and / or in the adhesive joints can take place, which can lead to permanent deformation of the soil with serious consequences for the functionality of integrated into the cabin assemblies, such as doors, flaps or wall cladding elements. Another disadvantage of such glued composite structures is that the manufacturer must have an infrastructure for proper gluing including appropriate presses of sufficient size available in addition to the facilities for metal processing.
In the case of composite structures with honeycomb cores, even very complex special manufacturing equipment is required. The present invention is an elevator car floor construction according to claim 1, based on the composite structure or sandwich construction, which meets all the requirements listed above for an elevator car floor in an ideal manner.
The construction consists essentially of a base and a cover plate of tensile and pressure-resistant material with the highest possible modulus of elasticity, as well as an intermediate composite structure core, which, in contrast to previously known versions of wood, foam, etc., from a kind Grating exists. This is composed of a plurality of perpendicular intersecting upstanding lamellae, each of which run a number parallel to the longitudinal and the transverse edge of the floor with mutually equal distances and which are connected at their intersection points respectively with the base and the cover plate. The length and width of this grate core correspond to the dimensions of the cabin floor. A cabin floor optimized according to this principle, optimized with the aid of FEM calculations, exhibits optimum rigidity in all directions, given a given material specification and given limits in terms of installation height and weight, combined with a maximum possible bending natural frequency. The all-round support of the cover plate along the square panels of the grid also gives it the important ability to absorb high loads concentrated on small areas without permanent deformation.

Durch Ausführung der Grund- und der Deckplatte wie auch der Lamellen des Gitterrostkerns aus Stahlblech, wird einerseits die festigkeitstechnische Forderung nach einem Material mit hohem Elastizitätsmodul und minimaler Kriechneigung erfüllt, und andererseits entspricht die Konstruktion allen relevanten Brandschutzforderungen. Ein wesentlicher Vorteil ist auch, dass auf diese Weise der gesamte Boden mit konventioneller Metallverarbeitungstechnik herstellbar ist.By execution of the base and the cover plate as well as the Slats of the wire grid core made of sheet steel, on the one hand the strength-technical requirement for a material with high elastic modulus and minimum creep, and on the other hand, the construction is all relevant Fire protection requirements. A significant advantage is also that in this way the entire ground with conventional Metal processing technology can be produced.

Die erforderliche gegenseitige Verbindung der Verbundstruktur-Komponenten erfolgt in geeigneter Weise so, dass die Gitterrostlamellen an ihren Kreuzungspunkten mittels "Lochschweissung" mit der Deck- und der Grundplatte, die im folgenden als Deck- und Grundblech bezeichnet sind, verschweisst ist. Diese Schweissung erfolgt von der Aussenseite der beiden Bleche her durch vorgestanzte Löcher, deren Position mit den Kreuzungspunkten der Gitterrostlamellen übereinstimmt.
Mit dem bisher beschriebenen Verfahren wird die für eine biegesteife Sandwichplatte entscheidende Forderung nach starrer Schubübertragung zwischen den Grund- und Deckblechen bei minimalem Gewicht in idealer Weise erfüllt. Bleibende Verbiegungen oder Verdrehungen infolge von Kriechvorgängen im Kernmaterial oder in Klebefugen unter hohen statischen Lasten können nicht auftreten.
The required mutual connection of the composite structure components is carried out in a suitable manner so that the grating louvers are welded at their intersection points by means of "hole welding" with the cover and the base plate, which are referred to below as the cover and base plate. This welding takes place from the outside of the two sheets forth by pre-punched holes whose position coincides with the crossing points of the grating louvers.
With the method described so far, the decisive requirement for a rigid sandwich panel requirement for rigid shear transfer between the base and cover plates with minimal weight in an ideal manner. Permanent bends or twists due to creep in the core material or in joints under high static loads can not occur.

Die gegenseitige mehrfache Überkreuzung der rechtwinklig zueinander verlaufenden Lamellen des Gitterrosts wird dadurch ermöglicht, dass die Lamellen an allen Kreuzungspunkten mit rechtwinklig zu ihrer Längsachse gestanzten Schlitzen versehen sind, deren Breite der Lamellen-Materialdicke entspricht, und die bei den längsverlaufenden Lamellen von oben und bei den querverlaufenden von unten jeweils bis zur halben Lamellenhöhe reichen. Dadurch lassen sich die querverlaufenden Lamellen an allen Kreuzungspunkten derart in die längsverlaufenden einstecken, dass alle Lamellen auf gleiches Niveau zu liegen kommen und den oben beschriebenen Gitterrost bilden.The mutual multiple crossover of the right angles mutually extending slats of the grating is characterized allows the slats at all crossing points with at right angles to their longitudinal axis punched slots are provided whose width of the slat material thickness corresponds, and in the longitudinal slats of above and at the transverse from below each to the reach half slat height. This can be the transverse lamellae at all points of intersection so in insert the longitudinal ones that all the slats open same level and the above described Form grid.

Die Seitenwände des Kabinenbodens sind durch Biegen des entsprechend vorgeschnittenen Deckblechs erzeugt, was den Herstellprozess vereinfacht.The side walls of the cabin floor are made by bending the according to pre-cut cover sheet produced what the Manufacturing process simplified.

Ein weiterer Vorteil der erfindungsgemässen Konstruktion besteht darin, dass die erwähnten Seitenwände des Kabinenbodens mit den Enden der Lamellen des Gitterrostkerns durch Schweissen starr verbunden sind, wodurch sich eine hoch belastbare, starre Befestigungsmöglichkeit für Bauteile wie Türschwelle, Türrahmen und Kabinenwände an diesen Seitenwänden ergibt. Another advantage of the inventive construction is that the mentioned side walls of the cabin floor with the ends of the slats of the grate core through Welding are rigidly connected, causing a high strong, rigid mounting option for components such as Threshold, door frame and cabin walls on these side walls results.

Um die gesamte Bodenkonstruktion im Tauchverfahren lackieren zu können, sind die Gitterrostlamellen an jedem Kreuzungspunkt mit gestanzten Öffnungen versehen, so dass die Lackierflüssigkeit in alle Hohlräume des Gitterrostkerns eindringen und auch wieder abfliessen kann. Dazu ist der Boden beim Tauchlackieren an einer Ecke so aufzuhängen, dass er mit etwa vertikal stehender Diagonale ins Bad eintaucht.To paint the entire floor construction in the dipping process To be able to, are the grate slats at each crossing point provided with punched openings, so that the Coating liquid in all cavities of the grate core penetrate and drain again. This is the Soak up the floor when dipping on a corner so that he dips into the bathroom with an approximately vertical diagonal.

Im folgenden wird die Erfindung anhand des Beispiels einer bevorzugten Ausführungsform mit Bezug auf die beiliegenden Zeichnungen 1 bis 4 näher erläutert:

Fig. 1
zeigt eine durchkonstruierte Ausführung eines Kabinenbodens mit den erfindungsgemässen Merkmalen.
Fig. 2
zeigt das Prinzip des Gitterrostkerns
Fig. 3
zeigt die Schweissverbindung zwischen den Grund- und Deckblechen und dem Gitterrostkern.
Fig. 4
zeigt die Öffnungen im Gitterrostkern für den Zu- und Abfluss der Tauchlackierflüssigkeit.
In the following the invention with reference to the example of a preferred embodiment with reference to the accompanying drawings 1 to 4 is explained in more detail:
Fig. 1
shows a durchkonstruierte design of a cabin floor with the inventive features.
Fig. 2
shows the principle of the grate core
Fig. 3
shows the welding connection between the base and cover plates and the grate core.
Fig. 4
shows the openings in the grate core for the inflow and outflow of Tauchlackierflüssigkeit.

Fig. 1 zeigt eine bevorzugte Ausführungsform des erfindungsgemässen Aufzugs-Kabinenbodens. Der Boden ist komplett aus Stahlblech mittels Biegen und Schweissen gefertigt. Er besteht im wesentlichen aus dem Deckblech 1 mit angebogenem Türschwellensupport 6, dem Grundblech 2 sowie dem zwischen Deck- und Grundblech liegenden Gitterrostkern 3 aus sich kreuzenden Längs- und Querlamellen 4,5. Zusätzlich sichtbar sind Bauelemente, die aufzugsspezifische Funktionen erfüllen, wie die Seitenwandprofile 7, Versteifungen 8 für den Türschwellensupport sowie Tragprofile 13 mit Befestigungsgewinden für die als Verbindung zwischen Kabinenboden und Kabinenrahmen dienenden Isolationselemente (nicht sichtbar). Im Bereich der Fig. 1, wo das Grundblech 2 als teilweise entfernt dargestellt ist, erkennt man die Bauweise des Gitterrostkerns 3. Dieser ist in Fig. 2 detaillierter dargestellt, wo gezeigt ist, wie dank den gestanzten Schlitzen 12 die Querlamellen 5 in die Längslamellen 4 eingefügt werden. Die Stärke der Lamellen des Gitterrostkerns sowie deren gegenseitige Abstände sind in Abhängigkeit von Bodenbelastung, Deckblechdicke und Gesamtbauhöhe variabel und werden mittels FEM-Berechnungen optimiert.
Im Grundblech 2 erkennt man gestanzte, schlitzförmige Löcher 9, deren Position jeweils mit einem Kreuzungspunkt der Lamellen des Gitterrostkerns übereinstimmt. Entsprechende Löcher sind auch im Deckblech vorhanden. Durch diese Löcher 9 werden, wie in Fig.3 gezeigt, mittels Lochschweissung das Deckblech 1 und das Grundblech 2 mit dem Gitterrostkern 3 starr verbunden. Grundsätzlich sind auch Durchschweissverfahren (z.B. Laser- oder Elektronenstrahlschweissung) anwendbar, für die keine Löcher erforderlich sind, bei deren Anwendung jedoch die Verschweissung weniger gut beobachtet werden kann. Aus Fig.1 ist weiter ersichtlich, dass die Enden der Lamellen 4,5 des Gitterrostkerns bis zu den Seitenwänden (z.B. bei 10) sowie bis zu den Versteifungen des Türschwellensupports 6 reichen, wo sie mit diesen verschweisst sind und diesen enorme Steifigkeit verleihen, was für deren Funktion als Träger von Wänden und Türschwelle von grosser Wichtigkeit ist.
Die Lamellen 4,5 enthalten bei jeder Kreuzungsstelle auf ihrer halben Höhe Öffnungen 11, womit gewährleistet ist, dass beim Tauchlackieren die Lackierflüssigkeit in alle Hohlräume des an einer Ecke aufgehängten Kabinenbodens eindringen und wieder abfliessen kann.
Fig. 1 shows a preferred embodiment of the inventive elevator cabin floor. The floor is made entirely of sheet steel by means of bending and welding. It consists essentially of the cover plate 1 with gebogenem door sill support 6, the base plate 2 and the lying between the cover and base plate grate core 3 of intersecting longitudinal and transverse lamellae 4.5. Also visible are components that fulfill lift-specific functions, such as the side wall profiles 7, stiffeners 8 for the door sill support and support sections 13 with fastening threads for serving as a connection between the cabin floor and cabin frame insulation elements (not visible). In the area of Fig. 1, where the base plate 2 is shown as partially removed, you can see the construction of the grate core 3. This is shown in more detail in Fig. 2, where shown how thanks to the punched slots 12, the cross blades 5 in the longitudinal slats 4 are inserted. The thickness of the lamellae of the lattice core and their mutual distances are variable depending on soil load, cover plate thickness and overall height and are optimized by means of FEM calculations.
In the base plate 2 can be seen punched, slot-shaped holes 9, the position of each coincides with a crossing point of the slats of the grate core. Corresponding holes are also present in the cover plate. Through these holes 9, as shown in Figure 3, by means of hole welding, the cover plate 1 and the base plate 2 with the grate core 3 rigidly connected. In principle, through-welding methods (eg laser or electron beam welding) are applicable, for which no holes are required, but in their application, the welding can be less well observed. From Figure 1 it can be further seen that the ends of the slats 4, 5 of the grate core extend as far as the side walls (eg at 10) and up to the stiffeners of the door sill support 6, where they are welded to them and give them tremendous rigidity, which is of great importance for their function as a carrier of walls and sill.
The lamellae contain 4.5 at each intersection point at its half height openings 11, which ensures that during dip coating the paint liquid can penetrate into all cavities of the suspended at a corner cabin floor and drain again.

Claims (9)

  1. Elevator car floor resistant to bending with composite or sandwich construction consisting essentially of a baseplate (2), a cover plate (1), and lying between these a core (3) with a composite structure,
    characterized in that
    the core which forms the connection between the baseplate and the cover plate consists of a large number of slats placed vertically edgeways and crossing over each other in the form of a lattice and being irremovably joined in a suitable manner to the baseplate and cover plate.
  2. Elevator car floor according to Claim 1,
    characterized in that
    the baseplate (2), the cover plate (1), and the slats of the lattice core (3) are of steel sheet.
  3. Elevator car floor according to Claims 1 and 2,
    characterized in that
    the slats (4, 5) of the lattice core (3) are irremovably joined to the baseplate and cover plate (2, 1) at the crossover points of the lattice by means of so-called "plug welding", this plug welding being performed from the outside of the car floor through suitably shaped holes (9) in the baseplate and cover plate positioned over the crossover points.
  4. Elevator car floor according to Claims 1 through 3,
    characterized in that
    crossover of the slats (4, 5) lying on the same level is possible due to these slats having stamped at all crossover points slots (12) at right angles to their longitudinal axis, whose width corresponds to the thickness of the slat material, and which extend about half way across the height of the slats, from above in the slats running in one direction, and from below in the slats running at right angles to those.
  5. Elevator car floor according to Claims 1 and 2,
    characterized in that
    the side walls (10) of the car floor, which serve as a base for attachment of further car components, are formed by bending the cover plate.
  6. Elevator car floor according to Claims 1 through 5,
    characterized in that
    the ends of the slats (4, 5) of the lattice core are joined to the side walls (10) of the car floor thereby giving it high load-bearing strength and rigidity for attaching other car components.
  7. Elevator car floor according to Claims 1 through 3
    characterized in that
    the holes needed in the base plate and cover plate for the plug-welded joints between the lattice core and these plates take the form of slots and that they are made before assembly by punching on NC punching machines.
  8. Elevator car floor according to Claims 1 and 2,
    characterized in that
    the slats of the lattice core are provided with punched openings in the area of the crossover so that during immersion-painting the paint liquid can penetrate into, and subsequently drain out of, all the hollow spaces of the car floor when it is hung up by one corner.
  9. Elevator car floor according to Claims 1, 2 and 4,
    characterized in that
    the lateral slots in the slats are manufactured in such a way that all the lateral slots are first punched in a metal sheet, this being followed by separation into the individual slats, thereby avoiding the slats being distorted by the lateral slots being punched.
EP99123386A 1998-11-24 1999-11-24 High-rigidity elevator car floor Expired - Lifetime EP1004538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP99123386A EP1004538B1 (en) 1998-11-24 1999-11-24 High-rigidity elevator car floor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP98811156 1998-11-24
EP98811156 1998-11-24
EP99123386A EP1004538B1 (en) 1998-11-24 1999-11-24 High-rigidity elevator car floor

Publications (2)

Publication Number Publication Date
EP1004538A1 EP1004538A1 (en) 2000-05-31
EP1004538B1 true EP1004538B1 (en) 2004-02-18

Family

ID=8236448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99123386A Expired - Lifetime EP1004538B1 (en) 1998-11-24 1999-11-24 High-rigidity elevator car floor

Country Status (8)

Country Link
EP (1) EP1004538B1 (en)
JP (1) JP2000219461A (en)
CN (1) CN1101777C (en)
AT (1) ATE259758T1 (en)
CA (1) CA2290150A1 (en)
DE (1) DE59908575D1 (en)
HK (1) HK1029566A1 (en)
MY (1) MY121825A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018730B (en) * 2004-09-09 2010-05-12 因温特奥股份公司 Modular elevator car
WO2012084518A1 (en) 2010-12-22 2012-06-28 Inventio Ag Elevator car floor comprising a filling compound
WO2013026489A1 (en) 2011-08-25 2013-02-28 Inventio Ag Base for an elevator car

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006148A2 (en) * 2000-07-14 2002-01-24 Kone Corporation Supporting framework for an elevator car
CN101014525A (en) * 2004-09-09 2007-08-08 因温特奥股份公司 Elevator cage and method for installing an elevator cage
DE102005041619A1 (en) * 2005-09-01 2007-03-08 Wittur Ag Lift arrangement for e.g. lift shaft in e.g. residential building, has lift cage, which absorbs vertical and horizontal forces arising at cage, where walls of cage exhibit constant thickness
DE102007007049B3 (en) * 2007-02-08 2008-09-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Sheet metal component for use as body part in e.g. automobile, has cover plate connected with base plate, where connection element is used to increase deformation resistance of component depending on deformation of cover plate
MX336007B (en) 2011-04-06 2016-01-05 Inventio Ag Floor for an elevator car.
CN102602779A (en) * 2011-12-09 2012-07-25 江南嘉捷电梯股份有限公司 Plate for wind deflector of elevator car
CN104176597B (en) * 2014-07-24 2017-04-26 上海致用电梯有限公司 Car floor adopting ultrathin granite material
CN110497072A (en) * 2019-09-27 2019-11-26 福州大学 Metal-rubber based on vacuum electron beam welding damps battenboard preparation process
CN112092117B (en) * 2020-08-28 2022-05-13 广西大学 Preparation method of crossed grid oriented light plate
KR20230111204A (en) 2020-11-30 2023-07-25 인벤티오 아게 Floor for lift car and installation method of lift car
EP4267508A1 (en) 2020-12-23 2023-11-01 Inventio Ag Elevator car for an elevator system and installation method for installing an elevator system
CN113187114B (en) * 2021-04-06 2023-02-03 华南理工大学 Light composite heat-preservation sound-insulation board and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700860A1 (en) * 1994-08-03 1996-03-13 Otis Elevator Company Integrated elevator platform

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1907967A (en) * 1929-12-20 1933-05-09 Westinghouse Electric & Mfg Co Elevator car
US4249640A (en) * 1979-05-02 1981-02-10 Westinghouse Electric Corp. Corner post platform assembly
JPH02119484U (en) * 1988-11-02 1990-09-26
JP2723328B2 (en) * 1990-02-28 1998-03-09 株式会社東芝 Elevator car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0700860A1 (en) * 1994-08-03 1996-03-13 Otis Elevator Company Integrated elevator platform

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018730B (en) * 2004-09-09 2010-05-12 因温特奥股份公司 Modular elevator car
WO2012084518A1 (en) 2010-12-22 2012-06-28 Inventio Ag Elevator car floor comprising a filling compound
US9102503B2 (en) 2010-12-22 2015-08-11 Inventio Ag Elevator cage floor with filler
WO2013026489A1 (en) 2011-08-25 2013-02-28 Inventio Ag Base for an elevator car
US9809423B2 (en) 2011-08-25 2017-11-07 Inventio Ag Base for an elevator car

Also Published As

Publication number Publication date
CA2290150A1 (en) 2000-05-24
DE59908575D1 (en) 2004-03-25
EP1004538A1 (en) 2000-05-31
CN1254676A (en) 2000-05-31
JP2000219461A (en) 2000-08-08
ATE259758T1 (en) 2004-03-15
MY121825A (en) 2006-02-28
HK1029566A1 (en) 2001-04-06
CN1101777C (en) 2003-02-19

Similar Documents

Publication Publication Date Title
EP1004538B1 (en) High-rigidity elevator car floor
EP1181421B1 (en) Lightweight construction element in the form of a hollow body contoured honeycomb structure
EP1060073B1 (en) Laminate
EP0924960A2 (en) Suspension for sound reproduction arrangements based on the bending wave principle
EP1917185B1 (en) Sound-absorbing element for transport means, in particular for aircraft
EP3514042B1 (en) Floor element for a motor vehicle
DE60031129T2 (en) CEILING SYSTEM WITH INTERCHANGEABLE PLATES
EP2655238B1 (en) Elevator car floor comprising a filling compound
EP2630311A2 (en) Sandwich panel
DE19638005A1 (en) Bodywork for low floor bus
EP3085873B1 (en) Effect panel
DE4323922A1 (en) Honeycomb structure, preferably for a composite material in sheet form, a composite material and a process for producing such a composite material
DE10122265B4 (en) A wooden panel
EP1509656A1 (en) Surfacing structure for traffic areas and for surfaces of structures
DE102008036177B4 (en) Floor structure for a motor vehicle
EP3909826B1 (en) Integral floor assembly for railway vehicles
DE3144124C2 (en) Sound-insulating component, in particular a door leaf
DE3203314A1 (en) Roof structure
DE212004000096U1 (en) sandwich panel
WO2017050539A1 (en) Planar elevator car element for an elevator installation
DE8812733U1 (en) Plate-shaped component
DE102020123773A1 (en) clay wall panel
DE102022118719A1 (en) INTERMODULAR CONNECTION SYSTEM FOR CONNECTING ROOM MODULES IN A MULTI-STORY ROOM MODULAR BUILDING IN WOODEN CONSTRUCTION
DE102022119680A1 (en) Recreational vehicle, in particular motor home or caravan and corner connection for a recreational vehicle
DE3834501A1 (en) Panel-type structural element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001016

AKX Designation fees paid

Free format text: AT CH DE FR GB LI

17Q First examination report despatched

Effective date: 20021210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUMGARTNER, URS

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59908575

Country of ref document: DE

Date of ref document: 20040325

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040309

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1029566

Country of ref document: HK

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181120

Year of fee payment: 20

Ref country code: FR

Payment date: 20181123

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59908575

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191123