EP1002992A1 - Burner - Google Patents

Burner Download PDF

Info

Publication number
EP1002992A1
EP1002992A1 EP98811144A EP98811144A EP1002992A1 EP 1002992 A1 EP1002992 A1 EP 1002992A1 EP 98811144 A EP98811144 A EP 98811144A EP 98811144 A EP98811144 A EP 98811144A EP 1002992 A1 EP1002992 A1 EP 1002992A1
Authority
EP
European Patent Office
Prior art keywords
burner
nozzles
flow
air
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98811144A
Other languages
German (de)
French (fr)
Other versions
EP1002992B1 (en
Inventor
Christian Oliver Dr. Paschereit
Wolfgang Weisenstein
Ephraim Prof. Gutmark
Klaus Dr. Döbbeling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP98811144A priority Critical patent/EP1002992B1/en
Priority to DE59812039T priority patent/DE59812039D1/en
Priority to US09/438,588 priority patent/US6183240B1/en
Publication of EP1002992A1 publication Critical patent/EP1002992A1/en
Application granted granted Critical
Publication of EP1002992B1 publication Critical patent/EP1002992B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement

Definitions

  • the invention relates to a burner for operating a unit for generating a Hot gas.
  • the cooling air flowing into the combustion chamber has a sound-absorbing effect and thus contributes to damping thermoacoustic vibrations.
  • an increasing proportion of the air is passed through the burners themselves in modern gas turbines and the cooling air flow is reduced.
  • the problems mentioned at the outset occur increasingly in modern combustion chambers.
  • One way of soundproofing is to connect Helmholtz dampers in the combustion chamber hood or in the area of the cooling air supply. In tight Space, as is typical for modern, compact combustion chambers such dampers can be difficult to accommodate and is associated with great design effort.
  • thermoacoustic vibrations through active acoustic excitation.
  • the one that develops in the area of the burner Scher für acoustically excited With a suitable phase position between the Thereby, damping of thermoacoustic vibrations and excitation can be achieved of the combustion chamber vibrations.
  • damping of thermoacoustic vibrations and excitation can be achieved of the combustion chamber vibrations.
  • such a solution requires the installation of additional elements in the combustion chamber.
  • the modulation of the fuel mass flow is also suitable.
  • Fuel out of phase with measured signals in the combustion chamber e.g. the pressure
  • Fuel out of phase with measured signals in the combustion chamber e.g. the pressure
  • injected into the burner so that at a pressure minimum additional heat is released. This causes the amplitude of the pressure vibrations reduced.
  • the invention as characterized in the claims is the task of creating a device that is effective Suppression of thermoacoustic vibrations possible and with as possible low design effort. This object is achieved according to the invention solved by the burner according to claim 1.
  • Coherent structures play a crucial role in mixing processes between air and fuel.
  • the spatial and temporal dynamics of these structures affects combustion and heat release.
  • the invention is now the Based on the idea of disturbing the formation of coherent vortex structures the periodic heat release fluctuation and thus the amplitude of the reduce thermoacoustic fluctuations.
  • a burner according to the invention for operating a unit for generating a Hot gas consists essentially of at least two hollow, in the direction of flow nested partial bodies, the center axes of which are offset from one another run in such a way that adjacent walls of the partial body tangential Air inlet ducts for the inflow of combustion air into one of the part bodies form predetermined interior.
  • the burner has at least one fuel nozzle on.
  • the inside shows a plurality of the burner outlet along the circumference of the burner outlet of nozzles for introducing axial eddy strength into the flow, the nozzles arranged to inject air at an angle to the direction of flow are.
  • the invention is therefore based on the idea of forming coherent vortex structures by introducing vortex strength in the axial direction.
  • the vortex strength is thereby according to the invention introduced that through a plurality of nozzles air at an angle to the direction of flow is injected. These nozzles are as close as possible to the burner outlet appropriate to be able to develop their effect as fully as possible.
  • the relative position of the direction of flow and direction of air injection can be completely described by two angles ⁇ , ⁇ (FIGS. 2, 3).
  • cp provides the angle between the direction of air injection and a plane perpendicular to the direction of flow, a the angle between the direction of air injection and the direction pointing radially to the central axis.
  • the nozzles are so advantageous arranged that ⁇ between - 45 ° and + 45 °, preferably between -20 ° and + 20 °, is particularly preferably about 0 °.
  • is advantageously between - 45 ° and + 45 °, preferably between -20 ° and + 20 °, particularly preferably at about 0 °.
  • ⁇ and ⁇ each about 0 ° the injection the air therefore takes place in a plane perpendicular to the direction of flow radially to the central axis inside.
  • the cross section of the nozzles is arbitrary, but an elliptical one is preferred, in particular a circular cross section.
  • the nozzles along the The circumference of the burner outlet is arranged not only in one but in several rows his.
  • the flow instabilities in the burner mostly have a dominant mode.
  • the damping of this dominant mode is a priority for the suppression of thermoacoustic vibrations.
  • the relevant frequencies are between a few 10 Hz and a few kHz.
  • the convection speed depends on the burner and is typically a few 10 m / s, for example 30 m / s.
  • the dominant fashion suppresses particularly effectively when the distances s of adjacent nozzles along the circumference of the Burner outlet less than or equal to half the wavelength of the dominant Are fashion, so s.
  • a particularly effective suppression was also found, if the largest diameter D of the nozzles is greater than about a quarter of the boundary layer thickness ⁇ is in the area of the nozzles.
  • the largest is in the case of elliptical nozzles Diameter twice the large semi-axis, in the case of circular nozzles double Radius.
  • the boundary layer thickness is about 1 mm for a typical burner.
  • the largest diameter D is the Nozzles is less than about a fifth of the distance s between adjacent nozzles. Even though a significant suppression of thermoacoustic vibrations the fulfillment of one of the three conditions mentioned, one particularly fulfills preferred embodiment all condition at the same time.
  • the boundary conditions such as the existing air mass flow or the Available space may require the distances and the However, the diameter of the nozzles can also be adapted to these boundary conditions.
  • Figure 1 shows a burner according to the invention, which consists of two half hollow conical bodies 1, 2, which are arranged offset to one another.
  • the partial cone bodies 1, 2 have cylindrical starting parts 9, 10 which have a fuel nozzle 11 contain through which liquid fuel 12 is injected.
  • the burner has a collar-shaped, as anchoring for the Partial cone body 1, 2 serving front plate 18 with a number of holes 19, through which, if necessary, dilution air or cooling air 20 the front part of the Combustion chamber or its wall can be supplied.
  • the fuel injection can be an air-assisted nozzle or one Act nozzle working according to the pressure atomization principle.
  • the conical spray pattern is enclosed by the combustion air flows 7 flowing in tangentially.
  • the concentration of the injected fuel 12 is in the direction of flow 30 continuously degraded by the combustion air streams 7.
  • Becomes a gaseous Fuel 16 introduced in the region of the tangential air inlet ducts 5, 6 begins the mixture formation with the combustion air 7 already in this area.
  • the optimal homogeneous fuel concentration achieved across the cross-section.
  • the ignition of the fuel / combustion air mixture begins at the top of the backflow zone 24. Only at this point can a stable flame front 25 arise.
  • FIG. 4 shows an exemplary embodiment of a burner according to the invention, where ⁇ and ⁇ are each about 0 °. The flow direction from the In FIG. 4, nozzles 32, which are not shown in FIG radially inwards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

The burner consists essentially of two or more hollow sub-bodies (1,2) stacked one inside the other in the flow direction (30) and with offset central axes. Adjacent walls of the sub-bodies form tangential air inlet channels (5,6) for the inflow of combustion air in to an inner vol. defined by the sub-bodies. The burner has at least one fuel nozzle (11). The inside of the burner outlet has a number of nozzles (32) along the periphery of the burner outlet for introducing axial turbulence into the flow to control flow instabilities in the burner. The nozzles feed air(34) in at an angle to the flow direction.

Description

Die Erfindung betrifft einen Brenner zum Betrieb eines Aggregats zur Erzeugung eines Heißgases.The invention relates to a burner for operating a unit for generating a Hot gas.

Stand der TechnikState of the art

Thermoakustische Schwingungen stellen eine Gefahr für jede Art von Verbrennungsanwendungen dar. Sie führen zu Druckschwankungen hoher Amplitude, zu einer Einschränkung des Betriebsbereiches und können die mit der Verbrennung verbundenen Emissionen erhöhen. Diese Probleme treten besonders in Verbrennungssystemen mit geringer akustischer Dämpfung, wie sie moderne Gasturbinen oft darstellen, auf. Thermoacoustic vibrations pose a threat to any type of combustion application They lead to pressure fluctuations of high amplitude, too a limitation of the operating range and can with combustion increase associated emissions. These problems occur particularly in combustion systems with low acoustic damping, as used in modern gas turbines often represent on.

In herkömmlichen Brennkammern wirkt die in die Brennkammer einströmende Kühlluft schalldämpfend und trägt damit zur Dämpfung von thermoakustischen Schwingungen bei. Um niedrige NOx-Emissionen zu erzielen, wird in modernen Gasturbinen ein zunehmender Anteil der Luft durch die Brenner selbst geleitet und der Kühlluftstrom reduziert. Durch die damit einhergehende geringere Schalldämpfung treten die eingangs angesprochenen Probleme in modernen Brennkammern demnach verstärkt auf.In conventional combustion chambers, the cooling air flowing into the combustion chamber has a sound-absorbing effect and thus contributes to damping thermoacoustic vibrations. In order to achieve low NO x emissions, an increasing proportion of the air is passed through the burners themselves in modern gas turbines and the cooling air flow is reduced. As a result of the associated lower sound damping, the problems mentioned at the outset occur increasingly in modern combustion chambers.

Eine Möglichkeit der Schalldämpfung besteht im Ankoppeln von Helmholtz-Dämpfern in der Brennkammerhaube oder im Bereich der Kühlluftzuführung. Bei engen Platzverhältnissen, wie sie für moderne, kompakt gebaute Brennkammern typisch sind, kann die Unterbringung solcher Dämpfer jedoch Schwierigkeiten bereiten und ist mit großem konstruktiven Aufwand verbunden.One way of soundproofing is to connect Helmholtz dampers in the combustion chamber hood or in the area of the cooling air supply. In tight Space, as is typical for modern, compact combustion chambers such dampers can be difficult to accommodate and is associated with great design effort.

Eine weitere Möglichkeit besteht in einer Kontrolle thermoakustischer Schwingungen durch aktive akustische Anregung. Dabei wird die sich im Bereich des Brenners ausbildende Scherschicht akustisch angeregt. Bei geeigneter Phasenlage zwischen den thermoakustischer Schwingungen und der Anregung läßt sich dadurch eine Dämpfung der Brennkammerschwingungen erreichen. Eine solche Lösung erfordert allerdings den Anbau zusätzlicher Elemente im Bereich der Brennkammer.Another option is to control thermoacoustic vibrations through active acoustic excitation. Thereby, the one that develops in the area of the burner Scherschicht acoustically excited. With a suitable phase position between the Thereby, damping of thermoacoustic vibrations and excitation can be achieved of the combustion chamber vibrations. However, such a solution requires the installation of additional elements in the combustion chamber.

Desgleichen eignet sich die Modulierung des Brennstoffmassenstroms. Hierbei wird Brennstoff phasenverschoben zu gemessenen Signalen in der Brennkammer (beispielsweise dem Druck) in den Brenner eingedüst, so daß bei einem Druckminimum zusätzlich Wärme freigesetzt wird. Dadurch wird die Amplitude der Druckschwingungen reduziert.The modulation of the fuel mass flow is also suitable. Here will Fuel out of phase with measured signals in the combustion chamber (e.g. the pressure) injected into the burner so that at a pressure minimum additional heat is released. This causes the amplitude of the pressure vibrations reduced.

Darstellung der ErfindungPresentation of the invention

Hier setzt die Erfindung an. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, eine Vorrichtung zu schaffen, die eine wirkungsvolle Unterdrückung thermoakustischer Schwingungen ermöglicht und mit möglichst geringem konstruktiven Aufwand verbunden ist. Diese Aufgabe wird erfindungsgemäß durch den Brenner gemäß Anspruch 1 gelöst.This is where the invention comes in. The invention as characterized in the claims is the task of creating a device that is effective Suppression of thermoacoustic vibrations possible and with as possible low design effort. This object is achieved according to the invention solved by the burner according to claim 1.

Kohärente Strukturen spielen eine entscheidende Rolle bei Mischungsvorgängen zwischen Luft und Brennstoff. Die räumliche und zeitliche Dynamik dieser Strukturen beeinflußt die Verbrennung und die Wärmefreisetzung. Der Erfindung liegt nun die Idee zugrunde, die Ausbildung von kohärenten Wirbelstrukturen zu stören um dadurch die periodische Wärmefreisetzungsschwankung und damit die Amplitude der thermoakustischen Schwankungen zu reduzieren.Coherent structures play a crucial role in mixing processes between air and fuel. The spatial and temporal dynamics of these structures affects combustion and heat release. The invention is now the Based on the idea of disturbing the formation of coherent vortex structures the periodic heat release fluctuation and thus the amplitude of the reduce thermoacoustic fluctuations.

Ein erfindungsgemäßer Brenner zum Betrieb eines Aggregats zur Erzeugung eines Heißgases, besteht im wesentlichen aus mindestens zwei hohlen, in Strömungsrichtung ineinandergeschachtelten Teilkörpern, deren Mittelachsen zueinander versetzt verlaufen, dergestalt, daß benachbarte Wandungen der Teilkörper tangentiale Lufteintrittskanäle für die Einströmung von Verbrennungsluft in einen von den Teilkörpern vorgegebenen Innenraum bilden. Der Brenner weist zumindest eine Brennstoffdüse auf. Zur Kontrolle von Strömungsinstabilitäten im Brenner weist die Innenseite des Brenneraustritts entlang des Umfangs des Brenneraustritts eine Mehrzahl von Düsen zum Einbringen axialer Wirbelstärke in die Strömung auf, wobei die Düsen zur Eindüsung von Luft unter einem Winkel zur Strömungsrichtung angeordnet sind.A burner according to the invention for operating a unit for generating a Hot gas, consists essentially of at least two hollow, in the direction of flow nested partial bodies, the center axes of which are offset from one another run in such a way that adjacent walls of the partial body tangential Air inlet ducts for the inflow of combustion air into one of the part bodies form predetermined interior. The burner has at least one fuel nozzle on. To check the flow instabilities in the burner, the inside shows a plurality of the burner outlet along the circumference of the burner outlet of nozzles for introducing axial eddy strength into the flow, the nozzles arranged to inject air at an angle to the direction of flow are.

Die Erfindung beruht also auf dem Gedanken, die Ausbildung kohärenter Wirbelstrukturen durch das Einbringen von Wirbelstärke in axialer Richtung zu stören. Bei einem gattungsgemäßen Brenner wird die Wirbelstärke erfindungsgemäß dadurch eingebracht, daß über eine Mehrzahl von Düsen Luft unter einem Winkel zur Strömungsrichtung eingedüst wird. Diese Düsen sind dabei möglichst dicht am Brenneraustritt angebracht um ihre Wirkung möglichst voll entfalten zu können.The invention is therefore based on the idea of forming coherent vortex structures by introducing vortex strength in the axial direction. At a vortex of the generic type, the vortex strength is thereby according to the invention introduced that through a plurality of nozzles air at an angle to the direction of flow is injected. These nozzles are as close as possible to the burner outlet appropriate to be able to develop their effect as fully as possible.

Die relative Lage von Strömungsrichtung und Eindüsungsrichtung der Luft kann durch zwei Winkel ϕ, α vollständig beschrieben werden (Figuren 2,3). cp stellt dabei den Winkel zwischen der Eindüsungsrichtung der Luft und einer Ebene senkrecht zur Strömungsrichtung dar, a den Winkel zwischen der Eindüsungsrichtung der Luft und der radial zur Mittelachse weisenden Richtung. Die Düsen sind vorteilhaft so angeordnet, daß ϕ zwischen - 45° und + 45°, bevorzugt zwischen -20° und + 20°, besonders bevorzugt bei etwa 0° liegt. α liegt vorteilhaft zwischen - 45° und + 45°, bevorzugt zwischen -20° und + 20°, besonders bevorzugt bei etwa 0°. In einer besonders bevorzugten Ausführungsform sind ϕ und α jeweils etwa 0°, die Eindüsung der Luft erfolgt also in einer Ebene senkrecht zur Strömungsrichtung radial zur Mittelachse nach innen.The relative position of the direction of flow and direction of air injection can can be completely described by two angles ϕ, α (FIGS. 2, 3). cp provides the angle between the direction of air injection and a plane perpendicular to the direction of flow, a the angle between the direction of air injection and the direction pointing radially to the central axis. The nozzles are so advantageous arranged that ϕ between - 45 ° and + 45 °, preferably between -20 ° and + 20 °, is particularly preferably about 0 °. α is advantageously between - 45 ° and + 45 °, preferably between -20 ° and + 20 °, particularly preferably at about 0 °. In one particularly preferred embodiment are ϕ and α each about 0 °, the injection the air therefore takes place in a plane perpendicular to the direction of flow radially to the central axis inside.

Der Querschnitt der Düsen ist beliebig, bevorzugt ist jedoch ein elliptischer, insbesondere eine kreisförmiger Querschnitt. Mit Vorteil können die Düsen entlang des Umfangs des Brenneraustritts nicht nur in einer, sondern in mehreren Reihen angeordnet sein.The cross section of the nozzles is arbitrary, but an elliptical one is preferred, in particular a circular cross section. Advantageously, the nozzles along the The circumference of the burner outlet is arranged not only in one but in several rows his.

Die Strömungsinstabilitäten im Brenner weisen zumeist eine dominante Mode auf. Die Dämpfung dieser dominanten Mode ist für die Unterdrückung thermoakustischer Schwingungen vordringlich. Die Wellenlänge λ der dominante Mode der Instabilität ergibt sich aus ihrer Frequenz f und der Konvektionsgeschwindigkeit uc über λ = uc /f. Die relevanten Frequenzen liegen zwischen einigen 10 Hz und einigen kHz. Die Konvektionsgeschwindigkeit hängt vom Brenner ab und beträgt typischerweise einige 10 m/s, beispielsweise 30 m/s.The flow instabilities in the burner mostly have a dominant mode. The damping of this dominant mode is a priority for the suppression of thermoacoustic vibrations. The wavelength λ of the dominant mode of instability results from its frequency f and the convection speed u c via λ = u c / f . The relevant frequencies are between a few 10 Hz and a few kHz. The convection speed depends on the burner and is typically a few 10 m / s, for example 30 m / s.

Es wurde nun gefunden, daß die dominante Mode besonders wirkungsvoll unterdrückt wird, wenn die Abstände s benachbarter Düsen entlang des Umfangs des Brenneraustritts kleiner oder etwa gleich der halben Wellenlänge der dominanten Mode sind, also s .It has now been found that the dominant fashion suppresses particularly effectively when the distances s of adjacent nozzles along the circumference of the Burner outlet less than or equal to half the wavelength of the dominant Are fashion, so s.

Weiter wurde gefunden eine besonders wirkungsvolle Unterdrückung gefunden, wenn der größte Durchmesser D der Düsen größer als etwa ein Viertel der Grenzschichtdicke δ im Bereich der Düsen ist. Im Fall elliptischer Düsen ist der größte Durchmesser die doppelte große Halbachse, im Fall kreisförmiger Düsen der doppelte Radius. Die Grenzschichtdicke beträgt für eine typischen Brenner etwa 1 mm. A particularly effective suppression was also found, if the largest diameter D of the nozzles is greater than about a quarter of the boundary layer thickness δ is in the area of the nozzles. The largest is in the case of elliptical nozzles Diameter twice the large semi-axis, in the case of circular nozzles double Radius. The boundary layer thickness is about 1 mm for a typical burner.

Ferner hat es sich als vorteilhaft herausgestellt, wenn der größte Durchmesser D der Düsen kleiner als etwa ein Fünftel des Abstands s benachbarter Düsen ist. Obwohl eine signifikante Unterdrückung der thermoakustischen Schwingungen bereits bei der Erfüllung einer der drei genannten Bedingungen erreicht wird, erfüllt eine besonders bevorzugte Ausführungsform alle Bedingung zugleich.It has also proven to be advantageous if the largest diameter D is the Nozzles is less than about a fifth of the distance s between adjacent nozzles. Even though a significant suppression of thermoacoustic vibrations the fulfillment of one of the three conditions mentioned, one particularly fulfills preferred embodiment all condition at the same time.

Falls die Randbedingungen wie etwa der vorhandene Luftmassenstrom oder das zur Verfügung stehende Platzangebot es erfordern, können die Abstände und die Durchmesser der Düsen jedoch auch an diese Randbedingungen angepaßt werden.If the boundary conditions such as the existing air mass flow or the Available space may require the distances and the However, the diameter of the nozzles can also be adapted to these boundary conditions.

Das erfindungsgemäße Einbringen von Wirbelstärke in axialer Richtung zur Störung kohärenter Wirbelstrukturen durch das Eindüsen von Luft unter einem Winkel zur Strömungsrichtung läßt sich nicht nur bei dem hier beschriebenen Doppelkegelbrenner, sondern ebenso bei anderen Brennertypen anwenden.The introduction of vortex strength in the axial direction to the disturbance coherent vortex structures by injecting air at an angle to the Flow direction can not only be used with the double-cone burner described here, but also apply to other types of burners.

Weitere vorteilhafte Ausgestaltungen, Merkmale und Details der Erfindung ergeben sich aus den abhängigen Ansprüchen, der Beschreibung der Ausführungsbeispiele und der Zeichnungen. Die Erfindung soll nachfolgend anhand eines Ausführungsbeispiels im Zusammenhang mit den Zeichnungen näher erläutert werden. Es sind jeweils nur die für das Verständnis der Erfindung wesentlichen Elemente dargestellt. Dabei zeigt

Fig. 1
ein Ausführungsbeispiel eines erfindungsgemäßen Brenners in perspektivischer Darstellung entsprechend aufgeschnitten;
Fig. 2
eine schematische Seitenansicht eines erfindungsgemäßen Brenners aus Richtung II-II von Fig. 1;
Fig. 3
eine schematische Vorderansicht eines erfindungsgemäßen Brenners aus Richtung III-III von Fig. 2;
Fig. 4
eine Vorderansicht eines Ausführungsbeispiels eines erfindungsgemäßen Brenners;
Further advantageous refinements, features and details of the invention result from the dependent claims, the description of the exemplary embodiments and the drawings. The invention will be explained in more detail below using an exemplary embodiment in conjunction with the drawings. Only the elements essential for understanding the invention are shown. It shows
Fig. 1
an embodiment of a burner according to the invention correspondingly cut open in perspective;
Fig. 2
is a schematic side view of a burner according to the invention from the direction II-II of Fig. 1;
Fig. 3
is a schematic front view of a burner according to the invention from the direction III-III of Fig. 2;
Fig. 4
a front view of an embodiment of a burner according to the invention;

Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

Figur 1 zeigt einen erfindungsgemäßen Brenner, der aus zwei halben hohlen Teilkegelkörpern 1, 2, besteht, die versetzt zueinander angeordnet sind. Die Versetzung der jeweiligen Mittelachse der Teilkegelkörper 1, 2 zueinander schafft auf beiden Seiten in spiegelbildlicher Anordnung jeweils einen tangentialen Lufteintrittskanal 5, 6, durch welchen die Verbrennungsluft 7 in den Innenraum 8 des Brenners strömt. Die Teilkegelkörper 1, 2 weisen zylindrische Anfangsteile 9, 10 auf, die eine Brennstoffdüse 11 beinhalten durch die flüssiger Brennstoff 12 eingedüst wird. Weiter weisen die Teilkegelkörper 1, 2 nach Bedarf je eine Brennstoffleitung 13, 14 auf, die mit Öffnungen 15 versehen sind, durch welche gasförmiger Brennstoff 16 der durch die tangentialen Lufteintrittskanäle 5, 6 strömenden Verbrennungsluft 7 zugemischt wird.Figure 1 shows a burner according to the invention, which consists of two half hollow conical bodies 1, 2, which are arranged offset to one another. The dislocation the respective central axis of the partial cone body 1, 2 creates each other on both Sides in mirror-image arrangement each have a tangential air inlet duct 5, 6, through which the combustion air 7 flows into the interior 8 of the burner. The partial cone bodies 1, 2 have cylindrical starting parts 9, 10 which have a fuel nozzle 11 contain through which liquid fuel 12 is injected. Point further the partial cone body 1, 2 as required, each have a fuel line 13, 14 with Openings 15 are provided, through which gaseous fuel 16 through which tangential air inlet channels 5, 6 flowing combustion air 7 is mixed.

Brennraumseitig 17 weist der Brenner eine kragenförmige, als Verankerung für die Teilkegelkörper 1, 2 dienende Frontplatte 18 mit einer Anzahl von Bohrungen 19 auf, durch welche bei Bedarf Verdünnungsluft oder Kühlluft 20 dem vorderen Teil des Brennraumes bzw. dessen Wand zugeführt werden kann.Combustion chamber side 17, the burner has a collar-shaped, as anchoring for the Partial cone body 1, 2 serving front plate 18 with a number of holes 19, through which, if necessary, dilution air or cooling air 20 the front part of the Combustion chamber or its wall can be supplied.

Bei der Brennstoffeindüsung kann es sich um eine luftunterstüzte Düse oder um eine nach dem Druckzerstäubungsprinzip arbeitende Düse handeln. Das kegelige Spraybild wird von den tangential einströmenden Verbrennungsluftströmen 7 umschlossen. Die Konzentration des eingedüsten Brennstoffs 12 wird in Strömungsrichtung 30 fortlaufend durch die Verbrennungsluftströme 7 abgebaut. Wird ein gasförmiger Brennstoff 16 im Bereich der tangentialen Lufteintrittskanäle 5, 6 eingebracht, beginnt die Gemischbildung mit der Verbrennungsluft 7 bereits in diesem Bereich. Beim Einsatz eines flüssigen Brennstoffs 12 wird im Bereich des Wirbelaufplatzens, also im Bereich der Rückströmzone 24 am Ende des Vormischbrenners die optimale, homogene Brennstoffkonzentration über den Querschnitt erreicht. Die Zündung des BrennstoffNerbrennungsluft-Gemisches beginnt an der Spitze der Rückströmzone 24. Erst an dieser Stelle kann eine stabile Flammenfront 25 entstehen. The fuel injection can be an air-assisted nozzle or one Act nozzle working according to the pressure atomization principle. The conical spray pattern is enclosed by the combustion air flows 7 flowing in tangentially. The concentration of the injected fuel 12 is in the direction of flow 30 continuously degraded by the combustion air streams 7. Becomes a gaseous Fuel 16 introduced in the region of the tangential air inlet ducts 5, 6 begins the mixture formation with the combustion air 7 already in this area. When using a liquid fuel 12, in the area of the vortex burst, in the area of the backflow zone 24 at the end of the premix burner, the optimal homogeneous fuel concentration achieved across the cross-section. The ignition of the fuel / combustion air mixture begins at the top of the backflow zone 24. Only at this point can a stable flame front 25 arise.

An der Innenseite des Brenneraustritts 17 ist eine Mehrzahl von Düsen 32 mit kreisförmigen Querschnitt angeordnet. Durch die Düsen 32 wird Luft 34 rechtwinklig zur Strömungsrichtung 30 in einer Ebene senkrecht zur Strömungsrichtung eingedüst. Figuren 2 und 3 zeigen die Definitionen der Winkel ϕ und α, durch die die relative Lage der Strömungsrichtung und der Eindüsungsrichtung vollständig beschrieben werden kann.. Dabei stellt ϕ den Winkel zwischen der Eindüsungsrichtung der Luft und einer Ebene senkrecht zur Strömungsrichtung dar und a den Winkel zwischen der Eindüsungsrichtung der Luft und der radial zur Mittelachse nach innen weisenden Richtung. Figur 4 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Brenners, bei dem ϕ und α jeweils etwa 0° betragen. Die Strömungsrichtung der aus den in Fig. 4 nicht gezeigten Düsen 32 austretenden Störluft 34 weist in diesem Ausführungsbeispiel radial nach innen. On the inside of the burner outlet 17 there are a plurality of circular nozzles 32 Cross section arranged. Air 34 becomes perpendicular to through the nozzles 32 Flow direction 30 injected in a plane perpendicular to the flow direction. Figures 2 and 3 show the definitions of the angles ϕ and α by which the relative The position of the flow direction and the direction of injection are completely described .. stellt represents the angle between the air injection direction and a plane perpendicular to the flow direction and a represents the angle between the direction of air injection and the direction radially inwards to the central axis Direction. FIG. 4 shows an exemplary embodiment of a burner according to the invention, where ϕ and α are each about 0 °. The flow direction from the In FIG. 4, nozzles 32, which are not shown in FIG radially inwards.

BezugszeichenlisteReference list

1,21.2
TeilkegelkörperPartial cone body
5,65.6
LufteintrittskanalAir inlet duct
77
VerbrennungsluftCombustion air
88th
Innenrauminner space
9,109.10
zylindrische Anfangsteilecylindrical initial parts
1111
BrennstoffdüseFuel nozzle
1212th
flüssiger Brennstoffliquid fuel
13,1413.14
BrennstoffleitungFuel line
1515
Öffnungenopenings
1616
gasförmiger Brennstoffgaseous fuel
1717th
BrennraumCombustion chamber
1818th
FrontplatteFront panel
1919th
BohrungenHoles
2020th
KühlluftCooling air
2424th
RückströmzoneBackflow zone
2525th
FlammenfrontFlame front
3030th
StrömungsrichtungFlow direction
3232
Öffnungen für StörluftDisturbance air openings
3434
StörluftInterference air

Claims (7)

Brenner zum Betrieb eines Aggregats zur Erzeugung eines Heißgases, wobei der Brenner im wesentlichen aus mindestens zwei hohlen, in Strömungsrichtung (30) ineinandergeschachtelten Teilkörpern (1, 2) besteht, deren Mittelachsen zueinander versetzt verlaufen, dergestalt, daß benachbarte Wandungen der Teilkörper (1, 2) tangentiale Lufteintrittskanäle (5, 6) für die Einströmung von Verbrennungsluft (7) in einen von den Teilkörpern (1, 2) vorgegebenen Innenraum (8) bilden,
und wobei der Brenner zumindest eine Brennstoffdüse (11) aufweist,
dadurch gekennzeichnet, daß
zur Kontrolle von Strömungsinstabilitäten im Brenner die Innenseite des Brenneraustritts (17) entlang des Umfangs des Brenneraustritts (17) eine Mehrzahl von Düsen (32) zum Einbringen axialer Wirbelstärke in die Strömung aufweist, wobei die Düsen (32) zur Eindüsung von Luft (34) unter einem Winkel zur Strömungsrichtung (30) angeordnet sind.
Burner for operating a unit for generating a hot gas, the burner essentially consisting of at least two hollow partial bodies (1, 2) nested one inside the other in the direction of flow (30), the central axes of which are offset from one another, such that adjacent walls of the partial bodies (1, 2) form tangential air inlet channels (5, 6) for the inflow of combustion air (7) into an interior space (8) predetermined by the partial bodies (1, 2),
and wherein the burner has at least one fuel nozzle (11),
characterized in that
to control flow instabilities in the burner, the inside of the burner outlet (17) along the circumference of the burner outlet (17) has a plurality of nozzles (32) for introducing axial eddy strength into the flow, the nozzles (32) for injecting air (34) are arranged at an angle to the direction of flow (30).
Brenner nach Anspruch 1,
bei dem der Querschnitt der Düsen (32) elliptisch, bevorzugt kreisförmig ist.
Burner according to claim 1,
in which the cross section of the nozzles (32) is elliptical, preferably circular.
Brenner nach einem der vorigen Ansprüche,
bei dem der Winkel zwischen der Strömungsrichtung (30) und der Eindüsungsrichtung der Luft (34) durch Winkel (ϕ, α) gegeben ist, wobei ϕ den Winkel zwischen der Eindüsungsrichtung der Luft (34) und einer Ebene senkrecht zur Strömungsrichtung darstellt, α den Winkel zwischen der Eindüsungsrichtung der Luft (34) und der radial zur jeweiligen Mittelachse nach innen weisenden Richtung darstellt, und die Düsen (32) so angeordnet sind, daß ϕ zwischen - 45° und + 45°, bevorzugt zwischen -20° und + 20°, besonders bevorzugt bei etwa 0° liegt, und α zwischen - 45° und + 45°, bevorzugt zwischen -20° und + 20°, besonders bevorzugt bei etwa 0° liegt.
Burner according to one of the preceding claims,
in which the angle between the direction of flow (30) and the direction of injection of the air (34) is given by angles (ϕ, α), where ϕ represents the angle between the direction of injection of the air (34) and a plane perpendicular to the direction of flow, α den Represents angle between the injection direction of the air (34) and the direction radially inward to the respective central axis, and the nozzles (32) are arranged such that ϕ between - 45 ° and + 45 °, preferably between -20 ° and + 20 °, particularly preferably approximately 0 °, and α is between - 45 ° and + 45 °, preferably between -20 ° and + 20 °, particularly preferably around 0 °.
Brenner nach einem der vorigen Ansprüche,
bei dem die Düsen (32) entlang des Umfangs des Brenneraustritts (17) in mehreren Reihen angeordnet sind.
Burner according to one of the preceding claims,
in which the nozzles (32) are arranged in several rows along the circumference of the burner outlet (17).
Brenner nach einem der vorigen Ansprüche,
bei dem die Strömungsinstabilitäten eine dominante Mode aufweisen und die Abstände s benachbarter Düsen (32) entlang des Umfangs des Brenneraustritts (17) kleiner oder etwa gleich der halben Wellenlänge der dominanten Mode sind.
Burner according to one of the preceding claims,
in which the flow instabilities have a dominant mode and the distances s between adjacent nozzles (32) along the circumference of the burner outlet (17) are less than or approximately equal to half the wavelength of the dominant mode.
Brenner nach einem der vorigen Ansprüche,
bei dem der größte Durchmesser D der Düsen (32) größer als etwa ein Viertel der Grenzschichtdicke δ im Bereich der Düsen (32) ist.
Burner according to one of the preceding claims,
in which the largest diameter D of the nozzles (32) is greater than about a quarter of the boundary layer thickness δ in the region of the nozzles (32).
Brenner nach einem der vorigen Ansprüche,
bei dem der größte Durchmesser D der Düsen (32) kleiner als etwa ein Fünftel des Abstands s benachbarter Düsen (32) ist.
Burner according to one of the preceding claims,
in which the largest diameter D of the nozzles (32) is smaller than approximately one fifth of the distance s between adjacent nozzles (32).
EP98811144A 1998-11-18 1998-11-18 Burner Expired - Lifetime EP1002992B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98811144A EP1002992B1 (en) 1998-11-18 1998-11-18 Burner
DE59812039T DE59812039D1 (en) 1998-11-18 1998-11-18 burner
US09/438,588 US6183240B1 (en) 1998-11-18 1999-11-12 Burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98811144A EP1002992B1 (en) 1998-11-18 1998-11-18 Burner

Publications (2)

Publication Number Publication Date
EP1002992A1 true EP1002992A1 (en) 2000-05-24
EP1002992B1 EP1002992B1 (en) 2004-09-29

Family

ID=8236442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811144A Expired - Lifetime EP1002992B1 (en) 1998-11-18 1998-11-18 Burner

Country Status (3)

Country Link
US (1) US6183240B1 (en)
EP (1) EP1002992B1 (en)
DE (1) DE59812039D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1217295A2 (en) 2000-12-23 2002-06-26 ALSTOM Power N.V. Burner for generating a hot gas
AU776725B2 (en) * 2000-08-04 2004-09-16 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner and combustion method using solid fuel burner
US7871262B2 (en) * 2004-11-30 2011-01-18 Alstom Technology Ltd. Method and device for burning hydrogen in a premix burner

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886342B2 (en) 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
US8631657B2 (en) * 2003-01-22 2014-01-21 Vast Power Portfolio, Llc Thermodynamic cycles with thermal diluent
EP1585889A2 (en) * 2003-01-22 2005-10-19 Vast Power Systems, Inc. Thermodynamic cycles using thermal diluent
US20050056313A1 (en) * 2003-09-12 2005-03-17 Hagen David L. Method and apparatus for mixing fluids
EP1828684A1 (en) * 2004-12-23 2007-09-05 Alstom Technology Ltd Premix burner comprising a mixing section
US8622737B2 (en) * 2008-07-16 2014-01-07 Robert S. Babington Perforated flame tube for a liquid fuel burner
KR101990767B1 (en) 2017-08-09 2019-06-20 한국기계연구원 Double-cone gas turbine burner and method for providing air to the burner
US11555612B2 (en) * 2017-11-29 2023-01-17 Babcock Power Services, Inc. Dual fuel direct ignition burners

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879939A (en) * 1973-04-18 1975-04-29 United Aircraft Corp Combustion inlet diffuser employing boundary layer flow straightening vanes
US4257224A (en) * 1977-07-28 1981-03-24 Remot University Authority For Applied Research & Industrial Develop. Ltd. Method and apparatus for controlling the mixing of two fluids
US5169302A (en) * 1989-12-22 1992-12-08 Asea Brown Boveri Ltd. Burner
US5375995A (en) * 1993-02-12 1994-12-27 Abb Research Ltd. Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or firing installation
EP0866268A1 (en) * 1997-03-18 1998-09-23 Abb Research Ltd. Method of operating a vortex stabilised burner and burner applying the method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129726A (en) * 1974-09-06 1976-03-13 Mitsubishi Heavy Ind Ltd
DE4309115A1 (en) * 1993-03-23 1994-09-29 Viessmann Werke Kg Process for operating an oil vapor burner
DE19654116A1 (en) * 1996-12-23 1998-06-25 Abb Research Ltd Burner for operating a combustion chamber with a liquid and / or gaseous fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879939A (en) * 1973-04-18 1975-04-29 United Aircraft Corp Combustion inlet diffuser employing boundary layer flow straightening vanes
US4257224A (en) * 1977-07-28 1981-03-24 Remot University Authority For Applied Research & Industrial Develop. Ltd. Method and apparatus for controlling the mixing of two fluids
US5169302A (en) * 1989-12-22 1992-12-08 Asea Brown Boveri Ltd. Burner
US5375995A (en) * 1993-02-12 1994-12-27 Abb Research Ltd. Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or firing installation
EP0866268A1 (en) * 1997-03-18 1998-09-23 Abb Research Ltd. Method of operating a vortex stabilised burner and burner applying the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU776725B2 (en) * 2000-08-04 2004-09-16 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner and combustion method using solid fuel burner
EP1217295A2 (en) 2000-12-23 2002-06-26 ALSTOM Power N.V. Burner for generating a hot gas
EP1217295A3 (en) * 2000-12-23 2002-11-20 ALSTOM (Switzerland) Ltd Burner for generating a hot gas
US6773257B2 (en) 2000-12-23 2004-08-10 Alstom Technology Ltd Burner for the production of a hot gas
US7871262B2 (en) * 2004-11-30 2011-01-18 Alstom Technology Ltd. Method and device for burning hydrogen in a premix burner

Also Published As

Publication number Publication date
US6183240B1 (en) 2001-02-06
EP1002992B1 (en) 2004-09-29
DE59812039D1 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
EP1336800B1 (en) Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method
DE60007946T2 (en) A combustion chamber
EP1048898B1 (en) Burner
DE69917655T2 (en) SYSTEM FOR CONTROLLING ACOUSTIC VIBRATIONS IN A COMBUSTION CHAMBER
EP0892212B1 (en) Pressure spray nozzle
DE112014004482B4 (en) Gas turbine combustor and gas turbine engine provided with the same
EP2588805B1 (en) Burner
EP0433790B1 (en) Burner
EP1182398B1 (en) Process for increasing the fluidic stability of a premix-burner as well as premix-burner for carrying out said process
EP1730447A1 (en) Burner
DE102010017778A1 (en) Device for fuel injection in a turbine
EP1002992B1 (en) Burner
WO1999006767A1 (en) Burner
EP0924460B1 (en) Two-stage pressurised atomising nozzle
EP3117148B1 (en) Burner arrangement with resonator
DE4336096A1 (en) Device for redn. of vibrations in combustion chamber for gas turbine systems - has equal number of burners in flow direction of gases displaced by specific distance which is determined by formula
EP0924461B1 (en) Two-stage pressurised atomising nozzle
EP0742411B1 (en) Air supply for a premix combustor
EP0762057A1 (en) Mixing device for fuel and air for gas turbine combustors
EP1084368B1 (en) Fuel injector
EP0924459A1 (en) Method and apparatus for injecting a mixture of fuel end liquid into a combustor
EP1073864B1 (en) Combustion chamber assembly
EP1205713B1 (en) Method of fuel injection in a burner
EP0730121A2 (en) Premix burner
DE102004009226A1 (en) Burn control for gas turbine engine has a lean mixture input burn chamber linked to the main burn chamber via a double walled porous element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000927

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17Q First examination report despatched

Effective date: 20030630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59812039

Country of ref document: DE

Date of ref document: 20041104

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041222

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59812039

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59812039

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59812039

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161121

Year of fee payment: 19

Ref country code: GB

Payment date: 20161122

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59812039

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59812039

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59812039

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171118