EP0999483B1 - Procédé d'ajustement de la marche d'un module horloger au moyen de fusibles destructibles par laser - Google Patents

Procédé d'ajustement de la marche d'un module horloger au moyen de fusibles destructibles par laser Download PDF

Info

Publication number
EP0999483B1
EP0999483B1 EP19980121022 EP98121022A EP0999483B1 EP 0999483 B1 EP0999483 B1 EP 0999483B1 EP 19980121022 EP19980121022 EP 19980121022 EP 98121022 A EP98121022 A EP 98121022A EP 0999483 B1 EP0999483 B1 EP 0999483B1
Authority
EP
European Patent Office
Prior art keywords
circuit
correction factor
module
fuses
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980121022
Other languages
German (de)
English (en)
Other versions
EP0999483A1 (fr
Inventor
Guenther Meusburger
Nicolas Jeannet
Rudolf Bugmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EM Microelectronic Marin SA
Original Assignee
EM Microelectronic Marin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EM Microelectronic Marin SA filed Critical EM Microelectronic Marin SA
Priority to EP19980121022 priority Critical patent/EP0999483B1/fr
Priority to DE69840506T priority patent/DE69840506D1/de
Publication of EP0999483A1 publication Critical patent/EP0999483A1/fr
Application granted granted Critical
Publication of EP0999483B1 publication Critical patent/EP0999483B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G3/00Producing timing pulses
    • G04G3/02Circuits for deriving low frequency timing pulses from pulses of higher frequency
    • G04G3/022Circuits for deriving low frequency timing pulses from pulses of higher frequency the desired number of pulses per unit of time being obtained by adding to or substracting from a pulse train one or more pulses

Definitions

  • the present invention relates to a method for adjusting the running of a watch module, said watch module including a quartz and an integrated circuit comprising a quartz-driven oscillator, a multi-stage frequency divider circuit, a adjustment circuit for introducing a factor for correcting the rate of division of said frequency divider circuit and a memory circuit containing information representative of said correction factor.
  • step adjustment method is meant a method of introducing a factor of correction of the division ratio of the frequency divider circuit, so that the frequency of the pulses delivered at the output thereof is corrected. so as to be in a predetermined range.
  • module By “module”, one will also hear a semi-finished or intermediate system, ready to be mounted in the final product.
  • watch module will be understood in the following description, a printed circuit comprising different electronic components, in particular quartz and the aforementioned integrated circuit.
  • Adjusting the frequency of the oscillator is a particularly complicated and delicate operation. Indeed, as stated in the disclosure CH 534 913 this adjustment is carried out according to a first coarse adjustment step by precision mechanical operations on the quartz, then a second step of fine adjustment on the encapsulated quartz, and finally according to a final step of adjustment and compensation of the aging by an adjustment system or trimmer.
  • the patent CH 534 913 proposes a satisfactory and inexpensive solution, acting directly on the division rate of the frequency divider circuit by the introduction of a correction factor, the effect of which is to improve the stability of the quartz and to overcome the use of a trimmer.
  • the frequency divider circuit proposed in the patent CH 534 913 presents auxiliary electrical inputs whose logic state determines the division ratio of the frequency divider and a memory circuit, connected to these auxiliary inputs, for retaining in coded form information representative of the correction factor of the division ratio of the divider circuit of the frequency.
  • the system that has just been mentioned operates by inhibition or periodic suppression of a given number of pulses delivered by the oscillator. It will be mentioned that a system operating alternatively by adding a determined number of pulses is furthermore proposed in the patent. CH 558 559 .
  • the adjustment circuit is typically connected to a memory circuit containing the information representative of the factor of correction of the division rate.
  • the storage of this information is preferably nonvolatile so that it is not lost during a battery change or during an interruption of the power supply.
  • EPROM / EEPROM requires a significant investment in terms of integrated circuit surface, because such memory must not only include a sufficient number of bits to encode the information representative of the correction factor, but also requires the implementation of programming logic to program it and a voltage multiplier circuit to produce the high voltages necessary for this programming. This obviously translates into a substantial increase in the manufacturing cost of the integrated circuit due in particular to the additional steps necessary for the integration of the EPROM / EEPROM and has repercussions on the manufacturing cost of the watch module and the timepiece. as such.
  • the relative cost related to the additional manufacturing steps of an EPROM / EEPROM remains constant as a function of the surface and thus constitutes the determining element for large circuits.
  • the additional cost of implementing the EPROM / EEPROM bits is substantially proportional to the circuit surface, which is why the solution employing contact pads additional is more economical for large circuits.
  • An EPROM / EEPROM bit requires less area than an additional contact area, but nevertheless generates a fixed investment due in particular to the programming logic and the voltage multiplier.
  • the higher the number of bits the more economical the EPROM / EEPROM solution is at the surface compared to the solution employing additional contact pads.
  • the manufacturing cost per unit area remains proportionally higher.
  • FR 2,238,280 discloses an integrated oscillator and its digital frequency tuning method including memory elements programmable from outside the integrated circuit. These elements are diodes some of which are short-circuited in order to modify their state permanently. Each element is connected to a terminal of the integrated circuit.
  • This integrated system comprises memory circuits comprising a diode in series with a memory element formed of a fuse consisting of a particular metallization of the integrated circuit that can be destroyed by passing it over.
  • integrated circuit comprises memory circuits comprising a diode in series with a memory element formed of a fuse consisting of a particular metallization of the integrated circuit that can be destroyed by passing a current of some importance.
  • Each memory element can be addressed separately by means of the diodes by applying between the terminals of the integrated circuit a particular combination of voltages.
  • a solution to reducing the number of connection terminals is defined in the EP 0 645 689 which describes a system for providing clock signals.
  • This system comprises a crystal oscillator whose frequency can be divided by at least one frequency divider circuit, in particular for a frequency synthesizer.
  • the system also includes a memory circuit having fusible elements, which can be cut by a laser beam so as to adjust the output frequency of the divider circuit (s).
  • this patent does not describe a gait adjustment method of a watch module.
  • An object of the present invention is therefore to propose a method of adjusting the step of a watch module that does not require a complex implementation at the integrated circuit, so that the manufacturing cost of the latter, and therefore the module as such, is not greatly affected.
  • Another object of the present invention is to propose a method of adjusting the step of a a watch module particularly adapted to mass or automated production of watch modules, ie a simple and quick adjustment process.
  • the present invention relates to a method for adjusting the step of a watch module as defined in claim 1.
  • An advantage of the present invention lies in the fact that the storage of the information representative of the correction factor is performed in a simple and above all fast manner, therefore particularly suitable for the mass production of such modules.
  • the speed and simplicity of the adjustment method according to the present invention thus ensures a substantial reduction in manufacturing costs.
  • the present invention also has the advantage of allowing the adjustment of the step of a watch module, that is to say a finite or intermediate set comprising other electronic components that the quartz, the oscillator, the circuit frequency divider, dividing rate adjusting circuit, or memory circuit. In this way, the adjustment can be made taking into consideration the influences of all the electronic components of the module.
  • Another advantage of the present invention lies in the fact that the cost of the integrated circuit and the watch module as such is not substantially affected.
  • the use of memory elements formed of laser destructible fuses does not require a complex and expensive implementation at the level of the integrated circuit.
  • the figure 1 is a schematic representation of a watch module comprising a printed circuit 1 including a quartz 10 and an integrated circuit 20.
  • This integrated circuit 20 comprises an oscillator 21 controlled by the quartz 10 so as to typically deliver pulses at a frequency of 32768 Hz. This frequency is divided several times by a frequency divider circuit 22 so as to output at its output pulses at a frequency of 1 Hz and thus allow the formation and display of a time indication.
  • the frequency divider circuit 22 thus comprises a total number of 15 binary division stages 22.1 to 22.15.
  • the first two stages 22.1 and 22.2 make it possible in particular to deliver a signal at a frequency of 8192 Hz which is used to enable correction of the division ratio of the frequency divider circuit 22.
  • An adjustment circuit 23 allows for this purpose the introduction of a correction factor of the rate of division of the frequency divider circuit 22.
  • a memory circuit 24 thus contains information, generally in the form of a binary number N, representative of the factor of correction of the division ratio of the frequency divider circuit 22.
  • inhibition technique consists in suppressing a number N of pulses during a given period.
  • the following description is based on such a technique, but it will be understood of course that the invention may be extended by analogy with other known techniques such as that of adding a number of missing pulses.
  • the adjustment method essentially consists in correcting the frequency difference existing between the frequency of the oscillator 21 and the frequency delivered by a standard oscillator, this frequency difference being measured in ppm (parts per million).
  • This frequency difference can be corrected, according to the inhibition technique, by the deletion of a number N of pulses of period T i during a determined period T h , the so-called inhibition period.
  • T i 122 ⁇ s
  • the number N will require at least 6 bits of memory. In practice, depending on the application, this number may require between 4 and 9 bits.
  • the memory circuit 24 comprises memory elements formed of lasable destructible fuses.
  • the figure 2a illustrates a first example of a 6-bit memory circuit comprising 6 memory elements 24.1 to 24.6 connected in parallel and each having a pair of fuses F1 and F2 laser destructible.
  • the fuses F1 and F2 of each memory element are connected in series between a potential line "high” Vdd and a potential line “low” Vss.
  • the destruction of one of the fuses F1 or F2 thus makes it possible to put the intermediate point situated between the fuses F1, F2 at the high potential Vdd or low Vss respectively.
  • the coding of information (number N) representative of the correction factor of the division ratio of the frequency divider circuit 22 can thus easily be achieved by means of a laser by destroying one or the other of the fuses F1 or F2. .
  • the figure 2b presents a second example of a 6-bit memory circuit comprising 6 memory elements 24.1 to 24.6 each having a laser destructible fuse F.1 to F.6 associated with an interface circuit L.1 to L.6.
  • the interface circuit L and the fuse F are connected in series between a "high" potential line Vdd and a "low” potential line Vss.
  • the interface circuit may be realized by those skilled in the art in a conventional manner in the form of a latch for copying the input state defined by the fuse.
  • the lock further comprises a loading input CKP on activation from which an output Lout of the lock takes the corresponding state defined by the state of the associated fuse. In this case, the output Lout of the lock takes the state "high” if the fuse is destroyed and the state "low” if the fuse is intact.
  • the Figure 2c shows yet another example of a 6-bit memory circuit.
  • This solution partially integrates a logic of inhibition of the frequency divider circuit 22.
  • the six memory elements 24.1 to 24.6, connected in series, each comprise a fuse F.1 * to F.6 * connected in parallel with a transistor T1 to T6.
  • Each transistor is respectively controlled by the clock signals of the six division stages of the frequency divider circuit 22 on which the inhibition is carried out in accordance with what has been previously described.
  • the transistor If the fuse is intact, the transistor is short-circuited and the clock signal at its input has no effect. If the fuse is destroyed, the transistor can then have an effect on the inhibition of the frequency divider circuit 22.
  • the selective destruction of certain fuses among the fuses F.1 * to F.6 * it is thus possible to adjust the inhibition rate of the frequency divider circuit 22.
  • a first constraint resides in the fact that the use of a laser beam for selectively destroying the fuses on the integrated circuit implies that this operation must be carried out before the deposition of the protective resin thereon. It is indeed not conceivable to carry out the destruction of the fuses by means of the laser through the protective resin, which in this case should be transparent, since this would have the effect of totally annihilating the interest of such a device. deposit, or in particular the protection of the integrated circuit against ambient impurities and light.
  • this protective resin causes changes in the electrical characteristics of the integrated circuit and therefore in the frequency characteristics of the latter. It is therefore necessary to compensate for this influence when calculating the correction factor of the frequency divider circuit.
  • the adjustment operation in particular the operation of measuring the step of the module, is thus preferably carried out under clearly defined lighting conditions.
  • the method of adjusting the step of the watch module according to the present invention requires a preliminary preparation phase before performing the actual adjustment of the step.
  • the preparation phase consists in previously implementing the number of fuses necessary to allow the coding of the information (number N) representative of the factor of correction of the division ratio of the frequency divider circuit according to what has been previously described.
  • This preparation phase also consists in mounting the various electronic components on the module, in particular the quartz and the integrated circuit without applying the protective resin on the integrated circuit (so-called "potting" operation).
  • the adjustment phase thus consists in measuring, by means of external equipment, the march of the watch module, that is to measure the variation of the frequency of the quartz oscillator with respect to the frequency of a standard oscillator as this has been done. described above.
  • this measurement is preferably carried out under clearly defined lighting conditions.
  • this correction factor is calculated. It will be recalled that this correction factor is determined by calculating a corresponding number N, in the case of an inhibition technique, to the number of pulses to be suppressed during a given period T h .
  • the next step consists in memorizing the information (number N) representative of the calculated correction factor.
  • the watch module is aligned under a laser device.
  • the laser device essentially with respect to an integrated circuit zone comprising the laser destructible fuses.
  • the laser device is activated to selectively destroy the fuses necessary for encoding the information (number N) representative of the correction factor.
  • the protective resin can then be deposited on the integrated circuit.
  • Steps subsequent to this adjustment phase including in particular a final test step of the step of the watch module are then performed.
  • the gait adjustment method of a watch module according to the present invention thus proves particularly suitable for the mass production and automation of such an operation. It will be seen that the adjustment method according to the present invention thus allows a great simplification of the manufacturing process and also a substantial gain in terms of manufacturing costs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)

Description

  • La présente invention est relative à un procédé permettant l'ajustement de la marche d'un module horloger, ledit module horloger comportant notamment un quartz et un circuit intégré comprenant un oscillateur piloté par le quartz, un circuit diviseur de fréquence à plusieurs étages, un circuit d'ajustement permettant l'introduction d'un facteur de correction du taux de division dudit circuit diviseur de fréquence et un circuit mémoire contenant une information représentative dudit facteur de correction.
  • Par "procédé d'ajustement de la marche", on entendra un procédé consistant à introduire un facteur de correction du taux de division du circuit diviseur de fréquence, de telle sorte que la fréquence des impulsions délivrées à la sortie de celui-ci est corrigée de manière à se trouver dans une gamme prédéterminée.
  • Par "module", on entendra en outre un système semi-fini ou intermédiaire, prêt à être monté dans le produit final. En particulier, par "module horloger", on entendra dans la suite de la description, un circuit imprimé comportant différents composants électroniques, en particulier le quartz et le circuit intégré susmentionné.
  • L'ajustement de la fréquence de l'oscillateur, en particulier d'un oscillateur à quartz est une opération particulièrement compliquée et délicate. En effet, comme cela est exposé dans l'exposé d'invention CH 534 913 , cet ajustement s'effectue selon une première étape d'ajustement grossier par des opérations mécaniques de précision sur le quartz, puis une deuxième étape d'ajustement fin sur le quartz encapsulé, et finalement selon une dernière étape d'ajustement et de compensation du vieillissement par un système de réglage ou trimmer.
  • Ces étapes présentent les inconvénients d'être délicates et complexes, ce qui influence grandement le coût de la pièce. D'autre part, la stabilité en fréquence du quartz est sensiblement détériorée. Par conséquent, le brevet CH 534 913 propose une solution satisfaisante et peu coûteuse, en agissant directement sur le taux de division du circuit diviseur de fréquence par l'introduction d'un facteur de correction, ceci ayant pour effet d'améliorer la stabilité du quartz et de s'affranchir de l'utilisation d'un trimmer. A cet effet, le circuit diviseur de fréquence proposé dans le brevet CH 534 913 présente des entrées électriques auxiliaires dont l'état logique détermine le rapport de division du diviseur de fréquence et un circuit mémoire, reliée à ces entrées auxiliaires, pour retenir sous forme codée une information représentative du facteur de correction du rapport de division du circuit diviseur de fréquence.
  • Le système qui vient d'être évoqué opère par inhibition ou suppression périodique d'un nombre déterminé d'impulsions délivrées par l'oscillateur. On mentionnera qu'un système opérant alternativement par ajout d'un nombre déterminé d'impulsions est en outre proposé dans le brevet CH 558 559 .
  • Quelque soit le système choisi, le circuit d'ajustement est typiquement relié à un circuit mémoire contenant l'information représentative du facteur de correction du taux de division. La mémorisation de cette information est préférablement non volatile de sorte que celle-ci n'est pas perdue lors d'un changement de pile ou lors d'une interruption de l'alimentation.
  • Diverses réalisations du circuit mémoire sont connues de l'art antérieur. En particulier, on opte généralement pour des solutions utilisant des mémoires non volatiles reprogrammables (EPROMs/EEPROMs) ou des plages de contact additionnelles.
  • L'utilisation d'une EPROM/EEPROM nécessite un investissement important en termes de surface du circuit intégré, car une telle mémoire doit non seulement comprendre un nombre suffisant de bits pour coder l'information représentative du facteur de correction, mais nécessite également l'implémentation d'une logique de programmation permettant de programmer celle-ci et un circuit multiplicateur de tension afin de produire les tensions élevées nécessaire à cette programmation. Ceci ce traduit évidemment par une augmentation substantielle du coût de fabrication du circuit intégré dû notamment aux étapes supplémentaires nécessaires à l'intégration de l'EPROM/EEPROM et se répercute sur le coût de fabrication du module horloger et de la pièce d'horlogerie en tant que telle.
  • L'utilisation de plages de contact additionnelles nécessite également un investissement important en surface (une plage de contact par bit) ainsi que des pistes de connections supplémentaires sur le circuit imprimé.
  • L'implémentation de telles plages de contact conduit ainsi également à une augmentation du coût de fabrication du circuit intégré et du module horloger.
  • On notera que le coût relatif des solutions susmentionnées dépend essentiellement de la surface du circuit, du nombre de bits et du coût de fabrication additionnel dû à l'intégration éventuelle d'une EPROM/EEPROM.
  • On mentionnera, en outre, que plus la surface du circuit est élevée, plus le coût de l'investissement en surface, quelque soit la solution retenue, est proportionnellement faible et devient négligeable pour un circuit de quelques dizaines de mm2.
  • Par contre le coût relatif lié aux étapes additionnelles de fabrication d'une EPROM/EEPROM reste constant en fonction de la surface et constitue ainsi l'élément déterminant pour les circuits de grande taille. En d'autres termes, le coût additionnel de l'implémentation des bits d'EPROM/EEPROM est pratiquement proportionnel à la surface du circuit, raison pour laquelle la solution employant des plages de contact additionnelles est plus économique pour des circuits de grande taille.
  • Pour les circuits de petite taille (quelques mm2) le choix est beaucoup plus discutable. L'investissement en surface devient proportionnellement important.
  • Un bit d'EPROM/EEPROM nécessite moins de surface qu'une plage de contact additionnelle, mais engendre toutefois un investissement fixe dû notamment à la logique de programmation et au multiplicateur de tension. Ainsi, plus le nombre de bits est élevé plus la solution EPROM/EEPROM est économique en surface comparativement à la solution employant des plages de contact additionnelles. Par contre, le coût de fabrication par unité de surface reste proportionnellement plus élevé.
  • En pratique, pour des circuits de quelques mm2, l'avantage en surface de la solution EPROM/EEPROM équilibre les coûts de fabrication supplémentaires et les deux solutions sont ainsi économiquement comparables.
  • A titre d'exemple, on notera que la demande de brevet FR 2,238,280 décrit un oscillateur intégré et son procédé de réglage digital en fréquence comprenant des éléments de mémoire programmables depuis l'extérieur du circuit intégré. Ces éléments sont des diodes dont certaines sont court-circuitées afin de modifier leur état de manière permanente. Chaque élément est relié à une borne du circuit intégré.
  • Selon le brevet CH 534 913 , déjà cité, il est proposé d'utiliser un circuit mémoire se composant d'une pluralité d'éléments mémoire individuels, par exemple altérable électriquement, associés chacun à une borne de programmation du circuit intégré.
  • Selon le brevet CH 621 036 , il est décrit encore un autre système intégré permettant l'ajustement du taux de division d'un circuit diviseur de fréquence. Ce système intégré comporte des circuits mémoires comprenant une diode en série avec un élément mémoire formé d'un fusible constitué d'une métallisation particulière du circuit intégré qu'il est possible de détruire en y faisant passer intégré comporte des circuits mémoires comprenant une diode en série avec un élément mémoire formé d'un fusible constitué d'une métallisation particulière du circuit intégré qu'il est possible de détruire en y faisant passer un courant d'une certaine importance. Chaque élément mémoire peut être adressé séparément au moyen des diodes en appliquant entre les bornes du circuit intégré une combinaison de tensions particulière.
  • On constatera que les solutions proposées dans les brevets suscités nécessitent obligatoirement l'utilisation de bornes de connexions existantes et/ou additionnelles du circuit intégré de manière à permettre la mémorisation du facteur de correction. Certaines solutions nécessitent en outre parfois la déconnexion de certains éléments, notamment la source d'alimentation, lors de la programmation de la mémoire ce qui rend l'opération de programmation parfois complexe et longue.
  • Une solution à la réduction du nombre de bornes de connexion est définie dans le brevet EP 0 645 689 , qui décrit un système de fourniture de signaux d'horloge. Ce système comprend un oscillateur à quartz dont la fréquence peut être divisée par au moins un circuit diviseur de fréquence, notamment pour un synthétiseur de fréquence. Le système comprend également un circuit mémoire ayant des éléments fusibles, qui peuvent être coupés par un faisceau laser de manière à ajuster la fréquence en sortie du ou des circuits diviseurs. Cependant, ce brevet ne décrit pas de procédé d'ajustement de la marche d'un module horloger.
  • Un but de la présente invention est ainsi de proposer un procédé d'ajustement de la marche d'un module horloger qui ne nécessite pas une implémentation complexe au niveau du circuit intégré, de sorte que le coût de fabrication de ce dernier, et donc du module en tant que tel, n'est pas grandement affecté.
  • Un autre but de la présente invention est de proposer un procédé d'ajustement de la marche d'un module horloger notamment adapté à la production en masse ou automatisée de modules horlogers, soit un procédé d'ajustement simple et rapide.
  • A cet effet, la présente invention à pour objet un procédé d'ajustement de la marche d'un module horloger comme défini dans la revendication 1.
  • Un avantage de la présente invention réside dans le fait que la mémorisation de l'information représentative du facteur de correction est effectuée de manière simple et surtout rapide, donc particulièrement adaptée à la production en masse de tels modules. La rapidité et la simplicité du procédé d'ajustement selon la présente invention assure ainsi une réduction substantielle des coûts de fabrication.
  • On constatera en outre que la présente invention a également pour avantage de permettre l'ajustement de la marche d'un module horloger, soit d'un ensemble fini ou intérmediaire comprenant d'autres composants électroniques que le quartz, l'oscillateur, le circuit diviseur de fréquence, le circuit d'ajustement du taux de division ou le circuit mémoire. De cette manière, l'ajustement peut être opéré en prenant en considération les influences de tous les composants électroniques du module.
  • Un autre avantage de la présente invention réside dans le tait que le coût du circuit intégré et du module horloger en tant que tel n'est pas sensiblement affecté. En particulier, l'utilisation d'éléments mémoires formés de fusibles destructibles par laser ne nécessite pas une implémentation complexe et coûteuse au niveau du circuit intégré.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre, faite en se référant aux dessins annexés, donnés uniquement à titre d'exemple, et dans lesquels :
    • la figure 1 représente un schéma bloc d'un module horloger comportant un quartz, un oscillateur, un circuit diviseur de fréquence, un circuit d'ajustement et un circuit mémoire;
    • les figures 2a à 2c présentent divers exemples d'implémentation d'un circuit mémoire 6 bits comprenant des éléments mémoires formés de fusibles destructibles par laser.
  • La figure 1 est une représentation schématique d'un module horloger comprenant un circuit imprimé 1 comportant notamment un quartz 10 et un circuit intégré 20. Ce circuit intégré 20 comporte un oscillateur 21 piloté par le quartz 10 de manière à délivrer typiquement des impulsions à une fréquence de 32768 Hz. Cette fréquence est divisée plusieurs fois par un circuit diviseur de fréquence 22 de manière à délivrer à sa sortie des impulsions à une fréquence de 1 Hz et ainsi permettre la formation et l'affichage d'une indication horaire.
  • Dans l'exemple illustré à la figure 1, le circuit diviseur de fréquence 22 comporte ainsi un nombre total de 15 étages de division binaires 22.1 à 22.15. Les deux premiers étages 22.1 et 22.2 permettent en particulier de délivrer un signal à une fréquence de 8192 Hz qui est utilisé pour permettre la correction du taux de division du circuit diviseur de fréquence 22.
  • Un circuit d'ajustement 23 permet à cet effet l'introduction d'un facteur de correction du taux de division du circuit diviseur de fréquence 22. Un circuit mémoire 24 contient ainsi une information, généralement sous la forme d'un nombre binaire N, représentative du facteur de correction du taux de division du circuit diviseur de fréquence 22.
  • On rappellera que diverses techniques d'ajustement du taux de division sont connues de l'art antérieur. L'une d'entre elles, décrite dans le brevet CH 534 913 , dite technique d'inhibition, consiste à supprimer un nombre N d'impulsions au cours d'une période déterminée. La description qui va suivre est basée sur une telle technique, mais on comprendra bien évidemment que l'invention peut être étendue par analogie à d'autres techniques connues comme celle consistant à additionner un nombre d'impulsions manquantes.
  • Le procédé d'ajustement consiste essentiellement à corriger l'écart de fréquence existant entre la fréquence de l'oscillateur 21 et la fréquence dispensée par un oscillateur étalon, cet écart de fréquence étant mesuré en ppm (parties par million). Cet écart de fréquence peut être corrigé, selon la technique d'inhibition, par la suppression d'un nombre N d'impulsions de période Ti au cours d'une période déterminée Th, dite période d'inhibition.
  • Dans l'exemple de la figure 1, l'inhibition est réalisée à la sortie des deux premiers étages de division 22.1 et 22.2 du circuit diviseur de fréquence 22, soit à partir d'impulsions délivrées à une fréquence de 8192 Hz (Ti = 122 µs). En réalisant l'inhibition de manière périodique, par exemple toutes les 60 secondes, la résolution du système atteint ainsi 2.03 ppm.
  • Avec une telle résolution et de manière à obtenir une plage de correction suffisante, par exemple de l'ordre de 100 ppm, on constatera par conséquent que le nombre N nécessitera au moins 6 bits de mémoire. En pratique, selon l'application, ce nombre peut nécessiter entre 4 et 9 bits.
  • Selon la présente invention, le circuit mémoire 24 comprend des éléments mémoires formés de fusibles destructibles par laser. La figure 2a illustre un premier exemple d'un circuit mémoire 6 bits comprenant 6 éléments mémoires 24.1 à 24.6 connectés en parallèle et comportant chacun une paire de fusibles F1 et F2 destructibles par laser. Les fusibles F1 et F2 de chaque élément mémoire sont connectés en série entre une ligne de potentiel "haut" Vdd et une ligne de potentiel "bas" Vss. La destruction de l'un des fusibles F1 ou F2 permet ainsi de mettre le point intermédiaire situé entre les fusibles F1, F2 au potentiel haut Vdd ou bas Vss respectivement. Le codage d'une information (nombre N) représentative du facteur de correction du taux de division du circuit diviseur de fréquence 22 peut ainsi aisément être réalisé au moyen d'un laser en détruisant l'un ou l'autre des fusibles F1 ou F2.
  • La figure 2b présente un deuxième exemple d'un circuit mémoire 6 bits comprenant 6 éléments mémoires 24.1 à 24.6 comportant chacun un fusible F.1 à F.6 destructible par laser associé à un circuit d'interface L.1 à L.6. Le circuit d'interface L et le fusible F sont connectés en série entre une ligne de potentiel "haut" Vdd et une ligne de potentiel "bas" Vss. Le circuit d'interface peut être réalisé par l'homme du métier d'une manière conventionnelle sous la forme d'un verrou permettant de copier l'état d'entrée défini par le fusible. A cet effet, le verrou comprend en outre une entrée de chargement CKP sur activation de laquelle une sortie Lout du verrou prend l'état correspondant défini par l'état du fusible associé. En l'occurrence, la sortie Lout du verrou prend l'état "haut" si le fusible est détruit et l'état "bas" si le fusible est intact.
  • La figure 2c présente encore une autre exemple d'un circuit mémoire 6 bits. Cette solution intègre en partie une logique d'inhibition du circuit diviseur de fréquence 22. Les six éléments mémoires 24.1 à 24.6, connectés en série, comprennent chacun un fusible F.1* à F.6* connecté en parallèle avec un transistor T1 à T6. Chaque transistor est commandé respectivement par les signaux d'horloge des six étages de division du circuit diviseur de fréquence 22 sur lesquels l'inhibition est effectuée conformément à ce qui a été décrit précédemment.
  • Si le fusible est intact, le transistor est court-circuité et le signal d'horloge à son entrée n'a pas d'effet. Si le fusible est détruit, le transistor peut alors produire un effet sur l'inhibition du circuit diviseur de fréquence 22. Par la destruction sélective de certains fusibles parmi les fusibles F.1* à F.6*, il est ainsi possible d'ajuster le taux d'inhibition du circuit diviseur de fréquence 22.
  • On constatera que l'utilisation de fusibles destructibles par laser constitue un avantage substantiel par rapport à l'utilisation de fusibles destructibles par courant. En effet, les fusibles peuvent être sélectivement détruit directement sur le circuit intégré au moyen d'un dispositif laser. Ce processus ne nécessite ainsi pas l'utilisation de bornes et de moyens d'adressage particuliers. L'utilisation de fusibles destructibles par laser est en outre bien plus économique que toutes les solutions connues car elle n'implique pas d'investissement important en termes de surface au niveau du circuit intégré.
  • Aucun coût additionnel de fabrication n'est en outre engendré au niveau du circuit intégré, car la réalisation de tels fusibles peut aisément être effectuée simultanément lors de l'une des étapes de fabrication du circuit intégré 20. L'intégration d'une EPROM/EEPROM ou de plages de contact additionnelles impliquerait, comme on l'a déjà mentionné, un coût additionnel de fabrication.
  • L'utilisation de fusibles destructibles par laser ne s'impose toutefois pas directement comme la solution la plus adéquate pour l'homme du métier. En effet, l'homme du métier est confronté à diverses contraintes et difficultés liées à l'utilisation de fusibles destructibles par laser. Dans la suite de la description, on tâchera de décrire brièvement ces contraintes et difficultés.
  • Une première contrainte réside dans le fait que l'utilisation d'un faisceau laser permettant de détruire sélectivement les fusibles sur le circuit intégré implique que cette opération doit être effectuée avant le dépôt de la résine protectrice sur celui-ci. Il n'est en effet pas envisageable de procéder à la destruction des fusibles au moyen du laser au travers de la résine protectrice, qui dans ce cas devrait être transparente, car ceci aurait pour effet d'annihiler totalement l'intérêt d'un tel dépôt, soit en particulier la protection du circuit intégré contre les impuretés ambiantes et la lumière.
  • En outre, on constatera que le dépôt ultérieur de cette résine protectrice engendre des modifications des caractéristiques électriques du circuit intégré et donc des caractéristiques de fréquence de ce dernier. Il est donc nécessaire de compenser cette influence lors du calcul du facteur de correction du circuit diviseur de fréquence.
  • Une autre contrainte réside dans le fait que les conditions d'éclairement ont également une influence non négligeable sur les caractéristiques du circuit intégré. L'opération d'ajustement, en particulier l'opération de mesure de la marche du module, est ainsi préférablement effectuée dans des conditions d'éclairement bien déterminées.
  • Le procédé d'ajustement de la marche du module horloger selon la présente invention nécessite une phase préalable de préparation avant d'effectuer l'ajustement de la marche à proprement parler.
  • La phase de préparation consiste à préalablement implémenter le nombre de fusibles nécessaire pour permettre le codage de l'information (nombre N) représentative du facteur de correction du taux de division du circuit diviseur de fréquence conformément à ce qui à été décrit précédemment.
  • Cette phase de préparation consiste en outre à monter les différents composants électroniques sur le module, soit en particulier le quartz et le circuit intégré sans appliquer la résine protectrice sur le circuit intégré (opération dite de "potting").
  • Suite à cette phase préalable, le module est prêt à subir l'opération d'ajustement proprement dite.
  • La phase d'ajustement consiste ainsi à mesurer au moyen d'un équipement externe la marche du module horloger, soit à mesurer l'écart de la fréquence de l'oscillateur à quartz par rapport à la fréquence d'un oscillateur étalon comme cela a été décrit plus haut.
  • Afin de ne pas perturber les caractéristiques du circuit intégré, cette mesure est préférablement effectuée dans des conditions d'éclairement bien déterminées.
  • A partir de cet écart de fréquence, un facteur de correction est calculé. On rappellera que ce facteur de correction est déterminé par le calcul d'un nombre N correspondant, dans le cas d'une technique d'inhibition, au nombre d'impulsions à supprimer au cours d'une période déterminée Th.
  • On mentionnera en outre que lors du calcul du facteur de correction, on tiendra compte des diverses influences de l'environnement, en particulier des conditions d'éclairement, et du dépôt ultérieur de la résine protectrice. Cette influence peut être estimée expérimentalement par une série de tests préalables permettant de définir une valeur d'offset. Cet valeur d'offset est alors considérée lors du calcul du facteur de correction.
  • L'étape suivante consiste à effectuer la mémorisation de l'information (nombre N) représentative du facteur de correction calculé. A cet effet, le module horloger est aligné sous un dispositif laser. En particulier, on veillera à aligner le dispositif laser essentiellement par rapport à une zone du circuit intégré comprenant les fusibles destructibles par laser.
  • Une fois cette opération d'alignement effectuée, le dispositif laser est mis en action pour détruire sélectivement les fusibles nécessaires au codage de l'information (nombre N) représentative du facteur de correction.
  • Une fois l'opération de codage effectuée, la résine protectrice peut alors être déposée sur le circuit intégré.
  • Des étapes ultérieures à cette phase d'ajustement, comprenant notamment une étape de test final de la marche du module horloger sont alors exécutées.
  • Le procédé d'ajustement de la marche d'un module horloger selon la présente invention s'avère ainsi particulièrement adapté à la production en masse et à l'automatisation d'une telle opération. On constatera, que le procédé d'ajustement selon la présente invention permet ainsi une grande simplification du processus de fabrication et de même un gain substantiel en termes de coûts de fabrication.
  • On comprendra que de nombreuses modifications peuvent être apportées au procédé d'ajustement de la marche d'un module horloger sans sortir du cadre de la présente invention tel que défini par les revendications. Cette invention n'est ainsi pas seulement limitée à l'ajustement de la marche d'un module horloger selon la technique d'inhibition mais s'applique également par analogie à la technique d'ajustement par addition d'impulsion.

Claims (2)

  1. Procédé d'ajustement de la marche d'un module horloger, ledit module horloger comprenant un circuit imprimé (1) sur lequel sont notamment montés un quartz (10) et un circuit intégré (20) comprenant :
    - un oscillateur (21) piloté par ledit quartz (10)
    - un circuit diviseur de fréquence (22),
    - un circuit d'ajustement (23) permettant d'introduire dans ledit circuit diviseur de fréquence (22) un facteur de correction de la marche dudit module horloger, et
    - un circuit mémoire (24) contenant une information (N) représentative dudit facteur de correction, le circuit mémoire comprenant des éléments mémoires (24.1 à 24.6) formés de fusibles (F1, F2; F.1 à F.6; F.1* à F.6*) destructibles par laser,
    ce procédé comprenant les étapes suivantes :
    montage dudit circuit intégré (20) sur ledit circuit imprimé (1) sans application d'une résine protectrice; mesure de la marche dudit module horloger;
    c) calcul dudit facteur de correction de la marche du module horloger;
    d) mémorisation dans ledit circuit mémoire (24) de ladite information (N) représentative dudit facteur de correction,
    l'étape de mémorisation d) comprenant les étapes suivantes :
    d1) alignement du module sous un dispositif laser;
    d2) destruction, au moyen dudit dispositif laser, desdits fusibles (F1, F2; F.1 à F.6; F.1* à F.6*) nécessaires au codage de ladite information (N) représentative du facteur de correction de la marche du module horloger;
    cette étape de mémorisation d) étant en outre suivie de l'étape suivante :
    e) dépôt de ladite résine protectrice sur ledit circuit intégré (20), ledit facteur de correction calculé à l'étape c) comprenant en outre une valeur d'offset engendrée par le dépôt ultérieur de ladite résine protectrice à l'étape e).
  2. Procédé d'ajustement de la marche d'un module horloger selon la revendication 1, caractérisé en ce que celui-ci est effectué dans des conditions d'éclairement déterminées de sorte que la mesure de la marche dudit module horloger à l'étape d) n'est pas perturbée.
EP19980121022 1998-11-05 1998-11-05 Procédé d'ajustement de la marche d'un module horloger au moyen de fusibles destructibles par laser Expired - Lifetime EP0999483B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19980121022 EP0999483B1 (fr) 1998-11-05 1998-11-05 Procédé d'ajustement de la marche d'un module horloger au moyen de fusibles destructibles par laser
DE69840506T DE69840506D1 (de) 1998-11-05 1998-11-05 Verfahren zum Einstellen des Takts eines Uhrenmoduls mittels Schmelzen von Schmelzsicherungen per Laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19980121022 EP0999483B1 (fr) 1998-11-05 1998-11-05 Procédé d'ajustement de la marche d'un module horloger au moyen de fusibles destructibles par laser

Publications (2)

Publication Number Publication Date
EP0999483A1 EP0999483A1 (fr) 2000-05-10
EP0999483B1 true EP0999483B1 (fr) 2009-01-21

Family

ID=8232923

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980121022 Expired - Lifetime EP0999483B1 (fr) 1998-11-05 1998-11-05 Procédé d'ajustement de la marche d'un module horloger au moyen de fusibles destructibles par laser

Country Status (2)

Country Link
EP (1) EP0999483B1 (fr)
DE (1) DE69840506D1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2916193B1 (fr) * 2014-03-06 2016-07-27 EM Microelectronic-Marin SA Base de temps comprenant un oscillateur, un circuit diviseur de fréquence et un circuit d'inhibition d'impulsions de cadencement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1450072A (en) * 1972-10-02 1976-09-22 Citizen Watch Co Ltd Electronic timepiece
CH621036B (fr) * 1977-02-28 Berney Sa Jean Claude Circuit integre pour piece d'horlogerie.
JPS5854705A (ja) * 1981-09-29 1983-03-31 Citizen Watch Co Ltd 調整端子の選択切断方法
JPS59138981A (ja) * 1983-01-28 1984-08-09 Seiko Epson Corp 電子腕時計用回路
JP3175981B2 (ja) * 1992-10-28 2001-06-11 株式会社東芝 トリミング回路
US5696950A (en) 1993-09-29 1997-12-09 Seiko Epson Corporation Flexible clock and reset signal generation and distribution system having localized programmable frequency synthesizers
US5960405A (en) * 1997-02-05 1999-09-28 Fox Enterprises, Inc. Worldwide marketing logistics network including strategically located centers for frequency programming crystal oscillators to customer specification

Also Published As

Publication number Publication date
EP0999483A1 (fr) 2000-05-10
DE69840506D1 (de) 2009-03-12

Similar Documents

Publication Publication Date Title
EP2047475B1 (fr) Circuit de lecture d'un element de retention de charges pour mesure temporelle
EP2050098B1 (fr) Circuit eeprom de retention de charges pour mesure temporelle
EP0718887B1 (fr) Circuit d'étalonnage de résistances
FR2623652A1 (fr) Unite de memoire statique a plusieurs modes de test et ordinateur muni de telles unites
FR2689339A1 (fr) Procédé et dispositif de réglage de retard à plusieurs gammes.
EP0171635A1 (fr) Procédé et dispositif de reconnaissance de la position du rotor d'un moteur pas à pas
EP2887176A1 (fr) Circuit électronique à référence de courant PTAT auto-calibrée, et procédé pour sa mise en action
EP2073377A1 (fr) Circuit oscillateur à quartz à polarisation active faible consommation
EP3895371A1 (fr) Dispositif de fonction physiquement non clonable
CH692534A5 (fr) Procédé d'ajustement de la marche d'un module horloger au moyen de fusibles destructibles par laser.
EP0999483B1 (fr) Procédé d'ajustement de la marche d'un module horloger au moyen de fusibles destructibles par laser
EP1290783B1 (fr) Synthetiseur a modulation numerique
EP1684427B1 (fr) Autoajustement de cellules RC dans un circuit
EP1794757A1 (fr) Lecture de l'etat d'un element de memorisation non volatile
FR2703526A1 (fr) Circuit de déclenchement automatique.
CH338272A (de) Fahrbare Patienten-Hebevorrichtung
EP1400887A1 (fr) Dispositif de protection pour puce électronique comportant des informations confidentielles
FR2718582A1 (fr) Modulateur par impulsions en échelons avec détection et compensation de modules défectueux.
CH238674A (fr) Navette pour machine à coudre.
EP0905766A1 (fr) Structure et procédé de réparation de circuits intégrés
FR2846462A1 (fr) Compteur monotone croissant en circuit integre
CH227070A (de) Verfahren zur Herstellung eines linearen Polyesters.
EP0849659B1 (fr) Dispositif numérique d'initialisation d'un circuit intégré
EP0427077B1 (fr) Pièce d'horlogerie électronique
FR2671207A1 (fr) Reseau neuronal a operateurs binaires et procedes pour sa realisation.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001110

AKX Designation fees paid

Free format text: DE FR GB IT NL

17Q First examination report despatched

Effective date: 20071123

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69840506

Country of ref document: DE

Date of ref document: 20090312

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091022

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171020

Year of fee payment: 20

Ref country code: DE

Payment date: 20171019

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20171024

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69840506

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20181104