EP0995880A2 - Turbine blade - Google Patents

Turbine blade Download PDF

Info

Publication number
EP0995880A2
EP0995880A2 EP99810915A EP99810915A EP0995880A2 EP 0995880 A2 EP0995880 A2 EP 0995880A2 EP 99810915 A EP99810915 A EP 99810915A EP 99810915 A EP99810915 A EP 99810915A EP 0995880 A2 EP0995880 A2 EP 0995880A2
Authority
EP
European Patent Office
Prior art keywords
turbine blade
felt
intermetallic
turbine
blade according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99810915A
Other languages
German (de)
French (fr)
Other versions
EP0995880B1 (en
EP0995880A3 (en
Inventor
Alexander Dr. Beeck
Mohamed Dr. Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
ABB Asea Brown Boveri Ltd
Alstom SA
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Alstom SA, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0995880A2 publication Critical patent/EP0995880A2/en
Publication of EP0995880A3 publication Critical patent/EP0995880A3/en
Application granted granted Critical
Publication of EP0995880B1 publication Critical patent/EP0995880B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/183Blade walls being porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling

Definitions

  • the invention relates to a turbine blade with a metallic Blade body and a protective cover made of a porous intermetallic felt is formed and cooling air channels are formed in the blade body of the turbine blade which open on the intermetallic felt to supply it with cooling air.
  • a sealing arrangement which has a passage to seal between a rotating and a non-rotating part.
  • the sealing arrangement has a surface seal arranged on one of the two parts and an edge part that is opposite the surface seal arranged and attached to the other part.
  • the edge part points into the surface seal protruding teeth on the grooves when rotating in the surface seal cut, whereby the seal assembly forms a labyrinth seal.
  • the surface seal of this known seal arrangement is composed of metal fibers, which form a mat or felt-like construction.
  • This material is achieved by sintering a matrix of randomly oriented metal fibers at a high Temperature and reduced pressure, creating a completely matted Structure made of metal fibers that forms metal bonds at all contact points which has fibers.
  • the sintered material is characterized by an apparent Density, which is considerably less than the density of the fibers themselves. The low The density of the sintered fiber material is approximately in the range from 14 to 30% and thus these materials differ from sintered powdered materials, that have a density of more than 30%.
  • Have this type of surface seals Proven as it has both the required strength, rigidity and compactness have as well as elastic, crushable and rubable.
  • GB 2 053 367 A shows a cooled gas turbine with one rotating Blade opposite shield.
  • the shield is made of an im Cross-section rectangular tubular ring formed in its interior Can absorb cooling air.
  • On the wall of the Rings are holes and this wall is porous on the outside Provide layer, which can be penetrated by the cooling air.
  • the porous Layer consists of a material sintered from small balls.
  • the balls are made of a nickel-based super alloy.
  • DE 2 038 047 describes a structural precaution on guide vanes that are inside the flow space of a steam turbine, in particular a saturated and wet steam turbine, is arranged and to drain the surfaces of each Guide vanes.
  • the guide vane provides drainage channels that are covered with porous, liquid-permeable material made of metallic materials or their Alloys is made, are filled.
  • porous, liquid-permeable Material is used solely for the targeted removal of water from the interior of a steam turbine.
  • DE 33 27 218 A1 describes a thermally highly stressed, cooled component, in particular a turbine blade which, for the sake of reducing the Thermal stress is covered with a metal felt layer, which in turn is covered with an additional, ceramic thermal insulation layer.
  • the metal felt layer serves as an elastic carrier material for the ceramic Thermal insulation layer (see page 4, lines 33 to page 5, line 2, page 6, 1. Paragraph and page 7, lines 2 to 7), but there is also a metal felt layer heat-dissipating effect, especially since cooling air via cooling air guide grooves 3 (see 1) is fed to the underside of the metal felt layer to make it local to cool and in this way to optimal heat dissipation by the Thermal insulation layer 6 to pass through flowing heat.
  • the invention has for its object a turbine blade with a metallic Blade body and a protective cover made of a porous intermetallic felt is formed and in the blade body of the turbine blade cooling air channels are formed, which open on the intermetallic felt to this with cooling air supply in such a way that the turbine blade can be cooled better than it is possible in the case of the prior art. This is also intended to increase efficiency the turbine can be increased.
  • the turbine blade according to the invention is characterized in that the intermetallic felt based on an iron or nickel-aluminide alloy, with mixed proportions between Fe: Al and Ni: Al of approx. 50:50, with the ratio that Atomic ratio is meant.
  • the intermetallic felt based on an iron or nickel-aluminide alloy with mixed proportions between Fe: Al and Ni: Al of approx. 50:50, with the ratio that Atomic ratio is meant.
  • Metallic felts are also said to comprise ratios between 40:60 to 60:40 obtained, the oxidizability is very weak, which on the one hand The lifespan of such metallic felts can be increased significantly and others retain their felt structure for longer.
  • iron or nickel-aluminide alloy Add substances or elements of the respective alloy, e.g. Ta, Nb, Cr, B, Si, Zr or Ga. It is essential when adding additional elements that the atomic Mixing ratio between Fe and Al or Ni and Al in the order of magnitude remains at 50:50.
  • cooling channels are provided according to the invention in the protective coating Blade body facing, open in the area of the cooling channels. In this way it can be ensured that the intermetallic felt is additionally increased by cooling air is flowed through. This can create a risk of turbine blade overheating be excluded.
  • the porous intermetallic felt on the surface of the blade body does not immediately cool air introduced into it with the Hot gases come into contact with the turbine, but occurs gradually and on a larger scale Surface distributed through the intermetallic felt.
  • the intermetallic felt the higher surface temperatures than conventional materials for turbine blades can be intensively cooled as a result, whereby the turbine blade with a compared to a turbine blade, in which the cooling air ducts directly emerge on the surface, extremely small amount of cooling air at operating temperature can be held. Because the amount of cooling air because of better heat transfer the efficiency of the turbine is correspondingly much lower increased because less cooling air does not affect the energy supply in the combustion chamber participates and reduces the efficiency of the turbine.
  • the gradual flow of cooling air through the intermetallic felt causes the exit velocity of the cooling air on the surface of the turbine blade is very low and does not adversely affect the aerodynamics in the manner known hitherto. This is especially true if the intermetallic felt is on the leading edge the turbine blade is arranged because then, unlike conventional ones cooled turbine blades, the flow behavior of the turbine blade impinging gases are not adversely affected by counter-flowing cooling air becomes.
  • the cooling channels incorporated in the intermetallic felt which the felt layer does not necessarily push through completely, but only partially penetrate the felt, ensure that the protective cover is optimally supplied with cooling air.
  • the turbine blade according to the invention allows because of the smaller amount of cooling air and the improved aerodynamics, a considerable increase in efficiency a turbine equipped with these turbine blades.
  • the intermetallic felt is also insensitive to mechanical loads, such as. Impact of foreign objects, as these only result in small, local deformations lead, but neither the function of the cooling system essential nor affect the basic function of the blade.
  • Fig. 1 shows a turbine blade 1 according to the invention in section.
  • the turbine blade 1 has a known aerodynamic shape and is made of two Side walls 2, 3 formed.
  • the turbine blade has in the leading edge region 4 1 has an approximately semicircular outer surface that is flush with the outer surfaces the side walls 2, 3 merges.
  • the side walls 2, 3 run from Front edge area 4 together in the direction of a rear edge 5, wherein they in Area of the rear edge 5 are firmly connected.
  • Adjacent to the im Cut approximately semicircular leading edge area 4 is between the side walls 2, 3 a transverse web 6 is arranged, the space between the two Side walls 2, 3 divided into two cooling air channels 7, 8, through which the Turbine blade 1 cooling air is supplied.
  • the front edge region 4 of the turbine blade is designed in two layers, wherein an inner layer by a front edge part 9 which is approximately ring segment-shaped in section and an outer layer by an intermetallic felt Protective cover 10 are formed.
  • the approximately circular segment-shaped front edge part 9 is with the side walls 2, 3 each connected via a transition part 11, 12.
  • the transition parts 11, 12 form a constriction area continuously tapering toward the leading edge portion.
  • the two side walls 2, 3, the crossbar 6, the transition parts 11, 12 and the leading edge part 9 are formed in one piece from metal and form one Blade body.
  • the front edge part 9 is provided with approximately radially extending cooling bores 13, which open into cooling channels 13 'which protrude into the protective coating 10.
  • further cooling bores 14 can be introduced, which form the side walls 2, 3 sloping from the inside to the outside towards the rear edge 5 enforce.
  • the constriction area in the leading edge area 4 forms a recess for Inclusion of the protective cover 10 consisting of the intermetallic felt.
  • the intermetallic felt is made of a felt-like material, such as it, for example, from "VDI Report 1151, 1995, Metallic High Temperature Fibers by melt extraction - manufacture, properties and applications, Stephani et al., page 175ff ".
  • the so educated Felt-like material is used as a filter and as a catalyst carrier.
  • this felt-like material is made from intermetallic fibers and used as a protective covering for a turbine blade.
  • the intermetallic felt consists of an iron-aluminide or nickel-aluminide alloy with an alloy ratio between each of the two alloy partners of about 50:50.
  • These alloys have high heat resistance and high oxidation resistance and advantageous thermal conductivity properties.
  • the above are Properties by choosing the intermetallic phase in a wide range Range adjustable.
  • the protective cover 10 made of intermetallic felt is in the recess of the turbine blade 1 fixed by high temperature soldering, the solder a higher Melting point as the application temperature in the turbine.
  • the porosity of the protective coating 10 can be determined by the parameters of the manufacturing process how to set the pressing pressure and sintering temperature. This is the Flow resistance of the protective coating 10 to the respective requirements adjustable.
  • the thickness of the protective coating is e.g. in the range of 2-8 mm.
  • Cooling air is the leading edge part through the cooling channel 7 during operation of the turbine 9 supplied, the cooling air through the formed in the leading edge part Bores 13, 13 'to the outside in the protective cover 10 made of intermetallic felt flows.
  • the incoming air is distributed over an area and flows through the felt. Because of the large contact area between the Intermetallic felt and the cooling air have excellent heat transfer properties, so that the predominant heat capacity of the cooling air for cooling the Protective cover 10 is used. It also works from an intermetallic felt existing protective coating 10 as a thermal insulator against the blade body.
  • the rear edge 5 of the turbine blade with a protective cover made of intermetallic felt to provide a protective coating over the entire surface of the turbine blade.
  • the protective cover can be of variable thickness and / or of variable porosity his.
  • the porosity can e.g. in the course from the leading edge area 4 to the trailing edge 5 remove, causing the intermetallic felt to be more exposed to heat Front edge absorbs more cooling air than in the rest of the area. It can also be useful be to vary the porosity along the span.
  • the intermetallic felt can e.g. also with a corrosion protection layer or Thermal protection layer to be coated.
  • a so-called TBC layer Thermal Barrier Coating
  • the felt can be Deformability Differences in the thermal expansion behavior of the protective layer and balance the base material.
  • Another advantage of the protective coating according to the invention is that it has Foreign body damage is insensitive, i.e. usually only local deformations are generated that hardly affect the function of the turbine blade.
  • the turbine blades according to the invention are for use in a gas turbine designed.
  • the front edges of the blades of the first turbine guide row are to be provided with the protective coating according to the invention, since they are special are strongly exposed to the hot gases of the turbine.

Abstract

The turbine blade (1) has a protective coating (10) of porous intermetallic felt. The blade body has internal cooling air channels (13), which open into the felt to supply it with cooling air. The felt is located in a front (4) or rear edge (5) of the blade, and is contained within a recessed aperture, so that its aligned with the neighboring parts of the blade. The felt is formed from compressed sintered intermetallic fibers on iron or nickel base. The fibers may have an anti-corrosion and/or heat protection coating.

Description

Technisches GebietTechnical field

Die Erfindung bezieht sich auf eine Turbinenschaufel mit einem metallischen Schaufelkörper und einem Schutzüberzug, der aus einem porösen Intermetallik-Filz ausgebildet ist und im Schaufelkörper der Turbinenschaufel Kühlluftkanäle ausgebildet sind, welche am Intermetallik-Filz münden, um diesen mit Kühlluft zu versorgen.The invention relates to a turbine blade with a metallic Blade body and a protective cover made of a porous intermetallic felt is formed and cooling air channels are formed in the blade body of the turbine blade which open on the intermetallic felt to supply it with cooling air.

Stand der TechnikState of the art

Aus der DE 42 41 420 C1 geht eine aus einer Titanlegierung bestehende Verdichterschaufel hervor, die mit einer abrasiven Schaufelpanzerung versehen ist. Die Schaufelpanzerung besteht aus einer Nickelmatrix, in welche Bornitridpartikel eingeschlossen sind. Diese Schaufelpanzerung wird vorzugsweise an der Schaufelspitze vorgesehen.DE 42 41 420 C1 describes a compressor blade consisting of a titanium alloy with an abrasive blade armor. The Blade armor consists of a nickel matrix in which boron nitride particles are enclosed are. This blade armor is preferably at the tip of the blade intended.

Die DE 32 03 869 A1 beschreibt eine aus einem metallischen Laufschaufelgrundkörper (Kern) und einem keramischen Hohlkörper (Schaufelmantel) bestehende Laufschaufel. Der Schaufelmantel wird mittels metallischer Haltestifte am Laufschaufelkern befestigt. Durch das Einbringen von Isolierkörpern zwischen den keramischen und den metallischen Kontaktflächen soll der Wärmefluß vom Schaufelmantel zum Laufschaufelkern reduziert werden.DE 32 03 869 A1 describes a body made of a metallic blade (Core) and a ceramic hollow body (blade shell) existing blade. The blade casing is attached to the rotor blade core by means of metal retaining pins attached. By inserting insulating bodies between the ceramic and the metallic contact surfaces, the heat flow from the blade shell to Blade core can be reduced.

Aus der DE 29 50 150 A1 ist eine Dichtungsanordnung bekannt, die einen Durchgang zwischen einem rotierenden und einem nicht-rotierenden Teil abdichten soll. Die Dichtungsanordnung weist eine an einem der beiden Teile angeordnete Flächendichtung und einen Kantenteil auf, der der Flächendichtung gegenüberliegend angeordnet und am anderen Teil befestigt ist. Der Kantenteil weist in die Flächendichtung vorstehende Zähne auf, die bei Rotation in der Flächendichtung Rinnen schneiden, wodurch die Dichtungsanordnung eine Labyrinthdichtung bildet. From DE 29 50 150 A1 a sealing arrangement is known which has a passage to seal between a rotating and a non-rotating part. The sealing arrangement has a surface seal arranged on one of the two parts and an edge part that is opposite the surface seal arranged and attached to the other part. The edge part points into the surface seal protruding teeth on the grooves when rotating in the surface seal cut, whereby the seal assembly forms a labyrinth seal.

Die Flächendichtung dieser bekannten Dichtungsanordnung ist aus Metallfasern zusammengesetzt, die eine matten- oder filzartige Konstruktion bilden. Dieses Material wird durch Sintern einer Matrix aus willkürlich orientierten Metallfasern bei einer hohen Temperatur und reduziertem Druck hergestellt, wobei sich eine vollkommen verfilzte Struktur aus Metallfasern bildet, die Metallbindungen an allen Kontaktpunkten der Fasern aufweist. Das gesinterte Material zeichnet sich durch eine scheinbare Dichte aus, die beträchtlich geringer ist als die Dichte der Fasern selbst. Die geringe Dichte des gesinterten Fasermaterials liegt etwa im Bereich von 14 bis 30% und somit unterscheiden sich diese Materialien von gesinterten pulverisierten Materialien, die eine Dichte von mehr als 30% besitzen. Diese Art von Flächendichtungen haben sich bewährt, da sie sowohl die erforderliche Festigkeit, Starrheit und Kompaktheit aufweisen als auch elastisch, zerkleiner- und abreibbar sind.The surface seal of this known seal arrangement is composed of metal fibers, which form a mat or felt-like construction. This material is achieved by sintering a matrix of randomly oriented metal fibers at a high Temperature and reduced pressure, creating a completely matted Structure made of metal fibers that forms metal bonds at all contact points which has fibers. The sintered material is characterized by an apparent Density, which is considerably less than the density of the fibers themselves. The low The density of the sintered fiber material is approximately in the range from 14 to 30% and thus these materials differ from sintered powdered materials, that have a density of more than 30%. Have this type of surface seals Proven as it has both the required strength, rigidity and compactness have as well as elastic, crushable and rubable.

Die GB 2 053 367 A zeigt eine gekühlte Gasturbine mit einer den rotierenden Schaufeln gegenüberliegenden Abschirmung. Die Abschirmung ist aus einem im Querschnitt rechteckigem rohrförmigen Ring ausgebildet, der in seinem Inneren Kühlluft aufnehmen kann. An der den Schaufeln gegenüberligenden Wandung des Ringes sind Löcher eingebracht und diese Wandung ist außenseitig mit einer porösen Schicht versehen, welche von der Kühlluft durchdrungen werden kann. Die poröse Schicht besteht aus einem aus kleinen Kugeln gesinterten Material. Die Kugeln sind aus einer auf Nickel basierenden Superlegierung ausgebildet.GB 2 053 367 A shows a cooled gas turbine with one rotating Blade opposite shield. The shield is made of an im Cross-section rectangular tubular ring formed in its interior Can absorb cooling air. On the wall of the Rings are holes and this wall is porous on the outside Provide layer, which can be penetrated by the cooling air. The porous Layer consists of a material sintered from small balls. The balls are made of a nickel-based super alloy.

Die DE 2 038 047 beschreibt eine bauliche Vorkehrung an Leitschaufeln, die innerhalb des Strömungsraumes einer Dampfturbine, insbesondere einer Satt- und Naßdampfturbine, angeordnet ist und zur Entwässerung der Oberflächen der einzelnen Leitschaufeln dient. Um die durch Wassertropfenanschlag an die Oberflächen der Laufschaufeln von Naßdampfturbinen hervorgerufene Erosion zu vermindern bzw. ganz zu vermeiden, sieht die Leitschaufel Entwässerungskanäle vor, die mit porösem, flüssigkeitsdurchlässigem Material, das aus metallischen Werkstoffen oder deren Legierungen gefertigt ist, ausgefüllt sind. Die Verwendung von porösem, flüssigkeitsdurchlässigem Material dient einzig und allein der gezielten Wasserentfernung aus dem Innenraum einer Dampfturbine. DE 2 038 047 describes a structural precaution on guide vanes that are inside the flow space of a steam turbine, in particular a saturated and wet steam turbine, is arranged and to drain the surfaces of each Guide vanes. In order to stop the surface of the water drop To reduce or reduce erosion caused by wet steam turbines To avoid completely, the guide vane provides drainage channels that are covered with porous, liquid-permeable material made of metallic materials or their Alloys is made, are filled. The use of porous, liquid-permeable Material is used solely for the targeted removal of water from the interior of a steam turbine.

Die DE 33 27 218 A1 beschreibt ein thermisch hochbeanspruchtes, gekühltes Bauteil, insbesondere einen Turbinenschaufel, die aus Gründen der Reduzierung der Wärmebelastung mit einer Metallfilz-Schicht überzogen ist, die ihrerseits wiederum mit einer zusätzlichen, keramischen Wärmedämmschicht abgedeckt ist. Grundsätzlich dient die Metallfilz-Schicht als elastisches Trägermaterial für die keramische Wärmedämmschicht (siehe hierzu Seite 4, Zeilen 33 bis Seite 5, Zeile 2, Seite 6, 1. Absatz sowie Seite 7, Zeilen 2 bis 7), jedoch kommt der Metallfilz-Schicht auch eine wärmeabführende Wirkung bei, zumal Kühlluft über Kühlluft-Führungsnuten 3 (siehe hierzu Fig. 1 ) an die Unterseite der Metallfilz-Schicht zugeführt wird, um diese lokal zu kühlen und auf diese Weise zu einer optimalen Wärmeabführung der durch die Wärmedämmschicht 6 hindurchfließenden Wärme zu gelangen.DE 33 27 218 A1 describes a thermally highly stressed, cooled component, in particular a turbine blade which, for the sake of reducing the Thermal stress is covered with a metal felt layer, which in turn is covered with an additional, ceramic thermal insulation layer. Basically the metal felt layer serves as an elastic carrier material for the ceramic Thermal insulation layer (see page 4, lines 33 to page 5, line 2, page 6, 1. Paragraph and page 7, lines 2 to 7), but there is also a metal felt layer heat-dissipating effect, especially since cooling air via cooling air guide grooves 3 (see 1) is fed to the underside of the metal felt layer to make it local to cool and in this way to optimal heat dissipation by the Thermal insulation layer 6 to pass through flowing heat.

Zur bekannten Anordnung gemäß der oben zitierten Druckschrift kann festgestellt werden, daß Metallfilz zum thermischen Schutz auf der Oberfläche von Turbinenschaufeln aufgebracht ist, doch reicht die Schutzwirkung, insbesondere bei den thermisch sehr stark beanspruchten Turbinenschaufeln nicht in genügender Weise aus, das Material, aus dem die Turbinenschaufeln gefertigt sind, ausreichend vor Überhitzung zu schützen.The known arrangement according to the document cited above can be stated that metal felt for thermal protection on the surface of turbine blades is applied, but the protective effect is sufficient, especially for the Turbine blades that are very thermally stressed are not sufficiently strong sufficient material from which the turbine blades are made To protect overheating.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, eine Turbinenschaufel mit einem metallischen Schaufelkörper und einem Schutzüberzug, der aus einem porösen Intermetallik-Filz ausgebildet ist und im Schaufelkörper der Turbinenschaufel Kühlluftkanäle ausgebildet sind, welche am Intermetallik-Filz münden, um diesen mit Kühlluft zu versorgen, derart weiterzubilden, daß die Turbinenschaufel besser kühlbar ist als es im Falle des Standes der Technik möglich ist. Hierdurch soll überdies der Wirkungsgrad der Turbine erhöht werden. The invention has for its object a turbine blade with a metallic Blade body and a protective cover made of a porous intermetallic felt is formed and in the blade body of the turbine blade cooling air channels are formed, which open on the intermetallic felt to this with cooling air supply in such a way that the turbine blade can be cooled better than it is possible in the case of the prior art. This is also intended to increase efficiency the turbine can be increased.

Die Aufgabe wird durch eine Turbinenschaufel mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved by a turbine blade with the features of claim 1 solved. Advantageous embodiments of the invention are specified in the subclaims.

Die erfindungsgemäße Turbinenschaufel zeichnet sich dadurch aus, daß der Intermetallik-Filz auf einer Eisen- oder Nickel-Aluminid-Legierung basiert, mit Mischungsanteilen zwischen Fe:Al bzw. Ni:Al von ca. 50:50, wobei mit dem Verhältnis das Atomverhältnis gemeint ist. Durch ein derartiges Mischungsverhältnis, das durchaus auch Verhältnisses zwischen 40:60 bis 60:40 umfassen soll, werden Metallik-Filze erhalten, deren Oxidierbarkeit sehr schwach ausgeprägt ist, wodurch zum einen die Lebensdauer derartiger Metallik-Filze entscheidend erhöht werden kann und zum anderen ihre Filzstruktur länger erhalten bleibt.The turbine blade according to the invention is characterized in that the intermetallic felt based on an iron or nickel-aluminide alloy, with mixed proportions between Fe: Al and Ni: Al of approx. 50:50, with the ratio that Atomic ratio is meant. With such a mixing ratio, that is Metallic felts are also said to comprise ratios between 40:60 to 60:40 obtained, the oxidizability is very weak, which on the one hand The lifespan of such metallic felts can be increased significantly and others retain their felt structure for longer.

Auch ist es möglich zusätzlich zu der Eisen- oder Nickel-Aluminid-Legierung weitere Stoffe bzw. Elemente der jeweiligen Legierung beizumischen bspw. Ta, Nb, Cr, B, Si, Zr oder Ga. Wesentlich bei der Beimischung zusätzlicher Elemente ist, daß das atomare Mischungsverhältnis zwischen Fe und Al bzw. Ni und Al in der Größenordnung um 50:50 bleibt.It is also possible in addition to the iron or nickel-aluminide alloy Add substances or elements of the respective alloy, e.g. Ta, Nb, Cr, B, Si, Zr or Ga. It is essential when adding additional elements that the atomic Mixing ratio between Fe and Al or Ni and Al in the order of magnitude remains at 50:50.

So wird bei herkömmlichen Filzen durch oxidative Prozesse die Filzstruktur während ihres Einsatzes derart in Mitleidenschaft gezogen, so daß bspw. ihr Vermögen bezüglich ihrer Kühlluftdurchlässigkeit entscheidend abnimmt. Überhitzung der Turbinenschaufel ist hiervon die Folge.In conventional felts, the felt structure becomes during oxidative processes affected by their efforts in such a way that, for example their cooling air permeability decreases significantly. Turbine blade overheating is the consequence of this.

Ferner sind erfindungsgemäß im Schutzüberzug Kühlkanäle vorgesehen, die, dem Schaufelkörper zugewandt, im Bereich der Kühlkanäle münden. Auf diese Weise kann sichergestellt werden, daß der Intermetallik-Filz zusätzlich vermehrt von Kühlluft durchströmt wird. Eine Gefahr einer Turbinenschaufelüberhitzung kann damit ausgeschlossen werden.Furthermore, cooling channels are provided according to the invention in the protective coating Blade body facing, open in the area of the cooling channels. In this way it can be ensured that the intermetallic felt is additionally increased by cooling air is flowed through. This can create a risk of turbine blade overheating be excluded.

Grundsätzlich kommt durch Vorsehen des porösen Intermetallik-Filzes auf der Oberfläche des Schaufelkörpers eine in diesen eingeleitete Kühlluft nicht sofort mit den Heißgasen der Turbine in Berührung, sondern tritt allmählich und auf einer größeren Fläche verteilt durch den Intermetallik-Filz hindurch. Der intermetallische Filz, der höhere Oberflächentemperaturen als herkömmliche Materialien für Turbinenschaufeln aufweisen kann, wird hierdurch intensivst gekühlt, wodurch die Turbinenschaufel mit einer im Vergleich zu einer Turbinenschaufel, bei welcher die Kühlluftkanäle unmittelbar an der Oberfläche austreten, äußerst kleinen Kühlluftmenge auf Betriebstemperatur gehalten werden kann. Da die Kühlluftmenge wegen der besseren Wärmeübertragung wesentlich geringer ist wird der Wirkungsgrad der Turbine entsprechend erhöht, da weniger Kühlluft nicht an der Energiezufuhr in der Brennkammer teilnimmt und den Wirkungsgrad der Turbine vermindert.Basically, by providing the porous intermetallic felt on the surface of the blade body does not immediately cool air introduced into it with the Hot gases come into contact with the turbine, but occurs gradually and on a larger scale Surface distributed through the intermetallic felt. The intermetallic felt, the higher surface temperatures than conventional materials for turbine blades can be intensively cooled as a result, whereby the turbine blade with a compared to a turbine blade, in which the cooling air ducts directly emerge on the surface, extremely small amount of cooling air at operating temperature can be held. Because the amount of cooling air because of better heat transfer the efficiency of the turbine is correspondingly much lower increased because less cooling air does not affect the energy supply in the combustion chamber participates and reduces the efficiency of the turbine.

Das allmähliche Durchströmen der Kühlluft durch den Intermetallik-Filz bewirkt, daß die Austrittsgeschwindigkeit der Kühlluft an der Oberfläche der Turbinenschaufel sehr gering ist und die Aerodynamik nicht in der bisher bekannten Weise negativ beeinträchtigt. Dies gilt insbesondere, wenn der intermetallische Filz an der Vorderkante der Turbinenschaufel angeordnet ist, da dann, im Gegensatz zu herkömmlichen gekühlten Turbinenschaufeln, das Strömungsverhalten der auf die Turbinenschaufel auftreffenden Gase nicht durch entgegenströmende Kühlluft negativ beeinträchtigt wird.The gradual flow of cooling air through the intermetallic felt causes the exit velocity of the cooling air on the surface of the turbine blade is very low and does not adversely affect the aerodynamics in the manner known hitherto. This is especially true if the intermetallic felt is on the leading edge the turbine blade is arranged because then, unlike conventional ones cooled turbine blades, the flow behavior of the turbine blade impinging gases are not adversely affected by counter-flowing cooling air becomes.

Die, in dem Intermetallik-Filz eingarbeiteten Kühlkanäle, die die Filzschicht nicht notwendigerweise vollständig durchsetzen, sondern nur teilweise in den Filz eindringen, sorgen dafür, daß der Schutzüberzug optimal mit Kühlluft versorgt wird.The cooling channels incorporated in the intermetallic felt, which the felt layer does not necessarily push through completely, but only partially penetrate the felt, ensure that the protective cover is optimally supplied with cooling air.

Die erfindungsgemäße Turbinenschaufel erlaubt wegen der geringeren Kühlluftmenge und der verbesserten Aerodynamik eine beträchtliche Steigerung des Wirkungsgrades einer mit diesen Turbinenschaufeln ausgerüsteten Turbine.The turbine blade according to the invention allows because of the smaller amount of cooling air and the improved aerodynamics, a considerable increase in efficiency a turbine equipped with these turbine blades.

Der intermetallische Filz ist zudem unempfindlich gegenüber mechanischen Belastungen, wie z.B. Fremdkörpereinschlag, da diese lediglich zu kleinen, lokalen Verformungen führen, jedoch weder die Funktion des Kühlsystems wesentlich noch die grundsätzliche Funktion der Laufschaufel beeinträchtigen. The intermetallic felt is also insensitive to mechanical loads, such as. Impact of foreign objects, as these only result in small, local deformations lead, but neither the function of the cooling system essential nor affect the basic function of the blade.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:

Fig. 1
eine erfindungsgemäße Turbinenschaufel im Querschnitt,
Fig. 2
die in Fig. 1 gezeigt Turbinenschaufel im Vorderkantenbereich in einer vergrößerten Querschnittsdarstellung,
Fig. 3
den Vorderkantenbereich der in Fig. 1 gezeigten Turbinenschaufel ohne einen Intermetallik-Filz in perspektivischer Ansicht.
The invention is described below by way of example without limitation of the general inventive concept using an exemplary embodiment with reference to the drawings. Show it:
Fig. 1
a turbine blade according to the invention in cross section,
Fig. 2
the turbine blade shown in FIG. 1 in the front edge area in an enlarged cross-sectional view,
Fig. 3
the front edge area of the turbine blade shown in Fig. 1 without an intermetallic felt in a perspective view.

Beschreibung eines Ausführungsbeispiels, gewerbliche AnwendbarkeitDescription of an embodiment, industrial applicability

Fig. 1 zeigt eine erfindungsgemäße Turbinenschaufel 1 im Schnitt. Die Turbinenschaufel 1 weist eine an sich bekannte aerodynamische Form auf und ist aus zwei Seitenwandungen 2, 3 ausgebildet. Im Vorderkantenbereich 4 weist die Turbinenschaufel 1 eine etwa halbkreisförmige Außenfläche auf, die bündig in die Außenflächen der Seitenwandungen 2, 3 übergeht. Die Seitenwandungen 2, 3 laufen vom Vorderkantenbereich 4 in Richtung zu einer Hinterkante 5 zusammen, wobei sie im Bereich der Hinterkante 5 miteinander fest verbunden sind. Benachbart zu dem im Schnitt etwa halbkreisförmigen Vorderkantenbereich 4 ist zwischen den Seitenwandungen 2, 3 ein Quersteg 6 angeordnet, der den Zwischenraum zwischen den beiden Seitenwandungen 2, 3 in zwei Kühlluftkanäle 7, 8 unterteilt, durch welche der Turbinenschaufel 1 Kühlluft zugeführt wird.Fig. 1 shows a turbine blade 1 according to the invention in section. The turbine blade 1 has a known aerodynamic shape and is made of two Side walls 2, 3 formed. The turbine blade has in the leading edge region 4 1 has an approximately semicircular outer surface that is flush with the outer surfaces the side walls 2, 3 merges. The side walls 2, 3 run from Front edge area 4 together in the direction of a rear edge 5, wherein they in Area of the rear edge 5 are firmly connected. Adjacent to the im Cut approximately semicircular leading edge area 4 is between the side walls 2, 3 a transverse web 6 is arranged, the space between the two Side walls 2, 3 divided into two cooling air channels 7, 8, through which the Turbine blade 1 cooling air is supplied.

Der Vorderkantenbereich 4 der Turbinenschaufel ist zweilagig ausgebildet, wobei eine innere Lage durch ein im Schnitt etwa ringsegmentförmiges Vorderkantenteil 9 und eine äußere Lage durch einen aus einem Intermetallik-Filz ausgebildeten Schutzüberzug 10 gebildet werden. The front edge region 4 of the turbine blade is designed in two layers, wherein an inner layer by a front edge part 9 which is approximately ring segment-shaped in section and an outer layer by an intermetallic felt Protective cover 10 are formed.

Das etwa kreissegmentförmige Vorderkantenteil 9 ist mit den Seitenwandungen 2, 3 jeweils über ein Übergangsteil 11, 12 verbunden. Die Übergangsteile 11, 12 bilden einen sich in Richtung zu dem Vorderkantenteil kontinuierlich verjüngenden Einschnührungsbereich.The approximately circular segment-shaped front edge part 9 is with the side walls 2, 3 each connected via a transition part 11, 12. The transition parts 11, 12 form a constriction area continuously tapering toward the leading edge portion.

Die beiden Seitenwandungen 2, 3, der Quersteg 6, die Übergangsteile 11, 12 und das Voderkantenteil 9 sind einstückig aus Metall ausgebildet und bilden einen Schaufelgrundkörper.The two side walls 2, 3, the crossbar 6, the transition parts 11, 12 and the leading edge part 9 are formed in one piece from metal and form one Blade body.

Das Vorderkantenteil 9 ist mit etwa radial verlaufenden Kühlbohrungen 13 versehen, die in Kühkanäle 13' münden, die in den Schutzüberzug 10 einragen. An den Seitenwandungen 2, 3 können weitere Kühlbohrungen 14 eingebracht sein, die die Seitenwandungen 2, 3 von innen nach außen schräg verlaufend in Richtung zur Hinterkante 5 durchsetzen.The front edge part 9 is provided with approximately radially extending cooling bores 13, which open into cooling channels 13 'which protrude into the protective coating 10. On the side walls 2, 3, further cooling bores 14 can be introduced, which form the side walls 2, 3 sloping from the inside to the outside towards the rear edge 5 enforce.

Der Einschnührungsbereich im Vorderkantenbereich 4 bildet eine Ausnehmung zur Aufnahme des aus dem Intermetallik-Filz bestehenden Schutzüberzugs 10.The constriction area in the leading edge area 4 forms a recess for Inclusion of the protective cover 10 consisting of the intermetallic felt.

Grundsätzlich besteht der intermetallische Filz aus einem filzähnlichen Material, wie es beispielsweise aus "VDI Bericht 1151, 1995, Metallische Hochtemperaturfasern durch Schmelzextraktion - Herstellung, Eigenschaften und Anwendungen, Stephani et al., Seite 175ff" beschrieben ist. Dort werden Fasern im Schmelzextraktionsverfahren hergestellt, die so hergestellten Fasern verpreßt und gesintert. Das so gebildete filzähnliche Material wird als Filter und als Katalysator-Träger verwendet. Erfindungsgemäß wird dieses filzähnliche Material aus intermetallischen Fasern hergestellt und als Schutzüberzug für eine Turbinenschaufel verwendet. Dazu werden vorteilhafterweise intermetallische Phasen auf Eisen- oder Nickelbasis verwendet. Der Intermetallik-Filz besteht erfindungsgemäß aus einer Eisen-Aluminid- oder Nikkel-Aluminid-Legierung mit einem Legierungsverhältnis zwischen jeweils beiden Legierungspartner von etwa 50:50. Basically, the intermetallic felt is made of a felt-like material, such as it, for example, from "VDI Report 1151, 1995, Metallic High Temperature Fibers by melt extraction - manufacture, properties and applications, Stephani et al., page 175ff ". There are fibers in the melt extraction process manufactured, the fibers thus produced pressed and sintered. The so educated Felt-like material is used as a filter and as a catalyst carrier. According to the invention this felt-like material is made from intermetallic fibers and used as a protective covering for a turbine blade. To do this intermetallic phases based on iron or nickel are advantageously used. According to the invention, the intermetallic felt consists of an iron-aluminide or nickel-aluminide alloy with an alloy ratio between each of the two alloy partners of about 50:50.

Diese Legierungen weisen eine hohe Hitzebeständigkeit, eine hohe Oxidationsbständigkeit und vorteilhafte Wärmeleiteigenschaften auf. Zudem sind die vorgenannten Eigenschaften durch die Wahl der intermetallischen Phase in einem weiten Bereich einstellbar.These alloys have high heat resistance and high oxidation resistance and advantageous thermal conductivity properties. In addition, the above are Properties by choosing the intermetallic phase in a wide range Range adjustable.

Der Schutzüberzug 10 aus Intermetallik-Filz ist in der Ausnehmung der Turbinenschaufel 1 durch Hochtemperaturlöten befestigt, wobei das Lot einen höheren Schmelzpunkt als die Anwendungstemperatur in der Turbine besitzt.The protective cover 10 made of intermetallic felt is in the recess of the turbine blade 1 fixed by high temperature soldering, the solder a higher Melting point as the application temperature in the turbine.

Die Porösität des Schutzüberzugs 10 kann durch die Parameter des Herstellungsverfahrens wie Pressdruck und Sintertemperatur eingestellt werden. Hierdurch ist der Strömungswiderstand des Schutzüberzuges 10 auf die jeweiligen Anforderungen einstellbar.The porosity of the protective coating 10 can be determined by the parameters of the manufacturing process how to set the pressing pressure and sintering temperature. This is the Flow resistance of the protective coating 10 to the respective requirements adjustable.

Die Dicke des Schutzüberzuges liegt z.B. im Bereich von 2-8 mm.The thickness of the protective coating is e.g. in the range of 2-8 mm.

Nachfolgend wird die Funktionsweise der erfindungsgemäßen Turbinenschaufel erläutert.The mode of operation of the turbine blade according to the invention is explained below.

Kühlluft wird während des Betriebs der Turbine durch den Kühlkanal 7 dem Vorderkantenteil 9 zugeführt, wobei die Kühlluft durch die im Vorderkantenteil ausgebildeten Bohrungen 13, 13' nach außen in den Schutzüberzug 10 aus Intermetallik-Filz strömt. Im Intermetallik-Filz verteilt sich die einströmende Luft auf einen Flächenbereich und durchströmt den Filz. Aufgrund der großen Kontaktfläche zwischen dem Intermetallik-Filz und der Kühlluft bestehen hervorragende Wärmeübertragungseigenschaften, so daß die überwiegende Wärmekapazität der Kühlluft zum Kühlen des Schutzüberzugs 10 ausgenutzt wird. Zudem wirkt der aus einem Intermetallik-Filz bestehende Schutzüberzug 10 als thermischer Isolator gegenüber dem Schaufelgrundkörper.Cooling air is the leading edge part through the cooling channel 7 during operation of the turbine 9 supplied, the cooling air through the formed in the leading edge part Bores 13, 13 'to the outside in the protective cover 10 made of intermetallic felt flows. In the intermetallic felt, the incoming air is distributed over an area and flows through the felt. Because of the large contact area between the Intermetallic felt and the cooling air have excellent heat transfer properties, so that the predominant heat capacity of the cooling air for cooling the Protective cover 10 is used. It also works from an intermetallic felt existing protective coating 10 as a thermal insulator against the blade body.

Im Vergleich zu herkömmlichen mit Luft gekühlten Turbinenschaufeln ist eine wesentlich geringere Kühlluftmenge notwendig. Da sich die relativ geringe Kühlluftmenge beim Durchströmen des Schutzüberzuges 10 auf einen größeren Flächenbereich verteilt ist der Impuls, mit welchem die Kühlluft aus dem Schutzüberzug ausströmt, minimal, so daß die Aerodynamik der Turbinenschaufel kaum beeinträchtigt wird.Compared to conventional air-cooled turbine blades, one is essential less cooling air required. Because the relatively small amount of cooling air when flowing through the protective coating 10 over a larger area distributed is the momentum with which the cooling air flows out of the protective coating, minimal, so that the aerodynamics of the turbine blade are hardly affected.

Die Erfindung ist oben anhand eines Ausführungsbeispiels erläutert worden; der Erfindungsgedanke ist jedoch nicht auf das Ausführungsbeispiel beschränkt. Im Rahmen der Erfindung ist es z.B. auch möglich, die Hinterkante 5 der Turbinenschaufel mit einem aus Intermetallik-Filz ausgebildeten Schutzüberzug zu versehen oder an der gesamten Oberfläche der Turbinenschaufel einen Schutzüberzug vorzusehen. Der Schutzüberzug kann mit variabler Dicke und/oder variabler Porösität ausgebildet sein. Die Porösität kann z.B. im Verlauf vom Vorderkantenbereich 4 zur Hinterkante 5 abnehmen, wodurch der intermetallische Filz an der stärker der Hitze ausgesetzten Vorderkante mehr Kühlluft als im übrigen Bereich aufnimmt. Es kann auch zweckmäßig sein die Porösität entlang der Spannweite zu variieren.The invention has been explained above using an exemplary embodiment; the idea of the invention is however not limited to the exemplary embodiment. As part of the invention is e.g. also possible, the rear edge 5 of the turbine blade with a protective cover made of intermetallic felt to provide a protective coating over the entire surface of the turbine blade. The protective cover can be of variable thickness and / or of variable porosity his. The porosity can e.g. in the course from the leading edge area 4 to the trailing edge 5 remove, causing the intermetallic felt to be more exposed to heat Front edge absorbs more cooling air than in the rest of the area. It can also be useful be to vary the porosity along the span.

Der intermetallische Filz kann z.B. auch mit einer Korrosionsschutzschicht oder einer Wärmeschutzschicht beschichtete sein. Als Wärmeschutzschicht kann eine sogenannte TBC-Schicht (Thermal Barrier Coating) verwendet werden, die typischerweise aus einem keramischen Grundstoff ausgebildet ist. Der Filz kann hierbei durch seine Verformbarkeit Unterschiede im thermischen Dehnungsverhalten der Schutzschicht und des Grundmaterials ausgleichen.The intermetallic felt can e.g. also with a corrosion protection layer or Thermal protection layer to be coated. A so-called TBC layer (Thermal Barrier Coating) can be used, typically is formed from a ceramic base material. The felt can be Deformability Differences in the thermal expansion behavior of the protective layer and balance the base material.

Ein weiterer Vorteil des erfindungsgemäßen Schutzüberzuges ist, daß er gegenüber Fremdkörperschäden unempfindlich ist, d.h., daß in der Regel lediglich lokale Verformungen erzeugt werden, die die Funktion der Turbinenschaufel kaum beeinträchtigen.Another advantage of the protective coating according to the invention is that it has Foreign body damage is insensitive, i.e. usually only local deformations are generated that hardly affect the function of the turbine blade.

Bei dem oben beschriebenen Ausführungsbeispiel kann sich sogar der Schutzüberzug während des Betriebs lösen und dennoch ist die Schaufel - bei verringertem Wirkungsgrad - noch funktionstüchtig. In the embodiment described above, even the protective cover can loosen during operation and yet the bucket is - with reduced Efficiency - still functional.

Die erfindungsgemäßen Turbinenschaufeln sind für den Einsatz in einer Gasturbine konzipiert. Insbesondere die Vorderkanten der Schaufeln der ersten Turbinenleitreihe sind mit dem erfindungsgemäßen Schutzüberzug zu versehen, da sie besonders stark den Heißgasen der Turbine ausgesetzt sind.The turbine blades according to the invention are for use in a gas turbine designed. In particular the front edges of the blades of the first turbine guide row are to be provided with the protective coating according to the invention, since they are special are strongly exposed to the hot gases of the turbine.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

11
TurbinenschaufelTurbine blade
22nd
SeitenwandungSide wall
33rd
SeitenwandungSide wall
44th
VorderkantenbereichLeading edge area
55
HinterkanteTrailing edge
66
QuerstegCrossbar
77
KühlluftkanalCooling air duct
88th
KühlluftkanalCooling air duct
99
VorderkantenteilLeading edge part
1010th
SchutzüberzugProtective cover
1111
ÜbergangsteilTransition part
1212th
ÜbergangsteilTransition part
13,13'13.13 '
KühlbohrungCooling hole
1414
KühlbohrungCooling hole

Claims (15)

Turbinenschaufel mit einem metallischen Schaufelkörper und einem Schutzüberzug (10), der aus einem porösen Intermetallik-Filz ausgebildet ist und im Schaufelkörper der Turbinenschaufel (1) Kühlluftkanäle (13) ausgebildet sind, welche am Intermetallik-Filz münden, um diesen mit Kühlluft zu versorgen,
dadurch gekennzeichnet, daß der Intermetallik-Filz auf einer Eisen- oder Nickel-Aluminid-Legierung basiert, mit Mischungsanteilen zwischen Fe:Al bzw. Ni:Al von ca. 50:50, und
daß der Schutzüberzug Kühlkanäle 13' aufweist, die, dem Schaufelkörper zugewandt, im Bereich der Kühlkanäle münden.
Turbine blade with a metallic blade body and a protective cover (10), which is formed from a porous intermetallic felt and cooling air channels (13) are formed in the blade body of the turbine blade (1), which open at the intermetallic felt in order to supply it with cooling air,
characterized in that the intermetallic felt is based on an iron or nickel-aluminide alloy, with mixture proportions between Fe: Al or Ni: Al of approximately 50:50, and
that the protective coating has cooling channels 13 'which, facing the blade body, open in the area of the cooling channels.
Turbinenschaufel nach Anspruch 1,
dadurch gekennzeichnet, daß die Eisen- oder Nickel-Aluminid-Legierung zusätzliche Bestandteile von Ta, Nb, Cr, B, Si, Zr oder Ga aufweist.
Turbine blade according to claim 1,
characterized in that the iron or nickel-aluminide alloy has additional constituents of Ta, Nb, Cr, B, Si, Zr or Ga.
Turbinenschaufel nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß Kühlkanäle 13' vorgesehen sind, die den Schutzüberzug vollständig durchsetzen.
Turbine blade according to claim 1 or 2,
characterized in that cooling channels 13 'are provided which completely penetrate the protective coating.
Turbinenschaufel nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß Kühlkanäle 13' vorgesehen sind, die in den Schutzüberzug nur teilweise eindringen.
Turbine blade according to one of claims 1 to 3,
characterized in that cooling channels 13 'are provided which only partially penetrate into the protective coating.
Turbinenschaufel nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, daß eine Vorderkante (4) des Schaufelkörpers mit dem Intermetallik-Filz versehen ist.
Turbine blade according to one of claims 1 to 4,
characterized in that a front edge (4) of the blade body is provided with the intermetallic felt.
Turbineschaufel nach einem der Ansprüche 1 oder 5,
dadurch gekennzeichnet, daß eine Hinterkante (5) des Schaufelkörpers mit dem Intermetallik-Filz versehen ist.
Turbine blade according to one of claims 1 or 5,
characterized in that a rear edge (5) of the blade body is provided with the intermetallic felt.
Turbinenschaufel nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, daß der Schaufelkörper in dem, mit dem Intermetallik-Filz versehenen Bereich mit einer Ausnehmung versehen ist, in welcher der Intermetallik-Filz angeordnet ist, so daß er bündig mit dem angrenzenden Bereich des Schaufelkörpers abschließt.
Turbine blade according to one of claims 1 to 6,
characterized in that the blade body is provided in the area provided with the intermetallic felt with a recess in which the intermetallic felt is arranged so that it is flush with the adjacent area of the blade body.
Turbinenschaufel nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß der gesamte Schaufelkörper mit dem Intermetallik-Filz überzogen ist.
Turbine blade according to one of claims 1 to 7,
characterized in that the entire blade body is covered with the intermetallic felt.
Turbinenschaufel nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, daß der Intermetallik-Filz aus zusammengepressten und gesinterten intermetallischen Fasern ausgebildet ist.
Turbine blade according to one of claims 1 to 8,
characterized in that the intermetallic felt is formed from compressed and sintered intermetallic fibers.
Turbinenschaufel nach Anspruch 9,
dadurch gekennzeichnet, daß die intermetallischen Fasern aus einer intermetallischen Phase auf Eisenbasis oder Nickelbasis ausgebildet sind.
Turbine blade according to claim 9,
characterized in that the intermetallic fibers are formed from an iron-based or nickel-based intermetallic phase.
Turbinenschaufel nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, daß die Fasern des Intermetallik-Filzes beschichtet sind.
Turbine blade according to one of claims 1 to 10,
characterized in that the fibers of the intermetallic felt are coated.
Turbinenschaufel nach Anspruch 11,
dadurch gekennzeichnet, daß die Fasern des Intermetallik-Filzes mit einer Korrosionsschutzschicht und/oder einer Wärmeschutzbeschichtung beschichtet sind.
Turbine blade according to claim 11,
characterized in that the fibers of the intermetallic felt are coated with a corrosion protection layer and / or a heat protection coating.
Turbinenschaufel nach einem der Ansprüche 1 bis 12,
dadurch gekennzeichnet, daß die Turbinenschaufel am Rotor einer Turbomaschine angeordnet ist.
Turbine blade according to one of claims 1 to 12,
characterized in that the turbine blade is arranged on the rotor of a turbomachine.
Turbinenschaufel nach Anspruch 12
dadurch gekennzeichnet, daß die in einer ersten Leitreihe angeordneten Turbinenschaufeln mit dem aus Intermetallik-Filz ausgebildeten Schutzüberzug versehen sind.
Turbine blade according to claim 12
characterized in that the turbine blades arranged in a first guide row are provided with the protective covering formed from intermetallic felt.
Turbinenschaufeln nach Anspruch 13 oder 14,
dadurch gekennzeichnet, daß die Turbomaschine eine Gasturbine ist.
Turbine blades according to claim 13 or 14,
characterized in that the turbomachine is a gas turbine.
EP99810915A 1998-10-19 1999-10-07 Turbine blade Expired - Lifetime EP0995880B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19848104 1998-10-19
DE19848104A DE19848104A1 (en) 1998-10-19 1998-10-19 Turbine blade

Publications (3)

Publication Number Publication Date
EP0995880A2 true EP0995880A2 (en) 2000-04-26
EP0995880A3 EP0995880A3 (en) 2002-01-23
EP0995880B1 EP0995880B1 (en) 2003-12-03

Family

ID=7884915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99810915A Expired - Lifetime EP0995880B1 (en) 1998-10-19 1999-10-07 Turbine blade

Country Status (3)

Country Link
US (1) US6241469B1 (en)
EP (1) EP0995880B1 (en)
DE (2) DE19848104A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348276A (en) * 1999-03-20 2000-09-27 Abb Alstom Power Ch Ag Combustion chamber wall
EP1512911A1 (en) * 2003-09-04 2005-03-09 Rolls-Royce Deutschland Ltd & Co KG Device for cooling high-thermally stressed parts

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264766B1 (en) * 1998-11-24 2001-07-24 General Electric Company Roughened bond coats for a thermal barrier coating system and method for producing
DE19937577A1 (en) * 1999-08-09 2001-02-15 Abb Alstom Power Ch Ag Frictional gas turbine component
US6617003B1 (en) * 2000-11-06 2003-09-09 General Electric Company Directly cooled thermal barrier coating system
US6761956B2 (en) * 2001-12-20 2004-07-13 General Electric Company Ventilated thermal barrier coating
US6648597B1 (en) 2002-05-31 2003-11-18 Siemens Westinghouse Power Corporation Ceramic matrix composite turbine vane
US6709230B2 (en) * 2002-05-31 2004-03-23 Siemens Westinghouse Power Corporation Ceramic matrix composite gas turbine vane
US7141128B2 (en) * 2002-08-16 2006-11-28 Alstom Technology Ltd Intermetallic material and use of this material
US9068464B2 (en) * 2002-09-17 2015-06-30 Siemens Energy, Inc. Method of joining ceramic parts and articles so formed
US7093359B2 (en) 2002-09-17 2006-08-22 Siemens Westinghouse Power Corporation Composite structure formed by CMC-on-insulation process
JP4096706B2 (en) 2002-11-13 2008-06-04 株式会社Ihi Thin and lightweight cooling turbine blade
DE10301175B4 (en) * 2003-01-08 2006-12-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the powder metallurgical production of components
EP1481747A3 (en) * 2003-05-27 2007-05-02 Alstom Technology Ltd Method for producing a heat loaded component and component
DE10332563A1 (en) 2003-07-11 2005-01-27 Rolls-Royce Deutschland Ltd & Co Kg Turbine blade with impingement cooling
US6905302B2 (en) * 2003-09-17 2005-06-14 General Electric Company Network cooled coated wall
US7216694B2 (en) * 2004-01-23 2007-05-15 United Technologies Corporation Apparatus and method for reducing operating stress in a turbine blade and the like
US7066717B2 (en) * 2004-04-22 2006-06-27 Siemens Power Generation, Inc. Ceramic matrix composite airfoil trailing edge arrangement
DE102004023623A1 (en) * 2004-05-10 2005-12-01 Alstom Technology Ltd Turbomachine blade
US7186091B2 (en) * 2004-11-09 2007-03-06 General Electric Company Methods and apparatus for cooling gas turbine engine components
US7435058B2 (en) 2005-01-18 2008-10-14 Siemens Power Generation, Inc. Ceramic matrix composite vane with chordwise stiffener
EP1707301B1 (en) * 2005-03-31 2008-06-18 Siemens Aktiengesellschaft Process for applying fibre mats on the surface or a recess of a component
US7241107B2 (en) * 2005-05-19 2007-07-10 Spanks Jr William A Gas turbine airfoil with adjustable cooling air flow passages
US7563071B2 (en) * 2005-08-04 2009-07-21 Siemens Energy, Inc. Pin-loaded mounting apparatus for a refractory component in a combustion turbine engine
US7510367B2 (en) * 2006-08-24 2009-03-31 Siemens Energy, Inc. Turbine airfoil with endwall horseshoe cooling slot
US7641440B2 (en) * 2006-08-31 2010-01-05 Siemens Energy, Inc. Cooling arrangement for CMC components with thermally conductive layer
US7806658B2 (en) * 2006-10-25 2010-10-05 Siemens Energy, Inc. Turbine airfoil cooling system with spanwise equalizer rib
EP1930544A1 (en) * 2006-10-30 2008-06-11 Siemens Aktiengesellschaft Turbine blade
US7963745B1 (en) 2007-07-10 2011-06-21 Florida Turbine Technologies, Inc. Composite turbine blade
US8070454B1 (en) * 2007-12-12 2011-12-06 Florida Turbine Technologies, Inc. Turbine airfoil with trailing edge
US8167573B2 (en) * 2008-09-19 2012-05-01 Siemens Energy, Inc. Gas turbine airfoil
US8671696B2 (en) * 2009-07-10 2014-03-18 Leonard M. Andersen Method and apparatus for increasing thrust or other useful energy output of a device with a rotating element
US8256088B2 (en) * 2009-08-24 2012-09-04 Siemens Energy, Inc. Joining mechanism with stem tension and interlocked compression ring
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
DE102011008695A1 (en) * 2011-01-15 2012-07-19 Mtu Aero Engines Gmbh A method of generatively producing a device with an integrated damping for a turbomachine and generatively manufactured component with an integrated damping for a turbomachine
US9139480B2 (en) 2011-02-28 2015-09-22 Honeywell International Inc. Protective coatings and coated components comprising the protective coatings
US20120301319A1 (en) * 2011-05-24 2012-11-29 General Electric Company Curved Passages for a Turbine Component
EP2540970A1 (en) 2011-07-01 2013-01-02 Siemens Aktiengesellschaft Liquid metal cooled blade
RU2476682C1 (en) * 2011-09-07 2013-02-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Turbomachine blade
RU2502875C2 (en) * 2011-10-25 2013-12-27 Закрытое акционерное общество "Группа региональных производств" Cooled blade
WO2013144022A1 (en) 2012-03-28 2013-10-03 Alstom Technology Ltd Method for removing a ceramic
ES2693679T3 (en) * 2012-10-31 2018-12-13 Saab Ab A porous coating applied to an air article
US10539041B2 (en) 2013-10-22 2020-01-21 General Electric Company Cooled article and method of forming a cooled article
RU2543638C1 (en) * 2014-03-06 2015-03-10 Николай Владимирович Макаров Method for increasing pressure and economy of bladed radial turbomachines
RU2557818C1 (en) * 2014-07-21 2015-07-27 Общество с ограниченной ответственностью "ГрандАэро" Radial-swirl turbo-machine
US9963982B2 (en) * 2014-09-08 2018-05-08 United Technologies Corporation Casting optimized to improve suction side cooling shaped hole performance
US10077667B2 (en) * 2015-05-08 2018-09-18 United Technologies Corporation Turbine airfoil film cooling holes
KR101866900B1 (en) * 2016-05-20 2018-06-14 한국기계연구원 Gas turbine blade
US20180051568A1 (en) * 2016-08-16 2018-02-22 General Electric Company Engine component with porous holes
US10598025B2 (en) * 2016-11-17 2020-03-24 United Technologies Corporation Airfoil with rods adjacent a core structure
GB2560516B (en) 2017-03-13 2019-08-28 Rolls Royce Plc A method of manufacturing a coated turbine blade and a coated turbine vane
US10760428B2 (en) 2018-10-16 2020-09-01 General Electric Company Frangible gas turbine engine airfoil
US11149558B2 (en) 2018-10-16 2021-10-19 General Electric Company Frangible gas turbine engine airfoil with layup change
US10746045B2 (en) 2018-10-16 2020-08-18 General Electric Company Frangible gas turbine engine airfoil including a retaining member
US10837286B2 (en) 2018-10-16 2020-11-17 General Electric Company Frangible gas turbine engine airfoil with chord reduction
US11434781B2 (en) 2018-10-16 2022-09-06 General Electric Company Frangible gas turbine engine airfoil including an internal cavity
US11111815B2 (en) 2018-10-16 2021-09-07 General Electric Company Frangible gas turbine engine airfoil with fusion cavities
US11371351B2 (en) * 2020-01-17 2022-06-28 Raytheon Technologies Corporation Multi-disk bladed rotor assembly for rotational equipment
US11208892B2 (en) 2020-01-17 2021-12-28 Raytheon Technologies Corporation Rotor assembly with multiple rotor disks
US11339673B2 (en) 2020-01-17 2022-05-24 Raytheon Technologies Corporation Rotor assembly with internal vanes
US11946441B2 (en) * 2022-02-10 2024-04-02 Kamil Podhola Outer turbine system
CN115657294B (en) * 2022-12-26 2023-04-11 中国航天三江集团有限公司 Spiral adjustable high-power laser liquid cooling stop diaphragm

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB778672A (en) * 1954-10-18 1957-07-10 Parsons & Marine Eng Turbine Improvements in and relating to the cooling of bodies subject to a hot gas stream, for example turbine blades
US3215511A (en) * 1962-03-30 1965-11-02 Union Carbide Corp Gas turbine nozzle vane and like articles
US3647316A (en) * 1970-04-28 1972-03-07 Curtiss Wright Corp Variable permeability and oxidation-resistant airfoil
US3656863A (en) * 1970-07-27 1972-04-18 Curtiss Wright Corp Transpiration cooled turbine rotor blade
DE2038047A1 (en) * 1970-07-31 1972-02-03 Maschf Augsburg Nuernberg Ag Drainage of the surfaces of the guide vanes and the flow space of steam turbines, especially saturated and wet steam turbines
US3706508A (en) * 1971-04-16 1972-12-19 Sean Lingwood Transpiration cooled turbine blade with metered coolant flow
GB1545584A (en) * 1975-03-07 1979-05-10 Onera (Off Nat Aerospatiale) Processes and systems for the formation of surface diffusion alloys on perforate metal workpieces
US4257735A (en) 1978-12-15 1981-03-24 General Electric Company Gas turbine engine seal and method for making same
GB2053367B (en) 1979-07-12 1983-01-26 Rolls Royce Cooled shroud for a gas turbine engine
FR2483513A1 (en) * 1980-05-28 1981-12-04 Snecma PROCESS FOR THE MANUFACTURE OF TURBINE BLADES COOLED WITH A POROUS BODY AND PRODUCT OBTAINED ACCORDING TO SAID PROCESS
DE3203869C2 (en) 1982-02-05 1984-05-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbine rotor blades for turbo machines, in particular gas turbine engines
DE3327218A1 (en) * 1983-07-28 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München THERMALLY HIGH-QUALITY, COOLED COMPONENT, IN PARTICULAR TURBINE BLADE
DE4130946C1 (en) * 1991-09-18 1992-09-03 Mtu Muenchen Gmbh
DE4241420C1 (en) * 1992-12-09 1993-11-25 Mtu Muenchen Gmbh Process for the production of components or substrates with composite coatings and its application
DE19734273A1 (en) * 1997-08-07 1999-02-11 Siemens Ag Heat resistant vane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2348276A (en) * 1999-03-20 2000-09-27 Abb Alstom Power Ch Ag Combustion chamber wall
GB2348276B (en) * 1999-03-20 2003-07-16 Abb Alstom Power Ch Ag Combustion chamber wall
EP1512911A1 (en) * 2003-09-04 2005-03-09 Rolls-Royce Deutschland Ltd & Co KG Device for cooling high-thermally stressed parts
US7204089B2 (en) 2003-09-04 2007-04-17 Rolls-Royce Deutschland Ltd & Co Kg Arrangement for the cooling of thermally highly loaded components

Also Published As

Publication number Publication date
EP0995880B1 (en) 2003-12-03
US6241469B1 (en) 2001-06-05
DE19848104A1 (en) 2000-04-20
DE59907926D1 (en) 2004-01-15
EP0995880A3 (en) 2002-01-23

Similar Documents

Publication Publication Date Title
EP0995880B1 (en) Turbine blade
DE60217456T2 (en) Abradable coating for jacket rings of gas turbines
DE60213328T2 (en) Chilled hollow shovel top cover of a turbine shovel
DE2637443C2 (en)
EP2140114B1 (en) Axial bearing particularly for a turbocharger
DE60202212T2 (en) COOLABLE SEGMENT FOR TURBOMAS AND TURBINES WITH COMBUSTION CHAMBER
DE4447507B4 (en) Annular seal
DE3345263C2 (en) Cooled turbine blade
EP1173657B1 (en) Turbine blade and method for producing a turbine blade
EP0995881B1 (en) Sealing arrangement
DE2833012C2 (en) Housing for jet engine turbine
EP1219787B1 (en) Gas turbine blade and gas turbine
EP1278944A1 (en) System for sealing off a gap
EP0118020A1 (en) Ceramic turbine blade with a supporting metal core
EP2126286A1 (en) Turbine bucket
WO1998037310A1 (en) Turbine blade and its use in a gas turbine system
EP2173972B1 (en) Rotor for an axial flow turbomachine
DE2825801C2 (en)
DE102009044584A1 (en) Device in connection with turbine blade cooling holes
EP0916897B1 (en) Heat shield
DE19824583A1 (en) Turbine blade with tip capable of repetitive cutting of sealing grooves at high temperatures and in oxidizing atmospheres
DE3235230A1 (en) Gas turbine blade having a metal core and a ceramic vane
DE2825219A1 (en) ABRASIVE METAL MATERIAL AND METHOD OF ITS MANUFACTURING
WO2010052052A1 (en) Rotor for a turbomachine
EP1598522B1 (en) Steam turbine components, method for cooling a steam turbine and their use.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 01D 5/18 A, 7F 01D 5/28 B

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020711

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM TECHNOLOGY LTD

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59907926

Country of ref document: DE

Date of ref document: 20040115

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040213

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59907926

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59907926

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59907926

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59907926

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59907926

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171019

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171019

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907926

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181007